Lifting cofibration and fibration structures
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1 Introduction

Derived functors of functors between non-additive categories are abundant in
modern mathematics. One of the most popular frame works for constructing
and working with such functors is Quillen’s concept of a closed model cate-
gory [9]. To verify that given classes of weak equivalence, cofibrations and
fibrations constitute a closed model structure on a category one usually has
to rely on small object arguments; there are only a few examples, where one
can do without them.

In relative homological algebra one often has to deal with weak equivalences
which are genuine homotopy equivalences after forgetting part of the struc-
ture. Genuine homotopy equivalences are usually not detected by a fixed set
of maps and hence resist small object arguments. So they are rarely part
of the data of a closed model structure. Fortunately, fibration or cofibra-
tion structures as studied by Baues [1] suffice to treat right respectively left
derived functors in such situations.

In this paper we construct lifts of fibration and cofibration structures if we
are given a pair of enriched adjoint functors

L:BsS A:R

between suitably enriched categories, the typical situation for classical rela-
tive homological algebra, where we are in a chain complex enriched setting
(see Section 8). Moreover, our categories have well-behaved cylinder- and
path space functors.

The original motivation for this paper comes from the attempt to interpret
the “standard complex” definition of topological Hochschild homology (e.g.
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see [4, X.2.1]) as a relative Tor functor. Here we are in a topologically
enriched setting, which is our main source of applications.

We start with the recollection of some basic facts of V-enriched category
theory over a ground category V in Section 2. In Section 3 we discuss the
“absolute” homotopy theory in suitable V-enriched categories, defined by the
given cylinder and path space; we obtain compatible fibration and cofibration
structures. Section 4 till 6 treat the “relative” homotopy theory: in Section
4 and 5 we lift the cofibration structure in B via the left adjoint L to A. In
Section 6 we shortly address the dual situation, namely lifting the fibration
structure in A4 via R to B.

As examples we study the topological enriched, the chain complex enriched,
and the Cat-enriched cases with emphasis on the topological one. Explicit
examples are the categories of diagrams of topological spaces, of topologi-
cal operads, of algebras over a topological operad, and of module spectra.
In Section 8 we link the chain complex enriched case to classical relative
homological algebra. We close with a sketch of the Cat-enriched case.

The results of this paper are used in [11] and [13]. They also provide a good
frame work to study homotopy invariance of algebraic structures on spaces,
which will be exploited in a later paper.

2 The ground category V

Let V = (Vo,0,®) be a symmetric monoidal category with unit object ®.
We assume V to be closed, i.e. there is a bifunctor

V(—,—): V¥ x Vo= Vo
satisfying the Hom-tensor adjunction

2.1 Vo(XOY, Z) = Vo(X, V(Y, Z))

In this paper we consider V-categories C, i.e. V-enriched categories. Cy will
denote the underlying category. Note that Vg is canonically V-enriched by
the objects V(X,Y).

Recall that a V-category C is V-complete and V-cocomplete if each functor
F:J — Cy, where J is a small indexing category, has a limit and a colimit
in Cg, and we have natural isomorphisms in V)

C(X,im F) = limC(X,F) and C(colimF,X)=C(F,X)

A V-category C is called tensored and cotensored if there are functors
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2.2 Co X Vo — Co, (X, IX’) XK
C() X Vgp — Co, (X, I() — XK

and natural isomorphisms in Vg
C(X®K,Y)=V(K,C(X,Y)) =C(X,YK).

Note that V is tensored by —— and cotensored by V(—,—). A pair of
V-functors of V-categories

F:BS A:U

is called a V adjoint pair, if there are isomorphisms in V)
B(X,U(Y)) = A(F(X),Y)

natural in X € Band YV € A.

We make the following assumptions:
2.3 Assumptions:

(1) The ground category V is V-complete and V-cocomplete, tensored and
cotensored.

(2) We are given a functor V : A — V with V[0] = ®&. Here A is the
category of ordered sets [n] = {0,1,2,...,n} and order preserving
maps.

(3) The map (ig,%1) : PUP — V[1], induced by the two injections [0] — [1],
is a strong cofibration (see Definition 3.2).

Following Kelly [6] we call a morphism f : & — Z an element of Z. For
simplicity, we often denote the elements ig,7; : ® — V[1] by 0 and 1.

2.4 Examples of categories V:

(1) Top, the category of k-spaces in the sense of [12, 5(ii)] with XOY =
X xY, Top(X,Y) the k-function space, and V : A — Top the standard

simplex functor.

(2) Top. the based version of (1) with XOV = X AY, Top.(X,Y) the
based Ek-function space, and V[n] = A%, the standard n-simplex with
an extra point + as base point.



