COHERENT FUNCTORS AND COVARIANTLY FINITE
SUBCATEGORIES

HENNING KRAUSE

Let A be an additive category and suppose that every map in A has a cokernel.
Following Auslander [2], a functor F': A — Ab into the category of abelian groups is

’

coherent if there exists an exact sequence
(Yv_) - (Xv_) —>F—>07

where (X, A) denotes the maps from X to A. The coherent functors form an abelian
category which we denote by A. Next we recall from [3] that a full subcategory B of A is
covariantly finite if for every object X € A there exists a map X — Y such that Y € B
and for every Y’ € B the induced map (Y,Y’) — (X,Y”) is surjective. In addition, we
require that every direct factor of an object in B belongs to B. We are interested in a
classification of all covariantly finite subcategories. The following observation leads to
a reformulation of this problem in terms of colocalizing subcategories. Recall from [7]
that a full subcategory S of an abelian category C is a Serre subcategory if it is closed
under subobjects, quotients, and extensions. A Serre subcategory S is colocalizing if the
corresponding quotient functor C — C/S has a left adjoint.

Proposition 1. Let A be an additive category with cokernels. Then there exists a bi-
jection between the class of covariantly finite subcategories of A and the class of colo-
calizing subcategories of A. This bijection sends a covariantly finite subcategory B to
{F € A| F|zg =0} and a colocalizing subcategory S to {X € A| FX =0 for all F € S}.

In this paper we study certain covariantly finite subcategories of an additive category
which is locally presentable in the sense of Gabriel and Ulmer [8]. Every module category
is locally presentable, and the covariantly finite subcategories which arise in practice
have the additional property that the corresponding colocalizing subcategory of coherent
functors is generated by a single object. For example, recent work of Eklof and Trlifaj
[6] which led to a proof of Enochs’ Flat Cover Conjecture, is based on an analysis of
such subcategories. The following result provides a characterization.

Theorem 2. Let A be a locally presentable additive category. Then the following are
equivalent for a full subcategory B:

(1) B is covariantly finite and there exists a functor F: A — Ab such that the co-
herent functors vanishing on B form the smallest colocalizing subcategory of A
containing F'.

(2) There exists a set of coherent functors F;: A — Ab such that X € A belongs to
B if and only if F;X =0 for all 7.

(3) There exists a set of sequences U; — V; — W, in A such that X € A belongs to B
if and only if the induced sequence (W;, X) — (V;, X) — (U;, X) is exact for all .

(4) There exists a regular cardinal o such that B is closed under taking products,
a-filtered colomits, and a-pure subobjects.
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We follow Crawley-Boevey and call a subcategory definable if it satisfies the equivalent
conditions of the preceding theorem. In [5], Crawley-Boevey used some model theory to
prove a special case of Theorem 2 for module categories (the equivalence of (2) and (4)
for oo = Ny).

Next we ask for a classification of the definable subcategories of a locally presentable
additive category A. To this end denote for every regular cardinal « by A, the full
subcategory of a-presentable objects in 4. This subcategory is closed under taking
cokernels and a-coproducts (that is, coproducts of less than « factors). The inclusion
it Ay — A extends to an exact functor i*: A, — A sending (X,—) to (iX,—) and we
write F' = i*F for each F € .Zl; The category .:l; has a-products and we denote by
Y. the set of all Serre subcategories S of A, which are /closed under a-products and
admit a faithful exact and a-product preserving functor A,/S — Ab. Let ¥ =, Xa
and define §; ~ &; for §1 € X, and Sy € ¥, with ap > a; if S is the smallest Serre
subcategory in X, which contains F| A,, for all ' € ;.

Theorem 3. Let A be a locally presentable additive category. Then there exists a bi-
jection between Y./~ and the class of definable subcategories of A. It sends S € X to
{X e A|FX =0 for dll F € S}.

The proof of both theorems is based on a filtration of the category D(A) = A°P which
seems to be of independent interest. In fact, a similar project has been carried out for
triangulated categories by Neeman [10]. We may think of the Yoneda functor

A— D(A), X — (X,—-),

as the universal colimit preserving functor to a cocomplete abelian category with exact
coproducts since any other functor A — A’ with this property has a unique factorization

A— D(A) oA

such that F' is exact and preserves coproducts. However, the category D(A) is too
big. For instance, a complete analysis of all localizing subcategories involves certain
set-theoretic problems; it is not possible within the usual axiomatic framework of Godel-

Bernays (see the remark at the end of Section 2). Therefore we introduce a filtration of
D(A) as follows.

Theorem 4. Let A be a locally a-presentable additive category. Then the Yoneda func-
tor A — D(A) has a factorization

A Do(A) — Dayr(@) — -+ — Dy(A) — - — D(A)
where B runs through all reqular cardinals (8 > «) and
(1) D(A) =Upsq Da(A);
(2) each Dg(A) is a locally B-presentable abelian category with exact coproducts and
exact B-filtered colimits;

(3) each inclusion Dg(A) — D(A) has an ezact and coproduct preserving right adjoint
Gp: D(A) — Dg(A) which induces an equivalence D(A)/Ker Gg — Dg(A).

Note that the construction of Dg(.A) is classical for 8 = a = Ny. It goes back to
Gruson and Jensen [9] for module categories, and was later extended by Simson [11] and
Crawley-Boevey [4]. We hope to convince the reader that the case § > ¥ is of some
interest as well.

This article is organized as follows. In Section 1 we provide background material
about locally presentable categories and functor categories. In Section 2 we study the
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filtration of D(.A). In Section 3 we characterize coherent functors A — Ab. In Section 4
we describe covariantly finite subcategories in terms of colocalizing subcategories and
prove a general criterion for a subcategory to be covariantly finite. In Section 5 we
study definable subcategories and provide proofs for the main results of this paper. In
the final Section 6 we explain how to make a functor exact, a problem which arises in
the classification of definable subcategories.

1. FUNCTOR CATEGORIES

Locally presentable categories. We recall from [8] some basic facts about locally
presentable categories. Let A be a cocomplete additive category and « a regular cardinal
(that is, « is not the sum of fewer than « cardinals, all smaller than «). A colimit of a
functor Z — A is a-filtered if

(F1) the isoclasses of objects in Z form a set,

(F2) for every set I of less than « objects in Z there exists an object j € 7 and a map
1 — j for all ¢ € I, and

(F3) for every set X of less than « parallel maps i — j in Z there exists amap 7: j — k
such that 7001 = 7009 for all 01,09 € X.

