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Cartan-decomposition subgroups of SU(2,n)

Alessandra lIozzi and Dave Witte

Abstract.  We give explicit, practical conditions that determine whether or
not a closed, connected subgroup H of G = SU(2,n) has the property that
there exists a compact subset C' of G with CHC = G. To do this, we fix a
Cartan decomposition G = KATK of (G, and then carry out an approximate
calculation of (KHK)N AT for each closed, connected subgroup H of G. This
generalizes the work of H. Oh and D. Witte for G = SO(2,n).

1 Introduction

Definition 1.1.  [14, Defn. 1.2] Let H be a closed subgroup of a connected,
simple, linear, real Lie group . We say that H is a Cartan-decomposition
subgroup of G if

e [ is connected, and

e there is a compact subset C' of G, such that CHC = G.
(Note that €' is only assumed to be a subset of (7; it need not be a subgroup.)

Example 1.2.  The Cartan decomposition G = K AK shows that the maximal
split torus A is a Cartan-decomposition subgroup of G'.

It is known that G = KNK [9, Thm. 5.1], so the maximal unipotent
subgroup N is also a Cartan-decomposition subgroup.

If R-rankG = 0 (that is, if G is compact), then every (closed, connected)
subgroup of G is a Cartan-decomposition subgroup.

If R-rankG = 1, then it not difficult to see that every (closed, connected)
noncompact subgroup of (& is a Cartan-decomposition subgroup (cf. [5, Lem. 3.2]).

It is more difficult to characterize the Cartan-decomposition subgroups
when R-rank G = 2, but H. Oh and D. Witte [14] studied two examples in detail.
Namely, they described all the Cartan-decomposition subgroups of SL(3,R) and
of SO(2,n), and they also explicitly described the closed, connected subgroups
that are not Cartan-decomposition subgroups. Here, we obtain similar results for
SU(2,n). Unfortunately, the results are rather complicated to state.

Notation 1.3. Let ¢ = SU(2,n) and fix an Iwasawa decomposition G =
K AN and a corresponding Cartan decomposition G = K ATK, where AT is the
(closed) positive Weyl chamber of A in which the roots occurring in the Lie algebra
of N are positive. Thus, K is a maximal compact subgroup, A is the identity
component of a maximal split torus, and N is a maximal unipotent subgroup.

To simplify, let us restrict our attention here to subgroups of N.
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Theorem 1.4. (cf. 3.4) Let G = SU(2,n) and let H be a closed, connected
subgroup of N. Then H s a Cartan-decomposition subgroup of G if and only if

1. H satisfies at least one of the eight conditions in Proposition 4.1; and

2. H satisfies at least one of the five conditions in Proposition 5.1.

Theorem 1.5.  Let G =SU(2,n) and let H be a closed, connected, nontrivial
subgroup of N. Then H is not a Cartan-decomposition subgroup of G if and
only if H belongs to one of the eleven types of subgroups explicitly described in
Theorem 6.1.

For subgroups H that are not contained in N, there is no loss of generality
in assuming that H C AN (see 7.1), and that H satisfies the additional tech-
nical condition of being compatible with A (see 7.3). Under these assumptions,
Theorem 7.4, Proposition 7.6, and Lemma 7.8, taken together, list the possibil-
ities for H and, in each case, determine whether H is a Cartan-decomposition
subgroup or not.

Our results require an effective method to determine whether a subgroup is a
Cartan-decomposition subgroup or not. This is provided by the Cartan projection.

Definition 1.6.  (Cartan projection) For each element g of ', the Cartan
decomposition ¢ = KATK implies that there is an element a of AT with
g € KaK . In fact, the element a is unique, so there is a well-defined function

p: G — AT given by g € K u(g) K.

The function g is continuous and proper (that is, the inverse image of any compact
set is compact). Some properties of the Cartan projection are discussed in [1]
and [7].

We have u(H) = AT if and only if KHK = (. This immediately implies
that if u(H) = A", then H is a Cartan-decomposition subgroup. Y. Benoist
and T. Kobayashi proved the deeper statement that, in the general case, H 1is
a Cartan-decomposition subgroup if and only if p(H) comes within a bounded
distance of every point in A*.

Notation 1.7.  For subsets U and V of AT, we write U ~ V if there is a
compact subset €' of A, such that U C VC and V' C UC'. This is an equivalence
relation.

Theorem 1.8. (Benoist [1, Prop. 5.1], Kobayashi [8, Thm. 1.1]) A closed, con-
nected subgroup H of G is a Cartan-decomposition subgroup if and only if u(H) ~
At

Remark 1.9.  We may consider SO(2,n) to be the subgroup of SU(2,n) con-
sisting of the real matrices. Then, because A C SO(2,n), we see that SO(2,n)
is a Cartan-decomposition subgroup of SU(2,n). More generally, a subgroup of
SO(2,n) is a Cartan-decomposition subgroup of SO(2,n) if and only if it is a
Cartan-decomposition subgroup of SU(2,n). (For example, this follows from the
fact that the Cartan projection for SO(2,n) is the restriction of the Cartan pro-
jection for SU(2,n).) Thus, our results generalize those theorems of H. Oh and
D. Witte [14] that are directed toward SO(2,n).
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Remark 1.10.  One may define a partial order < on the set of closed, con-
nected subgroups of GG by

Hy < H, if there is a compact subset C' of ¢, such that H; C C H,C'.

(So H is a Cartan-decomposition subgroup of G if and only if G < H.) We see
from [1, Prop. 5.1] that H; < H, if and only if there is a compact subset C of A,
such that p(Hy) C u(Hy)C. Thus, it is of interest to calculate p(H), for each
subgroup H of . Our results solve this problem: for each (closed, connected)
subgroup H, we give an explicit subset U of A, such that u(H) ~ U. For
the cases where u(H) % AT, these results are summarized in Tables 1, 2, and 3
of Section 8, and the subset U is given in a standard form that makes it easy
to determine whether H; < H,. Thus, we determine the order structure of the
relation <, and also determine precisely where each subgroup lies in this partial
order.

The interest in Cartan-decomposition subgroups is largely due to the follow-
ing basic observation that, to construct nicely behaved actions on homogeneous
spaces, one must find subgroups that are not Cartan-decomposition subgroups.
(See [7, §3] for some historical background on this result.)

Proposition 1.11. (Calabi-Markus phenomenon, cf. [10, pf. of Thm. A.1.2])
If H is a Cartan-decomposition subgroup of G, then no closed, noncompact sub-
group of G acls properly on G/H .

H. Oh and D. Witte [15, 16] used this proposition as a starting point
to study the existence of tessellations. (A homogeneous space G/H is said to
have a tessellation if there is a discrete subgroup I' of G, such that T' acts
properly on G/H, and I'\G/H is compact.) In particular, when n is even,
they determined exactly which homogeneous spaces SO(2,n)/H have a tessellation
(under the assumption that H is connected). These results depend not only on the
characterization of Cartan-decomposition subgroups, but also on the calculation of
p(H) for each subgroup H, and on the maximum possible dimension of subgroups
with a given image under the Cartan projection. In [4] we use some of the results
of the current paper to study tessellations of homogeneous spaces of SU(2,n).

Here is an outline of the paper. Section 2 describes the notation we use
to specify elements of SU(2,n). Section 3 recalls some general results on Cartan-
decomposition subgroups, and defines a representation p. Section 4 determines
whether H contains large elements with ||p(h)|| approximately equal to |A]*.
Similarly, Section 5 determines whether H contains large elements with ||p(h)||
approximately equal to ||2||. By combining the calculations of the preceding two
sections, Section 6 determines which subgroups of N are Cartan-decomposition
subgroups. Then Section 7 determines which other subgroups of G are Cartan-
decomposition subgroups. Section 8 determines the maximum possible dimension
of a subgroup of H with any given image under the Cartan projection.
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carried out during productive visits to the University of Bielefeld (Germany) and
the Isaac Newton Institute for Mathematical Sciences (Cambridge, U.K.). We
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2 Explicit coordinates in SU(2,n)

Notation 2.1.  We realize SU(2,n) as isometries of the indefinite Hermitian

form
n

(v ]| W) = V1Wpy2 + VWLt + g ViW; + Upp1Wa + gy
1=3

on C**%. The virtue of this particular realization is that we may choose A to
consist of the diagonal matrices in SU(2,n) that have nonnegative real entries,
and N to consist of the upper-triangular matrices in SU(2,n) with only 1’s on

the diagonal. Thus, the Lie algebra of AN is

bhoo a m e til, €R
0 t2 Yy ty —-n Qb, 667
a+n=¢{ [0 0 0 —yt —at S (2.1)
000 —t, —5|]|®YeC
000 0 —i Xy €R

where ¢ or 7 denotes the conjugate of a complex number ¢ or 5, and z! or y!
denotes the conjugate-transpose of a row vector = or y. Note that the first two
rows of any element of a + n are sufficient to determine the entire matrix.

Notation 2.2.  Because the exponential map is a diffeomorphism from n to IV,
each element of NV has a unique representation in the form exp v with v € n. Thus,
each element h of N determines corresponding values of ¢, x, y, 1, x and y (with
t1 =13 =0). We write

Ghy Thy Yhs Thy Xhs Vi

for these values.

Notation 2.3. We let o and 8 be the simple real roots of SU(2,n), defined
by a(a) = a1/az and ((a) = az, for an element a of A of the form

a = diag(ay, a9, 1,1,...,1,1,a5",a7").
Thus,
e the root space u, is the ¢-subspace in n,
e the root space ug is the y-subspace in n,

e the root space u,4p is the z-subspace in n,

the root space u,495 1s the np-subspace in n,

e the root space uys is the y-subspace in n, and

the root space uz,495 1s the x-subspace in n.
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Notation 2.4.  For a given Lie algebra ) C n, we use 3 to denote h N (Uyy25+
Ugat28 + Uzg). In other words,

3={uéebh|d,=0and z,=y,=0}.

(We remark that if ¢, = 0 for every u € b, then [h,h] C 3 and 3 is contained in
the center of §.)

Notation 2.5.  For h € SU(2,n), define

hl n+1 hl n+2
A(h) = det : ’ .
( ) ¢ <h2,n+1 h27n+2>

The following results collect some straightforward calculations that will be
used repeatedly throughout the paper.

Remark 2.6. For

0 ¢ = 17 X
00y & -7
u=|0 0 0 —y' —2f|éen and h=expu € N,
000 0 —o
00 0 O 0
we have
L6 eals n—zry’ —5lz[* = Re(67) + 5516*[y]*
X = . . . —
2 4 Ligy — Solyl* +i(x— Loy + LIm(Gayh))
01 iy — 5lyl? —7 — syx’ — Ligy + §olyl?
exp(u) = t to 1,1
0 0 Id —y —x' + Sy
00 0 1 —&
0 0 0 0 1
and

—nl* +xy = glzly* + {1y = §ly[* Re(nd)
1

A(h) = — éy Im(gijg) + %y2|¢|2 . m|y|4|¢|2
+i (v [8PIyI? + Im(zy'T) + X[yl + ylz]?).

When ¢ = 0, these simplify to:

1 0 o n—layt ix—iz|?

0 1 y ay—glyl* —7— gy
exp(u)= [0 0 Id —yf —zf

0 0 0 1 0

0 0 0 0 1
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and
—[n* +xy = glz[*ly* + Flay"?
A(h): (1 t= 1 2 1 2
+ i (Im(zy™7) + 3x[y|® + Jylzf?) .
Similarly, when y = 0, we have
=gl — Re(én)
1 T + 1 2] ,
o n 2¢y +Z<X—é|¢|2y)
1 . ___l._.
expuy= |0 LY T |
0 0 Id 0 —zt
00 0 1 —
0 0 0 0 1
and
A(h) = (xy + 35l61%y* = In*) + 1 (3]=]%y) - (2:2)
Remark 2.7.  For
0 ¢ = n ix 0 ¢ & 7 ix
u = 0 y 1y —7 and U= 0 g 1y —-nlj, (2.3)
we have
0 0 ¢j—dy —aft+ay'+igy —idy —2ilm(zi®+ o7 — ¢7)
[u, 4] = 0 0 —2i Tm(yg") gt — yit +idy —idy |

00 0 —(67— dy)gt+2ipIm(ygh) =
00 0 | . (2.4)

3 Preliminaries on Cartan-decomposition subgroups

Notation 3.1.  We employ the usual Big Oh and little oh notation: for func-
tions fi1, fo on H, and a subset 7 of H, wesay f; = O(f2) for z € Z if there is
a constant €', such that, for all large z € 7, we have || fi(z)|| < C||f2(2)||. (The
values of each f; are assumed to belong to some finite-dimensional normed vector
space, typically either C or a space of complex matrices. Which particular norm
is used does not matter, because all norms are equivalent up to a bounded factor.)

