ON THE NOTION OF DERIVED TAMENESS

CHRISTOF GEISS AND HENNING KRAUSE

ABSTRACT. The notion of tameness for the derived category of a finite dimensional al-
gebra is introduced and standard properties are established. This is based on classical
tameness definitions of Drozd and Crawley-Boevey for the category of finite dimen-
sional representations.

INTRODUCTION

Let A be a finite dimensional algebra over an algebraically closed field. Drozd’s
definition of tame type for the category mod A of finite dimensional A-modules is the
base of his celebrated Tame and Wild Theorem [6]. It states that A is either tame, so
that for all n € N the indecomposable A-modules of dimension n can be parametrized
using only one continuous parameter, or A is wild, and it has families of indecomposable
A-modules depending on arbitrarily many continuous parameters.

Let D?(mod A) denote the derived category of bounded complexes of finite dimensional
A-modules. The main aim of this paper is to establish standard properties of two natural
definitions for the notion of derived tameness. The first definition (see Definition 1.1) is
the analogue of Drozd’s tameness definition. Roughly speaking, we say that A is derived
tame if for each vector n = (n;);ez of natural numbers the indecomposable objects in
DP(mod A) of cohomology dimension n can be parametrized using only one continuous
parameter.

The second definition (see Definition 1.3) involves generic complexes and is the ana-
logue of Crawley-Boevey’s definition of generic tameness [4]. Here we use the bounded
derived category D’(Mod A) of all A-modules. We say that A is generically derived tame
if for each vector n = (n;);cz of natural numbers there are only finitely many isomor-
phism classes of generic complexes in D’(Mod A) which have cohomology endolength n.

Both definitions are motivated by recent work of Vossieck [23] who classified the alge-
bras having a discrete derived category, and by work of de la Pena [19] who introduced
the notion of derived tameness via the repetitive algebra.

Our first result shows that an equivalence D?(mod A) — D’(modT) of triangulated
categories preserves derived tameness.

Theorem A. Let A and I’ be finite dimensional algebras over an algebraically closed
field and suppose that A and I" are derived equivalent.

(1) A is derived tame if and only if T is derived tame.
(2) A is generically derived tame if and only if T is generically derived tame.

It is beyond the scope of this paper to prove a derived Tame and Wild Theorem.
However, we are able to show that an algebra is not derived tame if there are families
of indecomposable complexes depending on at least two continuous parameters, see

Theorem 5.2 for a precise statement.
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If A is of finite global dimension, then D’(mod A) is equivalent as triangulated category

to the stable module category modA of the repetitive algebra A by Happel’s theorem
[10]. It is therefore important to have the following result.

Theorem B. Let A be a finite dimensional algebra over an algebraically closed field and
suppose that A has finite global dimension. Then the following are equivalent:

(1) A is derived tame;
(2) A is generically derived tame;

(3) A is tame.

The hypothesis of finite global dimension is not needed to prove (1) and (2) if (3) holds.
It is remarkable, that for the discrete case also (1) implies (3) without the hypothesis of
finite global dimension, but this is based on a complete classification of the algebras of
that type [23].

For an algebra of infinite global dimension, not much seems to be known about the
derived category. For instance, we have no example showing that the assumption on
the global dimension is needed for the other implications in the preceding theorem.
However, we feel that in any case the definition of the derived representation type
should be formulated in terms of the derived category.

Let us mention some examples of derived tame algebras. The first theorem implies
that a piecewise hereditary algebra [11] is derived tame if and only if the Euler-form is
non-negative. Both theorems together imply that algebras, which are derived equivalent
to skewed-gentle algebras [9], are derived tame. This class of algebras is still not well
explored, but it contains all tree-algebras which have non-negative Euler-form and are
not piecewise hereditary, see [1] and [8].

We give now a brief outline of the contents of this paper. Section 1 — 2 contain
definitions and background material. In Section 3 we collect various estimates for (co-
homology) endolength and dimension of complexes and modules. Note that [23] has
similar estimates for dimensions. However, our endolength versions require different
proofs. In Section 4 we study the behavior of families of complexes under (standard)
derived equivalences and Happel’s functor. It is shown that these functors preserve fam-
ilies provided one restricts a given family to some appropriate open subset. Moreover,
a new description of the image of Happel’s functor is given. In Section 5 we discuss
the analogue of Drozd’s tameness definition via bimodule complexes, and Section 6 — 7
are devoted to the analogue of Crawley-Boevey’s tameness definition via generic com-
plexes. In the final Section 8 we discuss domestic type and polynomial growth which are
refinements of derived tame representation type. Note that the essential work is done
Section 3 4, whereas the remaining Section 5 8 are of more formal nature.

Acknowledgements. We should like to thank L. Hille and D. Vossieck for many helpful
comments on a previous version of this paper.

1. DERIVED TAMENESS

Notation. Let k be a field and let A be a locally bounded k-category (see [3]). We are
interested in the study of modules over finite dimensional k-algebras and observe that
this is the same as the study of A-modules where A is finite. A A-module is a k-linear
functor A°® — Mod k into the category of k-vector spaces. We denote by Mod A the
category of all A-modules and mod A denotes the full subcategory of finitely presented
A-modules. For every object i € A, we denote by P; = Homa(—,7) the corresponding
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indecomposable projective A-module, and S; denotes the unique simple A-module with
Hom(PF;, S;) # 0. By abuse of notation, we sometimes write A for [[,c, . Given a
A-module X, we denote by

dim X = (dimy, X (i))sen

its dimension and
endol X = (lengthgy,q(x) X ())iea

is called the endolength of X. Here, lengthyp M denotes the composition length of an
R-module M. The A-module X is endofinite if each entry of the vector endol X is finite.

The derived category of bounded complexes of arbitrary A-modules is denoted by
Db(Mod A) and D°(mod A) denotes the bounded derived category of finitely presented A-
modules. We identify the homotopy category K?(proj A) of finitely generated projective
A-modules with the full subcategory of perfect complexes. Recall that a complex is
perfect if it is isomorphic to a bounded complex of finitely generated projective A-
modules.

A derived category is a triangulated category in the sense of Verdier [22]. We denote
for a triangulated category 7 by 3 the translation functor 7 — 7 and the distinguished
triangles in 7 are sequences of the form

X—Y —7—3YX.

We shall often identify a A-module with the corresponding complex concentrated in
degree 0. For instance, we have for all i € A and n € Z the isomorphism

H"(X)(:) 2 Hom(P;, X" X).

We write N = {0,1,2,...} for the set of natural numbers and define for every set I
the set of vectors

N = {n = (n;)ier | ns € N and n; = 0 for almost all i}.

For example, dim X € N®) for every finitely presented A-module X.