An object X € Ais a-presentableif (X, —) preserves a-filtered colomits and we denote by
A, the full subcategory of a-presentable objects. The category A is locally a-presentable
if the isoclasses of a-presentable objects form a set and every object in A is an a-filtered
colimit of a-presentable objects. Note that a locally a-presentable category is locally
B-presentable for every regular cardinal 8 > « and that A = | 53 Ap. Finally, Ais locally
presentable if A is locally a-presentable for some regular cardinal a.

For example, Ng-filtered colimits are precisely the usual filtered colimits. In a module
category the Ng-presentable objects are precisely the finitely presented modules. There-
fore every module category is locally Rg-presentable.

Left exact functors. We fix a regular cardinal o and a small additive category C.
Suppose that C has kernels and a-products (that is, products of less than « factors). A
functor F': C — Ab is called a-left exact if it is left exact and preserves a-products. We
denote by (C, Ab) the category of additive functors C — Ab and Lex,(C,Ab) denotes
the full subcategory of a-left exact functors.

Lemma 1.1. Let C be a small additive category with kernels and a-products.

(1) Ewvery a-filtered colimit of a-left exact functors C — Ab is again a-left exact.
(2) Every a-left exact functor C — Ab is an a-filtered colimit of representable func-

tors.
(3) The inclusion Lexo(C, Ab) — (C, Ab) has a left adjoint L: (C,Ab) — Lex,(C, Ab).
Proof. See Section 5 in [8]. O

Lemma 1.2. Let C be a small additive category with kernels and a-products. Then
Lexo(C, Ab) is a locally a-presentable category and the representable functors are, up to
isomorphism, precisely the a-presentable objects.

Proof. We apply Lemma 1.1. The category A = Lex,(C, Ab) is cocomplete. In fact,
colimits are first computed in (C,Ab), and then one applies the left adjoint of the
inclusion A — (C,Ab). The representable functors are a-presentable since a-filtered
colimits are computed in (C, Ab). Moreover, every a-left exact functor C — Ab is an
a-filtered colimit of representable functors. Writing an arbitrary a-presentable object X
as a-filtered colimit of representable functors (C;, —), one sees that X is a direct factor
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of (C;,—) for some i, and therefore isomorphic to (C,—) for some direct factor C' of
C;. O

Next observe that the category A, is a-cocomplete since the a-presentable objects
are closed under taking cokernels and a-coproducts in A.

Lemma 1.3. Let A be a locally a-presentable additive category. Then the functor
A — Lexo (AP, Ab), X +— (—,X)|4,,
is an equivalence.

Proof. Korollar 7.9 in [8]. O

Exact functors. We fix a regular cardinal o and a small abelian category C with o-
products. A functor F': C — Ab is called a-ezact if it is exact and preserves a-products.
The category of a-exact functors is denoted by Ex,(C, Ab).

Lemma 1.4. LetC be a small abelian category with a-products and let A = Lex,(C, Ab).

(1) A is a cocomplete abelian category and the functor C — A, X — (X, —), is ezact.
(2) Ewvery a-filtered colimit of exact sequences in A is again exact.

(3) F € A is an exact functor if and only if Ext'(X,=),F) =0 for all X € C.

(4) If a-products in C are exact, then coproducts in A are exact.

Proof. (1), (2) The category A is complete and cocomplete. In fact, limits in .4 can be
computed in (C, Ab), and colimits are first computed in (C, Ab), and then one applies the
left adjoint of the inclusion A — (C, Ab). Given an exact sequence 0 - X —Y — Z —
0 in C, the induced sequence 0 — (Z,—) — (Y, —) — (X, —) is automatically exact. The
last map is an epimorphism in A since ((X,—),F) — ((Y,—), F) is a monomorphism
for every left exact F': C — Ab by Yoneda’s lemma. Therefore the Yoneda embedding
C — A is exact. Next observe that an a-filtered colimit of left exact sequences is again
left exact by Lemma 1.1. To show that A is abelian, one needs to check that for every
map ¢: X — Y in A the canonical map

Coker(Ker ¢ — X) — Ker(Y — Coker ¢)

is an isomorphism. This is clear if X and Y are representable functors since C is
abelian. Now write ¢ as a-filtered colimit of maps between representable functors,
using Lemma 1.1. The claim follows since taking kernels and cokernels commutes with
taking a-filtered colimits.

(3) Let F € A and suppose first Ext*((X,—),F) =0forall X € C. Let 0 — X —
Y — Z — 0 be exact in C so that 0 — (Z,—) — (Y,—) — (X,—) — 0 is exact in A.
Applying (—, F) to this sequence shows that F' is an exact functor. Now suppose that
Fis exact and let ¢: 0 — ' — F — (X, —) — 0 be an exact sequence in 4. Writing
E as o-filtered colimit of representable functors (Y;, —), one finds some 7 such that the
composite (Y;,—~) — E — (X, —) is an epimorphism. Taking a cokernel Y; — Z of the
map X — Y;, we get the following commutative diagram with exact rows.

0 — 4-) — (Vi,-) — X,—-) — 0

0 — F — E — (X,-) — 0

Applying again Yoneda’s lemma, the exactness of F' implies that the sequence ¢ splits.
(4) Let (2;);er be a family of exact sequences ¢;: 0 — X; — Y; — Z; — 0 in A. We
write each ¢; as a-filtered colimit €; = colim,,c 7, €4, of exact sequences of representable
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functors. This is possible since each map in A is an a-filtered colimit of maps between
representable functors and a-filtered colimits are exact. Now let Z be the category of
families (a;);ex of objects a; € J; where K C I runs through all subsets of less than
a elements. For a = (a;)icx and b = (b;)icr let (a,b) = [[;ex(ai, b;) if K C L and
(a,b) = () otherwise. The category Z is again a-filtered and we have

€= Hsi = colim(ai)ieK(H €a;)-
€] €K
The assumption on C implies that J[, &4, is exact for all K, and we conclude that e
is exact. ]

The next lemma requires some notation. The cardinality of a set X is denoted by
|X|. Choose a representative set Co of objects in C and let [C| = || ¢ pee, (C, D). For
a functor F': C — Ab define |F| = || |oce, F'C|. Given a cardinal , we define for every
ordinal v with |v| < a a new cardinal x, by transfinite induction. First define

K =inf{|LF| | F € (C,Ab),|F| < r},

where L denotes the left adjoint of the inclusion Lex,(C,Ab) — (C,Ab). Now let
ko = & and ky41 = (ky + |C|)'. For a limit ordinal A let ky = > _, k.. Finally, let

R = Z|U|<a Ry.