(3) HTop and HTop., the categories of (based) compactly generated weak
Hausdorff spaces with structures as in (1) and (2).

(4) SModp, the category of simplicial R-modules, R a commutative ring,
with (X,0Y,),, = X,,®Y,, SModr(X.,Y.), the R-module of simplicial
R-linear maps Xp ® R[A(—,[n])] — Y., where R[—]| is the free R-
module functor. We define V[n| = R[A(—, [n])].

(5) Cplzp, the category of unbounded chain complexes of R-modules, R a
commutative ring. We take X,00Y, and Cplzr(X.,Ys) to be the usual
tensor product resp. Hom-complex of chain complexes, and define V|[n]
to be the normalized chain complex associated with R[A(—, [n])].

(6) Cat, the category of small categories with XOOY = X x Y, Cat(X,Y)
the functor category, and V[n] the category with n objects and exactly
one morphism between any two objects.

Examples of V-categories will be discussed in the example sections. For a
summary of what we need to know about enriched category theory see [10],
for a detailed account we recommend [6].

3 Homotopy theory in V-categories

3.1 General assumptions: C is a V-category which is V-complete, V-
cocomplete, tensored and cotensored. We also assume the Assumptions 2.3

for V.

We denote the initial object of C by () and the terminal one by .

Recall that a morphism j : A — X has the left lifting property (LLP)
for p : E — B and p has the right lifting property (RLP) for j, if each
commutative diagram

A —E
. h

L)
X- B

has a diagonal filler 2 : X — E making the diagram commute.

3.2 Definition: A map f: X — Y in C is called

(i) a fibration, if it has the RLP for all maps Z ®ig: Z ® 0 — Z @ V(1]



ii) a cofibration, if it has the LLP for all maps Z% : ZVlll s 7® ~ 7
( ) ﬁ ) P

(iii) a strong cofibration, if it has the LLP for all maps (pVl'l, E%) : EVI —
BV x5 E, where p: E — B is a fibration

(iv) a strong fibration, if it has the RLP for all maps (j ® V[1]U Z ®0) :
A® V[1]Usgo Z ® 0 — Z @ V[1], where j : A — Z is a cofibration

(v) an equivalence, if it is a homotopy equivalence with respect to the
cylinder functor — @ V[1].

An object X of C is called (strongly) fibrant resp. (strongly) cofibrant, if
X — x is a (strong) fibration resp. ) — X a (strong) cofibration.

3.3 Notation: Let sfibe, fib¢, scofc, cofe, eq, denote the classes of (strong)
fibrations, (strong) cofibrations, and equivalences in C respectively.

We have the following characterizations of the various classes (for a sample
proof see [10]).

3.4 Proposition: (1) j € cofe < j has the LLP for all p € sfibe Neq,
(2) p € sfibe < p has the RLP for all j € cofc N eqe
(3) j € cofe Neqe < 7 has the LLP for all p € sfibe
(4) j € scofc Neqe < j has the LLP for all p € fibe
(5) p € fib¢ < p has the RLP for all j € scofc N eq,
(6) j € scofc < j has the LLP for all p € fibe Neq,
(7) p € fibe N eqe < p has the RLP for all j € scof,
(8) p € sfibe Neqe < p has the RLP for all j € cofe

In [10] we proved

3.5 Proposition: (C,cof,sfib, — @ V[1],(—)VIU ), %) and (C,scof, fib, — ®
V1], (—)V 9, %) are I P-categories in the sense of [1, (I.4a)]. In particular,
(C.eq,cof) and (C,eq,scof) are proper cofibration categories with all ob-
jects strongly fibrant, and (C, eq,fib) and (C, eq,sfib) are proper fibration
categories with all objects strongly cofibrant. O

For the reader’s convenience we recall the definitions of the structures ad-
dressed in the second part of (3.5).

3.6 Definition: A cofibration category is a category C with an initial object
() and two subcategories cofe and wee, whose morphisms are called cofibra-
tions and weak equivalences respectively. Morphisms in cofs N'wee are called
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trivial cofibrations. An object A is called cofibrant, if ) — A is a cofibration,
and fibrant, if each trivial cofibration A — X has a retraction. The following
axioms holds

(Cl) Given A A BN C, if two of f,g,g o f are in wec, so is the third.
Isomorphisms are trivial cofibrations.

(C2) Pushouts along cofibrations ¢ exist.

A B If ¢ is a (trivial) cofibration, so is 1.
f 7
X—>XU,B

(C3) Every map factors into a cofibration followed by a weak equivalence.