We say f1 = o(fa) for z € Z if ||f1(2)||/|If2(2)]] = 0 as z — oo. Also, we write
f1 = f2 if f1 = O(fg) and f2 = O(fl)
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Definition 3.2.  Define p: SU(2,n) — GL(C"** AC**?) by p(h) = hAh,so p
is the second exterior power of the standard representation of SU(2,n). Thus, we
may define ||p(h)]| to be the maximum absolute value among the determinants of
all the 2 x 2 submatrices of the matrix h.

We now introduce convenient notation for describing the image of a sub-
group under the Cartan projection .

Notation 3.3.  For functions fi, fo: RT — R*, and a subgroup H of SU(2,n),
we write p(H) ~ [fl(HhH)af2(||hH)] if, for every sufficiently large C' > 1, we have

u(H) ~ {a e A* | ¢ fi(lall) < llo@)ll < Ch(all) }-

(If fi and f; are monomials, or other very tame functions, then it does not matter
which particular norm is used.)

We have AT ={a € A|ay1>az2>1}, so, for a € AT, we have
lall = ain < aryazs = |pla)|| < af ;= |la]*.

Thus AT =~ [HhH,HhHQ], so, from Theorem 1.8, we see that H is a Cartan-
decomposition subgroup of G if and only if u(H) ~ [Hh”, HhHQ] . This observation,
which is essentially due to Y. Benoist (in a much more general context, cf. [1,
Lem. 2.4]), leads to the following result.

Proposition 3.4. (cf. [14, Prop. 3.24]) A closed, connected subgroup H of
SU(2,n) is a Cartan-decomposition subgroup if and only if

1. there is a sequence {h,} in H, such that h,, — oo as n — oo, and
() = [ ; amd

2. there is a sequence {h,} in H, such that h,, — oo as n — oo, and
P(hm) < By, .

The following result allows us to replace H by a conjugate subgroup when-
ever it is convenient.

Lemma 3.5. (cf. [1, Prop. 1.5], [8, Cor. 3.5]) Let H be any closed, connected
subgroup of SU(2,n). For every g € G, we have u(g~*Hg) ~ u(H).

In particular, H is a Cartan-decomposition subgroup if and only if g~ Hg
is a Cartan-decomposition subgroup.

4 When is the size of p(h) quadratic?

In this section, Proposition 4.1 is a list of subgroups that contain a sequence
{hm} with p(h,) < ||hm]|]?, and Proposition 4.3 is a list of subgroups that do not
contain such a sequence. Then Proposition 4.4 shows that both lists are complete.
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Proposition 4.1.  Assume that G = SU(2,n). Let H be a closed, connected
subgroup of N . There is a sequence h,, — oo in H with p(h,,) < ||| if either

1. there is an element u of ) with ¢, =0, such that the vectors x, and y, are
linearly independent over C; or

2. there is an element z of 3, such thal |n.|* # x.y.; or

3. there are elements u of § and z of 3, such that ¢, = 0, and x.|y.|* +
y2|$u|2 + le(l’uylm) #0; or

4. there is an element uw of §, such that ¢, # 0, y, = 0, y, = 0, and
|zu|* + 2Re(PuT1a) = 0; or

5. Ugaty23 C b and there ts an element w of by, such that ¢, #0, y, # 0, and
Yy, = 0; or

6. there are elements u and v of by, such that ¢, #0, y, #0, ¢, =0, y, =0,
z, %0, y, =0, and z,yl =0; or

7. Ugat2p C 3, and there are nonzero elements u and v of by, satisfying ¢, # 0,
Yu 7£ 0, =0, 4,=0, y, 7£ 0, and wvyl = —iQuYyy; or

8. dimb =3, 3 = Usat2p, there exist u,v € h\ 3, such that y, # 0, y, =0,
yo =0, |z,|* +2Re(¢,77,) > 0, and we have ¢y # 0 for every h € b\ 3.

Remark 4.2.  In Conclusions (6) and (7), the restriction on z,y! is not nec-
essary; it was included to avoid overlap with Conclusion (2). Namely, if z,yl #
—iyYy, then [u,v] satisfies y =0 and 1 # 0, so Conclusion (2) holds. Also, it is
not necessary to assume y, # 0 in Conclusion (7), because Conclusion (6) holds if

y, =0 (and x, # 0). Thus, (6) and (7) may be replaced with the following:

(6*) there are elements u and v of b, such that ¢, #0, y, #0, ¢, =0, y, =0,
z, #0,and y, = 0; or

(7*) Uga42s C 3, and there are nonzero elements u and v of h, satisfying ¢, # 0,
Yu #0, ¢, =0, y, =0, and z, # 0.

Proof.  We separately consider each of the eight cases in the statement of the
proposition.

(1) Let h* = exp(tu). Replacing H by a conjugate under U,, we may
assume that =z, is orthogonal to y,; that is, z,yl = 0. Then it is clear that
(') = A(RY) = 1 [IA°]?.

(2) Let h! = exp(tz). We have h* <t and

A(ht) = Xe2¥Ytz — |77t2|2 = tQ(Xzyz - |772|2) = 12

Therefore p(h') < A(R') < 1* < ||RY||*.
(3) For any large ¢, let h = exp(tu+1t3z). Clearly, we have |zs|+|yn| = O(1)
and x| + yn| + ] = O(1?), so h = O(1?).
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We have
1
ImA(ht) =4 5(2 Im(a:uyln_z + x2|yu|2 + yz|$u|2) + O(t?’) = 14,

Therefore, p(h') < t* =< ||RY]|?.

(4) For any large ¢, let h = exp(tu). Then hy 12 = itx,, so it is easy to
see that h < ¢. We have p(h) < ¢* < ||h||*.

(5) Replacing H by a conjugate (under a diagonal matrix), we may assume
that ¢, = vy,. Then, by renormalizing, we may assume that ¢, =y, = 1. Let z
be the element of uy,425 with x, = 1. By subtracting a multiple of z from u, we
may assume x, = 0. For any large ¢, let h = exp(6tu + 36¢°2), so hy 49 is real.

We have |
Re A(h) = (36¢%)(6t) + ﬁ(6t)2(6t)2 + 0% < t*,

so p(h) < t* =< ||h]*.

(6) For each large ¢, let h be an element of exp(tu + Rwv), such that hq 4o
is pure imaginary. (This exists because the sign of —21|z|> is opposite that of
=16°ly]?.) We note that x, < 1* and [ny] + |xi| = O(1?), but ¢, < y, <t and
vl + |zryl| = O(t). Thus h = O(#*) and

() = Re A(R) = —leallunl? = —z Il + O(%) < 1° < ]

(7) Because x,yl = —ig,y,, we have z, # 0, so, for any large ¢, we may
choose h € exp(tu + Rv + Uzq423), such that hy 40 = 0. Thus ¢ < yp < t, but
zp X yp < t* and |nu| + [xu] = O(t*). Then (because hy 42 = 0) it is easy to
verify that A = O(¢*). However

1 1
ImA(h) = ﬂyh|¢h|2|yh|2 + §yh|$h|2 + O(1°) =< 1°.

So p(h) = [

(8) For any large ¢, choose s = O(1), such that Re(exp(su —I_tv)l,n-}—Z) =0.
(This is possible, because —1|z,|* — Re(¢,7;) < 0.) Then we may choose h €
exp(su + tv 4 3), such that hy 40 = 0. Then ¢ < ¢, |x4] + |na] = O(t), and
lyn| + lyr| = O(1), so we have p(h) < t* < ||h||*. n

Proposition 4.3.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N .

1. If dimbh = 1, b = 3, and we have |np|* = xpyn for every h € H, then
p(h) < h for every h € H.

2. If op =0 and y, =0 for every h € by, 3 CUznt2p, and there is some u € b,
such that y, # 0, then u(H) =~ [Hh”, HhH?’/Q], unless dim H = 1, in which
case p(h) =< ||[h||>/? for every h € H .

3. Suppose ¢ = 0 for every h € b, and there is some A € C, such that
x, = Ay for every h € H, and we have n, = i)y, and x, = |M|*y. for every
zZE€3.
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(a) If there is some u € b, such that x, + |A*y, + 2Im(A7,) # 0, then
u(H) ~ [HhH, HhHB/Q], unless dim H = 1, in which case p(h) = ||h||>/*
for every h € H.

(b) Otherwise, p(h) < h for every h € H.

4. If yo =0, yp =0, and |xp|* + 2Re(¢dnmn) # 0 for every h € h \ Uzay2s (S0
3 C Ugayag), then p(h) < h for every h € H.

5. If 5 = 0, there ts some u € § and some nonzero ¢g € C, such that
du # 0, and we have ¢, = ¢oyn and y, = 0, for every h € b, then
p(H) =~ [Hh”,”h”‘l/g’], unless dim H = 1, in which case, p(h) =< |h|*?
for every h € H.

6. If dimh < 3, 3 = 0, we have ¢, <X y, and v = O(|¢U| + |yU|) for every
v € by, and there exists u € By, such that ¢, # 0, then p(h) =< ||h||*/? for
every h € H.

7. 1f dimb =2, 3 = Ugaq25, and ¢ # 0 and y, # 0 for every h € h\ 3, then
p(H) = [[[2]], |R]1P2] .

Proof.  We separately consider each of the seven cases in the statement of the
proposition.

(1) Because A(h) =0 for every h € H, it is clear that p(h) < h for every
heH.

(2) We have x|+ |ya| = O(zh), 50 hinye X |2h)*+ %] and h;; = O(zy) =
O(|h1n4+2|'?) whenever (i,7) # (1,n + 2). Thus, p(h) = O(||h|]>/?).

We have p(exp(tu)) = ImA(eXp(tu)) = 1% < ||exp(tw)|?/?. If dim H > 1,
then there is some nonzero v € b, such that y, = 0. Then, for h € exp(Rv), we
have p(h) < |zal* + |xn| < K.

(3) Replacing H by a conjugate under U,, we may assume that A = 0,
so x5, = 0 for every h € H, and 7, = x, = 0 for every z € 3 (which means
3 C ugg). Therefore, the Weyl reflection corresponding to the root a conjugates h
to a subalgebra either of type (2) or of type (4), depending on whether or not there
is some u € b, such that x, + |A[*y, + 2Im(A7,) # 0.

(4) By assumption, the quadratic form |z]*+2 Re(¢7) is definite on §/3, so
122+ |4]* + |n|* = O(|z|* + 2Re(¢7)) . Therefore, h;; = O(|h1nt2|'/?) whenever
(1,7) # (1,n+2). Furthermore, h; ; = O(1) whenever ¢ # 1 and j # n+2. Thus,
p(h) < h.

(5) For any sequence {h,,} — oo in H, we write ¢m, T, Ym, Yim s my Xm 0T
o, , ete.

We have ¢,, < vy,,. If z,, = O(|ym|3/2), then p(hn,) < ReA(h,) =<
yt < ||hm||*?. (This completes the proof if dimH = 1.) If |y.|*’? = o(z,),
then h,, <X hi,p0 X |z,|%, but h;; = O<|£L’m| + yfn) = O<|:1;m|4/3) whenever
(1,7) # (I,n+2), and h;; = O(y,,) = O<|£L’m|2/3) whenever ¢ # 1 and j # n + 2.
Therefore

phon) = O(|w Pl P2 + |2 Pl %) = O(l2w M) = O([[hnl|*?).

If dim H > 1, then there is some (large) h € H with y, = 0 (and hence
¢n =10). Thus p(h) < |zs]? < k.
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(6) For any sequence {h,,} — oo in H, we show that p(h,) < A(h,,) <
A |72, We write b, T, Yy Yonr s X fOT 1, , etc.