Lemma 1.5. Let C be a small abelian category with a-products. Let G: C — Ab be
a-exact, and F C G be a subfunctor. Then there exists an a-exact subfunctor F' C G
containing F such that |F'| < |F|,.

Proof. We define by transfinite induction a sequence
F=F—-FEFK—-G —F — - —F,—-FE —>G,— -

of maps in (C, Ab) where v runs through all ordinals with |v| < a. To define E,, from

F,,, choose for every exact sequence U 2, Vv 4, W in C and every y € Ker F,¢) \ Im F,,¢
some x € GU such that Go(x) = y, and denote by I'), the set of all such elements
z. Define E, = F, + > cp G, where G, denotes the image of the map (U,—) — G
corresponding to x € GU under the Yoneda isomorphism. Let G, = LE,. The inclusion
FE, — G factors through the canonical map E, — G, via some map v,,: G, — G and we
define F,11 = Im~,. For a limit ordinal A let £\ = F\ = colim, <) F,. Finally, define
= colim,| <, Fy. This functor is exact by construction. It preserves a-products by
Lemma 1.1 since F’ = colim,| <o G is an a-filtered colimit of a-left exact functors. We
have |F'| < |F|, since |F,| < |F|, for all v. O

Functors on locally presentable categories. We collect in two lemmas the basic
properties of functors on locally presentable categories.

Lemma 1.6. LetC be a small a-cocomplete additive category and fix the Yoneda functor
C — Lex,(C°P,Ab). Let A be an additive category with a-filtered colimits. Then every
additive functor f: C — A has a (essentially) unique factorization

C — Lexa(C?, Ab) 15 4

such that f' preserves a-filtered colimits. Moreover, f' preserves all colimits if and only
if [ preserves a-colimits.
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Proof. 1t is clear how to define f’. Let F € Lex,(C°P, Ab) and write F' = colim;(—, X;)
as a-filtered colimit of representable functors. Then define f'F = colim; fX;. We refer
to [8, Satz 5.5] for details. O

Lemma 1.7. Let C and D be small a-cocomplete additive categories, and let f: C — D
be a functor which preserves a-colimits. Then the functor

fx: Lexo(D°P,Ab) — Lexo(CP?,Ab), F +— Fof,
has a left adjoint f*: Lexo(C°P, Ab) — Lex,(DP, Ab) which sends (—,X) to (—, fX)
for all X € C.
Proof. 1t is well-known that the functor
(D°P,Ab) — (C°P,Ab), F i+ Fof,

has a left adjoint (C°P, Ab) — (D°P, Ab) which sends (—, X) to (—, fX) for all X € C.
Both functors preserve a-left exactness, and therefore the assertion follows. O

2. A FILTRATION OF THE CATEGORY D(A)

The universal property of D(A). Let A be a cocomplete additive category and
denote by D(A) = A°P the opposite of the category of coherent functors A4 — Ab. We
may think of D(A) as an abelian completion. To make this precise we need the following
lemma.

Lemma 2.1. Let C be an additive category with cokernels and fix the Yoneda functor
C — C°P. Then any additive functor f: C — D into an abelian category D has a
(essentially) unique factorization

c—cw L,
such that f' is left exact. Moreover, f' is exact if and only if f is right ezact.

Proof. The category C is abelian since C has cokernels. Now let f: C — D be an additive
functor into an abelian category. We obtain a left exact functor f’: C°P — D if we send
G € C with presentation

v, )Y x, ) —a-—o

to the kernel of f¢. Using the snake lemma, one shows that f’ is right exact if and only
if f is right exact. O

The universal property of D(A) is a direct consequence.

Proposition 2.2. Let A be a cocomplete additive category.

(1) The category D(A) is abelian, cocomplete, and coproducts are exact. Moreover,
the Yoneda functor A — D(A) preserves colimits.

(2) Suppose that A’ is abelian, cocomplete, and coproducts are exact. Then any func-
tor f: A— A" which preserves colimits has a (essentially) unique factorization

A— D)L u

such that f' is exact and preserves coproducts.
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Proof. (1) The category A is abelian since A has cokernels. If (Xi)ier is a family of

objects in A, then
(H X —) = H(Xi —).

2

Therefore A has products and they are exact since the products are computed in Ab.
We conclude that D(A) has exact coproducts.

(2) Suppose f: A — A’ preserves colimits. We obtain an exact functor f': D(A) — A’
from Lemma 2.1, and f’ preserves coproducts since coproducts in A’ are left exact. [

The category D,(A). Let A be a locally a-presentable category and let C = A,. We
show how A can be identified with the category of a-exact functors C — Ab. This
construction is classical for o = Rg; it was introduced by Gruson and Jensen [9] for
module categories and later extended by Simson [11] and Crawley-Boevey [4]. Consider
the category D, (A) = Lex, (5, Ab). The Yoneda functor

h:C —>(/3\°p, X — (X, -),

extends to a functor R
h*: Lexq(C°P, Ab) — Lex,(C, Ab)
by Lemma 1.7, and we consider the composite

d: A "5 Lexo(C°P, Ab) 5 Dy (A).

Proposition 2.3. Let A be a locally a-presentable category. Then D, (A) is a locally
presentable abelian category with exact coproducts and exact a-filtered colimits.

Proof. This follows from Lemma 1.2 and 1.4. O

Proposition 2.4. Let A be a locally a-presentable category. Then d: A — Dy (A) has
the following properties:

(1) d preserves colimits and products.

(2) d induces an equivalence A — Ex,(C, Ab).

(3) d sends a sequence 0 - X —Y — Z — 0 in A to an exact sequence if and only

if 0 — (C,X) — (C,Y) — (C,Z) — 0 is exact for all C € C.