(C4) Any object X has a fibrant resolution RX, i.e. there is a trivial cofi-
bration ex : X — RX with RX fibrant.
We call C proper, if the following additional axiom holds.

(P) In the pushout of (C2), if 7 is a cofibration and f a weak equivalence,
then f is a weak equivalence.

A proper cofibration category is a cofibration category as defined by Baues
[1]. Our definition is due to Majewski [7]. Many of the results of [1] also hold
for this weaker version. In particular we have

3.7 Lifting lemma: Consider the commutative (solid) diagram

f
A — X
zl /h// lp
2 Je— Y

with ¢ a cofibration and p a weak equivalence.
(1) If X is fibrant, there is an h such that f = hou.

(2) If X and Y are fibrant, there is h such that hot = f and poh = grel A,

and two such h are homotopic rel A.



Here homotopy rel A is defined using a cylinder object I4B of Brel A ob-
tained by factoring the folding map into a cofibration and a weak equiva-
lence.

BUyu B B

~

I,B

4 Relative homotopy theory

4.1 General assumption: Throughout this section we assume that we
are given a V-adjoint pair

L:BSA:R
between V-categories satisfying (3.1).

The purpose of this section is to construct a cofibration structure on A, whose
weak equivalences are those maps f for which R(f) is an equivalence.

4.2 Lemma: (1) L preserves (strong) cofibrations and equivalences.

(2) R preserves (strong) fibrations and equivalences.

Proof: L preserves tensors and R cotensors. Hence they preserve equiva-
lences. By passing to the adjoint situation one proves that L preserves cofi-
brations and R fibrations. The argument for strong cofibrations and strong
fibrations is similar. O

4.3 Definition: A morphism f: X — Y in A is called an

1) R-fibration, if R(f) € fibg

3

(1)

(2) R-equivalence, if R(f) € eqg

(3) R-cofibration, if it has the LLP for all trivial R-fibrations
(4)

4) trivial R-(co)fibration, if it is an R-equivalence and an R-(co)fibration.

We denote the corresponding classes by Rfib, Req, and Rcof.

4.4 Lemma: (1) Rcof is closed under composition, retracts, cobase
change, arbitrary sums, and sequential colimits
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Given a commutative ladder

Ao Ay Ay

N

By B, B,

such that fo and the maps B; Ua, A;y1 — Biy1 are R-cofibrations for
all 2 > 0. Then colim f,, : colim A,, — colim B,, is an R-cofibration.

Rfib is closed under composition, sections, base change, arbitrary prod-
ucts, and sequential limits.

Given a commutative ladder

Ao Ay Ay

Pl

By B, B,

such that f, and the maps A,y1 — A; Xp; Biy1 are R-fibrations. Then
lim A,, — lim B,, is an R-fibration.

Rcof C scof 4, fiby C Rfib, eq4 C Req

L(B) is R-cofibrant for each B € 0bB. Retracts of R-cofibrant objects
are R-cofibrant.

Every A € ob A is R-fibrant.

Proof: (1) and (2) holds because R-cofibrations are characterized by a left
lifting property. (3) and (4) hold because R preserves limits and fibg is

closed under the corresponding constructions. (5) follows from (3.4) and
(4.2). By passing to adjoints, one obtains (6), and (7) holds because R
preserves terminal objects. O

4.5 Lemma: Let j : A — X be a trivial R-cofibration. Then there is a
retraction r : X — A and a homotopy j o r ~ idx rel A.



Proof: Consider the mapping path space diagram in A

P, _ v — X
J

id

P pullback X0

A : X

J

(m : V[1] — VI0] is induced by [1] — [0]). Since A is a category with a
natural path object in the sense of [1] (see [10]), ¢ = X" o j is a fibration, s
is an equivalence, and gos = j. Hence ¢ is a trivial R-fibration, and we have
a map u: X — P; making the following diagram commute

7
; s
J , q
s

X X

r = pou is a retraction of 5. Since uoj and gou are equivalences, u is an equiv-
alence, and so are j and ¢. Since j € scof 4, there is an r with the required
property by the lifting lemma in the cofibration category (A4, eq, scof 4). O

4.6 Corollary: (1) Rcof N Req is closed under cobase change.
(2) (A, Req, Recof) satisfies Axioms (C1), (C2), and (C3) of a cofibration

category, in which all objects are fibrant.

The factorization axiom:

We prove the factorization axiom by constructing a suitable simplicial reso-
lution. For this we need additional assumptions.

A morphism f : M — X is an object in the category M/A, the category
under M. The forgetful functor

Ry:M/A— A— B
has a left adjoint
Ly:B—MJA, B~ MUL(B).