If v = o(¢?), then hy 2 < @2 but h;; = O(¢2) whenever (i,j) #
(1,n + 2), and h;; = O(¢2) whenever i # 1 and j # n + 2. Thus, p(h,) <
Re A(hy) = g, < [l [2

We may now assume that ¢ = O(y,,). Thus, there is some v € h, such
that ¢, = 0 and y, = 1. (Note that, because y, < ¢,, we have y, = 0.) Because
[u,v] € 3 = 0, we must have 7] = 0, so 2.yl = —igyy, # 0. In particular,
Ty £ 0,80 Ty X Yo

We have hi 0 = O<|$m|2) = O(Yi)a but h;; = O<|¢mym| + |ym|) =
O<|ym|3/2> whenever (i,7) # (1,n 4+ 2), and h;; = O(yn) whenever ¢ # 1 and
J#n+2. Thus, h,, = O(y2) and p(h,) = O(y2).

Furthermore, we have

1 1
Im A(hy,) = ﬂymlquIQIym2 + §ymll’m|2 + Oy bm) < ¥o,

because Y, |z, |* < y3 , and the terms 21y, |d|*|ym|* and 1y, |2, |* cannot cancel
(since they both have the same sign as y,, ). We conclude that p(h,,) < A(h,) <

Yo -

| 2

All that remains is to show y2, = O(h,,). If ¢2 = o(y,), then
1
Rehipnta = —§|$|2 +O(d7,y) X Yo
as desired. If y,, = o(¢?2), then
Re iz X 0(dy,) + o(éy,) + 6] < én,
80 Yy = 0(¢2) = 0(¢?) = o(hn ), as desired. Thus, we may assume that y,, < ¢?2, .
Because T, = Yy, + O(¢y) and z,y! = —id,y, = —id,, we have

I, 1 — .
Im(hinsz) = O(m) = clémlym + |3 Tm(dnlymza)yl) + O(47,)

1 1
= —g|¢m|2ym — §|¢ml2ym + O(¢},) <y,

as desired.

(7) For z € 3, we have p(z) < z. For u € h\ 3 with y, # 0, we have
plexp(tu)) = % < || exp(tu)|[*/2. All that remains is to show p(h) = O(||A|]*/?)
for every h € H.

Note that ¢n < yr, and [za| + [na| + [ya| = O(dn). If ¢n = O(1),
then it is obvious that p(h) < h. Thus, we may assume |¢p| — oo. Then,
because Rehynpo < |on*|lynl* < o}, but h;; = O<¢h|yh|2) = O(¢}) whenever
(1,7) # (1,n + 2), and h;; = O(¢?) whenever 1 # 1 and j # n + 2, we have

p(h) = O[|¢h|4|¢h|2 + <|¢f|3)2] = O<|¢h|6) = O<|h1,n+2|3/2> _ O(HhHS/Q)- =

Proposition 4.4.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N .

1. There is a sequence h,, — oo in H with p(h,,) < |hn|* if and only if H is
one of the subgroups described in Proposition 4.1.

2. There is not a sequence h,, — oo in H with p(hy,) < ||hu|* if and only if
H is one of the subgroups described in Proposition 4.3.
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Proof. It suffices to show that H is described in either Proposition 4.1 or
Proposition 4.3.
We may assume

In.|* = x.y. for every z € 3 (4.1)

(otherwise, 4.1(2) holds). Because |n|* —xy is a quadratic form of signature (3,1)
on Uz + Uyt2s + Uza42s, then we must have dimz < 1. Thus, we may assume

h # 3 (otherwise 4.3(1) holds).

Case 1. Assume ¢, = 0 and y, = 0 for every h € H (and h # 3). We may
assume y, = 0 for every z € 3, for, otherwise, 4.1(3) holds. Then, from Eq. (4.1),
we have 1, = 0 for every z € 3. Thus, 3 C Uzay2s. We may assume y, = 0
for every h € H, for otherwise Conclusion 4.3(2) holds. We conclude that 4.3(4)
holds.

Case 2. Assume ¢p = 0 for every h € H, and there is some u € h with y, # 0.
We may assume that x;, and y; are linearly dependent over C for every h € H
(otherwise 4.1(1) holds). In particular, there exists A € C, such that z, = Ay,.

Subcase 2.1. Assume 3 =10.

Subsubcase 2.1.1. Assume there exists v € b, such thal either z, ¢ Cy, or
Y, ¢ Cy,. We may assume there exists w € b, such that z, # Ay, (otherwise
4.3(3) holds). Furthermore, by adding a small linear combination of v and v to w,
we may assume that y, # 0 and that either z,, ¢ Cy, or y, ¢ Cy,. Because z,,
and y,, are linearly dependent, there exists A; (# A) such that z,, = A1y,. (Then
note that we must have y,, ¢ Cy,.) Then

Tygw = Ty + Ty = /\yu + /\lyw ¢ (C(yu + yw) = (Cyu+w

(because A # Ay and {yu, Y.} is linearly independent over C). This contradicts
the fact that z,4, and y,4, are linearly dependent over C.

Subsubcase 2.1.2. Assume zp,y, € Cy,, for every h € h. For each h € hy, there
exist Ay, A, € C, such that z, = Ay, and y, = A\,y,. Because 3 = 0, we must
have yp.) = 0, so Im(yny!) = 0, which means that ), is real. We must also have
Mhw = 0, so

0 = —2py} + 2y} = (=X + AN [yal? = (=2 + ANyl

Thus A, = M)Ay, so
Th = AplYu = ANyYu = AYs.

Therefore 4.3(3) holds.

Subcase 2.2. Assume 3 # 0. We show that either 4.1(2), 4.1(3) or 4.3(3) holds.
Straightforward calculations show that conditions 4.1(2), 4.1(3) and 4.3(3) are
invariant under conjugation by U, , so we may assume that A = 0; that is, z, = 0.
Thus, we may assume x, = 0 for every z € 3, for, otherwise, 4.1(3) holds. Then
we may assume 7, = 0 for every z € 3, for, otherwise, 4.1(2) holds; therefore
3 = Usg. We may now assume zj;, = 0 for every h € b, for, otherwise, 4.1(3) holds.

Thus, 4.3(3) holds (with A = 0).
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Case 3. Assume there exists u € ) with ¢, # 0. We claim that 3 C ugyq2p. If
not, then there is some z € 3, such that either n, # 0 or y. # 0. If y, = 0,
then |n.]* # 0 = x.y., so 4.1(2) holds. On the other hand, if y, # 0, then, letting
2" =|u, z], we have y,, =0 and 71, # 0, so 4.1(2) holds once again.

Subcase 3.1. Assume yp, = 0 for every h € . We may assume that there is some
v € b, such that y, # 0 (otherwise, either 4.1(4) or 4.3(4) holds). Then we may
assume 3 = 0 (otherwise, 4.1(5) holds).

We claim that 4.3(5) holds. If not, then there is some w € , such that
¢y # 0 and y,, = 0. Then 5y, # 0, which contradicts the assumption that
3=0.

Subcase 3.2. Assume there is some v € by, such that y, # 0.

Subsubcase 3.2.1. Assume 3 = Ugaq25. Suppose, for the moment, that there exists
w € h\ 3 with ¢, = 0. We may assume that y,, = 0 (otherwise, 4.1(3) holds).
Therefore x,, # 0, so 4.1(7*) holds.

We may now assume that ¢,, # 0 for every w € b\ 3. This implies that z,
y, n, and y are functions of ¢; in particular, dimh < 3. Also, because 3 # 0 and
u,v ¢ 3, we must have dimbh > 2.

We claim diml = 2 (so 4.3(7) holds). If not, then dimh = 3, so there
exist u,w € b, such that ¢, =1 and ¢, = 1. Because ¢p,,) = 0, we must have
[, w] € Ugay2s. Therefore 0 = zy ) = Yuw — iWu, 5O Yu = 1y,. Furthermore,

0= Yuu = —2 Im(yuy:L) = -2 Im(—i|yu|2) = —2i|y.|%,
so y, = 0. Then y, = 1y, is also 0. This implies y;, = 0 for every h € H. This
contradicts the fact that y, # 0.

Subsubcase 3.2.2. Assume 3 = 0. Lemma 4.5 below implies that either 4.3(6)
or 4.1(6*) holds. u

Lemma 4.5. Let H be a closed, connected subgroup of N, such that 3 = 0,
and assume there exist w,v € by, such that ¢, # 0 and y, # 0. Then either H
is described in 4.3(6) (and in 5.2(4), which is the same), or H is a a Cartan-
decomposition subgroup (and is described in 4.1(6%) and 5.1(2)).

Proof.  Let us begin by establishing that ¢, < y, for h € h. If not, then we
may assume either that y, = 0 or that ¢, = 0. Then, because [[u, v], v] €3=0,
we see from Eq. (2.4) that

0= _(Qbuyv - ¢vyu)yl + 2i¢U Im(yuyl) = _¢u|yv|2 —0+0 7£ 0.

This contradiction establishes the claim.

Case 1. Assume there is a nonzero w € by, such that ¢, =0 and y,, = 0. Note,
from the preceding paragraph, that y, = 0. Then, because 3 = 0, we must have
t, # 0. Therefore, 4.1(6*) and 5.1(2) hold, so u(H) =~ [HhH,HhHZ], so H is a

Cartan-decomposition subgroup.

Case 2. Assume there does not exist such an element w € . Then H is described

in 4.3(6) and in 5.2(4). n
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5 When is the size of p(h) linear?

In this section, Proposition 5.1 is a list of subgroups that contain a sequence
{hm} with p(h,) < h,, and Proposition 5.2 is a list of subgroups that do not
contain such a sequence. Then Proposition 5.3 shows that both lists are complete.

Proposition 5.1.  Assume that G = SU(2,n). Let H be a closed, connected
subgroup of N. There is a sequence h,, — oo in H with p(hy,) < h,, if either
E

1. there is a nonzero element z of 3 with |n.|* = x,y.; or

2. there is an element u of by, such that ¢, =0, dimc(z,y) =1, and
XulYul? 4 Yulzu|? + 2 Tm(z,yi70) = 0;
or

3. there is an element h of H with y, =0, y, =0 and |z4|* +2Re(onmn) # 0;

or

4. there are elements w of ) and z of 3, such that ¢, # 0, y, =0, y, #0,
n.#0, and y, =0; or

5. there are nonzero elements uw of ) and z of 3, such that ¢, # 0, y, # 0,
y. =0, .7, s real, and

X:|yul® = ¢u¥urz + 2Im(Tzayl) = 0.

Proof.  We separately consider each of the five cases in the statement of the
proposition.

(1) From 4.3(1), we have p(h) < h for all h € exp(Rz).

(2) Replacing H by a conjugate under (U,,U_,), we may assume that
Yy = 0 (and z, # 0). Then, from the assumption of this case, we know that y, is
also 0. Therefore, 4.3(4) implies that p(h) < h for all h € exp(Ru).

(3) From 4.3(4), we have p(h) < h for all h € exp(Ru).

(4). For any large ¢, choose h € exp(tu + 3), such that xpys + &5 |én|?y; —
Inn|? = 0. Note that nn, =< |gpyn| < €2, so h < Rehynpo < 3, but h;; =
O(t?) whenever (i,7) # (1,n + 2), and h;; = O(t) whenever i ¢ {1,2} or
j ¢ {n+1,n+2}. From the choice of h, we have

A(h) =0+ (Hlealys) = O(%) = O(h),

so it is not difficult to see that p(h) < h.

(5) Replacing h by a conjugate, we may assume u € u, + ug. (First,
conjugate by an element of Ugz to make y, = 0. Then conjugate by an element
of U, to make z, orthogonal to y,. Then conjugate by an element of Uz that
centralizes y,, to make z, = 0. Then conjugate by an element of U,4s to make
. = 0. Then conjugate by an element of U,423 to make x, = 0.) Then, by
assumption, we must have x, = 0, because y, =0 and =z, = 0.

Furthermore, replacing h by a conjugate under a diagonal matrix (that
belongs to (&), we may assume that ¢, and y, are real. Then 7n, must also be
real (because ¢,77; is real). Thus, we see that u,z € s0(2,n). So [14, Thm. 5.3(1)]
implies that H is a Cartan-decomposition subgroup. ]
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Proposition 5.2.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N such that

1n.|* # x.y., for every nonzero z € 3. (5.1)
1. If h =3 (so dim H < 3), then p(h) < ||h||* for every h € H.

2. 1f ¢ =0 and dime(zy, y,) # 1 for every h € b, then p(h) < ||h]|* for every
heH.

