SK;-LIKE FUNCTORS FOR DIVISION ALGEBRAS

R. HAZRAT

ABSTRACT. We investigate the group valued functor G(D) = D* /F* D’ where D is a
division algebra with center F' and D’ the commutator subgroup of D*. We show that
G has the most important functorial properties of the reduced Whitehead group SKj.
We then establish a fundemental connection between this group, its residue version
and relative value group when D is a Henselian division algebra. The structure of
G(D) turns out to carry significant information about the arithmetic of D. Along
these lines, we employ G(D) to compute the group SKi(D). As an application,
we obtain theorems of reduced K-theory which require heavy machinery, as simple
examples of our method.

AMS Classification 16K20(19B28).

1. INTRODUCTION

Let D be a division algebra with center F'. The non-triviality of the impor-
tant group SK1(D) is shown by V. P. Platonov who developed a so-called Reduced
K-Theory to compute SK;(D) for certain division algebras. The group SK;(D)
enjoys some interesting properties which distinguish it from the K-Theory functor
K1(D). An interesting characteristic of the group SK;(D) is its behavior under
extension of the ground field. Namely for any field extension L/F one has a ho-
momorphism SK; (D) — SK1(D ®p L). On the other hand SK; enjoys a transfer
map, that is, if L/F is a finite extension, then there exist a norm homomorphism
SK1(D®p L) — SK1(D). Since SK1(M,(L)) = 1, one can then deduce that SK;
is a torsion abelian group of bounded exponent i(D) and if the degree [L : F] is
relatively prime to index of D, then SK;(D) — SK;(D ®p L). Moreover the pri-
mary decomposition of a division algebra induces a corresponding decomposition
of SK;1(D). Furthermore in the case of a valued division algebra SK; is stable,
namely SK;(D) = SK;(D), where D is unramified division algebra. (See [12] for
the complete list of the properties of SK; and [3] for the proofs).

In this note we investigate the group G(D) = D*/F*D’ where D is a division
algebra with center F' and D’ the commutator subgroup of D*. We shall show that
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G enjoys most important functorial properties of the reduced Whitehead group
SK;. We show that the functor G may grow “pathologically” for an algebraic
extension of the ground field whose degree is prime to the index of D. It is then
shown that this functor satisfies a decomposition property analogous to one for
SK1(D). To be more precise, we will show the following properties:

i. For any field extension L/F one has a homomorphism G(D) — G(D ®p L).

ii. If L/ F is a finite extension, then there exist a transfer homomorphism G(D® g
L) — G(D). (Proposition 2.3)

iii. G(D) is a torsion group of bounded exponent i(D) (Corollary 2.4, Lemma
2.9)

iv. If [L : F] is relatively prime to (D), then G(D) — G(D ®@p L). (Corollary
2.5).

v. If D = Dy @r Dy @F --- @ Dk and the i(D;) are relatively prime, then
G(D) ~ [ G(D;). (Theorem 2.8)

vi. If D is unramfied tame Henselian division algebra, then G(D) ~ G(D).
(Theorem 3.2 1)

It turns out that there is a close connection between the group structure of
G(D) and algebraic structure of D. For example in section 3, after establishing a
fundemental connection between G(D), its residue version and relative value group
when D admits a Henselian valuation, we show that if D is a totally ramified division
algebra, then there is a one to one correspondence between the isomorphism classes
of F-subalgebras of D and the subgroups of G(D).

We then use G(D) to compute SK1(D) for certain division algebras. We show
that if G(D) canonically coincides with the relative value group, then there is an
explicit formula for the group SK;(D) (Theorem 3.8). It turns out that some
theorems and examples of reduced K-theory which require heavy machinery can
all be viewed as simple examples of our case (Example 3.10, 3.11 and 3.13). Section
4 is devoted to the unitary version of the group G(D).