The composite Fy = Rp; o Ly is a monad on B.
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4.7 The (simplicial) Godement resolution of (X, f) € M/ A is the simplicial
map

e B.(LM,FM,RM(X, f)) — X.,

where B,,(Lar, Far, Rm(X, f)) = Ly o (Fur)™ o Rv (X, f) and X, is the con-
stant simplicial object on (X, f). The structure maps and ¢ are induced by
the adjunction maps of Ly; and Rp;. Moreover,

RM(E) : RMB.(LM, Fy, RM(X, f)) — Ry X,
has a natural section 7, and there is a simplicial homotopy

no Ruy(e) ~ ud.

An object (X, f) is M/ A is called R-cofibrant, if f : M — X is an R-
cofibration. A morphism h : (X, f) — (Y,g9) in M/A is called an R-

equivalence, if h : X — Y is an R-equivalence.

By (4.4), each B,,(La, Far, Rm(X, f) is R-cofibrant in M/A. Hence the fac-
torization axiom (C4) holds for (A, Req, Rcof), if the following assumptions
are satisfied:

4.8 Assumptions: Let S(M/A) denote the category of simplicial objects
in M/A. For each M € A we assume that there is a realization functor

S(MJA) — MJA, X, o(X,)
satisfying
(1) if each X, is R-cofibrant, so in o(Xa)
(2) the simplicial map € of (4.7) induces an R-equivalence
gx : 0(Be(Lat, Frr, Ru(X, f)) — (X, f)

4.9 Proposition: If (4.8) and the general assumption (4.1) hold, then (A, Req, Rcof)
is a cofibration category such that all objects are fibrant.

We have the following obvious addendum:

4.10 Addendum: If R maps R-cofibrations to cofibrations and preserves
pushouts along R-cofibrations, then (A, Req, Recof) is proper. This holds, in
particular, if R has a right V-adjoint.
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5 Standard realizations

In this section we discuss the standard realizations. By assumption we are
given a functor

V:A=YV.

Let Znj C A denote the subcategory of injective morphisms. For a simplicial
object X, in A we define the thin realization |X.|4 and the fat realization
|| Xe||.4 to be the coends of

AP x AN Axy 25 A
respectively of its restriction to Znj°? x Inj. We also use the suggestive
notation X, ®a V respectively X, @1,; V for | X,| and || X,||.

Let (Znj | [n])* be the over category with the terminal object id[, deleted.
Dually, let Sur C A be the category of surjective morphisms and (Sur® |
[n])* the over category obtained from Sur, again with the terminal object

idfn) deleted.

5.1 Definition: Let X, be a simplicial object and K*® a cosimplicial object
in A
(1) the n-th latching objects of X, respectively K* are
sX, = colimsypor [ X
OK" = COZZ.WL(IHJ‘NL[”])*I(

where X : (Sur®® | [n])* = A and K : (Znj | [n])* — A are the
functors determined by X, and K°.

(2) The canonical maps sX,, — X, and K™ — K" are called the n-th
latching maps.

(3) X. and K* are called proper if all latching maps are strong cofibrations.

By [10], the category A is a proper cofibration category with strong cofi-
brations and equivalences as structures maps. Hence the well-known proof
applies to show

5.2 Proposition: If f: X, — Y, is a map of proper simplicial objects in A
and g : K* — L*® is a map of proper cosimplicial objects in V such that each
fn and ¢" is an equivalence, then

fRarg: Xe®@a K* =Y, ®aL*

is a homotopy equivalence.
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The following axioms replace the Assumptions 4.8.

5.3 Realization axioms:

(1) V: A —V is a proper cosimplicial object in V.
(2) R preserves the fat realization up to homotopy, i.e. the natural map
IRX, |5 = R([[Xs]l.4)

is an equivalence in B.
(3) || — ||p maps the simplicial homotopy Rase of (4.7) to an equivalence.
(4) If X, is the constant simplicial object on X € A, then the map

Ex [ Xefla = X,
induced by the maps V([n]) — #, is an equivalence.

5.4 Proposition: The realization axioms imply the Assumptions 4.8.

Proof: Let X, = {X,, f.} be a simplicial object in M/ A, M € A. The
maps f, : M — X,, define a simplicial map f : M, — X, in SA from the
constant simplicial object on M to X,. We define o(X.) € M/A to be the
pushout in A

M) — x4
gj l
M o(X,)

Claim: If each (X,,, f,) is R-cofibrant in M/A, then || f|| is an R-cofibration
in A. Hence o(X.) is R-cofibrant in M/A.