3. If ¢ = 0 for every h € by, there exist nonzero u and v in b, such that
dime(z,, yu) # 1 and dime(z,,,y,) = 1, and x|y, |*+yo |20 |*+2 Im(z,y]7,) #
0 for every such v € by, then u(H) ~ [HhHS/Q, HhHQ] :

4. If dimh < 3, 3 = 0, we have ¢, <X y, and v = O<|¢U| + |yv|) for every
v € by, and there exists u € By, such that ¢, # 0, then p(h) =< ||h||*/? for
every h € H.

5. If dimbh < 2 and ¢, #0, yp =0, ypn =0, and |zx|* + 2Re(ép7n) = 0 for
every nonzero h € fy, then p(h) < ||k||* for every h € H.

6. If dimbh = 2 and there exist nonzero u € b and z € 3, such that ¢, # 0,
Yu 70, vy, =0, &7, is real, and x|y, |* — uyuTlz + 21m<@$uyl) # 0, then
p(H) = [[[R][P 1R]1%]

7. If dimh =1, and we have ¢, =0, dime(zp,yp) =1, and
Xulyal* + yulzal® + 2 Im(zay}70) # 0
for every nonzero h € Yy, then p(h) < ||h||>/? for every h € H .

8. If dimbh =1, and ¢, # 0, yp, =0, and y, # 0, for every nonzero h € §,
then p(h) < ||h||*® for every h € H.

Proof.  We separately consider each of the eight cases in the statement of the
proposition.
rom Eq. (5.1), we know that the quadratic form — Xy is anisotropic
(1) From Eq. (5.1), we k that the quadratic f In|> —xy is anisotropi
on 3 =15, so
A(h) = [mul* = xuyn < [m]* + x5 + yi < 11"
(2) Because dimg (2, y,) # 1, we have

e *lynl® = leayi P = el + Jyal*,

so Lemma 5.4 implies p(h) =< ||k]|?.

(7) From either Proposition 4.3(2) or 4.3(3a) (depending on whether y; is 0
or not), we have p(h) =< ||h||>/? for every h € H.

(3) From Lemma 5.4, we have ||h|*? = O(p(h)).

From (2), we see that p(h) < ||h||* for h € exp(Ru).

From (7), we see that p(h) = ||h||>/? for h € exp(Rv).

(4) See Proposition 4.3(6).

(5) Because Rehy 42 = 0, it is easy to see that p(h) < ¢7 < ||h]?.
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(6) Replacing H by a conjugate, we may assume z, = 0 and y, = 0.
Therefore, x;, = 0 and y, = 0 for every h € H. Thus
$Z|yu|2 = X2|yu|2 — QuYullz + 21m<@$uyl) 7£ 0,

so x, # 0. From Eq. (5.1), we know 7, # 0.
We have p(tz) < ||tz||* (see 5.2(1)).
Because ¢, is a real multiple of 7., we may let h be a large element of H,

such that n, = —|yn|*én/12 + O(ér). (So yn X ¢ and x; <X n, < ¢7.) Then

1 — 1 1
A h — . 2 - 2 L 4 2 . - 2
(h) ( ml™ = Glynl "o — 1 lynl™|nl ) + i <2Xh|yh| )

1

= oot + i (rln?) = ot

It is clear that all other matrix entries of p(h) are O(¢}). Thus, we have p(h) <
& < R
Now suppose there is a sequence h,, — oo in H with p(h,,) = 0<HhmH5/4).

Case 1. Assume n,, = o(¢> ). We have h,, < ¢? | so

G =X Re A(hn) = O(p(hin)) = o |lhn][**) = o(¢7,).
This is a contradiction.
Case 2. Assume & = o(n,,). We have h,, X Rehy 1o X dmhim, 50
na = Re A(hy) = O(p(hm)) = o(|[hm ") = o(||hm||*'?) = o(| G [?) = ().
This is a contradiction.
Case 3. Assume n,, < ¢ . We have h,, = O(¢2)), so

S = XY P = I AR ) = O(p(him)) = o) = 0(57,).

This is a contradiction.

(8) See Proposition 4.3(5). [ |

Proposition 5.3.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N .

1. There is a sequence h, — oo in H with p(hy) X hy if and only if H is
one of the subgroups described in Proposition 5.1.

2. There is not a sequence h,, — oo in H with p(hy,) < ||hu|* if and only if
H s one of the subgroups described in Proposition 5.2.

Proof. It suffices to show that H is described in either Proposition 5.1 or
Proposition 5.2.
We may assume (5.1) holds (otherwise, Conclusion 5.1(1) holds).

Case 1. Assume ¢p = 0 for every h € H. We may assume there exists v € j,
such that dimc(z,,y,) = 1 (otherwise 5.2(2) holds). Furthermore, we may assume
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X [Yo|? +¥o| 70|+ 2 Im(z,y17,) # 0 for every such v (otherwise 5.1(2) holds). Then
we may assume dimg(z,,y,) = 1 for every nonzero u € h (otherwise 5.2(3) holds).

The argument in Subsubcase 2.1.1 of the proof of Proposition 4.3 implies
there exists A € C, such that, for every h € H, we have z, = Ay, (or vice-
versa: for every h, we have y, = Azj). Thus, replacing H by a conjugate under
(Uy,U_y), we may assume z, = 0 for every h € H.

If dim H > 1, then there is some nonzero u € f, such that x, = 0. This
contradicts the fact that x,|y,|? + yu|z,|* + 2Im(z,yl7,) # 0. Thus, we conclude
that dim H = 1, so 5.2(7) holds.

Case 2. Assume the projection of §) to u, is one-dimensional. Replacing H by a
conjugate under A, we may assume ¢y, is real for every h € H. Fix some u € b,

such that ¢, # 0.

We may assume that us,108 ¢ b (otherwise Conclusion 5.1(1) holds).
Therefore [h,u] must be zero, so y, = 0 and 7, is a nonzero real, for every
nonzero z € 3. (This implies dimz < 1.)

Subcase 2.1. Assume y, = 0 for every h € H. We may assume Conclusion 5.1(2)
does not hold.

We claim that h = Ru+ 3. Suppose not. Then there is some v € fj, such
that ¢, =0 and z, # 0. Because Conclusion 5.1(2) does not hold, we must have
v, # 0. Then [v,u,u] is a nonzero element of uy,425. (This can be seen easily by
replacing H with a conjugate, so that « € u,.) This contradicts our assumption

that Uza 4283 ¢ h
If y, # 0, then either Conclusion 5.2(8) or 5.1(4) holds (depending on
whether 3 is 0 or not). If y, # 0, then 5.1(3) or 5.2(6) holds.

Subcase 2.2. Assume the projection of §) to ug is nontrivial. Then we may assume
yu # 0.

Subsubcase 2.2.1. Assume there are nonzero v € ) and z € 3, such that ¢, = 0,
Yy = 0, and z, # 0. We may assume that Conclusion 5.1(5) does not hold.
Therefore, for every real ¢, we must have

0 # x|yul® = dulyu + ty,)7: + 2Im (77 (20 + tz,)yl)
= t[—¢uyuﬁ_z +2 Im(@xuyl)} + constant.

Thus, the coefficient of ¢ must vanish, which (using the fact that n, is real and
nonzero) means

0= —duy, +2Im(z,y)). (5.2)
We have [u,v] € 3, 50 7y, is real. Thus,
0=1Imnp., = Im(xvyl + i(buyv) = Im(xvyl) + buYe.

Comparing this with Eq. (5.2), we conclude that ¢,y, = 0. Therefore y, = 0, so
Conclusion 5.1(2) holds (for the element v).

Subsubcase 2.2.2. Assume there do not exist nonzero v € ) and z € 3, such that

¢, =0, vy, =0, and =, # 0. We must have

Yy = 0 for every w € b, such that ¢, = 0. (5.3)
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(Otherwise, we obtain a contradiction by setting v = [u,w] and z = [u,w,w].)
We may assume

y, # 0 for every v € b such that ¢, =0, y, = 0, and =, # 0. (5.4)

(Otherwise, Conclusion 5.1(2) holds.)

We claim dimh < 2. If not, then there exist linearly independent v, w € h,
such that ¢, = ¢, = 0. From (5.3), we know that y, = y,, = 0. By replacing
with a linear combination, we may assume y,, = 0. Then, from (5.4), we know
that =, = 0, so w € 3. Because 3 is (at most) one-dimensional, but v and w
are linearly independent, we know that v ¢ 3, so z, # 0. This contradicts the
assumption of this subsubcase.

We may now assume dim b = 2 (otherwise Conclusion 5.2(5) holds). Choose
a nonzero v € hj, such that ¢, = 0. If z, # 0, then Conclusion 5.2(5) holds. If
z, = 0, then v € 3, so either Conclusion 5.1(5) or 5.2(6) holds.

Case 3. Assume the projection of b to u, is two-dimensional. We may assume
3 = 0 (otherwise, Usq423 C B, so Conclusion 5.1(1) holds). We may assume y, = 0
for every h € H (otherwise Lemma 4.5 implies that either 5.2(5) or 5.1(2) applies.
Therefore [h,h] C 3 =10, so h is abelian.

Let u,v € h with ¢, =1 and ¢, =¢. Then

0= NMuw] = ZYU + Yu,

S0 Yy = ¥y = 0. Then, for every w € j, we have 0 = n, ) = iyw, 50 y,, = 0. We
may assume

|21 |* + 2 Re(¢n7r) = 0 (5.5)

for every h € B (otherwise Conclusion 5.1(3) holds). This implies dimh = 2
(otherwise, there is some w € b such that ¢, = 0 and z,, # 0, and then Eq. (5.5)
does not hold for h = w+ tw when ¢ is sufficiently large). Thus, Conclusion 5.2(5

holds. |

Lemma 5.4.  Let H be a closed, connected, nontrivial subgroup of N. Assume
én =0 for every h € §, that (5.1) holds, and that x,|y,|* +y, |z, |* +2 Im(z,yln,) #
0 for every v € By such that dime(z,,y,) = 1. Then ||h|]*/? = O(A(h)) for every
heH.

Furthermore, A(h) < ||h]|* whenever |xp|*|yn]? — |:1:hy;£|2 < |zpl* + |ya]*.

Proof.  We have h < |z4|* + |ynl® + [xn| + |y&| + [72]. Also, from Eq. (5.1), we

> = x.y. < (|XZ| + ly:| + |77Z|_)2 for every z € 3. Also, x,|yu|* + yol|2o|? +
QIm(l’uyIU_u) = |v|3 whenever dimg(x,,y,) = 1.

have |n,

Case 1. Assume |zp||ys|? — |zayl | = o(|lzn* + |ys|*) . Then there is some v € b
such that v — logh = o(|zs] + |ya|) and |z.*|y.]* — |2.yf|* = 0. We have
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dimg(x,,y,) = 1. Therefore

Im A(h)

Yl + yulzsl? + QIm(fChy;E??_h)
Xv|yv|2 + yv|$v|2 + QIm(xvyIn_v)

+o(lmnl” + xal” + lyal* + |z + |yal®)
0> + o([nul’ + Ixal® + lyal® + lenl® + [ynl?)
el + B 4 Iyal® + |2 + |w]?
o([|R[I*?).

Xp,

X

Xp,

X

H X

Thus, [|A]*2 = O(p(h)).

Case 2. Assume |4 |2|ynl® — |znyl |2 < |2za]* + |ysl*. We may assume Re A(h) =
o(|lzn* + |ys|*) for otherwise it is clear that ReA(h) < ||k]>. (So we have
Al = |mn) + k| + |yal =< |za]? + |ys]?.) Thus, there is some z € 3, such that
z—logh = 0<log h) and

1
? =y, = ——(lzalPlyal® = lzryl]?) + o(lzal* + [ya]*) < 0.

|772 4

(This implies that x, and y. must have the same sign.) From (5.1), we conclude
that [n.]* —x.y. < 0 for every z € 3. Thus, there is a constant e < 1, such that
In.| < ey/xy. for every z € 3. Then

€
| T2y 72)] < [n:llzallyal < s xlynl +y:l2al?],
2

SO
L 1 1 1 1
Im(z4y! 75) + §leyh|2 + §yZ|:1:h|2 = §leyhl2 + §yzlxhl2-

Therefore

1
ImA(h) = Im(:z;hy;rln_h)—l— §xh

L 1 1
= Im(zpyl7:) + §><z|yh|2 + §>’z|l‘h|2 + o((Jza|* + |yn]?) log h)

1
ynl® + §>’h|$h|2

X

1 1
Sl + Syl

= Jonl* + lyal*
ol

6 Non-Cartan-decomposition subgroups contained in N

Theorem 6.1.  Assume that G = SU(2,n). Here is a complete list of the
closed, connected, nontrivial subgroups H of N, such that H is not a Cartan-
decomposition subgroup.