Tameness. Our first definition of derived tameness is the analogue of Drozd’s tameness
definition [6]. We use the cohomology dimension of a complex X € D’(mod A) which is
by definition the vector

h-dim X = (dim H'(X))cz.

Definition 1.1. A locally bounded k-category A is called derived tame if for every
vector n there exist a localization R = k[t]; with respect to some f € k[t] and a finite
number of bounded complexes of R-A bimodules C1, ... , Cy, such that each CY is finitely
generated free over R and (up to isomorphism) all but finitely many indecomposable
objects of cohomology dimension n in D?(mod A) are of the form S ®p C; for some
i=1,...,n and some simple R-module S.

Generic tameness. Our second definition of derived tameness is the analogue of
Crawley-Boevey’s definition of generic tameness [4]. This definition involves generic
complexes; they also arise in work of Lenzing on tubular algebras [18].

Definition 1.2. A complex X in D?(Mod A) is called endofinite if the A-module H(X)
is endofinite for all ¢ € Z. An endofinite complex X is called generic if X is indecom-
posable and not isomorphic to a bounded complex of finitely presented A-modules.
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The cohomology endolength of a complex X is by definition the vector
h-endol X = (endol H'(X))cz.

Note that cohomology endolength and cohomology dimension of X coincide provided
that X is an indecomposable complex of finite dimensional modules and the ground field
k is algebraically closed.

Definition 1.3. A locally bounded k-category A is called generically derived tame if

for every vector n there are only finitely many isomorphism classes of generic objects X
in D’(Mod A) such that h-endol X = n.

Remark 1.4. The preceding Definition 1.3 could be formulated for any noetherian alge-
bra, to include, for example, the polynomial ring k[t]. In fact, all basic properties of this
concept (see Section 6) remain true for noetherian algebras.

Remark 1.5. Recall that A has a discrete derived category if for every vector n there
are (up to isomorphism) only finitely many indecomposable objects of cohomology di-
mension n in D’(mod A). It can be derived from Vossieck’s work [23] that D’(mod A)
is discrete if and only if there is no generic complex in D?(Mod A)

2. THE REPETITIVE CATEGORY

The repetitive category. Let A be a locally bounded category. The repetitive category
Aof Ais a locally bounded category which is defined as follows. The objects of A are
the pairs (¢,n) with ¢ € A and n € Z. The space of maps (i,n) — (j,m) is Homy (4, j)
if n = m, and Homy(Homy (4, 1), k) if m = n — 1; it is zero otherwise. The composition
in A is induced by that in A. We view every A-module X as a family X = (X,,)nez of
A-modules where X, (i) = X (i,n). In particular,

dim X = (dim X,,),cz and endol X = (endol X,,),cz

are families of vectors in N, Note that A is selfinjective. Therefore projective and
injective A-modules coincide.

The stable category. The stable module category of A modulo projectives is denoted
by MK. It coincides with the stable category modulo injectives Mod A since A is
selfinjective. Every A-module X has a maximal injective submodule X™ which exists
by Zorn’s lemma since direct limits of injective modules are injective. We define X4 =
X/X™ and call X reduced if X = X™. Note that two A-modules X and Y are
isomorphic as objects in M_odK if and only if X and Y™ are isomorphic in Mod A.
We define
r-dim X = dim X™! and r-endol X = endol X™,

Given ¢ € Z, we denote for every A-module X by Q'X the i-th syzygy. The assign-
ment X — °X induces an equivalence €)’: Mod A — ModA Note that ModA is a
triangulated category; see [13] for details. The functor Q7! serves as translation functor
so that the distinguished triangles in MK are of the form

X—Y—7—Q'X
Next we formulate some estimates for the syzygies in Mod A. We denote for a A-module
X by pd X its projective dimension and by id X its injective dimension.
Lemma 2.1. Let X = (X;);ecz € Mod A and X; =0 fori<randi> s.
(1) (2X); =0 fori<r andi>s+ 1.
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(2) (Q71X); =0 fori<r—1 andi> s.

(3) pd X, = n implies ("1 X), = 0.
(4) id X, = n implies (Q~ "t X), = 0.

Proof. The assertions follow easily from the construction of the syzygies Q'X. O

Happel’s functor. We fix a finite locally bounded k-category A. Consider the Happel
functor

F: D"(Mod A) — Mod A

which restricts to a functor

DP(mod A) — mod A.
It is defined in [10] (see also [13]) and we list the essential properties of this functor:
F is fully faithful, exact, and sends a complex X concentrated in degree zero to the

A-module Y which is concentrated in degree zero with Yy = X°. Moreover, if the global
dimension of A is finite, F' induces an equivalence between D’(Mod A) and the full

subcategory Mod A of modules X = (Xi)iez in Mod A such that X; = 0 for almost all

i. In particular, F' induces an equivalence D?(mod A) — mod A

3. ESTIMATES

In this section we shall produce various estimates for (cohomology) dimension and
endolength of modules and complexes. Throughout this section we fix two finite locally
bounded k-categories A and I'. Given a family n = (n;);ez of vectors n; € N®) with
n; = 0 for almost all 7, we define

n| = max{|i| | n; #0} and |n|| = max{) _(n;); | i € Z}.
JEA
Devissage. Let 7 be any triangulated category and fix an object T in 7. We define
inductively
(T)o ={X € T | X is a direct factor of X*T for some i € Z}
and X € 7 belongs to ('), for n > 0 if X is a direct factor of Y for some distinguished
triangle Y/ — Y — Y"” — XY’ with Y, Y” € (T"),—1. Note that (") = ,;>((T)n is the
smallest thick subcategory of 7 containing 7' Bl
Given an object X in (T'), one defines the distance of X from T as follows:
d(X,T) =min{n e N| X € (T),}.
By induction on d(X, T, one defines the width w(X,T') of X with respect to T" as follows.
Ifd(X,T) =0, let
w(X,T) = min{n € N| X is a direct factor of £¥"T" or ¥ "T'}.
Otherwise, let w(X,T) be the smallest n € N such that X is a direct factor of Y for
some distinguished triangle Y/ — Y — Y” — XY’ with d(Y',T),d(Y",T) < d(X,T)
and w(Y',T),w(Y"”,T) < n. Finally, we define for two objects X,Y in 7

[X, Y] = lengthg,qy) Hom(X, V).
Lemma 3.1. Let S € (T) and X € T.

(1) X, X] =0 for |i| > n implies [%1S, X] = 0 for |i| > n+w(S,T).
(2) [5, X] < 2957 max{[ST, X] | ] < w(8,T)).
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Proof. Every distinguished triangle A - B — C' — XA in 7 induces an exact sequence
Hom(XA, X) — Hom(C, X) — Hom(B, X) — Hom(A, X)

of End(X)-modules. The assertions are immediate consequences of this basic fact and

the definitions. O

Derived equivalence. We show that a derived equivalence controls cohomology en-
dolength and dimension.