Proof: Let || X,||™ denote the “n-skeleton” of || X,|l.4. Then ||f||® = f :
M — X is an R-cofibration. By (4.4) it suffices to show that

M| Upag o (161071 = [ X))
is an R-cofibration. Since
M) Upag o [1X6]| " 2 M @ Vn] Ungovp |57,
we have to show that

M @ V[n] Ungav | Xe]| 7Y = X, © V0] Ux,govp | X6
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is an R-cofibration. Applying Reedy’s patching lemma we need to know that
(M @ V[n]) Ungavi) (Xn ® 0V[n]) = X, @ V[n]

is an R-cofibration. Passing to adjoints this is equivalent to showing that
EVI 5 BV x poopg E2VIMl is a trivial R-fibration, provided E — B is a
trivial R-fibration. Since R is V-right adjoint, it preserves cotensors. By
definition RE — RB is a trivial fibration in B. Hence

(RE)"™ — (RB)"" x ppyovia (RE)7V

is a trivial fibration by [10, 3.6]. This proves the claim.

For (X, f) € M/A let Bo(X, f) = Be(Lat, Far, Ru(X, f)). Let X, denote
the constant simplicial object on X. The simplicial map € of (4.7) defines a
map ||e|| inducing £x

ll=]l

[ M. |4 1 Bo(X, £l [ Xella
SMl l‘l _ lfx
M Q(B°(X7 f)) = X

By (5.3), |l¢|| is an R-equivalence. Since ||[Ma|l4 — [|[Be(X, f)|le is an R-
cofibration, it is a strong cofibration in A. But (A, scof 4,eqy) is a proper
cofibration category. Since &y and £x are equivalences, so is ¢ and hence

R(Ex). O

Thin realizations: In some examples the thin realization has considerable
advantages over the fat realization.

5.5 Proposition: Suppose that the assumptions (5.3) hold for the thin re-
alization and that B.(X, f) is R-proper, i.e. sB,(X,f) — B,(X,f) is an
R-cofibration. Then
M — |Ba(X, )la - |Xufa= X
is a factorization of f : M — X into an R-cofibration and an R-equivalence.
Proof: The assumptions (5.3) imply that |¢| is an R-equivalence. The map
M — [Bo(X, f)IY{) = MU LR(X)

is an R-cofibration, since LR(X) is R-cofibrant. Hence the result follows
from
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5.6 Lemma: If X, is an R-proper simplicial object in A, then
|X.|(”‘1) N |X.|(”)
is an R-cofibration.

Proof: Since

(sXn @ V1)) Usx,eovin (Xn @ 0V [n]) I X, ® V[n]

| |

|X.|(n—1) |X.|(n)

is a pushout, it suffices to show that j is an R-cofibration. This follows from

5.7 Lemma: If f : X — Y is an R-cofibration in A and 7 : K — L is a
strong cofibration in V), then

Ji(X®@L)Uxgr (YRK)—=Y®L
is an R-cofibration.

Proof Let p: E — B be a trivial R-fibration. We have to show that j has
the LLP for p. Passing to adjoints this is equivalent to showing that

' EY - BY xgx EX

is a trivial R-fibration. Since R preserves limits and cotensors we have to
show that ‘ )
(Rp)’ : (RE)" — (RB)" X (rp)x (RE)"

is a trivial fibration in B. But this holds by [10, (2.9),(3.6)]. O

6 The dual case

Again we assume (4.1). We want to lift the fibration structure in A to a
fibration structure in B.

6.1 Definition: A morphism f: X — Y is B is called an
(1) L-cofibration, if L(f) € cof 4

(2) L-equivalence, if L(f) € eqy

14



(3) L-fibration, if it has the RLP for all trivial L-cofibrations

(4) trivial L-(co)fibration, if it is an L-equivalence and an L-(co)fibration.

The results of Sections 4 and 5 dualize verbatim. For the factorization axiom
we consider a morphism f: X — B in B as an object in the category B/B,
the category B over B. The forgetful functor

Lg:B/B—B— A
has a right adjoint
Rs:A— B/B, A~ R(A)x B.
We obtain a cosimplicial resolution of (X, f) € B/B
c:X* — B*(Rp,Lgo Ry, Lp(X, f)).
The assumptions dual to (4.8) are

6.2 Assumptions: Let S°(B/B) denote the category of cosimplicial ob-
jects in B/B. For each B € B we assume that there is a corealization functor

€:8“B/B)— B/B, X°®w 0“(X")
satisfying
(1) if each X™ is L-fibrant, so is p®(X*),
(2) the cosimplicial map ¢ induces an L-equivalence
x (X, f) = 0o°(B*(Rp,Lp o Rp, Lp(X, f)))

6.3 Proposition: If (6.2) and assumption (4.1) hold, then (B, Leq, Lfib) is
a fibration category such that all objects are cofibrant.