1. If dimbh = 1, h = 3, and we have |gp|* = xpyn for every h € H, then
p(h) < h for every h € H.
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If & = 0 and y, = 0 for every h € b, there is some u € by, such thal
Yo # 0, and § C Uzat2p, then p(H) ~ [Hh”, HhH3/2], unless dimH =1, in
which case p(h) < ||h||*/? for every h € H.

Suppose ¢p, = 0 for every h € b, and there is some A\ € C, such that
x, = Ay for every h € H, and we have n, = i)y, and x, = |X|*y, for every
z2E€3.

(a) If there is some u € b, such that x, + |A*y, + 2Im(A\7,) # 0, then
u(H) ~ [HhH, HhHB/Q], unless dim H = 1, in which case p(h) = ||h||>/*
for every h € H.

(b) Otherwise, p(h) < h for every h € H.

If yo =0, yp =0, and |zp|* + 2Re(¢dpTn) # 0 for every h € h \ Uzay2s (S0
3 C Ugayap), then p(h) < h for every h € H.

If 3 = 0, there is some u € b and some nonzero ¢9 € C, such that
¢y # 0, and we have ¢, = ¢oyn and y, = 0, for every h € b, then
p(H) ~ [Hh”,”h”‘l/ﬂ, unless dim H = 1, in which case, p(h) =< |h|*?
for every h € H.

If ¢r =0 and dime(z,,y.) # 1 for every h € b, and |n.|* # x.y., for every
nonzero z € 3, then p(h) < ||h||* for every h € H.

If ¢, = 0 for every h € by, there exist nonzero u and v in by, such that
dime(wy,yu) # 1 and dime{z,,y,) = 1, and we have x,|y,|* + yo|z.]* +
2Im(z,ylm,) # 0 for every such v € by, and |n.|* # x.y., for every nonzero
2 €3 then u(H) ~ [IAIP, [A)P].

If dimh < 3, 3 = 0, we have ¢, X y, and v = O<|¢U| + |yv|) for every
v € by, and there exists u € By, such that ¢, # 0, then p(h) < ||h||*/? for
every h € H.

If dimbh = 2, 5 = Usat2p, &n # 0 and y, # 0 for every h € b\ 3, then
p(H) = [||R]l, [R][*?] .

If dimh <2 and ¢, #0, yo =0, y, =0, and |z,|* + 2Re(dniin) = 0 for
every nonzero h € By, then p(h) < ||h||* for every h € H.

If dimbh = 2 and there exist nonzero u € h and z € 3, such that ¢, # 0,

Yu 7£ 0, y.=0, ¢ulfz 7£ 0 is real, and X2|yu|2 — GuyuTlz + 21m<m$uyl) 7£ 0,
then u(H) = [||R]>* ||A]*]

Proof.  The theorem is obtained by merging the statement of Proposition 4.3
with the statement of Proposition 5.2, and eliminating some redundancy (see 3.4).

Specifically:

e 4.3(1) appears here as 6.1(1).

e 4.3(2) appears here as 6.1(2).

e 4.3(3) appears here as 6.1(3).



Iozz1i AND WITTE 21

e 4.3(4) appears here as 6.1(4).

e 4.3(5) appears here as 6.1(5).

(4)
(5)
(8)
(9)

°
e

3(6) appears here as 6.1(8).

°
W

3(7) appears here as 6.1(9).

[ ]
ot

2(1) is a special case of 6.1(6).

[ ]
ot

2(2) appears here as 6.1(6

e H.2

e H.2

e H.2

(

(
4) appears here as 6.1(8
5) appears here as 6.1(10
(

e 5.2 .

)

)
)
)
)
)
) )-
3) appears here as 6.1(7).
) )-
)
)
2(7) is a special case of 6.1(3a) (with dim H = 1).
)

(
(
(
(
(
(
(
(
(
(
(
(

)
6) appears here as 6.1(11)
(
(

e 5.2(8) is a special case of 6.1(5) (with dim H = 1).

Corollary 6.2.  Assume that G = SU(2,n). Here is a complete list of the
closed, connected, nontrivial subgroups H of N, such that H is not a Cartan-
decomposition subgroup, and N4(H) is nontrivial.

1. Suppose dimbh =1, h =3, and we have |ny|* = xpyn for every h € H.
(a) If h =uss or h = Ugyiop, then Ny(H) = A.
(b) Otherwise, No(H) = ker(a).

2. Suppose ¢, = 0 and y, = 0 for every h € b, there is some u € b,

such that y, # 0, and 3 C Ugaqop. If h = (f) N (Uagp + uw)) + 3, then
Na(H) = ker(a — ).

3. Suppose ¢ = 0 for every h € by, and there is some nonzero A € C, such
that xy, = \yy for every h € H, and we have n, = i)y, and x, = |A|?y, for
every z € 5. If h = (f) N (ug—l—ua+g)) +35#3, then Ns(H) = ker(a).

4. Suppose ¢, =0 and x, =0 for every h € b, we have 3 C ugg, and h # 3.
(a) If h=(hNug)+3, then Na(H) = A.
(b) Otherwise:

i. If h= (f) N (ug +ua+25)) + 3, then No(H) = ker(a + ).
it. If h= (f) N (ug —|—u2a+25)) + 3, then No(H) = ker(2a + 3).
iii. If 3 =0 and b C uz + ugg, then Ns(H) = ker(3).

5. Suppose y, =0, y, =0, and |z,|*+2 Re(dun) # 0 for every h € h\Uzny25-
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(a) If h = (hNuysp) +3, then Nay(H) = A.
(b) If h C ot +Uzatap, but b # (hNatp)+3, then Na(H) = ker(a+4).

(¢) If = (h N (U + Uarp + Uarap)) +3, bul b & Uays + Usatap, then
N4(H) = ker(3).

6. Suppose 3 = 0, there is some nonzero ¢g € C, such that ¢, = ¢oyr and
yn = 0, for every h € b, and there is some u € b, such that ¢, # 0. If
h= (f) N (uy + ugﬁ)) + (h Nugyg), then Na(H) = ker(a — 203).

7. Suppose ¢, =0 and dime(z,,y.) # 1 for every h € §, and |n.|* # x.y., for
EVETY NONZETO Z € §.

(a) If b Cuayop, then Na(H) = A.
(6) If b & aras, and h = (b0 (ug +Uarg)) +3, then Na(H) = ker(a).

8. Suppose ¢p, = 0 for every h € by, there exist nonzero u,v € by, such that
dimc(zy, yu) # 1 and dime(z,,y,) =1, Xv|yv|2 + yv|$v|2 + QIm(wvyIn_v) #0
for every such v € §y, and |n,|* # x.y., for every nonzero z € 3.

(a) If h = (hm(ua+l3—|-u2/3)) + (hNugy2p), then Na(H) = ker(a— 3) (and
dimH <3).

(b) If h = (0 (s 4 zap25)) + (5 N Uagas), then Na(H) = ker(2a + 3)
(and dim H < 3).

9. Suppose dimb <3, b = (N (ua+145)) + (HN (Uars+125)) , HO(ua+us) # 0,
and we have ¢p <Xy, and xp, <Xy, for h € by, then Ny(H) = ker(a — 3).

10. Suppose dimbh = 2, 3 = Ugaqo5, dn #0 and y, # 0 for every h € h\ 3. If
f):(f)ﬂ(ua—l—ug))—l—j, then Nao(H) = ker(a — f3).

11. Suppose dimh < 2 and ¢, #0, yo =0, y» =0, and |z,|* + 2 Re(énhr) = 0

for every nonzero h € §y.

(a) If h Cu,, then Ns(H) = A.
(b) If ) Cug + Uoyp + Uatap, but h ¢ u,, then Na(H) = ker(3).
(¢) If h Cuy + Uzay2s, but b & u,, then No(H) = ker(a + 23).

Proof. It is clear that each of the given subgroups is normalized by the indi-
cated torus. We now show that the list is complete, and that no larger subtorus
of A normalizes H .

Assume N4(H) is nontrivial. We proceed in cases, determined by Theo-
rem 6.1.

Case 1. Assume 6.1(1). We may assume f is neither uss nor us, 495 (otherwise
(1a) applies). Then, because |n,|* = x,y. for every u € b, we see that n, # 0 for
every nonzero u € h. Thus, the projection of § to u,425 is nontrivial. However,
because |1,|* = XuYu, we have hNu,195 = 0. We know that i C uyq25+uas+ian2s
(because ) = 3), so, because each of 203 and 2a + 273 differs from o 4 26 by «,
we conclude that N4(H) = ker(a), so (1b) applies.
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Case 2. Assume 6.1(2). Let V be the projection of h to u,4s + Uzs. Because

Yu 7 0, we know that V' projects nontrivially to usz. However, because § C Uz,425,

we also know that V Nuys = 0. Therefore N4o(H) = ker(aw — 3). Then, because
neither a4+ 203 nor 2a+ 23 differs from a+ 3 by a multiple of o — 3, we conclude

that h = (f) N (Ugss + ugﬁ)) + 3, so (2) applies.
Case 3. Assume 6.1(3). We may assume §) # 3 (otherwise Case 1 applies).

Subcase 3.1. Assume X # 0. Because h) # 3, the projection of § to us + u,45 is
nontrivial. However, because A # 0, this projection intersects neither ug nor u,43.
Therefore Na(H) C ker(a). Then, because neither 23, a+23, nor 2a+23 differs
from (3 by a multiple of a, we conclude that h = (f) N (ug + ua+5)) + 3, so (3)
applies.

Subcase 3.2. Assume XA = 0. This means z, = 0 for every u € fj, and 3 C ugs.
Because ) # 3, we know that h projects nontrivially to ug. Because
3 C ugzg, we know that h NMuspos = h N ugeyos = 0. Thus, it is easy to see
that if h projects nontrivially to U425 Or Usatos then either (4(b)i) or (4(b)ii)
applies.
Thus, we may assume f C ug + uyg. If 3 # 0, then h = (h Nug) + uzg, so
(4a) applies. Otherwise, (4(b)iii) applies.

Case 4. Assume 6.1(4).

Subcase 4.1. Assume the projection of §) to u, is trivial. Because
|zl” = |2u|* + 2Re(duT) # 0

for every u € b\ Uza42p, we know that z, # 0 for every u € b\ Uzs425. Thus, if
the projection of h to u,425 is nontrivial, then N4(H) = ker(3), and we see that
(5¢) applies. If not, then ) C uyqp + Uza4245, so either (5a) or (5b) applies.

Subcase 4.2. Assume the projection of § to u, is nontrivial. Let V be the
projection of h to u, + Ustp + Usy2s. Because |z,|* + 2Re(d ) # 0 for every
u € b\ Ugat2p, we know that V Nu, = 0. Then, because o, o + 3, and o + 203

all differ by multiples of 3, we conclude that N4(H) = ker(3). Therefore (5c)
applies.

Case 5. Assume 6.1(5). Let V' be the projection of § to u, + uss. Because ¢p, =
¢oyh, we see that V Nu, =0 and V Nuyg = 0. Therefore Na(H) = ker(a — 273).

Because no other roots differ by a multiple of a — 23 (and 3 = 0), we
conclude that h = (f) N (uy + UQﬁ)) + (h Nuyqp). Thus, (6) applies.

Case 6. Assume 6.1(6).

Subcase 6.1. Assume ) # 3. Let V' be the projection of h to us +u,45. From the
assumption of this subcase, we know V # 0. However, because dimc(z,,y,) # 1
for every u € b, we know that V Nug = 0 and h Nuyys = 0. Therefore
Na(H) = ker(a), so (7b) applies.

Subcase 6.2. Assume ) = 3. We may assume ) ¢ u,125 (otherwise (7a) applies).
Therefore, § projects nontrivially to Ugs +Uzat2s. However, because |n,|* # x.y.,
for every nonzero z € 3, we know that VNuyg = 0 and VNuyeq23 = 0. Because 23,



24 Iozz1i AND WITTE

a+203, and 2a+205 all differ by multiples of «, we conclude that N4(H) = ker(«),
so (7b) applies.