Lemma 3.2. Let G: D*(ModT) — D’(Mod A) be an equivalence of triangulated cate-
gories. Then there exists a constant g € N and a function v: N — N such that for all
X € D*(Mod )

| h-endol G(X)| < y(|h-endol X|) and | h-endolG(X)| < ¢g| h-endol X]|.
Proof. Let X € D’(ModT) and h-endol X = n. We shall produce an estimate for
h-endolY where Y = G(X). We put T'= G(I') and observe that
[ETT.Y] = [E7T, X] = Y [£7'F;. X] < |n]
jer

for each i. Applying Lemma 3.1, we get [Y A, Y] = 0 for |i| > |n| +w(A,T) and

> ETFL Y] =[BT Y] < 274D

JEA
for all i € Z. Defining g = 24T and y(n) = n + w(A, T), the assertion follows. O
Happel’s functor. Consider the Happel functor F': D*(Mod A) — Mod A. We wish

to compare the endolength of a complex X with the endolength of the module F(X).
This requires a series of lemmas. We start with a simple observation.

Lemma 3.3. Let X be a module without any non-zero injective submodule, and let S

be a simple module. Then Hom(S, X) = Hom(S, X), and therefore

lengthy,q(x) Hom(S, X) = lengthg g ) Hom(S, X).
Proof. Any non-zero map S — X which factors through some injective module, also
factors through the injective envelope E(S) of S, and induces therefore a monomorphism

E(S) — X. This is impossible by our assumption on X. Thus Hom(S, X) = Hom(S, X).
]

Lemma 3.4. Let X € D*(Mod A) with HY(X) = 0 for |i| > n. Then F(X); = 0 for
li| >2(n+1).

Proof. Let X € D*(Mod A) and HY(X) = 0 for |i| > n. The complex ¥"*1X is iso-
morphic to a complex Y with Y? = 0 for i < —2(n + 1) and i > 0. The construction
of F' implies F(Y); = 0 for i < —2(n 4+ 1) and ¢ > 0 (cf. IL.4 in [10]). We have
F(X) =2 Q" F(Y), and therefore F'(X); = 0 for |i| > 2(n + 1) by Lemma 2.1. O

Lemma 3.5. Suppose that A has global dimension d. Let X € Db(Mod A) with F(X); =
0 for |i| > n. Then H'(X) =0 for |i| > (n+ 1)(d +1).

Proof. Let X € D*(Mod A). Then
H'(X) = Hom(A, X' X) = Hom(A, Q 'F(X)).

If F(X); = 0 for [i| > n, then (@ 'F (X))o = 0 for |i| > (n+1)(d + 1) by Lemma 2.1.
Thus H'(X) =0 for [i| > (n+1)(d+ 1). O
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Let us recall that for every A-module X = (Xn)nez the endolength endol X =
(endol X,,),cz is a family of vectors in NV,

Lemma 3.6. There erists a function a: N — N such that for all X € D’(Mod A)
r-endol F(X)| < a(ln]) and | r-endol F(X)]| < a(Jn))|n]
where n = h-endol X.
Proof. Let X € D’(Mod A) and h-endol X = n. We define
Ap={(i,j) EAXZ||j| <2(n+1)} CA

where n = |n|. It follows from Lemma 3.4 that F/(X); = 0 for [j| > 2(n +1). Therefore
[Si, F(X)] = 0 for every i € A\A,,. Applying Lemma 3.1, we get [S;, F(X)] < 245i:8)||n|
for all i € A since

(XA, F(X)] = [27A, X] < |n]|
for all j € Z. Now let ¢; be the maximal Jordan-Ho6lder multiplicity of the simple \S; in
some indecomposable projective A-module. Using Lemma 3.3, we get for all j € A that

Py, F(X)™] Z ;240558 | .
i€An
The estimate follows if we take
a(n) = max{2(n + 1), [A] D 275Ny
1€AR
where |A| denotes the number of objects of A. O

Lemma 3.7. Suppose that A has finite global dimension. Then there exists a function

B: N — N such that for all X € D’(Mod A)
|h-endol X| < B(jm|) and | h-endol X|| < S(|m])|m]|
where m = r-endol F(X).

Proof. Let X € D°(Mod A) and h-endol X = n. We put Y = F(X)™ and endolY =
m. Thus

for all i € A. Now define
Am ={G.5) € AXZ||jl <m} CA

where m = |m| and denote by E the injective envelope of Hief\m Si. We have E; =0

for almost all 4, say for |i] > r. It follows that Y; = 0 for |i| > r since Y is a submodule
of a product of copies of E. Therefore H"(X) = 0 for |i| > (r+1)(d+ 1) by Lemma 3.5,
where d denotes the global dimension of A. We get for each ¢ € Z

> (), = [£7AX] = [STA F(X)] = [£7A,Y]
JEA
and have therefore

Y i) <D (ST YT <Y en(STA) |ml|

JeA heA helA
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where ¢, (X 7A) denotes the Jordan-Hélder multiplicity of the simple Sj, in ¥ 7¢A. Defin-
ing
B(m) = max{(r +1)(d +1), Y en(EA) | |i] < (r+1)(d+ 1)},
hel
the assertion follows. O

Remark 3.8. Lemma 3.2, 3.6, and 3.7 have analogues where endolength is replaced by
dimension; the proofs are identical. Note that [23] has similar estimates for dimensions.
However, the proofs given here are different from those in [23] because we need to cover
the endolength as well.

4. TRANSPORT OF FAMILIES

In this section we discuss the transport of families which arise in the definition of
derived tameness. There are two types of functors which we need to study: derived
equivalences and Happel’s functor. The main results in this section are Propositions 4.8
and 4.9. It is shown that these functors preserve families provided one restricts a given
family to some appropriate open subset.

Conventions. Let A be a finite locally bounded k-category over some algebraically
closed field k. We write ® for ®;. We denote by R always a finitely generated commu-
tative k-algebra which is a domain, and K = K(R) denotes the quotient field of R. In
the sequel we will consider R-A-bimodules, which we always assume finitely generated
and free as R-modules. Thus we view every R-A-bimodule as a contravariant functor
from A into the category of finitely generated free R-modules. Given an R-A-bimodule
M and h € R, we write M), for the localized Rj-A-bimodule R, ®r M. The same
notation applies to complexes of bimodules. For a R-A-bimodule M we always assume
M(z) = 0 for all but finitely many = € A.