Proof. (1) Since h* is a left adjoint, it preserves colimits. A product of a-exact functors
is again a-exact, and therefore d preserves products by the following part (2).

(2) Since h is fully faithful, it follows that h* is fully faithful. Therefore d is fully
faithful. The Yoneda functor h identifies C with the full subcategory of injectives in Cop.
It follows that dX is an exact functor for every X € C. An arbitrary object in A is an
a-filtered colimit of objects in C. But d preserves a-filtered colimits and an o-filtered
colimit of exact functors is exact. Thus dX is exact for all X € A. Now suppose that
F € Dy(A) is exact. Then h,F': C°? — Ab is a-left exact, hence isomorphic to (—, X)|¢
for some X € A. Now dX and F' are both a-exact and agree on the representable
functors. Thus F' & dX.

(3) Fix a sequence ¢: 0 - X — Y — Z — 0 in \A. Suppose first that 0 — (C, X) —
(CY) — (C,Z) — 0 is exact for all C € C. Write Z = colim Z; as a-filtered colimit of
objects in C. It follows that € is the a-filtered colimit of split exact sequences 0 — X —
Y; — Z; — 0. Therefore de is the filtered colimit of exact sequences since d preserves
a-filtered colimits by (1), and we conclude from Lemma 1.4 that de is exact.

Now suppose that the sequence 0 — dX — dY — dZ — 0 is exact in D,(A) and
let C' € C. It follows from Lemma 1.4 that Ext!(dC,dZ) = 0 since dZ is exact by (2).
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Therefore the sequence 0 — (dC,dX) — (dC,dY) — (dC,dZ) — 0 is exact. The functor
d is fully faithful, again by (2), and therefore 0 — (C,X) — (C,Y) — (C,Z) — 0 is

eaxct. O

Definition 2.5. Let A be a locally presentable additive category and « be a regular
cardinal.

(1) A sequence 0 - X — Y — Z — 0 in A is called a-pure exact if the induced
sequence 0 — (C,X) — (C,Y) — (C,Z) — 0 is exact for all a-presentable
objects C.

(2) Amap X — Y in A is called a-pure monomorphism if there exists an a-pure
exact sequence 0 — X —Y — Z — 0.

Note that an a-pure exact sequence in A is a kernel-cokernel sequence provided that
A is locally a-presentable.

Lemma 2.6. Let A be a locally a-presentable additive category and let ¢: X — Y be
a map in A. Then d: A — Dy(A) sends ¢ to a monomorphism if and only if ¢ is an
a-pure monomorphism.

Proof. We apply Proposition 2.4. It follows from part (3) that d¢ is a monomorphism if
¢ is an a-pure monomorphism. Now suppose that d¢ is a monomorphism and let F' be
the cokernel of d¢. The functors dX and dY are exact by part (2), and an application
of the snake lemma shows that F'is exact. Thus ' =2 dZ for some Z € A and we get a
sequence 0 — X — Y — Z — 0 which is a-pure-exact, again using (3). It follows that
¢ is an a-pure monomorphism. O

The inclusion i: A, — A extends to an exact functor i*: A, — A sending (X,—) to
(iX,—) and we write F' = i*F for each F' € A,.

Lemma 2.7. Let A be a locally a-presentable additive category. Then
FX = ((F,~),dX) = dX(F)
for all F € Ay and X € A.

Proof. The second isomorphisms follows from Yoneda’s lemma. For X € A, we have
dX = ((X,—),—) and therefore

= ((Fa _)7 ((Xv _)v _))

= ((Fa _)7dX)7
again by Yoneda’s lemma. The general case follows since every object in A is an a-
filtered colimit of a-presentable objects and both functors, F' and d, preserve a-filtered
colimits. 0

The universal property of D,(A). The category D,(A) has a universal property
which is a variation of the universal property of D(A), involving the cardinal c.
Proposition 2.8. Let A be a locally a-presentable additive category.

(1) The category Do(A) is abelian, cocomplete, and o-filtered colimits are exact.
Moreover, the functor do: A — Dy (A) preserves colimits.
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(2) Suppose that A’ is abelian, cocomplete, and a-filtered colimits are exact. Then
any functor f: A — A" which preserves colimits has a (essentially) unique fac-
torization

A— Do) L

such that f' is exact and preserves coproducts.

Proof. (1) follows from Proposition 2.3 and 2.4.

(2) Suppose that f: A — A’ preserves colimits. The restriction A, — A’ induces an
exact functor ;l\aop — A’ which preserves a-colimits. Now apply Lemma 1.6 to get a
colimit preserving functor f’: D, (A) — A’ which extends f. The exactness of f’ follows
from the fact that each exact sequence in D,(A) can be written as a-filtered colmit of
exact sequences of representable functors. O

Remark. The proof of Proposition 2.8 shows that f': D,(A) — A’ is already determined
by the fact that f’ is left exact, preserves a-filtered colimits, and f = f’od,,.

The filtration of D(A). Fix a locally presentable additive category A. We have a
filtration A = |J,.o Aa and we denote for regular cardinals 3 > a or 3 = oo by
180 Ao — Ap the inclusion functor where A, = A. To simplify our notation we write

Cu(A) = A, and put
Coc(A) = C(A) = D(A) = Doo(A).
We denote by co: Ay — Co(A) the Yoneda functor which sends X € A, to (X, —); it

makes the following diagram commutative

Ae 25 Cu(A)

T
A Lo Do)

where jo,X = (—,X). Each inclusion ig, induces a fully faithful exact and a-colimit

preserving functor cgo: Co(A) — Cp(A) with cgo (X, —) = (iga X, —) for all X € A,.

Thus cg = cgo © co, and if v > 3, then we obtain ¢, = ¢y5°cgo. The next lemma shows

that we have a functor dg,: Do (A) — Dg(A) which completes the following diagram.

