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1 Introduction

In recent years there has been an increasing interest in algebraic structures on
a category motivated by coherence problems arising from topological quan-
tum field theory. E.g. the categories of representations of quantum groups
are braided monoidal categories (c.f. [5], [6]). Another motivation comes
from new developments in stable homotopy theory, in particular new mod-
els for the stable homotopy category. E.g. Thomason showed that for the
subcategory of connective spectra the category of small symmetric monoidal
categories and lax symmetric monoidal functors is such a model with nice
properties [13]. More precisely, the group completion of the classifying space
of a symmetric monoidal category is an infinite loop space and hence rep-
resents a connective spectrum. Conversely, each connective spectrum arises
that way up to weak equivalence.

In a similar way, monoidal categories correspond to loop spaces, and the
group completion of the classifying space of a braided monoidal category is
a two-fold loop space.

It has been an open question for some time which type of structure on a
category corresponds to n-fold loop spaces. In [2] we introduced the notion
of an n-fold monoidal category, and we could show that the classifying space
of such a category is homotopy equivalent to a C,-space, where C, is the
little n-cubes operad of [1]; hence its group completion is an n-fold loop
space. This poses the question whether a result similar to the connection
between symmetric monoidal categories and connective spectra holds for n-
fold monoidal categories and n-fold loop spaces. Since n-fold loop spaces
are group completions of C,-spaces, this question is reduced to proving that



up to weak equivalence each C,-space is the classifying space of an n-fold
monoidal category. In the present paper we prove a slightly weaker result:
up to weak equivalences the categories of C,-spaces and of simplicial n-fold
monoidal categories are equivalent. The main technical ingredient of the
proof is a new description of lax functors and of a variant of Street’s second
rectification, an approach which translates directly to homotopical coherence
theory of [15] by applying the classifying space functor. Since this description
can be extended to define lax functors and their rectifications in higher order
categories, we believe that it is of independent interest. This part will be
developed in Section 3. Our main results are listed in Section 2 and proved
in Sections 3 to 6.

2 Definitions and main results

2.1 Definition: An n-fold monoidal category, 1 < n < oo, is a category C
with the following structure.

1. There are n distinct multiplications
Dl,Dz,...,Dn:CXC—)C

which are strictly associative and C has an object 0 which is a strict
unit for all the multiplications.

2. For each pair (z,7) such that 1 <i < 5 < n there is a natural transfor-
mation

nipop: (AD;B)0;(CO;D) — (AD,C)0,(BO; D).
These natural transformations 1%/ are subject to the following conditions:
(a) Internal unit condition: 77237070 = né{O,A,B = idn;B
(b) External unit condition: 77%07370 = né{Ap’B = id Ao, B
(c) Internal associativity condition: The following diagram commutes

ij .
TlvaywyxljnldYDjZ (

(U0;V)0,(Wo,;X)0,(Y0;2)

(UO:W)0;(VD;X))0:(YD,;2)
lidUﬂjVDirl;{/yxyyyz

(UO;V)0;(WD,Y)0,(X0,2))

iJ
Too,w,vo; XY Z

ij
No,v,wno;v,xn;z




(d) External associativity condition: The following diagram commutes

ij
nUDjV,W,XDj Y,Z

(UB;VE,;W)0i(X0,Y0;2) (UB;V)B(XB;Y))5;(WD; Z)
l”g,vnjw,x,ynjz - ln;}‘,yxyﬂjidwniz

idyo, x 00y
(UD:X)0,((VE,W)B,(YD,2)) — 02 (U8, X)3,(VE;Y)0;(WE;2)

Finally it is required that for each triple (, j, k) satisfying 1 <i1 < j <k <n
the (big!) hexagonal interchange diagram commutes.