If M is a finite dimensional K ® A-module, then there exists h € R and an Rj-A-sub-
bimodule M of M, such that K ® Ry, M = M. We call such a sub-bimodule an R),-lattice
of M. A similar result holds for a bounded complex of finite dimensional K ® A-modules
X, i.e. for some h € R we will find an Rp-lattice X with K ®R,, X = X. Sometimes
we need to localize in several steps and obtain, for example, (Rp),. In order to avoid
clumsy notion we suppress the g and suppose rather that h was chosen adequately.

We usually identify Spec(R)(k), the k-rational points of Spec(R), with the isoclasses
of simple R-modules, since we are working over an algebraically closed field.

We have for each dimension vector d € N the affine variety mod%(k) of A-module
structures of dimension d, since Aisa locally bounded category. On mod$ acts naturally
(by conjugation) the algebraic group Gla(k) := [[ .3 Glae)(k), i.e. the Gla(k)-orbits
correspond to the isoclasses of A-modules of dimension d. If z € mod% we denote by

M,, the corresponding A-module with dim M, = d. See [2] for a systematic discussion
of that concept.

Lemma 4.1. Let M be an R-A-bimodule.
(1) If N is an R-A-bimodule, and ¢: K @ g M — K Q@p N is a morphism of K ® A-
modules, then there exists h € R such that ¢ induces a morphism ¢: My — Ny,
and ranky (S ®g, ¢) = rankg (p) for all simple Ry-modules S.
(2) If K@r M = K ® N for some N € modA, then for some h € R we have
S ®g, My, = N for all simple Rp-modules S. In particular, if K ®@g M is an
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injective (resp. projective) K ® A-module, then S ®g, My, is a projective (resp.
injective) A-module for all simple Rp-modules S.

(3) Let X be a bounded complex of K @ A-modules and Y be a bounded complex of
R-A-bimodules. If m: X — K QrY s a quasi-isomorphism, then there exists
h € R and an Ry-lattice X of X such that w induces a morphism 7: X - Y
and S ®pg, T is a quasi-isomorphism of complexes of A-modules for all simple

Ry, -modules S.

Proof. (1) follows basically from the fact that the function on Spec(Ry)(k) defined by
[S] — ranky (S ®pg, @) is lower semicontinuous. (2) follows from (1). For (3), note first
that we can find for some h € R an Rj,-lattice X of X, such that 7 induces a morphism
7: X — Y. Now, the functions S + dimy, H(C(S ®g, 7)) (where C is the mapping
cone) are upper semicontinuous functions on Spec(Ry)(k), thus we may assume after
some further localization that they are constant. ]

We have the following immediate consequence.

Corollary 4.2. If M is an R-A-bimodule and S' a simple R-module, then there exists
h € R with S; # 0, and a Rh—?\—bimodule N such that S ®g, N = Q(S ®g, M) in
mod A for all simple Ry-modules S. Moreover K ®p, N = Q(K ®r M) in mod K®A.
A similar results holds for Q1.

Proof. From [10, 11.4.1] we find a projective-injective A-module P, together with a mor-

phism of R-A-bimodules p: R® P — M, such that S ®p p is surjective for all simple
R-modules S. Choosing an appropriate basis, we find h € R and a Rp-lattice N of

Ker(K ®p p) with the required properties. O
Truncation. We consider the left truncation P>/ of a complex P:
pi if i > j
(P2) = ¢ PIi/(Imd} ") ifi=j
0 else

with the obvious restriction of the differentials. We have a natural map of complexes
'y]?: P — P27 which is a quasi-isomorphism if H/(P) =0 fori <j. If m: P — Y isa
morphism of complexes with Y = 0 for i < I, we get for each m < [ a factorization

_ ,/TZm

>
™ O’Y_mv

where 72 : P2Z™ — Y2™ =Y is a quasi-isomorphism if 7 is a quasi-isomorphism.

Lemma 4.3. Let X be a bounded complex of R-A-bimodules with X* = 0 fori < 1. Then
there exists for each m <1 an element h € R and a morphism of bounded complezes of
Ry, -A-bimodules p=™: Q — X, such that

e S®pg, Q' is a projective A-module for all i >m and Q' =0 for i < m, and

® S ®R, p s a quasi-isomorphism
for all simple Ry-modules S.

Proof. Consider a quasi-isomorphism
m: P—K®rX

of complexes of K ® A-modules with P a right bounded complex of projective modules.
As above we obtain for m < [ a quasi-isomorphism

aome PP L K@ X.
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By Lemma 4.1 (3), we find h € R and a morphism of complexes of Rj,-A-bimodules
P~ Q — X,

such that K ®g, p=m = 2™ and S ® Ry, p=™ is a quasi-isomorphism for each simple
Rp-module S. In particular K ®p, Q@ = P=™. We conclude from Lemma 4.1 (2) that
@ has the desired properties. O

Reduced modules. We study upper-semicontinuity properties of r-dim for K—modules,
and see that on an appropriate open subset we can replace a family of A-modules by a
reduced family of modules.

Lemma 4.4. Let M be a R—K—bz’module, then the following holds:

(1) Suppose that S'@r M has a projective-injective direct summand P for some simple

R-module S’. Then there exists for some h € R with S; #0 a Ry,-A-bimodule L
such that

S®Rthg(S®RhL)@P

for all simple Ry,-modules S.
(2) The function

r: Spec(R)(k) — N [S]— r-dim(S @5 M)
18 componentwise upper-semicontinuous.

Proof. We need only to show (1), since this implies clearly (2). Since P is projective,
we have a vector-bundle 7: E — Spec(R) with 7 *([R/m]) = Homj (P, (R/m) ®p M)
for all maximal R-ideals m. By our hypothesis we find i € 7—1([S’]) which is a (split)
monomorphism. Since being injective is an “open property”, and 7 is an open map,
we find, after replacing possibly Spec(R) by an open affine neighbourhood Spec(Ry,)
of [S'], a section o of m with ¢([S]) a monomorphism for all simple Rj-modules S. In
other words, we have a morphism of Rh—K—bimoduleS s: Rp,® P — L', with the property
that S ®pg, s is a monomorphism for all simple Rj-modules S. Since P is injective,
we may assume L' = L & R;, ® P, using that K ®p s: K @ P — K Qpg, L’ splits as a
K® K—morphism. U

Corollary 4.5. Let M be a R-A-bimodule S, and n € Z, then the following holds:
(1) There exists h € R and a Eh—x—bimodule N, such that
o S®pg, N is a reduced A-modules for all simple Rp-module S.
o S®pg, N =Q"(S®g, My) for all simple Ry,-modules S.
(2) The map Spec(R)(k) — N®) which sends [S] to r-dim(Q"(S ®p, M)) is compo-
nentwise upper-semicontinuous. Similarly, for d € N@),
mod%(k) —N® |z r-dim(Q"M,)

18 an upper-semicontinuous function.