Aw 5 ColA) 25 Du(A)

liga CBa dﬁa

As = Cy(A) 75 Dy(A)
Lemma 2.9. Let A be a locally a-presentable additive category, and let § > « be a
reqular cardinal or 3 = oo. Then there exists a (essentially) unique colimit preserving

Junctor dgo: Do(A) — Dg(A) such that dg = dga°da. If v > B, then dyo = dygodga.
Proof. The functor

CBa

CalA) 25 Cy(A) 25 Dy(A)

preserves a-colimits. We apply Lemma 1.6 and obtain a unique colimit preserving
functor dgs: Do(A) — Dg(A) such that jgocga = dga ©jo. The equality dg = dgq °dy
follows from cg = cgq © ca, and do = d,g°dg, follows from c,, = ¢, 5°cg,. O

We have also functors Dg(A) — D, (A) for § > a.
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Lemma 2.10. Let A be a locally a-presentable additive category, and let 3 > « be a
reqular cardinal or 3 = co. Then there exists a (essentially) unique exact and coproduct
preserving functor eqg: Dg(A) — Do(A) such that d, = eqgodg. If v > [, then
€ay = €af ° €py-

Proof. We have exactness of coproducts and a-filtered colimits in D, (A) by Proposi-

tion 2.3. So we can apply the universal property of dg: A — Dg(A), formulated in
Proposition 2.2 and 2.8, to obtain eaz: Dg(A) — Dy (A). O

Next we exhibit the relation between the functors e,s and dg,. Recall that a Serre
subcategory S of an abelian category C is a full subcategory such that for every exact
sequence 0 — X' — X — X” — 0in C we have X € S if and only if X', X € S. There
is an abelian quotient category C/S and S is colocalizing if the exact quotient functor
C — C/S has a left adjoint [7].

Proposition 2.11. Let A be a locally a-presentable additive category, and let 8 > « be
a reqular cardinal or B = oo.
(1) eapeodpa = idp, 4y and eqp is a right adjoint for dg,.
(2) Sap =1{X € Dg(A) | eapX = 0} is a colocalizing subcategory of Dg(A) and eqp
induces an equivalence Dg(A)/Sap — Do (A).

Proof. (1) The definition of e,z implies the following factorization of d|4, = ja ©ca:

An 25 Co(A) 25 Do(A) 25 Dy(A) 2 Dy (A).

The composite f = eyg°dga°ja is exact since dgy°ja = j3°hga, and this implies
f = ja since both coincide on the full subcategory of injectives in C,(A). We conclude
€ap °dga = idp,(4) from Lemma 1.6 since ey © dg, preserves colimits.

Next, we show that e,g is a right adjoint for dg,. Suppose first that 3 < co. With
the notation of Lemma 1.7, we have dg, = ¢* for ¢ = cg,, and this has a right adjoint
cx with c,oc® =1idp, (4 since c¢* is fully faithful by the first part of this proof. There-
fore d, = c.°dg, and Lemma 2.10, in combination with the remark after the proof of
Proposition 2.8, implies e,3 = c.. Thus e,g is a right adjoint for dg,.

Now suppose f = oo and let ' € D,(A) and G € Dy (A). If the objects in a
presentation of G are y-presentable, then G = doo, H for H = (G4, —) in D,(A), and
we may assume that v > a. Using that e, is a right adjoint for d,, we obtain

(doan7 G) = (doo’y(dvaF)adoovH) = (d’yaFaH)
= (FleayH) = (F) eqry (€00 © dooy) H)
= (F, eanG).

Thus ey is a right adjoint for deoq.-
(2) is a consequence of (1) and the fact that e,p is exact; see Proposition I11.5 in
[7]. O

Corollary 2.12. Let A be a locally presentable additive category. If o is a reqular car-
dinal such that A is locally a-presentable, then dson: Do(A) — D(A) identifies Dy(A)
with the full subcategory of colimits of functors F' € D(A) having a presentation

(Yv_) - (Xv_) — F—0
such that X and Y are a-presentable. Therefore
U Da(4) = D(A).

a<oo
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3. COHERENT FUNCTORS

In this section we fix a locally presentable additive category A and characterize the
coherent functors A — Ab.

Definition 3.1. Let a be a regular cardinal. A functor F': A — Ab is called a-coherent
if there exists an exact sequence

(Yv_) - (Xv_) — F—0
such that X and Y are a-presentable objects.

Note that every coherent functor A — Ab is a-coherent for some regular cardinal «

since A =, Aa.

Proposition 3.2. Let A be a locally a-presentable category. Then a functor F': A —
Ab is a-coherent if and only F preserves products and a-filtered colimits.

Proof. Suppose first that F' is a-coherent. Each representable functor (X, —) preserves
products and a-filtered colimits provided that X is a-presentable. Clearly, this property
is preserved if we pass to the cokernel of a map (Y, —) — (X, —) where X and Y are
a-presentable.

Now suppose that F' preserves products and a-filtered colimits. Let C be the full
subcategory of a-presentable objects in A. Recall that there exists a tensor product

(C°P, Ab) x (C,Ab) — Ab, (F,G) — F &G,

where for any functor G: C — Ab, the tensor functor — ®¢ G is determined by the fact
that it preserves colimits and (—, X) ®¢ G = GX for all X in C. Now take G = F|¢ and
observe that

(*) FX = (= X)le®c G

for all X € A since F' preserves a-filtered colimits and every object in A can be written
as a-filtered colimit of a-presentable object.

Next we use the fact that a module M over any ring R is finitely presented if the
corresponding tensor functor — ®p M preserves products. In fact, it is sufficient to
assume that — ®r M preserves products of finitely generated projective modules (cf.
Lemma 1.13.2 in [12]). This result generalizes to rings with several objects. The finitely
generated projective C-modules are up to isomorphism of the form (—, X) with X € C
and the assumption on F' implies that the natural map

(JJ(= X)) @c G — J]((— Xi) €c G)

i i

is an isomorphism for every family (X;);cr in C. We conclude that G has a presentation
Y, e — (X, )le — G —0

with X, Y € C. Combining this presentation with the isomorphism (*) gives a presen-
tation

(Yv_) — (Xv_) — F—0
of F'. Thus F' is a-coherent. O
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4. COVARIANTLY FINITE SUBCATEGORIES

A full subcategory B of a category A is covariantly finite if for every object X € A
there exists a map X — Y such that Y € B and for every Y’ € B the induced map
(Y,Y") — (X,Y’) is surjective. We require in addition that every direct factor of an
object in B belongs to B.

Colocalizing subcategories. Fix an additive category A with cokernels so that the
category A of coherent functors A — Ab is abelian. We describe the covariantly finite
subcategories of A in terms of colocalizing subcategories of A. Note that a colocalizing
subcategory of A is the same as a localizing subcategory of D(A) = A°p.