((A10x A2)0;(B10xB2)) 0;((C10xC2)0;( D105 D2) )

. . g
77:7417A27B17BZDinJCI7CE7D17D2 ,r]AJlDkA27B1DkBE7CIDkC27D1DkD2
((A10;B;)0;(A20,B,))0;((C10;D1) 0 (C20;Dy3)) ((410,45)0,(C10;C3))0;((B10xB2)3;(D10;D3))

ik ik 0. ik
M4,0,B,,A,0,B,,C,0,D,,C,0,D, MA,,A5,01,C,—3"1B,,B2,D4, D,
((410;B1)0,(C10;D1)) 0k (420, B2)0;(C20; D,)) ((410;C1)05(A20,C2))0;((B10; D1 ) Ok (B20; Ds))
i O i 7k
4,,B,,Cy,D, —k"A,,B,,05,D; 4,0,€,,4,0,C5,B,0,D,,B,0,D;

((410;C1)0;(B10;D1)) Ok ((420,C2)0;(B20; D))

Let C be a small category and M,,C the free n-fold monoidal category gen-
erated by C. The objects of M],C are all finite expressions generated by the



objects of C using associative operations Oy, 0,, ..., 0, for example
(((€10,C,0,C3)80,040,(C505C6))02,C7)03(Cs0,Cy)

We allow the vacuous expression, denoted 0, which serves as the unit object.
The morphisms of M,,C are finite composites of all possible finite formal
expressions generated by the morphisms of C and symbols TIXB,C,D with 1 <
1 < 3 <nand A, B, C, D objects of M|,C, using the associative operations
Oy, O,, ..., and O,. Two such composites of formal expressions are identified
if and only if one can be converted to the other by repeated use of various
functoriality, naturality and associativity diagrams. (This is a special case
of forming a colimit in theories, cf. [1, p. 33 Prop.2.5].) We consider the

set {1,...,k} as category with objects 1,... ,k and identity morphisms. Let
M., (k) be the full subcategory of M, {1,... , k} whose objects are expressions
in which each element 1,2, ...,k occurs exactly once. The symmetric group

Yy acts freely on M, (k) via functors by permuting labels on both objects
and morphisms. We have maps

defined by replacing the label r € {i1,...,4;} in M,(i;) with the label
i1+ -+ +1;_1 + r and substituting an element 5 in M, (k) by the expression
in M, (z;). This gives {M,(k)}r>0 the structure of a E-free operad in the
category Cat of small categories, and M, is its associated monad

M, : Cat — Cat, C > M,C = [] Ma(k) x5, C*.
k>0

Let M : 7 — 7T be a monad on an arbitrary category 7 with composition
p: MoM — M and unit n : Id — M. Recall that an M-algebra consists of
an object X € T and a structure map £ : MIX — X such that the diagrams

uX nX
MMLY MX X MX
JW lé \ Jg
MX ¢ X X

commute. A homomorphism of M-algebras (X, €{x) — (Y, &y) is morphism
f: X — Y in T such that

Mf
MX MY
lfx lfy
X ! Y




commutes. The category of Mralgebras and homomorphisms in 7 is de-
noted by 7M. The following result is clear from the definitions (for further
information see [2, Chap. 3]).

2.2 Lemma: The category of n-fold monoidal categories and strict n-fold
monoidal functors is isomorphic to the category of M, -algebras in Cat and
homomorphisms.

2.3 Notations: e Top denotes the category of compactly generated spaces
[14, Expl. 5 (ii)].

o SSets and STop etc. denote the categores of simplicial sets, simplicial
spaces etc. respectively.

o N :(Cat — SSets is the nerve functor.
o | —|:8Sets — Top is the topological realization functor.
¢ B=|—|oN:C(Cat — Top is the classifying space functor.

e Amap f: X — Y in Top is a weak equivalence if f, : (X, z) —
(Y, f(x)) is an isomorphism for each n > 0 and each choice of base
point x € X.

e Amap f: Xo — Y, in STop is called a weak equivalence if |f| :
| Xo| — |Ya| is a weak equivalence in Top.

e A functor F' : C — D of small categories and a simplicial functor
F :Cy — D, of simplicial categories is called a weak equivalence if
B(F) is a weak equivalence in Top respectively in STop.

e C, denotes the little n-cube operad of Boardman and Vogt [1].

e If M is an operad in any of our categories, we denote its associated

monad by ML

Let M be a Y-free operad in Cat, such as M,,. Since the classifying space
functor preserves products, BM is a Y-free operad in Top. If BM denotes
its associated monad, then there is a natural isomorphism

2.4 B(MC) = BM(BC)



In particular B defines a functor
B : Cat™ —s TopPM
and by prolongation a functor
B : SCat"" — STop®M,

It is well-known that the topological realization | Z,| of a simplicial BM-space
Z, is again a BMEspace [9, Thm. 12,21]. Hence we obtain a functor

|B(—)| : SCat™ — TopPM
The main aim of this paper is to prove

2.5 Theorem: For each n, 1 < n < oo the functor |B| induces an equiva-
lence of categories

SCatMr[we™'] — Top®™ [we™!]

where the weak equivalences are those algebra homomorphisms whose un-
derlying morphisms are weak equivalences in SCat respectively in Top.