Let X* be a cosimplicial object in B. We define the thin corealization | X*|*
and its fat version || X*||° to be the end of

X*xver

t
A % AOp B « VOp cotensor B

respectively its restriction to Znj x Inj°P.



6.4 Corealization axioms:

(1) V:A — V is a proper cosimplicial object in V

(2) L preserves fat corealizations up to homotopy

(3) || — || maps the cosimplicial homotopy Lge to an equivalence
(4) if X* is the constant cosimplicial object on X € B, then the map

n: X = [ X°],
induced by the maps V[n] — %, is a homotopy equivalence.
6.5 Proposition: The corealization axioms imply (6.2).
Finally, a word about the dual of (5.5).
6.6 Definition: Let X* be a cosimplicial object in B. The n-th matching

object of X* is
s X" = hm‘gurun]* X*

X* is called coproper if the canonical map X" — sX" is a fibration for all n.

6.7 Proposition: Suppose the assumptions (6.4) hold for the thin coreal-
ization and that B*(Rp, Lo Lp(X, f)) is L-coproper. Then

X Y \B*(Rp, L o Ry, Ls(X, f)| — B

is a factorization of f : X — B into an L-equivalence followed by an L-
fibration. O
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EXAMPLES

7 Topologically enriched categories

Realization functors: Let V and V : A — V be one of the examples (2.4
(1), (2), (3)). It is well-known that V is a proper cosimplicial object.

Let A be a V-complete and -cocomplete, tensored and cotensored category,
and let X, be a simplicial object in A. Then
||Xo||.A = X. ®In] V= X. N A ®In] \Y

It 1s well-known that A ®1,; V is a proper cosimplicial object and that the
evaluation

is dimensionswise a homotopy equivalence. So we deduce from (5.2).

7.1 Proposition: If X, is a proper simplicial object in A, then the natural
map || Xe||4 — |Xe|a is an equivalence. O

If X, is the constant simplicial object on X € A, then |X,|4 = X. Hence
(1) and (4) of the Realization axioms hold for the fat as well as the thin
realization. We will now show that Axiom (3) holds for both realizations.
The following result is an immediate consequence of [10, Prop. 3.4] and
the fact that (A, cofa, eqa) is a proper cofibration category with all objects
fibrant and cofibrant.

7.2 Lemma: Let f, : X, — Y, be a simplicial map of simplicial objects such
that each f, : X,, — Y, is a homotopy equivalence. Then:

(1) |I£all = | Xell.4 = [|Ya]l.4 is a homotopy equivalence,

(2) if X, and Y, are proper, then |f.| : |Xo|4 — |Ye|4 is a homotopy
equivalence. O

7.3 Lemma: Let X, be a simplicial object in A and K, a simplicial object
in V. Then X, ® K, is a bisimplicial object in A. Let d(X, ® K,) denote its
diagonal simplicial object. Then

(1) there is a natural isomorphism

|d(Xo & IX’.)|A = |X0|A & |I(0|V
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(2) there is a sequence of natural homotopy equivalences:

[d(Xe @ Ko)lla >~ [[Xe]la @ [[Kelly

Proof: [d(X,® K,)la = d(X.®K,)@aV
= (Xe® K,) @axa (AXxA@AV) (a)
>~ (Xo® K.) @axa (VX V) (b)
> (X.®a V)@ (Ke®@a V) (¢)

In (a) we consider the sets A([n],[m]) as discrete topological spaces (if V
is a based we have to take A([n],[m])+ replace the product by the smash
product). In (b) we use that

(AXA)@AV’EVXV

as bicosimplicial spaces. Part (¢) is straight forward.

Let 7Xe = Xo ®a B(A, A, A) where we have the twosided topological bar-
construction on the right. Then 7X, is a proper simplicial object and there
is a natural homotopy equivalence

X, = X,

in the weak sense, i.e. each morphism 7X,, — X, is a homotopy equivalence.

d(7Xe ® 7K,) is proper. Using (1) and (7.2) we obtain

Jd(Xe ® Ku)lla <= ld(rX. @ TE) |4 —2> |d(r X © 7KL

lg

[Xella @ [ Kolly ==l Xe[la @ [I7 Kolly == |7Xo]a @ [T Koy
O

7.4 Corollary: If f,.g, : Xo — Y, are simplicially homotopic, then || f||.4
and ||ge||.4 respectively |fo|.4 and |ge|.4 are homotopic in A.