We fix some notation. Let D be a division algebra over its center I with index
i(D) =n. Then Nrdp/p : D* — I is the reduced norm function and SK,(D) =
DM /D’ is the reduced Whitehead group where D) is the kernel of Nrdp/p-
Put SH°(D) for the cokernel of Nrdp/p. we take p,(F) for the group of n — th
roots of unity in £, and Z(D') for the center of the group D’. Observe that
pn(F) = F* N D and Z(D') = F* N D'. If G is a group, denote by G™ the
subgroup of G generated by the n —th powers of elements of G. Let exp(G) stands
for the exponent of the group G. If H and K are subgroups of (G, denote by
[H, K] the subgroup of G generated by mixed-commutators [h,k] = hkh=1k™!,
where h € H and k € K. For convenience we denote [D*, D*] by D’. Denote by
det : GL,(D)/SL, (D) — D*/D’ the Dieudonne determinant, where GL,, (D) is
the general linear group and SL, (D) is its commutator subgroup (See [3]).
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2. Functor G(D) = D*/F*D’

Let C be the category of all central simple algebras and G : C — Ab be a
covariant functor from C to the category of abelian groups such that for any central
simple algebra A with center F'; G(A) = A*/F*A’.

It is easy to observe that the functor G has the following properties:

D1. There is a collection of homomorphisms d,, : G(M, (D)) — G(D) for
each division algebra D and each positive integer n such that for each z € G(D),
dpin(z) = 2™ where i, : G(D) — G(M,(D)) is the homomorphism induced by
the natural embedding D — M,,(D) and d,, induced by Dieudonne determinant
13, §20].

D2. For any field F', G(F') is trivial.

D3. If z € Ker(G(M,(D)) n, G(D)), where D is a division algebra and n € N,
then ™ = 1.

On the other hand there have been other groups associated with a division ring
D which have been used to study the arithmetic and algebraic structure of D. For
example the square class group D*/ D*? in [10] in connection with Witt ring of a
division algebra or the group D*/Nrd(D*)D’ in [1]. The following examples show
that some important groups already associated to D share the three conditions
above.

Example 2.1. Let A € C with center F', then it is easy to observe that functors
B(A) = (A*)2/(F*)2A’, and &(A) = A*/F* Al where A, = {z € A*|2" € A’} and
r € N also satisfy the properties D1,D2 and D3 above.

Example 2.2. Let A € C be a central simple algebra finite over its center. The
following commutative diagram with exact rows shows that SK;(D) = DM /D’
and SH°(D) = F*/Nrdp,p(D*) satisfy the three conditions above,

N?”dD/F

| —— SK.\(D) K.(D) s SHY(D) ——>1
l | -

| > SKy(My (D)) —= Ky(M,, (D)) 224 s SHO(M, (D)) — 1
l detl 1 l

| SKy(D) —— Ky (D) 225 p SHY(D) — 1

where 1, (x) = 2™ for any x € F* and D is a division algebra with center F. Note
that in order to consider SK; and SH? as functors, we should limit the objects of
our category (See §22, §23 in [3]).
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In the same way, it can be seen that &(A) = A*/Nrd,/p(A*)A" and &(A) =
A*JF* AN ~ Nrd(A*)/F*P94 also satisfy D1,D2 and D3.

For the rest of this section we restrict our attention to the functor G(A) =
A*/F*A’, although the results we get can be formulated and proved mutatis mu-
tandis for all the functors above.

Our primary aim in this section is to show that the functor GG shares almost all
important functorial properties of SK;. Clearly the natural embedding of D in
D ®p L where L is a finite field extension of F', induces a group homomorphism 7 :
G(D) — G(D®pL). The following proposition provides us with a homomorphism
in the opposite direction.

Proposition 2.3. (Transfer map) Let D be a division ring with center F' and
L be a finite extension of F' such that [L : F| = m. Then there is a homomorphism

P :G(D ®p L) — G(D) such that PZ = n,,, where n,,(z) = ™.

Proof. Consider the regular representation L —— M,,(F) and the corresponding
sequence when we tensor over F' with D:

D— D®r L Dar My, (F) — M, (D)

(2.1) a—a®lr—a®1l+—al,

1@l — 1@ u(l) — ().

Thanks to the Dieudonne determinant, there is a homomorphism K;(D ®p L) —
K1(D) which maps the center of D @ L into the center of D. Therefore G(D @
L) — G(D). Again the sequence (2.1) shows that PZ(z) =z™. O

Note that in the above proposition D could be an infinite dimensional division
algebra. If D is finite dimension over its center F', then it turns out that G(D) is
a torsion group.

Corollary 2.4. Let D be a division algebra of index n. Then G(D) is a torsion
group of bounded exponent n? = [D : Z(D)].