Proposition 4.1. Let A be an additive category with cokernels. Then there exists a
bijection between the class of covariantly finite subcategories of A and the class of colo-
calizing subcategories of A. This bijection sends a covariantly finite subcategory B to
{F € A| F|g =0} and a colocalizing subcategory S to {X € A| FX =0 for all F € S}.

Proof. Denote by i: B — A the inclusion of a full subcategory. Suppose first that B
is covariantly finite and let S = {F € A | F|z = 0}. We obtain a functor i,: A — B
sending F' to F'|p which induces an equivalence between .A/S and B. The right exact
functor i*: B — A which sends (X, —) to (iX,—) for all X € B provides a left adjoint
for the quotient functor A — ./Al/S and therefore S is colocalizing.

Conversely, let S C A be colocalizing and let B = {X € A| FX =0 for all F € S}.
Then the quotient category .Z/S has enough projectives which the left adjoint identifies
with the representable functors (X, —) such that ((X,—),F) = FX =0 for all F € S.
Thus ./zl\/ S and B are equivalent, and the quotient functor sends (X, —) to (X, —)|z which
is a quotient of (Y, —) in B for some Y € B. This gives the desired map X — Y so that
B is covariantly finite. O

A criterion. Fix a locally presentable additive category A. The following proposition
gives a general criterion for a subcategory of A to be covariantly finite.

Proposition 4.2. Let A be a locally presentable additive category and let B be a full
subcategory which is closed under taking products. Suppose that there exists a set C of
objects in A such that for every Y € B a subobject X C'Y belongs to B provided that
the cokernel sequence X — 'Y — Z — 0 induces an epimorphism (C,Y) — (C,Z) for
all C € C. Then B is covariantly finite.

Proof. Suppose that A is locally a-presentable. Choosing o sufficiently large, we may
assume that C C A,. Therefore the condition on B implies that B is closed under
taking a-pure subobjects. To prove that B is covariantly finite we use the embedding
d: A — D4(A) and Lemma 1.5. Extending the notation introduced before Lemma 1.5,
we define | X| = |dX]| for every X € A. Now let ¢: X — Y be a map with Y € B. Let
k be a cardinal such that |F|, < k for every quotient F' of dX in D,(A). We claim
that ¢ factors through some Y’ € B with |Y'| < k. In fact, it follows from Lemma 1.5
that d¢ factors through some exact subfunctor G C dY with |G| < k. Now G = dY’
for some Y’ € A by Proposition 2.4, and Y’ € B since the map Y’ — Y is an a-pure
monomorphism by Lemma 2.6. Let

p: X — [[ 2%

1Z|<x
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where Z runs through a set of isoclasses of objects in B with |Z| < k. The product
H\Z|§n ZX2) pelongs to B, and every map X — Y with Y € B factors through ¢ by
construction. Thus B is covariantly finite. U

Corollary 4.3. Let A be a locally presentable additive category and let B be a full
subcategory. Suppose that B is closed under taking products and a-pure subobjects for
some reqular cardinal . Then B is covariantly finite.

Every covariantly finite subcategory of a locally presentable category is automatically
closed under taking products and direct factors. Therefore it is attempting to ask
whether the converse is true. Unfortunately, an answer to this question requires some
set-theoretic assumptions. To be precise, consider the following statement.

(CF) A full subcategory of a locally presentable category is covariantly finite if and only
if it is closed under taking products and direct factors.

This statement cannot be proved in the set theory GBC (Go6del-Bernays plus axiom of
choice). However, assuming the existence of certain large cardinals one can find a model
for the set theory GBC where (CF) holds true. We refer to [1] for details.

5. DEFINABLE SUBCATEGORIES

The concept of a definable subcatory has been introduced by Crawley-Boevey for
module categories [5]. For his definition he used coherent functors F': Mod R — Ab
having a presentation

(Y7*) - (Xv*) — F-—0
such that X and Y are finitely presented R-modules. The following definition is more
general.

Definition 5.1. Let A be an additive category. A full subcategory B of A is called
definable if there exists a set of coherent functors F;: A — Ab such that X € A belongs
to B if and only if F; X = 0 for all 4.

A characterization. Our aim is to characterize the definable subcategories of a lo-
cally presentable additive category. The essential part of this project is the following
proposition.

Proposition 5.2. Let A be a locally a-presentable additive category and let B C A.
(1) § ={F € A | Flg = 0} is a Serre subcategory of Ay, which is closed under
a-products and admits a faithful a-ezact functor A, /S — Ab.

(2) If B is closed under taking products, a-filtered colimits, and a-pure subobjects,
then B={X € A| FX =0 for all F € S}.

Proof. (1) follows from the isomorphism FX = dX(F) in Lemma 2.7 since dX is a-
exact by Proposition 2.4. To obtain a faithful a-exact functor A, /S — Ab take for each
F e A, \ S some Xp € B with FXp # 0 and let G = [[zdXp. Clearly, G induces a

faithful a-exact functor Aq, /S — Ab.

(2) Now suppose that B is closed under taking products, a-filtered colimits, and a-
pure subobjects. Let F be the full subcategory of objects in D, (.A) which are subobjects
of objects in dBB. Note that dX € F implies X € B for all X € A by our assumptions
on B since subobjects in D, (A) correspond to a-pure subobjects in B by Lemma 2.6.
Clearly, F is closed under products and subobjects since B is closed under products. We
claim that F is also closed under a-filtered colimits. To this end let X = colim;c7 X; be
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an a-filtered colimit of objects in F. Choose for each ¢ € 7 a monomorphism X; — Y;
with Y; € dB. We obtain an a-filtered system of monomorphisms X; — Hi_m. Y;, indexed
by i € 7, where i — j runs through all maps in Z which start in i, and X; — Y is the
composite of X; — X; and the monomorphism X; — Y;. The colimit of this system
produces a monomorphism X — Y with Y € dB since B is closed under products and
o-filtered colimits. Therefore X belongs to F.

The inclusion functor F — D, (A) has a left adjoint f: D,(A) — F which is con-
structed as follows. For X € D,(A) consider the set of all quotient objects Y; which
belong to F. Then define fX to be the image and tX to be the kernel of the canonical

map X — [[; ¥;. Also define 7 to be the full subcategory
T={XeDyA)|(X,Y)=0foral Y € F}
={X € Dy(A) | (X,dZ) =0 for all Z € B}.