The theorem is a consequence of the following three results, the first of which
is our main result of [2] (for n = co we can take Dy, = BM 4 X Co).

2.6 Theorem: For each n, 1 < n < oo, there is a proper X-free topological
operad D,, and maps of operads

BM, «—— D, —_C,

which are homotopy equivalences on underlying spaces.

Here we call a topological operad C proper if the inclusion of the identity
{id} — C(1) is a closed cofibration. Each BM for a Cat operad M and each
C, 1s proper.

For a topological operad M let cwSTop™ denote the full subcategory of
the category of simplicial M-spaces whose underlying spaces are simplicial
CW -complexes with cellular structure maps.

2.7 Theorem: Let M be a Y-free operad in Cat. Then B : SCat"' —s
cwSTopPM and |—| : cwSTopP™ — TopPM induce equivalences of categories

SCat"we™] ~ cwSTop®" [we™] ~ Top® [we™].



2.8 Proposition: Let o : D — &£ be a map of proper X-free topological
operads which is a homotopy equivalence on underlying spaces. Then «
induces an equivalence of categories

Topwe™] = Top” [we™].

The proof of the proposition is standard (e.g. see [9]). The monadic twosided
bar construction defines a functor

B(E,D, ) : Top” —s Top".
If X is a Drspace, there is a diagram of weak equivalences of D-spaces
B(E,D,X) «+ B(D,D, X) —» X.
If Y is an E-space, there are weak equivalences of E-spaces
B(E,D,Y) —» B(EJE,Y) —» Y.

This establishes the result. O

As to the existence of the localizations we adopt Thomason’s approach. We
assume Grothendieck’s axiom of universes. For details see [13, (1.5)] and [3,

p. 185 f].

3 Lax functors and lax natural transforma-
tions

In this section we study a variant of Street’s second rectification [11] in a
setting which translates nicely into the topological situation. Our approach
can be dualized to provide a similar variant of Street’s first rectification.
Although we treat only the case we need, we want to point out that our
approach generalizes to define and rectify lax functors between higher order
categories.

3.1 Definition: Let A be a category and B a 2-category. A laz functor
¢ : A — B (with strict units) assigns to each A € 0b A an object PA of
B, to each morphism f: Ay — A, in A a morphism ®f : #4;, — ®A4, in
B, and to each pair of morphisms A, Ty 4, % Ayin Aa 2-cell (g, f) :
P(go f) = ®(g) o ®(f) such that



d(hogo f) B g(h)oB(go f)
¢(hog, f) ®(h)e(g,f)
B(h o g) o d(f) —2222 . §(1) 0 B(g) 0 B(f)
commutes
2. O(ids) = idea and @(ida,, f) = ¢(f,ida,) = idey).

If F: A — Ais afunctor and G : B — B’ is a 2-functor the composite
lax functor G o ® o F' is defined in the obvious way.

3.2 Construction: We define a functor
W . Cat — 2-Cat

from the category of small categories to the category of small 2-categories as

follows. Let A be a category. Then ob WA = 0b A and

WA, B) = (I] Awii(A, B) x £7)/ ~

n>0
where £ is the category 0 — 1 and
Ani1 (A, B) = {(fn,... , fo) € (mor A)"*'; f.o0...0f,: A— B}
considered as trivial category. Let
max: L x L — L

be the unique functor sending the object (i,7) to max(z,j). The relations
are given by

3.3 (frn ,f(); €n7---751)

(1) (Faseov s Fe© Foctso v s J03 Enyeve sChyenr E1) if e = id,
(2) N (frz1y--+ s fo; En-1ye--,€1) if f,, =1d
(3) (fm---,fk,---,fo; Eny oo yAX(Ekt1,ER)y .- 61) i fr =1id
(4) (Fas o s J15 Enyeen y62) if fo =id



where (¢g,...,¢1) € mor L, and " means delete.