Proof. Thanks to Proposition 2.3, for any finite field extension L of F' = Z (D), we

have the sequence of homomorphisms G(D) e (D®p L) .G (D), such that
PI(zx) = x™, where z € &(D) and [L : F'| = m. Now let L be a maximal subfield

of D. Since L is a splitting field for D, we get the sequence of homomorphisms

G(D) % G(M,(L)) -2 G(D). From D2 and D3 it follows that G(M, (L)) is

a torsion group of bounded exponent n. Now the fact that for any x € G(D),
PI(z) = 2", shows that G(D) is a torsion group of bounded exponent n? = [D :
Z(D)]. O
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It is now immediate that if A is a central simple algebra, then G(A) is also
torsion. Later in this section we show that the bound can be reduced to n, the
index of D.

The following corollary shows that the analogous result for the behavior of SK;
under extension of the ground field holds for G too. Namely, we show that G(D)
embeds in G(D ®p L) when the index of D and [L : F] are relatively prime.

Corollary 2.5. Let D be a division ring over its center F' and L/F be a finite
field extension such that [L : F] is relatively prime to the index of D. Then the

canonical homomorphism G(D) =, G(D ®F L) is injective.

Proof. Let i(D) = n and [L : F| = m. Suppose Z(z) = 1 for some z € G(D).
By Proposition 2.3, PZ(z) = ™ = 1. But G(D) is torsion of bounded exponent

n2. Hence 2" = 1. Since m and n are relatively prime, x = 1 and the proof is

complete. [

In the next section we compute the functor G for certain division algebras. But
before we continue with the functorial properties of G, let us consider the case
when the group G(D) is trivial. Besides D1, D2 and D3, the functor G enjoys an
additional property, namely there is a natural transformation 7 : K1 — G such
that,

(1) For any object Ain C, 74 : K1(A) — G(A) is an epimorphism.

(2) For any division algebra D and any positive integer n, the following diagram
commutes,

K1(My(D)) —— G(My(D))

e Ja

Ki(D) — T~ G(D).

Note that the functors of Example 2.1, or &(D) = NrdD/F(D*)/F*i(D) and
B(A) = A*/Nrd p(A*) A’ satisfy the above property as well.

The following is almost the only known example where G(D) (and above func-
tors) is trivial.

Corollary 2.6. Let D be a division algebra of quaternions over a real-closed field.
Then G(D) = 1.

Proof. For any finite field extension L of F' = Z(D), the following diagram is
commutative,
Ki(D®p L) —2—> K (D)

G(D®p L) —2—~ G(D).
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Now since D is algebraically closed (See [9], Section 16), thanks to Proposition 2.3
and above diagram, G(D®F L) 7, G(D) is an epimorphism. Replace L by F, the
algebraic closure of F'. Because F is a splitting field for D, G(D®@pF) = G(My(F)).
We show that G(Mz(F)) is a trivial group and hence the corollary follows. Since
7 : K1 — G is a natural epimorphism, there is a composite homomorphism

b Ky (F) =F =5 Ky (My(F)) 5 G(Ma(F)).
Take z € G(M(F)). Since F is algebraically closed, there exist y € K1(F) = F "
such that (y?) = z. But G(My(F)) is a torsion group of bounded exponent 2,
hence z = 1. This shows that G(Mxy(F)) is trivial and the proof is complete. [

Back to the functorial properties of GG, the next step is to replace the field L in
Proposition 2.3 by a division ring. The following proposition shows that the same
result holds here too.

Proposition 2.7. Let A and B be division algebras with center F' such that [B : I
is finite. Then there is a homomorphism P : G(A ®r B) — G(A) such that
P1 =nB:F)-

Proof. Let [B : F| = m. We have the following sequence of F-algebra homomor-
phisms,

A—>A®FB—>A®FB®FBOp—>A®FMm(F)—>Mm(A).

This implies the group homomorphism P : G(A ®@r B) — G(M,,(A)) 4, G(A).
The rest of the proof follows from D1. [

Note that in the above proposition A could be of infinite dimension over its center
F. A same statement as Corollary 2.5 could be obtained here too. In particular if
(i(A),i(B)) = 1 then G(A) embeds in G(A @ B) and similarly for B. Employing
torsion theory of groups and sequences which appeared in the above propositions,
we can write the primary decomposition for G(D). The proof follows more or less
the same pattern as for SK1(D).

Theorem 2.8. Let A and B be division algebras with center F' such that
(i(A),i(B)) = 1. Then G(A®r B) = G(A) x G(B).