Case 7. Assume 6.1(7).

Subcase 7.1. Assume N4(H) = ker(a). Because a+ 3 is the only root that differs
from (3 by a multiple of «, we must have h = (f) N (ug + ua+5)) + 3. Thus, there
is some w € b, such that =z, = z, and y, = y,, but the projection of w to
Uzp + Uatas + Usas2s 18 zero. This contradicts the fact that X, |yw|* + yuwl|zw|® +
2Im(z,yl7,) # 0.
Subcase 7.2. Assume Na(H) # ker(a). Because 203, a+203, and 2a+ 24 all differ
by multiples of a, we must have § = (5 Nuzg) + (3 N Uat23) + (3 N Uzat25). Then,
because |n.|* # x.y. for every nonzero z € 3, we conclude that 3 C Ug423-

Let V' be the projection of h to ug + u,45. Because B and o + 3 differ
by a, we know that V = (V Nug) + (V Nu,ys).

Subsubcase 7.2.1. Assume x, # 0. Because V = (V Nug) + (V Nu,4g), there
is some w € V. such that z, # 0 and y, = 0. For every such w, because
Xu|Yuw|* + Yultwl? + 2Im(z,yl ) # 0, we know that y, # 0. Thus, we see that
Na(H) = ker((a +8) — 2/8) = ker(a — f3).

We know that hNug = 0, that § projects trivially to u,, and that «a is the
only root that differs from by a multiple of & — (3, so we conclude that y; = 0
for every h € H.

We now see that (8a) applies.

Subsubcase 7.2.2. Assume y, # 0. This is similar to the preceding subsubcase
(indeed, they are conjugate under the Weyl reflection corresponding to the root «);
we see that (8b) applies.

Case 8. Assume 6.1(8). By considering the projection of § to u, +ug, and noting
that ¢ <y, for every h € H, we see that Na(H) = ker(a — 3). The only other
pair of roots that differ by a multiple of a — 3 is {a + 3,23}. Thus, we see that
(9) applies.

Case 9. Assume 6.1(9). By considering the projection of § to u, + ug, we see
that Na(H) = ker(a — 3). Because ¢, # 0 for every u € h\ Uzq423, but 3 is the
only root that differs from o by a multiple of a@ — 3, we conclude that § projects
trivially into every root space except u,, g, and Ussq25. Thus (10) applies.

Case 10. Assume 6.1(10). We may assume §) ¢ u, (otherwise (11a) applies).
Thus, there is some root o # «, such that the projection of f to u, is nontrivial.
However, because ¢, # 0 for every nonzero h € b, we know that h Nu, = 0.
Thus, Ns(H) = ker(a — o).

Because y;, = 0 and y;, = 0 for every nonzero h € hj, we know that o # 3
and 0 #203. If o =a+ 3 or 0 = a + 23, we obtain (11b). If ¢ = 2a + 23, we
obtain (11c¢).

Case 11. Assume 6.1(11). Because ¢, # 0 and y, # 0, we must have N4(H) =
ker(a — 3). Then, because o + 3 does not differ from a by a multiple of o — 3,
we conclude that z, = 0.

Because n, # 0, but no root differs from o + 23 by a multiple of o — 3, we
conclude that hNu, 425 # 0. Because 3 is one-dimensional, this implies z € u,493,
so x, = 0.
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Since x, = 0 and z, = 0, we conclude, from the inequality x.|y.|* —
OuYuTlz + 2 Im(n_zrz:uyl) # 0, that y, # 0. This is a contradiction, because 23 does
not differ from o by a multiple of @ — 3, and §h Nuyz = 0 (because, as shown

above, 3 C Uyt25). |

7 Subgroups that are not contained in N

Let H be a closed, connected subgroup of G that is not contained in V.
In this section, we determine whether H is a Cartan-decomposition subgroup or
not (and, if not, we calculate u(H)).

Lemma 7.1 shows that we may assume H C AN, and then Lemma 7.3
shows that we may assume H satisfies the technical condition of being compatible
with A. (Both of these lemmas are well known.) Furthermore, we may assume
that HNN is not a Cartan-decomposition subgroup, and that A ¢ H (otherwise,
it is obvious that H is a Cartan-decomposition subgroup).

Theorem 7.4 describes p(H) for every such subgroup that is a semidirect
product (H N A) x (H N N); and Proposition 7.6 describes u(H) for the other

subgroups (except that the one-dimensional case appears in Lemma 7.8).

Lemma 7.1. [14, Lem. 2.9] Let H be a closed, connected subgroup of a con-
nected, almost simple, linear, real Lie group G. There is a closed, connected
subgroup H' of G and a compact subgroup C of G, such that CH = CH', and
H' is conjugate to a subgroup of AN .

Definition 7.2.  Let us say that a subgroup H of AN is compatible with A
if HC TUCN(T), where T=AN(HN), U =HNN, and Cy(T) denotes the

centralizer of 7" in N.

Lemma 7.3. [14, Lem. 2.3] If H is a closed, connected subgroup of AN, then
H is conjugate, via an element of N, to a subgroup that is compatible with A.

Theorem 7.4.  Assume that G = SU(2,n). Here is a list of every closed,
connected, nontrivial subgroup H of AN, such that H s of the form H =T x U,
where T is a one-dimensional subgroup of A, and U is a nontrivial subgroup of N
that is not a Cartan-decomposition subgroup.

E

1. Suppose dimu =1, u =3, and we have |ny|* = xpy, for every h € U.

(a) If w=1us5 or u=Ugsta5, then u(H) is described in [1], Prop. 3.17 or
Cor. 3.18].

(b) Otherwise, T = ker(«), and H is a Cartan-decomposition subgroup.

2. Suppose u = (u N (Uatp + ugg)) + 3, 3 C Uzaq23, there is some v € u,
such that y, # 0, and T = ker(a — 3). Then u(H) =~ [||h”, ||h|\3/2], unless
dim H = 2, in which case p(h) < ||h||*/* for every h € H.

3. Suppose u = (u N (uz + ua_m)) +3, T = ker(a), and there is some nonzero
A € C, such that we have z, = Ay, for every u € U, and we have n, = 1)y,
and x, = |M?%y. for every z € 3. Then H is a Cartan-decomposition
subgroup.



26 Iozz1i AND WITTE

4. Suppose ¢, =0 and z, =0 for every u € u, we have 3 C Ugg, and u # 3.

(a) If w = (unNug) + 3, then u(H) is described in [14, Prop. 3.17 or
Cor. 3.18].
(b) Otherwise:
i. Ifu= (u N (ug + ua_|_25)) +3, then T =ker(a + 3), and p(h) < h
for every h € H.
i, Ifu= (uﬁ (ug —|—u2a+25)) +3, then T'=ker(2a + ), and u(H) ~
[Hh”, HhH?’/Q], unless dim H = 2, in which case p(h) < ||h||*/* for
every h € H.

iii. If 3 =0 and u C ug + uyg, then T = ker(3), and H is a Cartan-
decomposition subgroup.

5. Suppose y, =0, y, =0, and |z,|*+2Re(pu7a) # 0 for every u € U\Usaqap-

(a) If u = (UWNUutp) + 3, then p(H) is described in [14, Prop. 3.17 or
Cor. 3.18].

(b) If u C Upyp+Usntop, but u# (UWNUsyp3)+3, then T = ker(a+ 3), and

H is a Cartan-decomposition subgroup.

(¢) If u = (uN (Ua + Uagp + Uag2s)) + 3, bul U & Ugyp + Usayop, then
T = ker(3), and p(h) < h for every h € H.

6. Suppose u = (uN (Uy +uz5)) + (UNUayp), T =ker(a—28), u ¢ uayp, and
there is some nonzero ¢y € C, such that ¢y = oy, for every u € U. Then
u(H) ~ [HhH, HhH‘l/?’], unless dim H = 2, in which case, p(h) < ||h||*/® for
every h € H.

| 2

7. Suppose ¢, = 0 and dimc(zy,yu) # 1 for every u € U, and |n.|* # x.y.,

for every nonzero z € 3.

(a) If u C uqyop, then p(H) is described in [14, Prop. 3.17 or Cor. 3.18].

(b) If u & Uyyop, and u = (uﬂ (ug —I—ua_m)) + 3, then T = ker(a), and
p(h) < ||h||* for every h € H.

8. Suppose ¢, = 0 for every u € U, there exist nonzero vi,vy € U, such
that dimg(zy,, v,y # 1 and dime{z,,,y,,) = 1, and we have x,,|y.,|* +
Yoo [0, |2 + 2Im(z0,y! T0y) # 0 for every such vy € u, and |n.|* # x.y., for
every nonzero z € 3.

(a) If u = (u N (Uatp + ugﬁ)) + (U N Uypag), then T = ker(a — 3) and
p(H) = [|[B]1>2]18]1%] -

(b) If u= (u N (us + u2a+25)) + (U N Uyyop), then T = ker(2a + ) and
p(H) = [JIB]72, ||R17] -

9. Suppose dimu <3, u= (uN(ug+ug))+ (uN(Uags+uzs)), uN(us+ug) # 0,
and we have ¢, <y, and x, <Xy, for uw € U. Then T = ker(a — 3), and
p(h) < ||R||*/* for every h € H .
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10. Suppose dimu = 2, § = Uspt25, Gu #0 and y, # 0 for every uc U\ Z. If
u= (uﬁ (uqy —|—u5)> +3, then T =ker(a — 3), and u(H) ~ [HhH, HhH?’/Q] .

11. Suppose dimu <2 and ¢, #0, y, =0, y, =0, and |z,])* + 2Re(p,7.) = 0

for every nontrivial uw € U .

(a) If u C u,, then u(H) is described in [14, Prop. 3.17 or Cor. 3.18].
(0) If u C Uy + Upyg + Uagop, bul u € u,, then T = ker(8), and H is a

Cartan-decomposition subgroup.

(¢) If w C uy+ugayop, but uw & u,, then T = ker(a+23), and p(h) < ||k
for every h € H.

Proof. For h € H, we wish to approximately calculate |p(h)||. We write
h = au with @ € T and u € U. Writing a = diag(aq,as,... ,a,42), we always
assume either that a; > 1 or that a; = 1 and ay > 1 (perhaps replacing h
with h='—because ||p(h)|| = ||p(R™")]|, this causes no harm).

Because T' normalizes U, we know that U is a subgroup that is listed in
Corollary 6.2, and we have T' C Ng(U). This leads to the various cases listed in
the statement of the theorem.

(1b) We have p(u) < u for v € U and p(a) < ||a||* for a € T', so H is a
Cartan-decomposition subgroup.

(2) We have ||+ [yu|+ 1|+ x| = 0 and y, = O(z.), 50 ui; = O(14]2.])

whenever (7,7) # (1,n +2). Then, because a; = a3, we see that
Ui j = 0[112(1 + |$u|)] = 0(|h1,1|1/2 + |h1,n+2|1/2) = O(Hhﬂlﬂ)

whenever ¢ > 1. Therefore p(h) = O(Hh”gﬂ). This completes the proof if
dim H > 2 (that is, if dimU > 1).
If dimU =1, then y, < z, and x, = 0. We have ||h| = al(l + |;r:u|2),

and

hii hig 3/2
det ' ) = aray = ay’”.
<h2,1 ha o 1 !

Thus, ||k]|*? = O(p(k)). We conclude that p(h) = ||A|[*/2.

(3) Replacing H by a conjugate under U, , we may replace H with a similar
subgroup H' with A = 0. Thus, H' = T x U’" with U’ C UglUsz. Then [14,
Prop. 3.17] implies H is a Cartan-decomposition subgroup.

(4(b)i) The Weyl reflection corresponding to the root o conjugates H to a
subgroup of type (5¢).

(4(b)ii) The Weyl reflection corresponding to the root o« conjugates H to
a subgroup of type (2).

(4(b)iii) [14, Prop. 3.17] implies H is a Cartan-decomposition subgroup.

(5b) [14, Prop. 3.17] implies H is a Cartan-decomposition subgroup.
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(5¢) We have

O(1) ifi£1and j #£n+2
hij =qO(aiz) ifi=1and j#n+2
O(x) ifi#1and j=n+2

and hy 42 < ai(]z]> + |x|). We conclude that p(h) < h.