The composition functors
WA(B,C)x WA(A,B) — WA(A,C)
are defined by

(fn, ,fo; Engeo- ,El)o(gk,... 5 Jo; (Sk ,(Sl)
= (fn, 7f079k7--- ,Gos €ny. .- ,E1,id1,5k... ,51).

For a functor F : A — A’ the 2-functor WF : WA — WA’ is defined by

(fn;--- ,fo; Eny - ,51) — (an, ,Ffo;(fn,... ,El).

3.4 Example: Let A be the poset 0 <1 < 2 < 3. Then WA is the following
2-category

3

ps

.
|

0 1

If ( > 1) denotes the 1-morphism ¢ — j then each triangle with vertices
1 < j < k represents a 2-cell

(k>j>i)

(k> i) (k>j)o(s>1)

The four 2-cells form a commutative square giving rise to a fifth diagonal
2-cell. So the category W.A(0, 3) is given by the commutative diagram

(3>1>0)

(3>0)

(3.1)o (1 >0)

(3>2>0) (3>2>1)0(1>0)

(3>2)0(2>1>0)

(3>2)0(2>0)

(3>2)0(2>1)0(1>0)




3.5 Remark: Note that a 1-morphism in WA is uniquely represented by an
element

(fn; e ,f(); idl, e ,’L'dl)
with all fi # i¢d, which uniquely decomposes into
(fn) © (fn—1) ©...0 (fo)-

3.6 Definition: We define a lax functor
n=n(A): A— WA,

natural in A, as follows: 5 is the identity on objects, sends f: A} — A, to
(f) and the pair A, REAN Ay L5 Aj to the 2-cell (g, f; 1) € WA(A;, As).

3.7 Proposition: Considering A as 2-category with trivial 2-cells there is
a 2-functor natural in A

e WA — A.

For each pair of objects A, B of A the 2-functor ¢ and the lax functor n define
functors (A(A, B) is considered a trivial category)

A(A, B) == W A(A, B)

such that € o n = ¢d and there is a natural transformation noe — id.

Proof: c(fn,..., fo; €ny.. 1) = fuo...o fo. Let (fu, .., fo; 1,...,1)
be an object in WA(A, B). To it the natural transformation assigns the
morphism

(.f’l’l7 7f0; byoos ,L)

(fno---ofO) (fn,,fo,]_,,]_)
in WA(A, B). O

3.8 Proposition: The correspondence F —— F on defines a bijection
{2-functors WA — B} — { lax functors 4 — B}

Proof: We construct the inverse map. Let ® : A — B be a lax functor
(with strict units). By (3.1.1) there is a unique 2-cell

O(fryeoonfo) i ®(fao...0fo) = O(fn)o...0B(fo).

10



Let F : WA — B be the 2-functor sending an object A to ®(A), a morphism
f to ®(f) and the 2-cell (fn,..., fo; ty...,t) to @(fu,..., fo). Note that 2-
cells (fa,..., fo; €ny... 1) with some &; = idy can be reduced by relation
(3.3.1). If ey = ud; this 2-cell is the horizontal composite

(fn,... ,fk; Engen- ,Ek+1) o] (fk—l ,f(); Ek—19+-- ,El).

Hence F is completely determined by the given data. It is easy to check that
F is a 2-functor and that the assignment ® —— F' is the required inverse
map. O

3.9 Remark: 1) The W-construction (3.2) can easily be extended to a 2-
functor 2-Cat — 2-Cat to study lax functors between 2-categories.

2) Usually lax functors are not assumed to satisfy our strict unit condition
(3.1.2). Instead, one has a 2-cell ®(ids) = 1dg 4 satisfying certain coherence
conditions. We can cover this case by first whiskering A to obtain a 2-
category A and a canonical 2-functor A —+ A and then applying the W-
construction for 2-categories to A.

Our next aim is the rectification of lax functors A — Cat.

3.10 Definition: Let F': A — B be a strict and ® : A — B a lax functor
into a 2-category B. A reduced lax natural transformation

f: F — O

assigns to each object A of A a morphism 64 : FA — ®A and to each
fr A — Aya2cell 0y : 04,0 Ff = ®f 084, such that for each pair
A i> Ay, 25 Aj the diagram

6y 0 F(g) o F(f) = 64, 0 Fgo f) ——2L— (g0 f) o b4,

OgF f e(f.9)04,

®(g) 0 b4, © F(f) D(g) o ©(f) 0 ba,

commutes, and 8;4, = tdg,.