Proof. By Corollary 2.4, G(A®F B) is a torsion group of bounded exponent m?n?
where m = i(A) and n = i(B). Therefore G(A ®@r B) ~ G x H, where exp(G)|m?
and exp(H)|n?. By Proposition 2.7, we have the sequence:

(2.2) G(A) % GAer B) % G(A® Bo B®) % G(4)

such that ¢ = n,2. Hence G(A) = n,21,2(G(A)) = 1,2000(G(A)) C 0uvn,2(G X
H) = 6¢¥(G) € G(A). This shows that 6v|g : G — G(A) is surjective. Next
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we show that 01|g is injective. Cousidering the regular representation B°? —
M,,2(F). As Proposition 2.3, we have the following sequence

G(Aor B) % G(A® Bo B?) 5 G(A® B Myu(F) > G(Aer B)

such that 8¢’y = n,2. Now if 1 # w € G, then 0'Y'¢)(w) = n,2(w) = w #£ 1.
Therefore 1|g is injective. Rewrite the sequence (2.2) as follows:

G(A®r B) % G(A® B® B) % G(M,2(4)) -% G(A).

Suppose x € G such that 6y (z) = 1. The above sequence and D3 shows that

w(m)nz = 1. Since 9|g is injective, " = 1. On the other hand because exp(G)|m?
then 2™ = 1. Since m and n are relatively prime, x = 1. This shows that 0 is an
isomorphism and so G(A) ~ G. In the similar way it can be shown that G(B) ~ H.
Therefore the proof is complete. [

Let A = M,,(D) be a central simple algebra. From Corollary 2.4 and D3 it is
immediate that G(A) is a torsion group of bounded exponent m[D : Z(D)]. The
following lemma, which is interesting in its own right, will be used to reduce the
bound of the group G(D). Also we will use the the lemma in Section 3 for normal
subgroups of D* which arise from a valuation on D.

Lemma 2.9. [5] Let D be a division algebra over its center F' with index n. Let
N be a normal subgroup of D*. Then N™ C Z(N)[D*, N].

If in the above lemma we take N = D*, then for any = € D*, 2™ € F*D’. This
in effect shows that G(D) = D*/F*D’ is a torsion group of bounded exponent n.

In the next section we will show yet another SKj-like property for the group
G(D). Namely G(D) satisfy the following stability, G(D) ~ G(D((x))) where
D((z)) is the division ring of formal Laurent series (Corollary 3.7). We close this
section by the following theorem, which shows that the group G(D) = D*/F*D’
does not always follow the same pattern as the reduced Whitehead group SK; (D).
Namely G(D) is not “homotopy invariant”.

Theorem 2.10. (J. -P. Tignol) Let D be a division algebra over its center F'
with index n. Then the following sequence where @ runs over the irreducible monic
polynomials of Fx] and ny, is the index of D ®@p F[x]|/¢, is split exact.

1 — G(D) — G(D(x)) — P n/fpz 1

Proof. By Proposition 7 in [10], the sequence

l1-— Ky(D) — Ki(D(x)) — @ng@/nZ —1
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which is obtained from the localization exact sequence of algebraic K-theory is split
exact. Now since the group G(D) is the cokernel of the natural map K;(F) —
K1(D), applying the snake lemma to the commutative diagram,

1 —— K (F) —— K (F(2)) @D, Z 1

L |

1 — K{(D) — K{(D(z)) — @, np/nZ —1

the result follows. [

3. ON THE GROUP G(D) OVER HENSELIAN DIVISION ALGEBRAS

In this section we assume that D is a finite dimensional division algebra over a
Henselian field /' = Z (D). Recall that a valuation v on [ is called Henselian if
and only if v has a unique extension to each field algebraic over F'. Therefore v has
a unique extension denoted also by v to D (see [8] and [17]). Denote by Vp, Vg
the valuation rings, Mp, My their maximal ideals, and D, F the residue division
algebra and the residue field of D and F respectively. We let I'p,I'r denote the
value groups of v on D and F respectively and Up,Ur for the groups of units of
Vb, Vi respectively. Furthermore, we assume that D is a tame division algebra, i.e.,
Z(D) is separable over ' and CharF does not divide i(D). The quotient group
I'p/T'p is called the relative value group of the valuation. In this setting it turns
out that D is defectless, namely we have [D : F|[['p : 'r] = [D : F]. D is said
to be unramified over F if [I'p : U'r] = 1. At the other extreme D is said to be
totally ramified if [D : F] = [['p : Tp|. D is called semiramified if D is a field and
[D:F]=[p:Tr]=i(D). Since the valuation is Henselian, Hensel’s lemma can
be used to obtain a relation between the reduced norm of D and that of its residue
algebra, i.e.