Proof: Consider A(—,[1]) (respectively A(—,[1])+ is the based cases) as
simplicial object in V. Then a simplicial homotopy i1s a simplicial map

Xe ® A(=,[1]) = Ys. Now apply (7.3). O
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7.5 Diagrams in Top: Let A and B be topologically enriched small cat-
egories and F : A — B a continuous functor. Let Top# denote the category
of A-diagrams, i.e. of continuous functors X : A — Top. It is Top-complete
and -cocomplete, tensored and cotensored in the obvious way. The forgetful
functor R : Top® — Top has a continuous left adjoint

L:Top?* — Top®, X +— BasX
and a continuous right adjoint
Q : Top* — Top®, X — Homu(B, X).

Hence R preserves limits and colimits, in particular fat and thin realizations,
and (Top®, Req, Rcof) is a proper cofibration category.

Of special interest is the case R : obA — A, which leads to the usual ho-
motopy theory of diagrams. The R-equivalences are those maps of diagrams
f:X =Y, for which f(A): X(A) — Y(A) is a homotopy equivalence for
each A € obA. If we specialize even further by taking A to be a category
with one object % and A(*, *) to be a topological group G, we deal with the
homotopy theory of G-spaces.

We have similar results for Top., H7Top, and HTop..
7.6 Topological operads: An operad as defined in [2] (there called a cat-

egory of operators in standard form) is a topologically enriched permutative

category (A, @,0) with 0bA =N, and m & n = m + n, such that

1T A(r, 1) x oo X A(rn, 1) X5, x0x8,, X8m — A(m,n)

ri+..+rp=m

(fla"'afn;a) L (f16969fn)00

is a homeomorphisms. Let Op denote the category of operads. Op is Top-
enriched, and it is well-known that it satisfies the Assumptions 3.1.

Operads encode algebraic structures on topological spaces. If A is an op-
erad, an A-algebra is a continuous strictly permutative functor (A, &,0) —

(Top, X, *).

The category Coll, of based collections has N-graded spaces (X,;n € N) as
objects, where X, is a right 3,-space and X is based. Morphisms are graded
equivariant maps f = (f,,), such that f; is based.

Coll, is Top-enriched in the obvious way, tensored and cotensored, where
(Xn) @ K =(Y,) with Y, = X,, x K forn # 1 and Y7 = X; A K. The
forgetful functor

R:0p—Coll,, A— (A(n,1);n €N)
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has a continuous left adjoint, constructed in [3, Chap.III]. Since the thin real-
ization of simplicial spaces preserves products, R preserves thin realizations
by the argument of [8, 4.4]. To be able to apply (5.5) we have to ensure, that
B.(A, f) is R-proper for each map of operads f: M — A. This is the case,
provided our operads are well-pointed, i.e. the inclusion {id;} C A(1,1) is a
closed cofibration.

Let Op, C Op be the full subcategory of well-pointed operads. Then
(Opw, Req, Reof) is a cofibration category. This result can be used to study
homotopy invariance of algebraic structures on spaces. In [13] it is applied
to construct universal E-operads.

7.7 A-algebras: Let A be a well-pointed topological operad and let Top#
denote the category of A-algebras in Top. The forgetful functor

R: Top* — Top, X +— X(1)

has a continuous left adjoint

L:Top — Top?, YV — H.A(n, 1) xy, Y7

n=0

As in (7.6), R preserves thin realizations. Since A is well-pointed B,(X, f)
is R-proper for each A-algebra X. Hence ('TopA, Req, Rcof) is a cofibration
category.

If we consider A-algebras in Top., base point relations enter the definition
of L. We obtain the analogous result for well-pointed algebras.

7.8 Spectra: Let f: A — B be a map of ring spectra in the sense of [4],
i.e. of monoids in the symmetric monoidal category of S-module spectra,
where § is the sphere spectrum. Let 4 Mod denote the category of A-module
spectra. It is Top,-enriched, Top.-complete and -cocomplete, tensored and
cotensored. For details see [8] or [4].

The forgetful functor
R: BMOd — AMOd

has a left Top.-adjoint
L:sMod — gMod, X +—— BNy X

and a right Top,-adjoint X +— F4(B, X), the function spectrum. Since BA 4-
preserves colimits, || Xe|| ,mod s @ B-module, if X, is a simplicial B-module.
By the argument of [8, 4.4], the functor R preserves fat realizations. The
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same applies to the thin realization. Hence (g Mod, Req, Rcof) is a proper
cofibration category. We will use this structure to study the topological
Hochschild homology of spectra.

8 Chain complex-enriched categories

Let R be a commutative ring and Cplxp the category of unbounded chain
complexes of R-modules. Let V : A — Cplzr map [n] to the normalized
chain complex associated with the simplicial R-module R[A(—, [n])].