Proof. We find by Corollary 4.2 some h € R and a Rh—K—bimodule N with S ®g, N =
0"(S ®p, Mp) in mod A for all simple Rg,-modules S.

If T®g, N is not reduced for some simple Rj,-module T" we find after some localization
by Lemma 4.4 (1) an equivalent family of smaller Rj-rank. This process must stop by
reasons of dimension, showing (1).
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In order to show (2), we use again Corollary 4.2. For any chosen simple R-module
S" we may assume S; # 0. Thus, Lemma 4.4 (2) shows, that r-dim Q"(— ®g, M) =
r-dim(—®p, N) is upper-semicontinuous on an open neighbourhood of [S’] € Spec R(k).
This shows the first statement of (2). The second follows from that, by working through
the irreducible components of mod%. O

Remark. In the preceding proof of (1) we are tempted to split off directly the injective
summands of K ® zp M. However, this might not be sufficient. For instance, K ® p M
indecomposable does not imply that S ® zp M is indecomposable for a simple R-module
S, since K is not necessarily algebraically closed; see for example [7].

The image of the Happel functor. Denote by F the Happel functor D(mod A) —
mod A. We say that M € mod A belongs to the image of F' and write M € Im(F) if for
some X € DP(mod A) we have M = F(X) in mod A.

Lemma 4.6. Let M € modA. Then M € Im(F) if and only if there exists m € N with
(r-dim Q™M) _; = 0 = (r-dim Q=" M); for all i > 0.

Proof. We denote by ¥ the usual shift in D’(mod A). Let first X € D’(mod A) with
X% =0 for |[i| > m. Then (r-dim F(¥™X))_; = 0 = (r-dim F(3~™X)); for i > 0 by
the basic properties of the Happel functor. But F'(X™X) = Q™™ F(X) and F(X7"X) =
Q™F(X) in mod A.

For the other direction let M € modA and suppose there exists m € N with
(r-dimQ™M)_; = 0 = (r-dimQ™™M); for all ¢ > 0. Let N = Q™M and assume
that N is reduced. Thus N; = 0 for i < 0 and (r-dimQ "N); = 0 for i > 0 where
n = 2m. Clearly, it is sufficient to prove N € Im(F’), and we do this by induction on n.
The case n = 0 is clear. For n > 0 we find in mod Aa distinguished triangle

N/ N N _ N// _ Qle/
with (N); = 0 for ¢ < 0 and (N”); = 0 for ¢ > 0, coming from the corresponding
natural short exact sequence in modA. We have also (r-dimQ "N’); = 0 for i > 0.
Thus (Q7!N'); = 0 for i < 0 and (r-dim Q~"~DQ~IN’); = 0 for i > 0. By induction
we get Q1N € Im(F). The case n = 0 implies N” € Im(F), and we conclude that
N € Im(F). O

Corollary 4.7. Let d € NA. Then B(d) ={z € mod%(k) | M, € Im(F)} is an open
subset of mod%(k:) (in the Zariski topology).

Proof. Fix d = (d;);ez and suppose that d; = 0 for |i| > w. It follows from Lemma 2.1
that r-dim(Q"M)_; = 0 = r-dim(Q "M); for all ¢ > w and n > 0, if M € mod A has
r-dim M = d.
By Corollary 4.5 (2)
B, ={z¢€ mod%(k:) | r-dim(Q°M,)_; = 0 = r-dim(Q "M,); for 1 <1 < w}

is an open subset of mod%(k). With the above observation we conclude from Lemma 4.6,
that B(d) = UiZO Bz O

Remark. (1) It is easy to see that we have in fact By C By C By C ... for the sets in the
above proof. Thus by Hilbert’s Basissatz we have B(d) = By, for some m (depending
on d and A). In particular, Hom; (A, Q7°M,) = 0 for all z € B(d) if |i| > m (use
I‘IO_HIK(A, Q_ZM) = I-IO_mIA\(QilAa Q_iilM))'
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(2) For X € D*(mod A) we have H'(X) = Homg (A, Q7' F(X)) = Ext; (1A, F(X)).
Thus it follows from (1), that for given h € N%) the set

B(d,h) ={z € mod%(k:) | M, = F(X) for some X € D’(mod A) with h-dim X = h}

is locally closed. Here we use that the map dy: mod% — N,z +— dim Ext (N, M) is
upper semicontinuous.

Transport of families. We are now in a position to prove the main results of this
section.

Proposition 4.8. Let A and I" be finite dimensional k-algebras and " a bounded com-
plex of A-I'-bimodules. Suppose that X is a bounded complex of R-A-bimodules such that
there exists | € Z with H((S®r X)®@% T) = 0 for all simple R-modules S if i < 1. Then
there exists h € R and a bounded complex Y of Rp-I'-bimodules such that

(S @Ry, Xh) ®% TS @Ry, Y in Db(modF)
for all simple Rp-modules S.

Proof. Let t € N such that 7% = 0 for |i| > t and j € Z such X’ = 0 for i < j.
Consider p=™: Q — X}, as in Lemma 4.3 with m = min{j,] —t}. For a simple Rj-
modules S choose a complex of projective A-modules Pg such that Pg=™ = § ®r, Q
and (S ®g, p="") O“YI%m

S

(S ®r, Xp) @ T = Ps@p T = ((S g, Xp) @A T)=™  in D’(modT).

is a quasi-isomorphism. We have by definition

Now we find (after some further localization) a bounded complex of Rj,-I'-bimodules Y
with

S®p, Y = ((S®g, Xn) @1 T)=™ (as complexes)
for all simple Rp-modules S. O

Proposition 4.9. Let F': D’(mod A) — mod A be the Happel functor.

(1) If X is a bounded complex of R-A-bimodules, then there exists h € R and an
Rh—K—bimodule M such that R
o ['(S®pg, Xn) =8 ®g, M inmod A, and
o S®pr, M is reduced
for all simple Ry-modules S.
(2) If N is an R—/A\—bimodule, then precisely one of the following two situations occurs:
e There exist h € R and a bounded compler of Rp-A-bimodules Y such that
F(S®g,Y)=S®g, Ni for all simple Ry-modules S.
o S®r X &Im(F) for all simple R-modules S.