(3.1) Nrdp(a) = N5, mNrdg@™ ™™,
where a € Up and m = i(D) and m’ = [Z(D) : F| (see [4]).

For a recent account of the theory of Henselian valued division algebras see [8].
We start with the following theorem which describes a fundemental connection
between the group G(D) and its residue version.

Theorem 3.1. Let D be a tame division algebra over a Henselian field F' = Z(D)
with index n. Let L/F be a subfield of D. Then the following sequence is exact.

(3.2) 1— D /L'D — D*/L*D' — I'p/T;, — 1.



SK;-LIKE FUNCTORS FOR DIVISION ALGEBRAS 9

Proof. Consider the normal subgroup 1 + Mp of D*. Thanks to Lemma 2.9, we
have

(3.3) (1+Mp)" C((1+ Mp)nF*)[D*, 1+ Mp].

We will show that (1 + Mp) = (1 + Mp)™. Let a € 1 + Mp. Consider the field
F(a) and a € 1 + Mp(,). Since F' is a Henselian field, so is F'(a). The polynomial

f(xz) = 2™ — a has 1 as a simple root modulo Mp(,). because CharF(a) does not
divide n. Applying Hensel’s lemma to the polynomial f(z) = 2™ — a, we obtain an
element b € 14 Mp(q) such that b" = a. This shows that a € (1 + Mp)". Thus
1+ Mp is n-divisible, namely, (1 + Mp) = (1 4+ Mp)™. Hence from (3.3) it follows
that 1 + Mp C (1 4+ Mp)D’. Now consider the reduction map Up — D". We
have the following sequence:

nat.

D" = Up/l+Mp "5 Up/(14+ Mp)D' ™5 Up /(1 + M)D' ™%
2 U JULD" =5 L*Up /LD

Therefore ¢ : D' /(L")D’ — L*Up/L*D’ is an isomorphism. Considering the fact
that D*/L*Up ~ T'p /T, the theorem follows. [J

Now we are ready to compute G(D) for some certain cases. The statements i.
and 7. of the following theorem first appeared in [7] using results from reduced
K-theory.

Theorem 3.2. Let D be a Henselian division algebra tame over its center F' with
index n. Then

i. If D is unramified over F' then G(D) ~ G(D).

ii. If D is totally ramified over F' then G(D) =Tp/T'F.

iii. If D is semiramified and D is cyclic over F' then the following sequence where
Ng /F is the norm function, is exact.

1 — N5 D) /F" — G(D) — I'p/Tr — 1.
Proof. i. Writing (3.2) for L = F', we have:
1—D/FD — GD) —I'p/Tp — 1.
Now if (D, v) is unramified, namely [I'p : I'r] = 1, then D /F'D’ ~ D*/F*D'. On
the other hand Z(D) = F and D* = F*Up. Therefore, for a,b € D*, the element

¢ = aba='b~! may be written in the form ¢ = afa~'37!, where o and 3 € Up.
This shows D’ = D', so G(D) ~ G(D).
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i. If D is totally ramified over F' then D = F. Writing (3.2) for L = F, since
the group D' /F D is trivial G(D) ='p/Tp.

i. Let D be semiramified and D be cyclic over F. Consider the norm func-
tion N 7 : D" — F'. Moreover for any € Up, from (3.1) it follows that,
Nrdp,r(xz) = Ng (7). This shows that D' C KerNg 5. But if © € KerNp &
then by Hilbert theorem 90, there exists @ such that z = EU(G)_I, where o is
the generator of Gal(ﬁ_/?)_. It is well known that the fundemental homomor-
phism D* — Gal(Z(D)/F) is surjective. Therefore 0 : D — D is of the
form o(@) = cac™!, for some ¢ € D*. This shows that * € D’. Therefore

KerNpm = D’. Now it is easy to see that D /F D’ ~ NB/F(E*)/F . So
thanks to (3.2), 1 — Nﬁ/f(ﬁ*)/F*n — G(D) — I'p/Tr — lisexact. O

Remark 3.3. If D is a cyclic field extension of F, a similar proof as iii. above shows
that KerNg+ C D'. In particular it follows that Nﬁ/f(ﬁ*)/F*f — D JF'D,

where [D : F| = f, is always surjective. Therefore if N5 /F(E*) /F*f = 1 then

G(D) =Tp/T'r. This will be used in Example 3.10.