3.11 Remark: A strict functor A — B is a 2-functor, where A has trivial
2-cells. We use the term reduced lax natural transformation to emphasize
that F' is strict.

11



3.12 Let §: F — ® be a reduced lax natural transformation and ¢ : G —
F' a strict natural transformation of strict functors. Then we have a canoni-
cal composite reduced lax natural transformation § o o : G — 6 defined by
(Boo)s=0s004:GA T4 FA A 04
(QOJ)fZOfOO'f : (900)A20Gf:>(9f0((900')A1
where o is the identity 2-cell o4, c Gf = Ffooy,.

3.13 Construction: Let A be a category. For each pair of objects A, B in
A let WA(A, B) be the category

WAAB) = ([T A (4. B) x £7) ] ~

with relations (3.3.1),...,(3.3.3) but NOT relation (3.3.4).

W A(B, B’) operates from the left on W.A(A, B) and A(A’, A) operates from
the right. The two operations are given by

WA(B,B') x WA(A, B) —s W.A(A, B')

((gk,... 790;5k7--- 751)7(fn7--- 7f0;€n7--- ,El))
— (gk,... 7907fn7--- 7f0;5k7--- ,51,1,(5“,... 751)
and by
WA(A, B) x A(A', A)
((fTH 7f0;5n7"' 761)79)

The two operations commute.

WA(A', B)
(fas- - fo0gi€ny ..., 61).

Il

We note that these data define a 2-category W.A with ob WA = ob(A x L)

and

WA((A,0),(A,0)) = A(A", A)
W.A((A,0),(B,1)) = WA(A, B)
WA((B,1), (B, 1)) = WA(B, B).

The operations define composition. In particular, A and WA are full sub
2-categories of W A.

12



3.14 Example: Let A be the poset 0 < 1 < 2. Then WA looks like

(0,1) (2,1

We have a copy of A at level 0, i.e a commuting triangle of 1-morphisms
(j > 1)o. There is a copy of WA at level 1, i.e. a triangle of 1-morphisms
(j > 1)1 commuting up to a 2-cell

(2>1>0):2>0))=——=(2>1)10(1>0)
There are six additional 1-morphisms
(t=1)o1 :(2,0) = (¢,1) and (> 4)or : (4,0) = (4,1)

represented by (id;) and (5 > 1) in WA respectively. The upper triangles
of the vertical faces all commute while the lower triangles commute up to a
2-cell

J>i=1n:U>Dn=U=7)nc(y>i)g=——==G >1)10(t=1)n
represented by (7 > 7,id;) x L in WA.

The four 2-cells give rise to a commutative square obtained from (2 > 1,1 >

0,:do) X ,C? in WA. Hence there is a fifth diagonal 2-cell. In particular, the
category W.A((0,0),(2,1)) is given by the commutative diagram

(2>1:1)01 O(1>0)0

(2>0)01 =(2>1)g10(1>0)

(2 > 1)1 ) (]. > 0)01

(2>0:0)01 (2>1)10(1>0:0)01

(2>1>0)1 0(0:0)01

(2>0)0(0=0)y (2>1)10(1>0);0(0=0)

13



3.15 Proposition: The reduced lax natural transformations  : F — &
correspond bijectively to 2-functors

H:WA-—B

such that H|A = F and HWA = ®.

Proof: Suppose we are given §. Then H is determined on A and WA and
hence on all objects. We have to specify the functors

H:WA(A B) — B(FA,®B)

On objects define H(fn,..., fo;1,...,1) =®(fu)o...0®(f1) 084, o F(fo),
where A; is the target of fy. We set

H(f7ZdA7 L) = ef
H(fna 7f0; Lyn 7L) = S‘Q(fnv 7f1)9A1 Oefnonﬁle(fO)'

This determines H completely because (fn,..., fo; €n,...,€1) reduces by
(3.3.1) if some ¢}, = idy and decomposes into

(fn7 ,fk, Eng e ,€k+1) ] (fk—l;--- ,fo; Ek—1y--- ,El)
if&":k :Zdl

The conditions on 6 ensure that H is a 2-functor. Conversely, given H we
obtain a reduced lax natural transformation by setting