Proof. (1) Suppose X’ = 0 for i > r and take m = max{0,7}. By the dual assertion
of Lemma 4.3, there exists for some h € R a morphism of bounded complexes of Rj-A-
bimodules

p: Xp — Q

such that for all simple R;-modules S we have a quasi-isomorphism S®pg, p and S®g, Q'
is an injective A-module for i < m and Q° = 0 for i > m.
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Now consider ) as a complex of Rh—/AX modules via the natural embedding. Applying
again the dual of Lemma 4.3, there exists (after some further localization) a morphism
of bounded complexes of Rj-A-bimodules

O'ZQh—>L

such that for all simple Rj-modules S we have a quasi-isomorphism S®pg, o of complexes
of A-modules and S ®p, L' an injective A module for i < m and L* = 0 for i > m. Now

we can find (after some further localization) by Corollary 4.2 an Ry-A-bimodule M such
that

Q"(S ®g, L) =S g, M

for all simple Rj,-modules S. By the description of the Happel functor in [13] our claim
follows. Finally, by Corollary 4.5 (1), we may assume that S ®p, M is always reduced.
Note that from our construction also follows F(K @r X) =2 K ®p, M, if we write

F: D’(mod(K ® A)) — mod (K ® A)

for the Happel functor for the extended algebra K ® A. Just apply to the whole con-
struction the functor K ®p —.

(2) By Corollary 4.7 we may assume that for some h € R we have S ®p, M € Im(F)
for all simple Rj,-modules S. Moreover we may assume that S @p, M is reduced for all
simple Rp-modules S. By the remark after Corollary 4.7 there exists m € N such that
(r-dim Q™(S ®g, Mp))—i = 0 = (r-dimQ""(S ®g, Mp)); for all i > 0. We conclude
from Corollary 4.2 and 4.5, that there exist Rh—/AX—bimodules L and N, such that

e S®pg, L and S ®p, N are reduced for all simple R;-modules S;
o S®p, L=Q"S®p, My, and S ®p, N = QS ®p, M, in mod A for all simple
Rj-modules S;

e K®p, LYOQ"K ®p, M and K @, N =~ Q™K @p, M in mod A ® K.
In particular (r-dim(Q"K ®@g, M))—; = 0 = (r-dim(Q2™" K ®g, M)); for all i > 0,
thus K g M € ImF by Lemma 4.6. Thus there exists a bounded complex X in
Db(mod(K ® A)) with F(X) 2 K @z N in mod (K ® A). For some h € R we find an
Ry-lattice Y of X, and by (1) we may assume that we have an Rh—K—bimodule M such
that S ®g, M is reduced and F(S ®pg, Y) = S®p, M for all simple Rj,-modules S. By
the last remark in the proof of (1), we conclude

K®p, M= F(X)2K®zN inmod A.

The first and the last module are reduced and therefore isomorphic in mod A. Thus our
claim follows from Lemma 4.1 (1). O

5. STANDARD PROPERTIES

In this section we prove our main results about derived tame algebras. These results
are easy consequences of the results in the previous section and the estimates from
Section 3.

Theorem 5.1. Let A and 1" be finite dimensional algebras over an algebraically closed
field k. If A and I' are derived equivalent, then I' is derived tame if and only if A is
derived tame.
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Proof. By symmetry, it is sufficient to show that A derived tame implies I" derived tame.
Let T be a complex of I'~A-bimodules which induces an equivalence of triangulated
categories G := — @Y% T: D’(mod A) — D’(modT). Such a complex exists by Rickard’s
theorem [21]. We can assume that T' is a bounded complex. In fact, the construction
(see for example [14, 8.3]) gives a right-bounded complex T" with bounded cohomology,
and if H(T) = 0 for |i| > w, the left-truncation 72" (with n < —w) is quasi-isomorphic
to T as a complex of bimodules. Using [14, 8.1.4], it is easy to see that — ®% (T=")
induces also an equivalence of the derived categories.

Now fix a cohomology dimension h € N'™*%), Each object ¥ € DP(modTl’) with
h-dim Y = h is isomorphic to some G(X) with | h-dim X| < ~v(|h|) and || h-dim X|| <
g|/h|| by Lemma 3.2, see Remark 3.8. Thus, by our hypothesis, there is for some localiza-
tion R = kl[t]s a finite number of complexes X1, ..., X,, of R-A-bimodules such that all
but finitely many indecomposables Y € D?(modI') with h-dim Y = h are isomorphic to
G(S ®g X;) for some ¢ and some simple R-module S. By Proposition 4.8, we conclude
that I' is derived tame. O

Theorem 5.2. Let A and I" be finite dimensional algebras over an algebraically closed
field k. Suppose there exists an affine (commutative) k-algebra R of (Krull)-dimension
> 2 and a bounded complex of R-A-bimodules C' such that

e S®prC is indecomposable for each simple R-module S, and
e SRRC =S @pC in D’(mod A) implies S = S’ for any two simple R-modules S
and S'.

Then A is not derived tame.

Proof. Let M be a reduced Rj-A bimodule with F(S ®g, Cj) = S ®p, M in mod A
for all simple Rj-modules S as in Proposition 4.9 (1), and let d := dimyg K ®p, M.
Moreover, let

F:={xe€ mod%(k) | M, indecomposable and M, =~ F(X) in mod A
for some X € D’(mod A) with h-dim X = d},

where M, denotes the A-module corresponding to a point x € mod%. Now assume
that A is derived tame. We conclude from Proposition 4.9 (1), that there exists h €
k[t] and a k[t],-A-bimodules Mj, ... , M, such that N € modA indecomposable with
dimN = d and N = F(X) for some X € D’(modA) with h-dim X = h implies
N = S @y, Mi in mod A for some simple k[t],-module S and some i. Thus, if we
denote by m;: Spec(k[t]p)(k) — mod%(k) the morphism induced by — ®y, M;, we
have

n
F = Gla(k) Im(m;)

i=1

In particular F is constructible, and the number of parameters (in the sense of [15, 3.4])
w(F) = max{(dim{z € F | dimGlgz =i}) —i| i € Ny}

is at most 1. The same is trivially true for any constructible subset of 7. On the other
hand, tensoring with M induces an injective morphism m: Spec(Rp)(k) — mod%(k)
such that Im(m) intersects each Glg orbit in at most one point. By construction F' =

Gla(Im(m)) C F, moreover F' is constructible and u(F’) > 2 by a standard argument.
Thus A is not derived tame. O
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Theorem 5.3. Let A be a finite dimensional algebra over an algebraically closed field

(1) If the repetitive algebra Ais tame, then A is derived tame.
(2) Suppose that A is of finite global dimension. Then A derived tame implies A tame.

Proof. We use the Happel functor F'. If A is tame, let us fix a cohomology dimension
vector h € NAXZ), By Lemma 3.6 (see Remark 3.8) and our hypothesis, there exist
k[t}—K—bimoduleS My, ..., M, such that for all but finitely many indecomposable X &
DY(mod A) with h-dim X = h we have F(X) = S @y M; in mod A for some i and
some simple k[t]-module S. By Proposition 4.9 (2), there exists for some localization
R = k[t] a finite number of bounded complexes Y1,... .Y, of R-A-bimodules such that
F(S®rY;) = S®r (M;)s in mod A for all i and all simple R-modules S. We conclude
that A is derived tame since F' reflects isomorphisms.