We identify each X € § with (X, —) in D,(A) and claim that 7 = colim, S, that is,
the objects in 7 are precisely the a-filtered colimits of objects in §. The isomorphism
of Lemma 2.7 shows that S € 7 and therefore colim, S C 7. Next we show that
tX € colim, S for every a-presentable X. We can write tX = colim X; as o-filtered
colimit of a-presentable subobjects since the image of every map between a-presentable
objects is again a-presentable. If X; € S for some i then there exists a non-zero map
X; — Y forsome Y € dB and this extends to amap ¢: X — Y since Ext!(—,Y") vanishes
on a-presentable objects by Lemma 1.4. However, ¢ factors through the canonical map
X — fX which implies ¢|;x = 0. This is a contradiction and therefore tX € colim, S.
Now let X = colim X; be an arbitrary object in D, (A) written as a-filtered colimit of
a-presentable objects. We obtain an exact sequence

0 — colimtX; — X — colim fX; — 0

with colimtX; € colim, S and colim fX; € F since both, colim, S and F, are closed
under a-filtered colimits. We conclude that tX € colim, S. An immediate consequence
is

F={Y € D,(A) | (X,Y)=0forall X € T},
that is, (7, F) forms a torsion pair. )

We are now in a position to prove that B = {X € A | FX = 0 for all F' € S}. One
inclusion is clear. Therefore let X € A with FX =0 for all F € S. Thus (F,dX) = 0 for
all F' € S, and this implies (G,dX) = 0 for all G in colim, § = 7. We obtain dX € F
from the first part of this proof, and this implies X € B. ]

We continue with two lemmas which help to characterize the definable subcategories.

Lemma 5.3. Let A be a cocomplete additive category. Given a set of sequences U; —
Vi — W; in A, there exists a coherent functor F': A — Ab such that for every object
X € A the induced sequence (W;, X) — (V;, X) — (U;, X) is exact for all i if and only
if FX =0.

Proof. Consider the following commutative diagram
HZUZ—’HLVz — P — 0

where the rows are exact and the square is a pushout. Now take for £': A — Ab the
cokernel of (Q,—) — (P, —). O
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Lemma 5.4. Let A be a locally presentable category and S be a class of a-coherent
functors A — Ab. Then

B={Xec€A|FX =0 foral F €S}
is closed under taking products, a-filtered colimits, and a-pure subobjects.

Proof. A representable functor (X,—) with a-presentable X preserves products, a-
filtered colimits, and sends a-pure exact sequences to exact sequences. It follows im-
mediately that every a-coherent functor F': A — Ab preserves products and a-filtered
colimits. An application of the snake lemma shows that F' sends a-pure exact sequences
to exact sequences. We conclude that B is closed under taking products, a-filtered
colimits, and a-pure subobjects. O

We are now in a position to give the proof of Theorem 2 which characterizes the
definable subcategories of a locally presentable category.

Proof of Theorem 2. (2) = (3): Clear.

(3) = (2): See Lemma 5.3.

(2) = (4): Given a set of coherent functors F;: A — Ab there is a regular cardinal «
such that all F; are a-coherent. Now use Lemma 5.4.

(4) = (2): See Proposition 5.2.

(2) = (1): Fix a set of coherent functors F; such that X € A belongs to B if and only
if F;X =0 for all 7. The subcategory B is closed under products and a-pure subobjects
for some regular cardinal o by Lemma 5.4. It follows from Corollary 4.3 that B is
covariantly finite. Moreover, the bijective correspondAence between covariantly finite
subcategories of A and colocalizing subcategories of A shows that the corresponding
colocalizing subcategory {G € A | G|z = 0} is the smallest containing F = IL Fi.

(1) = (2): Let B’ be the full subcategory of objects in A satisfying FX = 0. We
claim that B’ = B. The subcategory B’ is covariantly finite since (2) implies (1). Now
apply the bijective correspondence between covariantly finite subcategories of A and
colocalizing subcategories of A. 1t is clear that the colocalizing subcategory of A which
consists of the coherent functors vanishing on B’ is the smallest containing F'. Therefore
(1) implies B’ = B and this shows (2). O

We give some examples of definable subcategories.

Example 5.5. (1) Let (X;)ier be a family of R-modules (R any ring) and (n;);c; be a
family of non-negative integers. Then the R-modules Y such that Ext}(X;,Y) = 0 for
all ¢ form a definable subcategory of the category of all R-modules.

(2) Let C be a small additive category and let U; — V; — W; be a family of sequences
in C. Then the functors F': C — Ab such that FU; — FV; — FW; is exact for all 7 form
a definable subcategory in the category of all additive functors C — Ab.

A classification. Fix a locally presentable additive category A. We have seen in Propo-
sition 5.2 that every definable subcategory of A is determined by some Serre subcategory
of A, for some appropriate cardinal o. This leads to a classification of all definable sub-
categories. To this end denote for every regular cardinal a by >, the set of all Serre

subcategories S of ;l; which are closed under a-products and admit a faithful a-exact
functor A,/S — Ab.

Proposition 5.6. Let A be a locally a-presentable additive category and let S C ;l\a
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(1) B={X € A| FX =0 for all F € S} is closed under taking products, a-filtered
colimits, and a-pure subobjects.

(2) S={F¢ A | F'|g = 0} is the smallest Serre subcategory in 3, containing S.

Proof. (1) follows from Lemma 5.4.

(2) It follows from Proposition 5.2 that S € ¥,. Now let 7 € ¥, containing S.
There exists a faitful a-exact functor G: A, /T — Ab and the composition with the
quotient functor ;l\a — ;l\a/’]' is a-exact and therefore isomorphic to dY for some
Y € A by Proposition 2.4. The isomorphism FY = dY (F) from Lemma 2.7 implies
T ={F ¢ A | FY = 0}. We get Y € B since S C 7, and the definition of S implies
S C 7. This completes the proof. O

Now consider ¥ = o Sa- Given regular cardinals as > a1, we call §; € X, and
Sy € X, equiva{ent and write §; ~ Sa, if Sy is the smallest Serre subcategory in X,
which contains F|4,, for all F' € S;. The following lemma explains this equivalence
relation.