04 = H(ldA)v ef = H(f7Zd7 L)
with ids € obW.A(A, A) and (f,id; ¢) € mor W.A(A, B). O

3.16 Rectification construction: Let & : 4 —s Cat™ be a lax functor
into the 2-category Cat™ of Mralgebras, where M is any Cat-operad. Using
(3.8) we think of ® as a 2-functor WA — CatM, For each A € A let

®(A) C [] Funct(WA(A, B), &(B))
BeA

be the full subcategory of all tuples (ap; B € A) of functors
ap: WA(A, B) — ®(B)
such that

14



aB(fn,... ,fo;e’fn,... 751)
= (b(ffn 7fk;£n7--- 7€k+1)(a0(fk—17--- 7f0;5k_1,--- ,50))

if e = idy and C = target fr_;. Note that ¢ = ®(fn,... , f&; €ny-vn s Ekt1)
is a natural transformation and ¢ = ac(fe-1,. .-, fo; €k-1,-.. ,€0) is a mor-
phism. The symbol ¢(g) for g : ¢; — ¢ in ®(C) and ¢ : G; — G stands
for the diagonal in

Gi(er) L4 Ga(cr)
G (g)l lG’z(g)
Gi(ca) d Ga(ca)

Since ® takes values in Cat™ the coordinatewise operation of M on the ®(B)

A

gives ¢(A) the structure of an M-category.
The correspondence A — i)(A) extends to a strict functor
& A—s Cat™.
Let f: A; — A, be a morphism in A. We define
B(f) B(A) — B(A)),  (an) > (an)
with ag(fn,. .., fo; €nye v v€1) = aB(fay- - s f1, foo fien, .o e1).

3.17 Proposition: There is a reduced lax natural transformation v : & —
® such that any reduced lax natural transformation § : G — @ factors
uniquely as § = v o § where 6 : G — @ is a strict natural transformation of
strict functors and v o  is the canonical composite of (3.12).

Proof: We define v as a 2-functor WA —s Cat™. On the subcategories A
and WA it is determined by ® and ®. It remains to define

v: WA(A, B) — Cat™($(A), ®(B)).
This functor is the adjoint of the evaluation functor

WAA,B)x $A— 3B

((fay--- s foi €nyevohen)) X (ac)—=aB(fa, -, fo} Eny--- 5 E1)-

Given any reduced lax natural transformation § : G — ® the only corre-
spondence

0,:GA — DA

15



satisfying v o 6 = 6 is induced by the adjoint of
WA(A,B) x GA —s ®B

obtained from the adjoint of

6 : WA(A, B) — Cat"(GA, ®B).
It is easy to check that f is a natural transformation. O
3.18 Proposition: For each object A of A there is a functor

pa:PA — A
such that v4 o p4 = 1dga, and a natural transformation
Ta:tdps = papovy.

If @ is a strict functor, the p4 combine to a natural transformation p : ® —

D,

Proof: Note that v4 : ®4 —s ®A sends (ap; B € A) to as(idy). The
functor py : ®A — $A sends an object a in ®A to (ap; B € A) € A
given by ap(fu,..., fo; €ny...ye1) = ©(fuo...0 fo)(ids) and a morphism
g:a—bto

(ap; Be A) — (fB; B€ A)

given by ®(f, o...0 fy)(g). Since ®(id) = id we have v4 0 ps = id.

We note that pgovs(ap; B € A) = (fp; B € A)is defined by

6B(fn7' e 7f0; Enyens 761) - q)(fn 0...0 fO)(OéA(IdA))
:OzB(an...OfO,idA; 1)

The natural transformation 74 is induced by natural transformations
T4B 0B = (B

defined by Tap(fa,...,fo: 1,....1) = ap(fo,.-., fo,1da; 1,...,1,1). By
definition, the p4 define a natural transformation ® = & if ® is a strict
functor. O

16



3.19 Definition: Let &, ¥ : A — B be lax functors. A strict natural
transformation of lax functors

T: P — U

is a strict natural transformation of the associated 2-functors WA — B. In
other words, 7 assigns to each object A of A a morphism 74 : PA — TA
such that

(1) 74, 0o ®f = U f o7y, for each f: Ay — Ay in A.