If A has finite global dimension F' is an equivalence. Suppose now, that A is derived
tame. Fix a dimension d € N®), By Lemma 3.7 (see Remark 3.8), each indecomposable
non-projective A-module M with dim M = d is isomorphic (in mod A) to some F(X)
for some X € D’(mod A) with | h-dim X| < 8(|d|) and || h-dim X || < 3(|d])||d||. Thus,
by our hypothesis, there is for some localization R := k[t]; a finite number of complexes
X1,...,X, of R-A-bimodules such that all but finitely many indecomposable M €
mod A with dimM = d are isomorphic in mod A to F(S ®p X;) for some i and
some simple R module S. Using Proposition 4.9 (1), we find appropriate bimodules
My, ..., M, such that all but finitely many indecomposables in mod A with dimension-

vector d are isomorphic to some S ®p M;. Thus A is tame.
O

6. GENERIC COMPLEXES

In this section we discuss some basic properties of endofinite and generic complexes.

Endofinite complexes. We present a characterization of endofinite complexes in terms
of perfect complexes.

Lemma 6.1. A complez X in D*(Mod A) is endofinite if and only if for every perfect
compler C € D*(Mod A) the length of Hom(C, X) over End(X) is finite.

Proof. We identify A with the stalk complex having A = [[;cx P in degree 0. Thus
H(X) = Hom(X ‘A, X) for all 4 and (A) = K’(projA). The assertion is now an
immediate consequence of Lemma 3.1. U

The characterization in Lemma 6.1 shows that the definition of an endofinite complex
in D’(Mod A) coincides with the definition given in [16] in terms of small objects in the
category D(Mod A) of unbounded complexes. This follows from the fact that the small
objects in D(Mod A) are precisely the perfect complexes (cf. [20]). Recall that an object
X is small if the representable functor Hom(X, —) preserves arbitrary coproducts. This
observation has an interesting consequence.

Proposition 6.2. Every endofinite complex X has a decomposition X = [[;.; X; into
indecomposable objects with local endomorphism rings which is essentially unique.

Proof. See Theorem 1.2 in [16]. O
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Derived equivalence. It has been shown in Theorem 5.1 that a derived equivalence
preserves the derived representation type. We present now the analogous result for
the representation type which is defined in terms of generic complexes. We need the
following lemma.

Lemma 6.3. Let G: D°(ModT) — D?(Mod A) be an equivalence of triangulated cate-
gories, and let X be an object in D’(ModT).

(1) X is endofinite if and only if G(X) is endofinite.

(2) X is generic if and only if G(X) is generic.

Proof. The equivalence G restricts to equivalences
KP(projT) == K°(projA) and D°(modT') == D’(mod A)
(cf. [20]). The assertion of the lemma follows from this observation and Lemma 6.1. O

Proposition 6.4. Let G: D’(ModT') — DP(Mod A) be an equivalence of triangulated
categories. Then T is generically derived tame if and only if A is generically derived
tame.

Proof. 1t follows from Lemma 6.3 that G induces a bijection between the isomorphism
classes of generic complexes in D?(Mod T') and D’(Mod A). Now fix a family n = (n;);ez
of vectors in NA). We apply Lemma 3.2. If A is generically derived tame, there are
only finitely many generic complexes Y in D?(Mod A) such that | h-endol Y| < v(|n|)
and || h-endolY|| < g|n|. It follows that D’(ModT) has only finitely many generic
complexes X with h-endol X = n. Thus T is generically derived tame. U

Remark 6.5. It can be shown that the equivalence K°(proj A)°® = KP(proj A°P) induces
a bijection between the isomorphism classes of generic complexes over A and A°P which
preserves cohomology endolength [17]. Therefore A°P is generically derived tame if and
only if A is generically derived tame.

7. GENERIC MODULES

Let A be a locally bounded k-category. We study the representation type of A in terms
of generic modules. This is based on work of Crawley-Boevey for finite dimensional
algebras [4]. Recall that an endofinite module X is generic if X is indecomposable and
not finitely presented.

Socle endolength. In order to compute the endolength of a module, it is often useful
to work with the socle endolength. Let us introduce this concept. Given two A-modules
X and Y, we define
[X, Y] = lengthy,,q(y) Hom(X, Y).
For instance, Yoneda’s lemma implies that
endol X = ([P}, X])iea-

The canonical epimorphism P; — S; induces an isomorphism Hom(S;, X') 2 (soc X)(i)
of End(X)-modules and we call therefore

s-endol X = ([5;, X])iea
the socle endolength of X. Let us compare s-endol X and endol X. To this end denote
for each pair i, j € A by ¢;; = ¢;(P;j) the Jordan-Holder multiplicity of the simple S; in
P;. Note that the matrix (¢;j)ijea has only finitely many non-zero entries in each row
and each column since A is locally bounded.



ON THE NOTION OF DERIVED TAMENESS 17

Lemma 7.1. Let X be a A-module and 7 € A. Then
1S, X] < [P;,X] and [P}, X] <> cy[Si, X].
€A
In particular, X is endofinite if and only if [S;, X]| is finite for all i € A.

Proof. The first inequality is trivial, and the second one follows by induction on the
composition length of P;. O

We get two inequalities for the endolength of a module X. The first one is
s-endol X < endol X

and the second involves the matrix C = (¢;5); jen.

Lemma 7.2. The assignment n — nC induces a map o: N@) — NW such that

endol X < o(s-endol X) for all X € Mod A.

Proof. We have nC € N for n € N since C is row-finite and column-finite. The
rest follows from Lemma 7.1. O

Generic tameness. Crawley-Boevey’s definition of a generically tame algebra [4] has
an obvious analogue for locally bounded categories.

Definition 7.3. A locally bounded category A is called generically tame if for all n €
N there are only finitely many isomorphism classes of generic A-modules X such that
endol X = n.

Proposition 7.4. Let A be a locally bounded category. Then the following conditions
are equivalent:
(1) A is generically tame.
(2) For all n € NW) there are only finitely many isomorphism classes of generic
A-modules X such that s-endol X = n.
(3) Ewery finite full subcategory of A is generically tame.

Proof. (1) = (2) Fix a vector n € N®, Using Lemma, 7.2, it follows that there are only
finitely many generic A-modules X with s-endol X = n if A is generically tame. Thus
(2) holds.