(6) From the proof of 4.3(5), we know that u =< w42, that w,; =
O(HUHB/Q) whenever (i,7) # (I,n 4+ 2), and that w;; = O(Hu”l/?’) whenever
1 # 1 and j # n+ 2. (In particular, h < a1<1 + u17n+2) .) Furthermore, we have
a; = a;. Therefore

p(h) < arasp(u) < a)"p(u).

The desired conclusion follows.

(7b) From Lemma 5.4, we know ||ul|? = O(l + |A(u)|) Then, because

hia hig\ _ _ 2
det <h2,l h272> = a1az = aj
and A(au) = aA(u), we have
IR]* = O(aillull*) = O(a¥ + [A(R)[) = O(p(h)).

(8) Assume (8a). (The other case, (8b), is conjugate to this one by the
Weyl reflection corresponding to the root «.) From Lemma 5.4, we have |u|*/? =

O(1+ |A(u)]). Then, because a; = a3, we have
1A]P7 = arasllul** = O(araz + [A(R)]) = O(p(h)).

(9) From the proof of 4.3(6), we know p(u) < 1+ A(u) < |lu|*?. The
proof is completed as in (8).
(10) Because ¢, < y,, it is easy to see that

b= ar (14 |gul*|yul® + [xul) = a1 (14 |dul® + [xu])
and
A(h) = aras(|ya|ul? + xullyal?) < @i (|6u]® + xalléul?) = O(IR]P/?).

Then it is not difficult to see that p(h) = O(||h||*?) for every h € H. So
p(H) = [I[R]], [1A]°72].

(11b) We have p(a) < a for a € T and p(u) < ||u]|* for v € U, so H is a
Cartan-decomposition subgroup.

(11c) H is conjugate (via an element of U,i25) to T x U,. From [14,
Prop. 3.18], we have p(h) =< ||h||* for every h € T x U,. Therefore p(h) =< ||h|*
for every h € H. [ ]
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Lemma 7.5. [14, Lem. 2.4] Assume G = SU(2,n), and let H be a closed,
connected subgroup of AN that is compatible with A. Then either

1. H=(HNA)x (HNN); or

2. there is a posilive root w, a nontrivial group homomorphism : kerw —
U,Us,, and a closed, connected subgroup U of N, such that

(a) H={ayp(a)|ackerw}lU;
(b) UNikerw) =e; and
(¢) U is normalized by both kerw and i (kerw).

Proposition 7.6.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of AN , that is compatible with A, such that

e HN N is not a Cartan-decomposition subgroup;
e H#A(HNA)YHNN); and

o dimH > 1.

Then there are positive roots w and o, and a one-dimensional subspace ¢ of
(kerw) + u, + ug,, such that h =r+ (hNn), hNn C u, + uy,, and either:

l.w=a, 0=a+p, and p(H) = [||h]],]|4]*/(og |[A])] ; or
2 w=ao=a+28, and p(H) ~ [||1]?/(og || [I]|] ; or

3. w=p,c=a+23, and u(H) ~ [Hh”(log HhH)r/Q, HhHQ], where
- 1 ZfI C Ugﬁ
12 otherwise
or

4o w=p,0=a+p, and u(H) ~ [||h”, ||hH<log HhH)r], where r is defined as

above; or

5. un (uy, +uy,) # 0, in which case H is a Cartan-decomposition subgroup.

Proof. @ We use the notation of Lemma 7.5: T'=kerw, U =HNN, ¢: T —
U,Usy, and H ={a(a)} x U.

We need only consider the cases in Corollary 6.2 for which H (now called U)
is normalized by the kernel of some (reduced) positive root. Here is a list of them.

1. Na(U) = ker(B): 6.2(4(b)iii), 6.2(5¢), and 6.2(11b).
2. Na(U) = ker(a + 8): 6.2(4(b)i) and 6.2(5b).

3. N4(U) = ker(a): 6.2(1b), 6.2(3), and 6.2(7b).

4. N4(U) = ker(a + 28): 6.2(11c).
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5. Na(U) = A: 6.2(1a), 6.2(4a), 6.2(5a), 6.2(7a), and 6.2(11a).

Note that in each of the cases with N4(U) = A, there is a (reduced) positive
root o, such that u C u, + uy,.

Case 1. Assume w = 3.

Subcase 1.1. Assume 6.2(4(b)iii). From (7.7), we know that H is a Cartan-
decomposition subgroup.

Subcase 1.2. Assume 6.2(5¢). There is some u € U, such that ¢, # 0. Then,
because (1) C UzglUss normalizes U, we must have U N U,y2p # €. This is a
contradiction.

Subcase 1.3. Assume 6.2(11b). Let u € u. Because U is normalized by (7)),

there is some nonzero v € ug + uyg, such that v normalizes u; thus, [u,v] € u.
Then, because ¢, ,) = 0, but ¢, # 0 for every nontrivial h € U, we conclude that
[u,v] = 0. However, ¢, # 0, and either y, # 0 or y, # 0, so either z[,,) # 0 or
Nuw] 7 0. This is a contradiction.

Subcase 1.4. Assume N4(U) = A. There is a positive root o, such that u C
Uy + Uz

If o = 3, then, from (7.7), we know that H is a Cartan-decomposition
subgroup.

Suppose 0 = a + 23. Clearly ||h|| < a1|n.|. Also,

p(h) = arlna|* + ai(log ar)",
where r = 1 if (T) C Uy (ie., if yo = 0 for every h € H) and r = 2 if
Y(T) ¢ Usg. The smallest value of ||p(h)]|| relative to ||k|| is obtained by taking
1. < (log a1)™/?, resulting in p(h) < ||k (log HhH)r/Z. Then, since p(u) < ||ul|? for
u € U, we conclude that u(H) ~ [|[b](log ||A])"*, 1h]2].
Because U is normalized by the nontrivial subgroup ¢(7T') of Uglsz, we

know that o # «. Therefore, we may now assume o = a + 3. We show that

p(H) = [||R]|, ||k]|(log ||k]|)"] . For u € U, we have p(u) < u. For a € T', we have
plap(a)) < |la (log [lall)” = llav:(a)|| (log lav:(a)]])".

All that remains is to show that p(h) = O[||h||(log||k||)"] for every h € H.
Because p(au) < au for every au € TU (see [14, Cor. 3.18]) and || (a)|| =<
1#(a) | < (log ||A]])", we have

p(h) = p(¥(a))p(au) = Ofllp((a))lllp(aw)|]
O[(log [lall) llau]] = O[(og [I])"[IA]l]-

Case 2. Assume w = a + 3. The Weyl reflection corresponding to the root «
conjugates each of 6.2(4(b)i) and 6.2(5b) to a subgroup with w = j.

Thus, we may now assume N4(U) = A. If 0 # «, then the Weyl reflection
corresponding to the root a conjugates H to a subgroup with w = . If 0 = «,
then the Weyl reflection corresponding to the root 3 does not change w, but
conjugates H to a subgroup H; with o0 = a +23. Then (as we already observed)
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the Weyl reflection corresponding to the root o conjugates H; to a subgroup with

w= /.

Case 3. Assume w = . Because U must be normalized by the nontrivial subgroup

P(T) of U,, we see that U cannot be of type 6.2(1b) or 6.2(3).

Subcase 3.1. Assume 6.2(7b). Because U must be normalized by the nontrivial
subgroup (T) of U, , we see that y, = 0 for every u € U, so u = 3. Thus, again
using the fact that U is normalized by ¢(T'), we see that u C Uyt25 + Uznt2s,
and the projection of u to u,425 is one-dimensional. For every z € u, we see that
n. # 0 (because |n,|* # x.y.). Thus, we conclude that dimu = 1. Therefore H is
conjugate under U, to a subgroup of type 6.2(7a) (considered in Subsubcase 3.2.2
below).

Subcase 3.2. Assume Na(U) = A. If 0 = «a, then (7.7) implies that H is a Cartan-
decomposition subgroup. Because U is normalized by the nontrivial subgroup

O(T) of U,, we know that o # (3.
Subsubcase 3.2.1. Assume o = o+ 3. We have

11 1 2 -
a1 A1Py(a) G1Ty 0 —§a1|l’u| + 2a1Xy

h = ay(a)u = ay 0 0 0

We have ||h|| < a1loga; + ai|zy|* + ai|x,| and, for i > 1, we have h;; =
O(a1 + |z4]). The largest value of ||p(h)]|| relative to ||4]| is obtained by taking
loga, < |z,|* (and x, small), which yields p(h) < a}loga; < ||h]|*/log A
Because p(u) < u for u € U, we conclude that u(H) = [||k|, ||k]|*/log ||2]|] -

Subsubcase 3.2.2. Assume o = a+ 2(3. We have

ar a1dy)y 0 a1y —a10ya)
h — a¢(a)u = ay 0 0 _aln_u

We have h < (1 + ai][¢(a)]|)(1 + |m]) and p(h) < a?(1 + |n.]?) (note that

det Pz gz 0). The smallest value of |[p(h)]|| relative to ||| is obtained
haa hanto

by taking n, = O(1), which results in p(h) x @} = HhH2/<lothH>2. Because
p(u) =< ||lu||? for u € U, we conclude that p(H) ~ [||h||*/(log HhH)Q, 1A% -

Case 4. Assume w = a + 23. The Weyl reflection corresponding to the root [
conjugates 6.2(11c) to a subgroup H' with w = a (of type 6.2(7b) with §’ =3’ C
Uat2p + Uzat2s)-

Thus, we may now assume N4(U) = A. If o # 3, then the Weyl reflection
corresponding to the root § conjugates H to a subgroup with w = o. Now assume
o = (3. The Weyl reflection corresponding to the root a does not change w, but
conjugates H to a subgroup H; with ¢ = a4 28. Then (as we already observed)
the Weyl reflection corresponding to the root 3 conjugates H; to a subgroup with
w=a. ]
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Lemma 7.7.  Assume G is a connected, almost simple, linear, real Lie group
of real rank two. Let H be a closed, connected, nontrivial subgroup of AN, such
that H is compatible with A, and H # (H N A)(H N N). We use the notation of
[14, Lem. 2.4]: T' =kerw, H=Tx U, ¢: T = U,Us,, and H = {av(a)} x U.
Ifun(u, +ug,) #0, then H is a Cartan-decomposition subgroup.

Proof. By passing to a subgroup of H, there is no harm in assuming u N
(U + uz,). We use the notation of the proof of [14, Prop. 3.17]. For each
a €T, clearly uMA<a¢(a)U) D MMA(CLL/J(a))A;';, so uma(H) D MMA({CL@/J(G)})AI.
Beause pip4(T') = T is a line perpendicular to A, , and para (a;/)(a)) is logarithmi-
cally close to this line, it is clear that pasa (a;/)(a))AI contains all but a bounded
subset of the region C. Therefore p(H) contains all but a bounded subset of A%,
so H is a Cartan-decomposition subgroup. [ ]

Lemma 7.8. (cf. [14, Prop. 3.16(3)]) Assume that G = SU(2,n), and let H be
a nontrivial one-parameter subgroup of AN, such that H is compatible with A,
but H# (HNA)(HNN).

Then there is a ray R in AT, a ray R’ in A that is perpendicular to R,
and a positive number k, such that

p(H) ={rs|reR, seR, |s|=(og|rl)*}.

8 Maximum dimensions of the subgroups

For convenience of reference, Tables 1, 2 and 3 list the (approximate) Cartan
projection of each subgroup of AN that is not a Cartan-decomposition subgroup.
The maximum possible dimension for a subgroup of each type is also listed. (These
dimensions are used in applications to the existence of tessellations.)

Remark 8.1.  Here are brief justifications of the dimensions listed in Tables 1,
2 and 3.

6.1(1) By assumption, we have dim H = 1.

6.1(2) Let p: h — u,4p be the natural projection. Then kerp = 3 C uzat25,
SO
dimb < (dimu,45) + (dimugaqos) =2(n —2) + 1 =2n — 3.

6.1(3) We may assume A = 0. Then § C ug + uzg. So
dimb < (dimug) 4+ (dimugs) = 2(n —2) + 1 = 2n — 3.

It is easy to construct an algebra of this dimension, with or without an element wu
as described in (3a).