The considerations of Section 7 concerning realization functors translate to
chain complexes in the known standard fashion. This is different for the
examples (7.6) and (7.7). In both cases the left adjoint is not additive and
hence not a Cplzg-enriched functor. So the only example we want to discuss
is a change of rings functor. Let F': R — S be a ring homomorphisms. The
forgetful functor

F*:Cplrs — Cplxp

has a left adjoint
F, :Cplxr — Cplxs

namely scalar extension. They form a Cplzg-adjoint pair. As in Example 7.8,
F* preserves thin and fat realizations. Hence (Cplzg, F*eq, F*cof) is a co-
fibration category. It is proper, because F* has a right adjoint Hompg(S, —).
This example links our approach to classical relative homological algebra.

8.1 Proposition: A chain map p : X — Y in Cplrs is an F*-fibration iff
each p, : X,, = Y, has an R-linear section.

Proof: By definition, p is an F*-fibration iff it is a fibration in Cplzg. Let
I denote the 1-simplex in Cplzp, ie. [y = R® R, I = R, I, = 0 otherwise
and

d: I, — Iy, r+—(r,—r)

For A € Cplzr we have A ®@ V[1] = A®pr I, and p is a fibration iff the

commutative square

f
A - X
| o
20 - P
A@RI/ ! Y
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admits a diagonal filler h. Here 1y is induced by the map R — I, r —
(0, —r). Passing to adjoints, we have to find a filler for

Homp(A, X)

R

{ o7 l
20 // Px
I

-

= 7 Homp(A,Y)

Given f, the chain map maps § correspond bijectively to the maps

g, : R — (Hompg(A,Y)); = [[ Homp(An, Yat1)

nezZ

The same holds for h. Hence h always exists iff

(pi)1 - HHomR(An,Xn+1) — H Homp(An, Yit1)

n€Z nezZ

is surjective for any A. This is equivalent to the existence of sections of
Pn: X, — Y, as R-modules. O

8.2 Definition: A map p: X — Y of S-modules is called R-split surjective
if it admits an R-linear section. An S-module A is called R-split projective,
if for any R-split surjective map p: X — Y and any S-linear mapg: A —» Y
there is an S-linear lift f: A — X of g.

8.3 Proposition: If A € Cplrs is F*-cofibrant, then each A, is R-split
projective. As a partial converse, any bounded below complex of R-split
projective S-modules is F*-cofibrant.

Proof: We follow in part the argument of [5, (2.3.6)]. Let p: X — Y be an
R-split surjection of S-modules. Let D" X denote the contractible complex
with X in dimensions n and n — 1 and 0 otherwise. By (8.1), D"p is a

trivial F*-fibration. An S-linear map ¢g : A,_1 — Y defines a chain map
g:A— DY,

0 0 d
P god
X—Y~—A4,
id id d
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Since A is F™* cofibrant, this chain map lifts to a chain map f: A — D" X.
Hence A,,_; is R-split projective.

Conversely, suppose we are given a bounded below chain complex A of R-
split projective S-modules and a chain map p : X — Y of S-complexes,
which is a trivial fibration as map of R-complexes. Then the kernel K of p
is an S-complex which is contractible as R-complex. Suppose we are given
g: A — Y, weconstruct alift f : A — X of g inductively. Since A is bounded
below, we have no trouble to start the induction, and we suppose that we
already have fi for k& < n such that py o fr = g and dfy, = fr_1d. Since
pn 1s R-split surjective, there is a map uw : A, — X,, such that p, o u = g,.
For F = du — f,_1d : A, — X,,_1 we have p,_1 o F = do F = 0, so that
F is in fact a map F : A, — Z(K,_1) into the cycles of K,_;. Since K is
contractible as R-complex, the boundary map d : K, — Z(K,—1) is R-split
surjective. Hence there is an S-linear map G : A,, — K, such that doG = F.
Now take f, =u — G. 0

9 (at-enriched categories

Let V be the category Cat of small categories and V : A — Cat the funcor of
Example 2.4.6. Then V is proper, and two categories are homotopy equiv-
alent if they are equivalent in the category theoretical sense. This type of
homotopy equivalence is central in the study of structured categories.

Consider the sets A([k],[m]) as discrete categories. Then
A(—,[m]): AP — Cat
is a simplicial object in Cat, and we have

9.1 Lemma:

(AXA)@AV’%VXV
as bicosimplicial categories.
The proof is simple, because dV[n] = V[n| for n > 2. The lemma implies
that the thin realization preserves products (compare the proof of (7.3)).

Now the results of Section 7 translate to this case. In particular, Examples
7.6 and 7.7 carry over to Cat-operads and their algebras.
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