Example 3.4. Let C be the field of complex numbers. Let 1 # o € Gal(C/R)
where R is real numbers. Then by Hilbert construction (See [3], §1), D = C((x,0))
is a division ring with center F' = R((z?)). We show that G(D) = Zy. D has a
natural valuation such that I'p /Ty = Z/27Z = Zy. Clearly D = C and F = R.
Since Ng/r(C) = R? by Theorem 3.2 iii., G(D) = T'p/T'p = Zs.

Example 3.5. Let ¢ > 3 be a prime number. Take a prime number p # g such
that (p — 1,¢q) = 1. Consider the cyclic extension F,q/F, where F, and Fp. are
fields with p and p? elements respectively. Let o be a generator of the cyclic
group Gal(F,q/F,). By Hilbert construction D = Fpq((x,0)) is a division algebra
with center ' = Z(D) = F,((2?)) and i(D) = ord(c) = ¢q. D has a natural
valuation which is tame and Henselian. It is easy to see that with this valuation D
is semiramified, D = F,q« and F = F,. Since Ny /F is surjective, by Theorem 3.2
iii, it follows that G(D) = Z,.

There have been significant results on the structure of the relative value group in
the case of a totally ramified algebra. Using Theorem 3.2 we can write interesting
statements relating the group structure of G(D) to the algebraic structure of D.
Recall that the group G(D) is torsion of bounded exponent n.

Theorem 3.6. Let D be a valued division algebra tame and totally ramified over
a Henselian field F' = Z(D) of index n. Then,

1. There is a one to one correspondence between the isomorphism classes of F'-
subalgebras of D and the subgroups of G(D).
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ii. exp(G(D)) divides the exponent of D, i.e., the order of [D] in Br(F'), the
Brauer group of F'.
iti. D is a cyclic division algebra if and only if exp(G(D)) = n.

Proof. The theorem follows by comparing Theorem 3.2 ., with the results on the
relative value group in the case of a totally ramified valuation (See for example

7). O

Corollary 3.7. Let D be a finite dimensional division algebra over its center F'.

If CharF ti(D) then G(D) = G(D((x))). O
Now we are in a position to use the group G(D) to compute SK;(D). The

following theorem enables us to compute SK; (D) when, roughly speaking, G(D)
is trivial. Note that we do not use any results from reduced K-theory.

Theorem 3.8. Let D be a tame division algebra over a Henselian field F' = Z(D)
of index n.

i. D" JF D’ =1 then SK(D) = p,(F)/Z(D’).
ii. If D is a cyclic division algebra with a maximal cyclic extension L/F such
that D" /L"D’ = 1 then SKy(D) = 1.

Proof. i. As the proof of Theorem 3.1 shows, we have a natural isomorphism,
¢ :D J(F)YD — Up/UpD'.

Now if D"/F D’ = 1 then Up = UpD'. But D C Up. This shows that D) =
wn(EF)D'. Using the fact that u,(F)N D" = Z(D'’) the theorem follows.

1. The same proof as 7. shows that if D /f*ﬁ = 1then Up = U, D’. Therefore
DW CULD. Letz € DY, Thenz = Id wherel € Landd € D’. So Nrdp/p(x) =
Np,p(l) = 1. Hilbert theorem 90 for the cyclic extension L/F guarantee that

I = ac(a)”", where o is a generator of Gal(L/F). Now the Skolem-Noether theorem
implies that o(a) = cac™! where ¢ € D*. Therefore | = aca™'c™!. This shows that
pW=p. 0O

Remark 3.9. Note that if D is tame and Henselian over its center F' with index
n, using the Hensel’s lemma, it is easy to see that j,(F) — u,(F),a — @ is an
isomorphism Also using the formula (3.1), it is not difficult to show that Z(D’) ~
Z(D’) ~ D'NF. Therefore in the above theorem the formula for the group SK;(D)

can be written as SK1(D) = u,,(F)/(D'NF).

Part i. of the above theorem shows that if D is totally ramified, then SK; (D) =
pn(F)/Z(D’). This and the above remark shows that Tignol’s formula for SK; (D)
is a special case of Theorem 3.8 (See [10]).