6.1(4) Let V' be the projection of i to u, + Uy45 + Ust2s. Because ¢7 is a
form of signature (2,2) on u, +u,425, we know that dim(V N (uy + ua+25)) < 2.
Thus we have

dimh < dimV +dimug,yos < (dimua_m + 2) + dimug,49p
= (2(n—2)+2)+1=2n-1.
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reference Cartan projection maximum dimension
6.1(1) p(h) < h 1
6.1(2)  p(H) = [||A]l,]|8]*?] Zn —3
612 plh) < AP 1
6.1(3a)  pu(H) =~ [|IA, |12]]*?] 2n —3
613 p(h) = |H[¥? 1
6.1(3b) p(h) < h 2n —3
6.1(4) p(h) < h 2n — 1
6.1(5)  wu(H) = [l |1]|*°] 2n —3
61 plh) = B 1
2n —1 n even
6.1(6 h) < ||k
© o)< Al e
n+l n>4
6.1(7)  p(H) = [||A]P2, ||2]I?] _
3 n=3
3 n>4
6.1(8) p(h) = ||h|*? {2 _
n =3
6.109)  u(H) =~ [l 1R]]*?] 2
6.1000)  p(h) < ||h? :
6.1(11)  p(H) = [|IR[IP*, [I2]1%] 2

Table 1: The subgroups of N that are not Cartan-decomposition subgroups.

6.1(5) Consider p: h — u,. Because § = 0, we have dimker p < dimu, 45 =
2n — 4. Because p(h) C R¢p, we have dimp(h) < 1. Thus, dimbh < 2n — 3.

6.1(6) See Lemma 8.2 below.

6.1(7) See Lemma 8.3 below.

6.1(8) See Lemma 8.4 below.

6.1(9), 6.1(10), 6.1(11) are obvious from the statements.

7.4(1a) Because dimu = 1, we have dimh = dimt + dimu = 2.

7.4(2) The kernel of the projection from u to u,4s is 3, so dimh =
Il +dimU <14 (1 +dimu,yg) =2n — 2.
4) dimph=1+dimu <1+ (dimug + dimg) =2n — 2.
ha) dimh < dimt+dimu,y+dimz <14 (2n —4) 4+ 1 =2n — 2.
5¢) Add 1 (the dimension of T') to the bound in 6.1(4).
6) Add 1 (the dimension of T') to the bound in 6.1(5).
7a) dimbh < dimt+ dimuy25 =142 = 3.
7b) Add 1 (the dimension of T") to the bound in 6.1(6).

7.4(8a) Because y, # 0 for every nonzero u € uN (Uyqp + Uzp), we have
dim(u N (Uats + UQﬁ)) < 1. Therefore dimb < dimt+ 1 4+ dimuy425 = 4.

7.4(8b) This is conjugate to 7.4(8a), via the Weyl reflection corresponding
to the root «.

7.4(9) Add 1 (the dimension of T') to the bound in 6.1(8). (To achieve this
bound for n > 4, choose u, @ € uN (u, 4+ ug) in the proof of Lemma 8.4.

7.4(10) and 7.4(11) are obvious from the statements.

7.4(
7.4(
7.4(
7.4(
7.4(
7.4(
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reference Cartan projection
74(la)  a(H) ~ (Il )]
74(2) () ~ [l IR
TARF plh) < |BIPP
TA(a) ()~ [l D))
7.4(4(b)i) p(h) <h
TAM)R)  (H) ~ [ 1)
AU p(h) < ]
TA(s)  a(H) ~ (Il )]
7.4(5c¢) p(h) <h
7A6)  p(H) & [[IR], 18]
7.4(6) p(h) = ||h||*?
TA(Ta)  p(H) = [|IR]°, 12]7]
7.4(7h) o(h) < || {
TA(8a)  p(H) = [||R]P2, |15]]
TA(8b)  p(H) = [|[h][*2, 1A]?]
7.4(9) p(h) = ||L|*2
7.4(10)  p(H) = [|IA]], |[A]°7]
TA(1a)  p(H) =~ [|IR]P, 12]?)
7.4(11c¢) p(h) < ||A||?

Table 2: The subgroups of AN that are not Cartan-decomposition subgroups, and

are a nontrivial semidirect product 7' x U.

reference

Table 3: The subgroups of AN that are not Cartan-decomposition subgroups and

Cartan projection

p(H) =~
p(H) ~
p(H)

~
~o

LA WA/ (log [1A]))]
117/ (log HhW 1211%]
[1A] (og 1A]1) ", 11712

p(H) ~ U\hH(lothH)thlﬂ

p(H) =~
p(H) =~

(A, lIA]l (log IA]])]
(A1, 2]l (log I2]) ]

p(h) = ||h]|*(log || ][)**

2n
2n

maximum dimension

2
2n — 2
2
2n —2
2n — 2
2n — 2
2
2n — 2
2n
2n — 2
2
3

n even

—2 nodd

[GEREEN
vV
W

OJOJOJSS%,A

maximum dimension
2n — 2
2
3
3
2n — 2
2n — 3
1

are not a semidirect product of a torus and a unipotent subgroup.
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7.6(1) dimbh <1+ dim(ustp + Uzat2s) = 2n — 2.

7.6(2) Because ¢ (T') normalizes (hence centralizes) U, the subgroup U
cannot be all of U,4q5,s0 dimU < 1. Therefore dimH =14 dimU < 2.

7.6(3) dimh <14 dimu,495 = 3.

7.6(4) Because ¢ (T') normalizes (hence centralizes) U, the projection of u
to U,4+p cannot be all of u, 45 if (1) & Usyg, that is, if r = 2. Therefore dimU <
dim(Ug4g+usaqes)—(r—1) = 2n—2—r. Therefore dimbh = 1+dimU < 2n—1—r.

Lemma 8.2. The mazimum dimension of a subalgebra of type 6.1(6) is as
stated in Table 1.

Proof. = We begin by showing that dimh < 2n — 1 (cf. [16, Lem. 5.8]). Let V
be the projection of h to ug 4+ uy,45. Because dimj < 3, we just need to show
that dimV < 2n — 4. Because V does not intersect uz (or u,4s, either, for that
matter), and ug has codimension 2n — 4 in uz 4 u,44, this is immediate.

When n is even, there is a subgroup of dimension 2n — 1. (For example,
the N subgroup of Sp(1,n/2). More general examples are constructed in [15, §4].)

Let us show that if n is odd, then dim H < 2n—3. (Our proof is topological;
we do not know an algebraic proof.) Suppose that dim H > 2n — 2 (this will lead
to a contradiction). Because dimj < 3, we have dimf/3 > 2n — 5. Thus, there is
a (2n — 5)-dimensional real subspace X of C*~* and a real linear transformation
T: X — C* 2, such that  and Tz are linearly independent over C, for every
nonzero z € X (cf. [16, Cor. 5.9]). Thus, if we define U: X — C*~% by Uz = iz;
then z, Tx, and Uz are linearly independent over R, for every nonzero =z € X.
Thus (writing n = 2k + 3): there is a (4k + 1)-dimensional real subspace X
of R**2 and real linear transformations 7,U: X — R**2 such that z, Tz, and
Uz are linearly independent over R, for every nonzero x € X. There is no harm
in assuming X = R**! (under its natural embedding in R*+2).

Let F = (S* xR**%)/~ where (z,v) ~ (—z,—v), and define a continuous
map (: £ — RP* by ((x,v) = [z], s0 (E,() is a vector bundle over R P*. Then
(E,{) & 7@ ¢ @7, where 7 is the tangent bundle of RP*, ¢! is a trivial
line bundle, and ~}, is the canonical bundle of RP*. (To see this, note that the
subbundle

{(z,v) € S* x R*¥* ™ | v Lz}/~

is the total space of 7 [13, pf. of Lem. 4.4, pp. 43-44], the subbundle
{(z,v) € S* x R¥*! | v € R }/~

has the obvious section = +— (z,2), and the subbundle (54]“ x (0 x R))/N is
isomorphic to v;, via the bundle map (:z:, ((),t)) — (x,tx).) Therefore, letting a
be a generator of the cohomology ring H*(R P**; Z,), we see that the total Stiefel-
Whitney class of (F,() is w = (14+a)**1(1)(14+a) = (1 +a)***+% [13, Eg. 2, p. 43,
and Thm. 4.5, p. 45], so

4k + 2
W(4k+2)—3+1 = Wak = ( 42:— ) att = (2k + 1)(4k + 1)a4]C #0

(because (2k 4 1)(4k + 1) is odd). Therefore, there do not exist three pointwise
linearly independent sections of (£, () [13, Prop. 4, p. 39].



36 Iozz1i AND WITTE

Any linear transformation @ : R**! — R*+2 induces a continuous function
Q: S4%* — R*+2_ such that Q(—l’) = —Q(m) for all z € S*; that is, a section of
(E,¢). Thus, Id, T', and U each define a section of (£, (). Furthermore, these
three sections are pointwise linearly independent, because z, Tz, and Uz are
linearly independent over R, for every z € S*. This contradicts the conclusion
of the preceding paragraph. [ ]

Lemma 8.3. The mazimum dimension of a subalgebra of type 6.1(7) is as
stated in Table 1.

Proof.  Replacing H by a conjugate under (U,,U_,), we may assume z, = 0.
Therefore x, = 0 for every z € 3. (Thus, in particular, we have dimj < 2.)

For the projection p: ) — u,45, we have kerp = Rv+ 3. (There cannot
exist a linearly independent v'; otherwise, replacing v’ by some linear combination
with v, we could assume x,, = 0, which is impossible.) Thus, dimkerp < 3.

Because x, = 0 for every z € 3, p(h) must be a totally isotropic subspace for
the symplectic form Im(zz1), so dim p(h) < n—2. Therefore dimh < (n—2)+3 =
n+1.

For n > 4, here is an example that achieves this bound:

0 0 =y o -+ Tp_g n 1X

) } X, L1y s Tp_o €R
h= 0 0 ix x1 -+ Tp.3z ITp_o —T b T ’

necC

For v € b, we claim that dim¢(z,,y,) = 1 only if either z, =0 or y, = 0. (In
either case, it is clear from the definition of f that either x,|y.|? # 0 or y, |z, |* # 0,
respectively.) Suppose dimg(x,,y,) = 1, with 2, # 0 and y, # 0. There is some
nonzero A € C, such that y, = Az,. We must have z; # 0. (Otherwise, let
1 € {1,2,... ,n — 2} be minimal with z; # 0. Then z;_; = y; = Az; # 0,
contradicting the minimality of i.) Because y; = ix is pure imaginary, but x; is
real, we see that A is pure imaginary. On the other hand, y; = 1 is real (and
nonzero), and , is also real, so A is real. Because A # 0, this is a contradiction.

Now let n = 3, and suppose dimb = 4. (This will lead to a contradiction.)
Because equality is attained in the proof above, we must have dimp(h) =n—-2=1
and dimz = 2. In particular, there exists w € h with z,, # 0. For t € R, let
w; = w + tv. Then

+x,00 ast— o
th|ywt|2‘|‘)’wt|$wt|2‘|‘2Im(l'wty;ﬁwt) = t3xU|yU|2+O(t2) — {—X o0 as t - —050

Thus, this expression changes sign, so it must vanish for some ¢. This is a
contradiction, because dimc(y,, Yu,) = 1 for every . ]

Lemma 8.4. The mazimum dimension of a subalgebra of type 6.1(8) is as
stated in Table 1.
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Proof.  For n > 4, here is the construction of 3-dimensional subalgebras of n of
this type. Let ¢ =1 and ¢ = i. Choose y,y,z,7 € C*?, n,i € C, and x,x € R,
such that

ly* = 1§|* = 3iyg" # 0. (8.1)
Now, choose y,y € R, such that
Im(gzt — iyzt 4 g2t — yit +49) = 0 (8.2)
and
Im(gat — iyz" + iga’ —iyz' +iy) = 0. (8.3)

Define u, @ as in Eq. (2.3), and let v = [u,@]. Then y, # 0 and z, # 0, but, from
Eq. (8.1), Eq. (8.2) and Eq. (8.3), we have [v,u] = [v,4] = 0. Thus, we may let
be the subalgebra generated by u and @. (So {u,@,v} is a basis of h over R.)
Note that, because |yg'| = |y|*/3 # |y|*, we know that y and § must be
linearly independent over C. Thus, these 3-dimensional examples do not exist

when n = 3. |
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