(2) = (3) Let T be a finite full subcategory of A. The restriction functor R: Mod A —
ModTI' has a fully faithful right adjoint @: ModI" — Mod A which is defined by
Q(X)(i) = Hom(R(F;), X). Note that RoQ = Id. Now fix a vector n = (n;);cr and let
X be a generic I'-module with endol X = n. We use the adjointness isomorphism

Hom(S;, Q(X)) = Hom(R(S;), X).
For i € A\ T we get
[5i, Q(X)] = [R(S:), X] =0
since R(S;) =0. For i € T we get
since R(S;) = S;. This shows that Q(X) is generic. In fact, Q(X) is endofinite by
Lemma 7.1, but not finitely presented since X = R(Q(X)) is not finitely presented.

Assuming (2), it follows that there are only finitely many generic I'-modules X such
that endol X = n. Therefore I' is generically tame.
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(3) = (1) Fix a vector n € N and consider the finite full subcategory I' = {i e
A | n; # 0}. Clearly, A has only finitely generic modules X with endol X = n if T is
generically tame. It follows that A is generically tame. O

In [4], Crawley-Boevey has shown that a finite dimensional algebra A over an alge-
braically closed field has tame representation type (in the sense of Drozd) if and only if
A is generically tame. This result carries over to arbitrary locally bounded categories.
To this end recall that Dowbor and Skowronski have shown that the tame representa-
tion type of a locally bounded category is characterized by the fact that every finite full
subcategory is of tame representation type [5].

Corollary 7.5. A locally bounded category A over an algebraically closed field has tame
representation type if and only if A is generically tame.

The repetitive category. It has been shown in Theorem 5.3 that the derived repre-
sentation type of a locally bounded category A coincides with the representation type of
the repetitive category A. We present now the analogous result for the representation
type which is defined in terms of generic complexes and modules.

Theorem 7.6. Let A be a finite locally bounded category.

(1) IfK is generically tame, then A is generically derived tame
(2) Suppose that A has finite global dimension. If A is generically derived tame, then
A is generically tame.

Proof. We use Happel’s functor F: D®(Mod A) — MK which restricts to a functor
D’(mod A) — modA. It follows from Lemma 3.6 that F(X) is endofinite for every
endofinite complex X. Thus F' induces an injective map from the set of isomorphism
classes of generic complexes in D?(Mod A) into the set of isomorphism classes of generic
A-modules X such that the support {i € A | X (i) # 0} is finite. Moreover, Lemma 3.7
shows that this map is bijective if A has finite global dimension. The assertion of (1)

follows from the estimate given in Lemma 3.6, and (2) follows from the estimate in
Lemma 3.7. O

8. REFINEMENTS OF TAME REPRESENTATION TYPE

For a finite dimensional algebra there are two refinements of tame representation type:
domestic type and polynomial growth. In this section we discuss analogous refinements
of the derived representation type.

Definitions. Given a family n = (n;);cz of vectors n; € N®) with n; = 0 for almost
all 7, we write
In|| = max{) (ni); | i € Z}.
JEA
For each w € N let D2 (Mod A) denote the full subcategory formed by the objects X in
Db(Mod A) such that H'(X) = 0 for all |i| > w.

Definition 8.1. Let A be a finite locally bounded category.

(1) A is derived tame of domestic type if for all w € N there exists N € N (depending
on w) such that for all n € N there are N bounded complexes of R-A-bimodules
(see Definition 1.1) such that all but finitely many isomorphism classes of inde-
composable objects X in D% (modA) with ||h-dim X| < n arise by tensoring
with a simple R-module.
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(2) A is derived tame of polynomial growth if for all w € N there exist d,k € N
(depending on w) such that for all n € N there are dn* bounded complexes of
R-A-bimodules (see Definition 1.1) such that all but finitely many isomorphism
classes of indecomposable objects X in D (mod A) with || h-dim X|| < n arise by
tensoring with a simple R-module.

Definition 8.2. Let A be a finite locally bounded category.

(1) A is generically derived tame of domestic type if for all w € N there are only
finitely many isomorphism classes of generic complexes in D2 (Mod A).

(2) A is generically derived tame of polynomial growth if for all w € N there exist d, k €
N (depending on w) such that for all n € N there are at most dn” isomorphism
classes of generic complexes X in D% (Mod A) with | h-endol X|| < n.

Derived equivalence. It has already been shown that a derived equivalence preserves
(generic) derived tameness. A refinement of the proof shows that domestic type and
polynomial growth are preserved as well.

Proposition 8.3. Let A and I’ be finite locally bounded categories over an algebraically
closed field and suppose that A and T are derived equivalent.
(1) A is (generically) derived tame of domestic type if and only if I is (generically)
derived tame of domestic type.
(2) A is (generically) derived tame of polynomial growth if and only if T is (generi-
cally) derived tame of polynomial growth.

Proof. Adapt the proof of Theorem 5.1 and Proposition 6.4, using Lemma, 3.2. O

The repetitive category. We have shown that a locally bounded category A of finite
global dimension is (generically) derived tame if and only if the repetitive category A
is (generically) tame. Next we prove the analogue for domestic type and polynomial
growth. Let us give the definition of domestic type and polynomial growth for a locally
bounded category in terms of generic modules.

Definition 8.4. Let A be a locally bounded category and denote for each finite set S
of objects in A by Modg A the full subcategory formed by the objects X in Mod A such
that X (i) =0 for all i ¢ S.
(1) A is generically tame of domestic type if for all finite S C A there are only finitely
many isomorphism classes of generic modules in Modg A.
(2) A is generically tame of polynomial growth if for all finite S C A there exist d, k € N
(depending on S) such that for all n € N there are at most dn” isomorphism classes
of generic modules X in Modg A with | endol X|| < n.

Note that a locally bounded category A over an algebraically closed field is tame
of domestic type (resp. of polynomial growth) if and only if A is generically tame of
domestic type (resp. of polynomial growth). This is a variant of Corollary 7.5.

Proposition 8.5. Let A be a finite locally bounded category over an algebraically closed
field and suppose that A is of finite global dimension.
(1) A is (generically) derived tame of domestic type if and only if A is (generically)
tame of domestic type. R
(2) A is (generically) derived tame of polynomial growth if and only if A is (generi-
cally) tame of polynomial growth.

Proof. Adapt the proof of Theorem 5.3 and Theorem 7.6, using Lemma 3.6 and 3.7. [
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Examples. Tame hereditary algebras are derived tame of domestic type, while canon-
ical algebras of tubular type are derived tame of polynomial growth. Skewed gentle
algebras [9], which are not piecewise hereditary are either derived of discrete type, or
derived tame, but not of polynomial growth. As we have seen, the same applies to
algebras which are derived equivalent to one of these classes.
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