We deduce both theorems of Lipnitskii [11] which are obtained by using heavy
machinery of reduced K- theory, as natural examples of the above theorem.
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Example 3.10. For any division algebra D with center F = R((z1,- -+ , x,,)) where
R is the real numbers, SK;(D) is trivial.

Proof. From number theory, it is well known that [D : F] = 2° where s < m. Since
the complete field F' = R((zy,--- ,z,,)) has a natural valuation, then D admits a
valuation which is obviously tame. It is clear that F' = R. Because the only division
algebras over real numbers are either the quaternion Hg or the field C of complex
numbers, therefore D = Hg or D = C. Now Corollary 2.6 and Remark 3.3 show that
in either case D /F D’ = 1. Now by Theorem 3.8, SK;(D) ~ icpy(F)/Z(D'").
But clearly ju;(py(F) = {1, —1}. Now from the Remarks 3.9 and 3.3, it follows that
—1 € D’. Thus SK;(D) = 1.

Example 3.11. For any division algebra with center F' = C((x1,- -+ ,x,,)) where
C' is an algebraically closed field, SK1(D) is cyclic.

Example 3.12. Hilbert classical construction of division algebras. Let L be a field
and o € Aut(L) such that o(c) = n. Let F' = Fiz(o) be the fixed field of o. Hence
Gal(L/F) is a cyclic group with the generator o. Let D = L((z,0)) be the division
ring of formal Laurent series. It follows that Z(D) = F'((z™)) and i(D) = n. D has
a natural valuation, and it is easy to see that with this valuation D is semiramified
and L((z™)) is a maximal subfield of D. Now by Theorem 3.8 ii., SK1(D) is trivial.

Example 3.13. From Theorem 3.8 4., it is immediate that reduced Whitehead
group of a division algebra over a local field is trivial.

Because most of the interesting valued division algebras arise from the iterated
formal power series fields, we may consider r-iterated Henselian division algebras.
Following Platonov in [15], we define inductively an r-iterated Henselian field F' if
its residue field F' is an (r — 1)-iterated Henselian field.! Let (D;,v;),0 <i <7 —1
be an r iterated Henselian division algebra (D; = D;;1). Let ®; : Up, , — D;
be the i-th natural reduction map. Then ®;(®;_1(--- (P1(a))---)) is called an -
iterated reduction, if it is defined. Denote the r iterated Henselian division algebra
by D, (D = Dy, Z(D) = F = Fy). We also need the following notations in order to
state the following lemma. By [Up|; and [Ur|; we denote the set of all elements of
D and F respectively, such that i iterated reduction is defined. Also by [1 + Mp];
and [1 + MFp];, we denote the subsets of [Up]; and [Ur|; such that the ¢ iterated
reduction equals one. Clearly [1 + Mp]; =1+ Mp. we can write the main lemma
of [6] in this setting.

Lemma 3.14. Let D be an i iterated tame division algebra of finite dimension
over a Henselian field F = Z(D) with index n.

ISee Ershov’s comment in [3] on iterated valued field. Among other things, considering iterated
valued field, enables us to have more insight in each step of reduction.
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i. For each a € [1 + Mp]; there is b € [1 + Mp]; such that ab € D’.
. 14+ Mpl; G [1+ Mp|;D'.

Proof. i. Let a € [1+ Mp);. Then a is contained in a maximal subfield of D, say L.
Therefore a € [1+ Mg];. By lemma 3 of [15], we have Ny p([1+ Mg];) = [1+ MFp];.
So Nrdp,p(a) = Np/p(a) € [1 + Mp;. Let t = Nrdp/p(a). Using an inductive
argument for Hensel’s lemma, we will show that there exists ¢ € [14+ Mp|; such that
c" =1t Let s€ 1+ Mp =[1+ Mp];. Applying Hensel’s lemma for f(z) = z" — s
gives ¢ € 1 + Mp such that ¢ = s. Now it is not hard to see that ®1([1 + MF];) =
[1+ Mzli—1. Therefore 14 Mp];/[1+ Mp]1 ~ [1+ Mz];—1. Now by induction, we
conclude that [1+MFp]; is n-divisible. Therefore exist ¢ € [1+MFp]|; such that ¢ = ¢.
Now Nrdp/p(a) = ¢". So Nrdp/p(ac™t) = 1. Hence ac™! € DY N[l + Mpl;.
Applying Platonov’s generalized congruence theorem (cf. [15] and [4]) , we obtain
ac! € D'. Take b= c~! and the proof is complete.