Lemma 5.7. Let A be a locally a-presentable additive category and let ag > a1 > « be
reqular cardinals. Then S§1 € ¥, and Sz € X4, are equivalent if and only if

{(XEeA|FX=0foral FeES}={XecA|FX =0 forall F € Sy}.

Proof. The inclusion i: Ay, — Aq, induces an exact functor ¢*: Za\l — ZOZ which
sends (X, —) to (iX,—) for all X € A,,. Observe that i*F = F|4,,. Now let B; =
{X e A|FX =0forall F € §;} for i = 1,2. It follows from Proposition 5.6 that
Sy ={F ¢ .Za: | Flg, = 0} and i*S; = {F € .Z(; | F|g, = 0} is the smallest Serre
subcategory in X, containing i*S;. We conclude, again from Proposition 5.6, that
Bl == Bg if and OIlly if Sl ~ 82. |

We obtain now the classification of all definable subcategories via Serre subcategories
which is Theorem 3.

Corollary 5.8. Let A be a locally presentable additive category. Then there exists a
bijection between Y./~ and the class of definable subcategories of A. It sends S € ¥ to
{Xe A|FX =0 for all F € S}.

Proof. Every definable subcategory is of the form {X € A| FX = 0 for all F' € S} for
some S € Y by Proposition 5.2. Moreover, the definable subcategories corresponding to
St and Sy in X coincide if and only if §; ~ Sy by Lemma 5.7. O

6. HOw TO MAKE A FUNCTOR EXACT

Let C be a small abelian category with a-products for some regular cardinal o. In
this section we construct for every additive functor F': C — Ab an a-exact functor F’
and a map ¢: F' — F’ such that for every a-exact G every map F — G factors through
¢. We show that this construction is closeley related to the following problem which
arises in the classification of definable subcategories via Serre subcategories of coherent
functors.

Problem 6.1. Let C be a small abelian category with a-products for some regular car-
dinal . When does there exists a faithful a-exact functor C — Ab?



COHERENT FUNCTORS AND COVARIANTLY FINITE SUBCATEGORIES 17

Let us start with a functor F': C — Ab which is a-left exact. We define by transfinite
induction a sequence
F=F—-N—-FK—---—F, —F, 11— -

of maps in Lex,(C, Ab) where v runs through all ordinals with |v| < a. To this end fix
a representative set of epimorphisms 7: Y — 7 in C. For v with |v| < « let

r,= || FZ\lmFmx.
w:Y—>Z
We get a map [[;cr, (Zi, —) — F, where (Z;, ) — F, is the map corresponding to
i € I'y under the Yoneda isomorphism. We define the map F,, — F,, 11 by taking the
pushout

I1(m;,—)
HieFV(Zh_) - Hieru(Yia—)

F,, — Fu—i—l
Note that F,, — F,4+1 is a monomorphism if a-products in C are exact. For a limit
ordinal A let F = colim, ) F,. Finally, we define

F* = colim|,| <, F,.

Lemma 6.2. Let F': C — Ab be a-left exact. Then F* is a-exact and every map F — G
such that G is a-exact factors through the canonical map F — F*.

Proof. The functor F™* is a-exact by construction. Now let F' — G be a map such that
G is a-exact. In each step the map F, — G factors through F;, — F,41. Thus F' — G
factors through F — F™*. U

Corollary 6.3. Let C be a small abelian category with a-products for some reqular car-
dinal . Then the a-exact functors form a covariantly finite subcategory in the category

of all additive functors C — Ab.
Proof. Combine Lemma 1.1 and Lemma, 6.2. O
We continue with the problem of finding a faithful a-exact functor C — Ab.

Proposition 6.4. Let C be a small abelian category with a-products for some regular
cardinal o and let A = Lexo(C, Ab). Then the following are equivalent:

(1) There ezists a faithful a-exact functor C — Ab.

(2) For every F' € A the canonical map F' — F* is a monomorphism.

(3) Every F € A is subobject of some a-injective object G, that is, Ext!(—, G) van-
ishes on a-presentable objects.

Proof. (1) = (2): Let G: C — Ab be faithful and a-exact. Suppose first that /' = (X, —)
and let K be the kernel of ¢: F' — F*. A non-zero element in K'Y gives rise to a non-
zero map ¥: (Y,—) — F and we get with F/ = Im an exact sequence 0 — F' —
F — F” — 0 of representable functors with F/ C K. If F/ = (X', —), then a non-zero
element in GX’ gives rise to a non-zero map F’ — G which extends to a map F — G
by Lemma 1.4 since G is exact. This map factors through F' — F* by Lemma 6.2 and
therefore K = 0. Now let F' € A be arbitrary and write F' = colim;c7 F; as a-filtered
colimit of representable functors. The monomorphisms F; — F}* induce an a-filtered

system of monomorpisms
Fi— H Fy

i—]
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where ¢ — j runs through all maps in Z starting in ¢. This gives a monomorphism

t: F = colim; F; — colim; [ [ F}

i—7]

into an a-exact functor since each F} is exact. The map ¢ factors through ¢: F' — F™
by Lemma 6.2 and we conclude that ¢ is a monomorphism.

(2) = (3): An object G € A is a-injective if and only if it is a-exact by Lemma 1.4.
Therefore F' € A is subobject of some a-injective object G if we take G = F™*.

(3) = (1): Let Cy be a representative set of objects in C and choose for each X € C
a monomorphism (X, —) — Gx such that Gx is a-injective. Then G = [[ ¢, Gx is a
faithful a-exact functor C — Ab. O

A small abelian category C with a-products admits a faithful a-exact functor C — Ab
if C has enough projectives or if @ = Ny. In the first case use [[p(P,—) where P
runs through a representative set of projectives; in the second case take an injective
cogenerator in Lex,(C,Ab). It is clear that a-products in C are exact if there exists
a faithful a-exact functor C — Ab. However this condition is not sufficient. In fact,
Neeman constructs in [10] an example which leads to a small abelian category with
Ni-products which are exact but which does not admit an Ri-exact embedding into the
category of abelian groups.

Note that every small abelian category C with exact a-products arises as quotient

;l; /S for some locally a-presentable additive category A and some Serre subcategory
S of A, closed under a-products, by taking A = Lex,(C, Ab).
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