(2) Ta, 0o (g, f) =(g,f)oTa, 1 Ta, 0 ®(go f) = U(g) o U(f) o1y, for each
pair A; J, A, 2L Az in A.

3.20 Let F': A — B be a strict and ®,¥ : A — B be lax functors. Let
f: F — ® be a reduced lax natural transformation and 7 : & — ¥ a
strict natural transformation of lax functors. There is a canonical composite
Tof: F — U defined by

(1) (TOG)A:TAOGAZFAH(I)A%\I/A

(2) (Toe)f = TAy Oef:TA2 09A2 OFf:>TA2 O(I)foeA1 :\IIfOTAl OeAl'

3.21 Proposition: If LaxzFunct(A, B) denotes the category of lax functors
A — B and strict natural transformations and Funct(A, B) the category of
strict functors and natural transformations there is a rectification functor

R : LaxFunct(A, B) — Funct(A,B)

Proof: R is defined on objects by sending ® to &. Consider the diagram

. Fovg .
) ]}
‘/Ik) vy
) - i}

where 7 : ® — U is a strict natural transformation and 7o g the unique
strict natural transformation of strict functors of (3.17) making the square
commute. We take R(7) = 7orvg. The functor axioms follow from the
uniqueness part of (3.17). O
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4 A lax action of a lax operad
Throughout this section let M be a Y-free operad in Cat and X be a BM-
space.

We construct a “lax” operad P = Payg (we usually drop the suffix M from
the notation) and a category Cx, on which P acts in a “lax” way, together
with a natural weak equivalence of “lax” operads

T:Pm— M
and a natural weak equivalence
n:BCx - X
compatible with the action of BP on BCx and of BM on X.

“Lax” means that all axioms hold apart from the associativity axiom which
holds up to natural isomorphisms satisfying MacLane’s pentagon coherence

condition [8, VIL.1].
This is the first step of the construction of the functor from Top®™ to Cat™.

Let [n] denote the ordered set {0 < 1 < --- < n}. We frequently identify [n]
with its associated category

0—1-—2—...—n.
Let Pris C Cat denote the full subcategory of prisms, i.e. of products
(1, n2, .y ne] = [na] X [ng] x -+ X [ng], all m; > 0.

We allow the empty product, denoted by [0]. The category Pris is strictly
monoidal with structure functor

Pris x Pris — Pris
(Ima, ... ,mg], [P1,... ) — [ma,...,mp, ny, ..o 0y

and unit [0].

4.1 Construction: We define P(n) to be the over category (Pris | M(n)).
The unit 1 € P(1) is the object

0] — M(1), 0+ 1.

18



The composition map
v:Pk) x Pliy) X -+ x Plig) — Plin + -+ + 1x)
sends ((fa 0)7 (gla Dl)v SRR (gk7 Dk)) to

CxDyx--x Dy —2IXX  Ag (k) M(i1) % - x M(ig) —25 M(iy+- - —+ip).

Clearly, 1 € P(1) is a strict unit, but composition is associative only up to
coherent isomorphisms. E.g. v o (y X 1d) maps the element

T = ((fa 0)3 (917 D1)7 (927 Dz); (hn, E11), (h127 E12), (h21, E21), (h22, Ezz))

in P(2) x P(2) x P(2) x P(k1) x P(kz) x P(l;) x P(l) to the functor
C X Dy X Dy X Ei1 X Eyg X Eg9; X Ego

FXg1Xgaxhit X--xhs

M(2) x M(2) x M(2) x M(k1) x M(kz) x M(l1) x M(l5)

ymxid

M(4) x M(k1) x M(kz) x M(l1) x M(l3)

T

M(Fy + Fy + 11 + 1)

while v(¢d X ) maps it to the functor
C x D, x Ey1 X Ei3 X Dy x Ey; X Eyy
FXg1 xhi1 Xhis Xgs Xho1 Xhas
M(2) x M(2) x M(ky) x M(kg) x M(2) x M(l1) x M(l3)
idX Y p XY

./M(Q) X ./M(k‘l + k‘g) X ./M(ll + 12)

M
M(Fy + Fy + 11 + 1)

Since M is a genuine operad the following diagram with the obvious permu-
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tation o commutes

MXZd

M(2) x M(2) x M(2) x M(ky1) x M(ks) x M(ly) x M(ly) 2255

l

M(4) x M(k1) x -+ x M(ly)

M(?) X M('Z) X M(k‘l) X M(kg ( ) X M(ll) X M(lz) Ym
lldXWMXWM
M(2) x M(ky + ka) x M(ly + 1) T M(ky + ks + 11 + 1)

Hence the same permutation
UICXD1XD2XE11X"'XE22—>CXD1XE11XE12XD2XE21XE22
is an isomorphism in (737“@'3 I Mk +E+ 1L+ lz)).