1. Applying the first part of the lemma for ¢ = 1, in each step of reduction we
have, 1 + Mp, C (1 + Mxg,)D;" where K; = Z(D;). First we show that in each
step of reduction, D;’ ¢ 1+ Mp,. Consider the groups A = D;*/1 + Mp, and
P(D;) = (1+ Mg,)D;'/(1 4+ Mp,). One can easily observe that P(D;) = A’ and
as Theorem 2.11 of [2] shows, the center of A is K;*(1+ Mp,)/(1 + Mp,). We
claim that A is not an abelian group, for otherwise Up, = Uk, (1 + Mp,) which
implies that D; is totally ramified. Thus D; = p.(K;), where e = exp(I'p, /I'k;,),
(cf. the proof of Theorem 3.1 of [17]) which leads us to a contradiction. Therefore
D; is not in 1+ Mp, and A is not abelian. But ® (1 + Mp,) = [1 + Mpliy1. If
D' C [+ Mpisy then ®(D') C ®([1 + Mpliy1) = 1 + Mp,. But D;/ € ®(D’) so
D;’ C 1+ Mp, a contradiction. [J

Remark 3.15. In the proof of i. above, we could use Lemma 2.9 and avoid the
Platonov congruence theorem.

Theorem 3.16. Let D be an r iterated tame division algebra over a Henselian
field F' of index n. If there is an 0 < ¢ < r — 1 such that D,/F;D’; = 1 then
SK1(D) ~ pn(F)/Z(D)).

Proof. For any 0 < k <r — 1, consider the k + 1 — th reduction map

i) Hpoo Py ——
[Uplesr TTEE™ D"

Thanks to Lemma 3.14 i., we have:

nat.

Dy 5 Uplir1/[1+ Mplis1 ™ [Uplpr1/[1+ Melisa D' ™S [Upliga/ [Urli s D'

Therefore,
Dy /Fy D}, — [Upli+1/[Urlr+1D’.
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Hence if there is a ¢ such that D, /Fg D', =1 then [Urles1 D" = [Uples1- By
lemma 1 in [15] DM C [Uplsy1 so DUV = p,, (F)D'. Using the fact that u, (F) N
D' = Z(D’) the theorem follows. [

Considering the fact that each Henselian division algebra is a 1-iterated division
algebra, we recover Theorem 3.8 from the above theorem.

4. ON THE UNITARY SETTING

In this section we introduce the unitary version of the group G(D) and obtain
similar results in the unitary setting. Let D be a division ring with an involution
T over its center F' with index n. Let S;(D) = {a € D|a™ = a} be the subspace of
symmetric elements and X (D) the subgroup of D* generated by nonzero symmetric
elements. Here we concentrate on involutions of the first kind, i.e. X (D)NF™* = F*.

Definition 4.1. Let D be a division ring with an involution 7. Then the group
KU (D) = D*/¥,.(D)D’ is called unitary Whitehead group and the GU(D) =
Y. (D)D'/F*D’ the unitary version of G(D).

We will prove that there is a stability theorem for GU(D) similar to one in

Corollary 3.7. The first part of the following theorem was first proved by Platonov
and Yanchevskii [16].

Theorem 4.2. Let D be a finite dimensional tame and unramified division a]@bra
with an involution of the first kind over a Henselian field Z(D)=F. Then KU;(D) =
KU,(D) and GU(D) = GU(D) .

Proof. Consider the following sequence:

D" — Up/1+ Mp — F*Up/F*(1+ Mp) — D*/S,.(D)D'.

Because the valuation is unramified, we have ¥=(D) = ,(D)NUp (See [16]),
and D' = D’ (See Theorem 3.2 i.). Therefore we have the following isomorphism:
D" /v=(D)D' = D*/Sr(D)D.

For the second part, consider the following commutative diagram with exact
rows:

1 — GU(D) G(D) KU, (D) —=1
1 ——= GU(D) G(D) KUy (D) —1.

The two of the vertical arrows are isomorphisms, thanks to the first part of this
theorem and Theorem 3.2 i.. Therefore the third one is also an isomorphism which
completes the proof. [J
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If D has an involution of the first kind, then D((z)) enjoys a natural involution

which is induced by the one from D. Therefore if CharF { i(D) then thanks to
the above theorem, we have GU (D) = GU(D((x))) which is a stability theorem for
GU(D).
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