In the general case we have a similar picture and it is easy to check that the
associating isomorphisms satisfy the coherence pentagon condition [8, VII.1].
The action of the symmetric group ,, on P(n) is defined by

(f-o)(z) = f(z) -0
for x € C. Here we encounter a similar problem, which we again illustrate by

an example. Let o = (1,2,3) € £3 be a cycle. Then the following diagram
commutes

4.2

idXo

CXD1XD2XD3

C x _D3 X _D1 X _D2
fXg1XgaXgs FXgsXg1 Xga

./M(3) X M(]l) X ./M(jg) X ./M(];g) ﬂ)./\/t(?)) X ./M(];g) X ./M(]l) X M(]z)

;i
oxid M(g1 + g2 + J3)

o (j1+i2+73)
M(3) x M(j1) x M(ja) x M(js) M My + G2+ Js)

Now

Y((f - 0591,92,93)) = Ymo (o X ad) o (f X g1 X g2 X g3)
7((f;917927g3)) ’ U(j17j27j3)
= (= a(j1,J2,73)) o Ym o (f X g1 X g2 X g3).
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Hence the axiom for an operad concerning the right ¥-action only holds up
to a natural isomorphism, which is given by

1dXxoc:CxDy xDyxDy— Cx Dy x Dy x Ds

A map o : M — N of operads induces a map Paq — Pu of lax operads by
sending (f,C) to (ao f,C).

We define

4.3 7:P — M

by sending the object (f,C) to f(T'), where T is the unique terminal object
of C. This correspondence extends uniquely to a functor called last vertez
functor. It is a unit preserving strict functor of lax operads.

4.4 Construction: For X € Top®" let Cx denote the category whose ob-
jects are pairs (f,C) with C € Pris and f : BC — X a map. The
morphisms from (f,C) to (g, D) are morphisms b : C — D in Pris such
that

commutes.

We have a lax action of the lax categorical operad P on the category Cx
defined by the functors

Qap - 73([{?) X (CX)k — C)&

sending the element ((f, C); (g1,D1)s- -, (gr, Dk)) to the object

B(CxDyx---xDy) = BCxBD;x- - -x BDj, 21X pag(k)x X% 25 X

where 3 is the structure of X. The unit condition of an operad action holds
but the associativity condition and the condition for permutations only hold
up to natural isomorphisms for the same reason as in Construction (4.1).
For later reference we include the two relevant diagrams in special cases:
to illustrate associativity take (f,C) € P(2), (g1, D1), (g2, D2) € P(1) and
(hi, E;) € Cx. We have a commutative diagram
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4.5

BC x BD{ x BDy; x BE{ x BFE, é BC x BD; x BE| x BDy x BE,
BfxBgi xBgaxhi xhs BfxBgi xhi x Bgs xhs
BM(2)x BM(1) x BM(1) x X x X i BM(2) x BM(1) x X x BM(1) x X
Bypxid idx By X By
BM(2) x X2 — 2 X % BM(2) x X2

Observe that

O‘2(7(f;91792)§h17h27) = B2 0 (BVM X id) © (Bf X Bgy x Bgy x hy X hz)
while

Oéz(f; 051(91;h1)7051(92§h2))
= fro (id x B1 X B1) o (Bf X Bg1 X hy X Bgy X ha).

The evident shuffle ;1 defines a natural isomorphism between the two functors
involved.

We have a similar picture with respect to the permutations (we use the
notation of (4.2)). We have a commutative diagram

4.6
BC x BE, x BEy x BE; —™% ~ BC x BE; x BE, x BE,
Bfxhi xhs Xhg Bfxhgxhy Xhs
BM(3) x X3 idxo BM(3) x X3
() xid 5
BM(3) x X° & X

22



Note that
Oé3(f' O';hl,hz,h:;) = 630 (Zd X 0') o (Bf X hl X hz X h3)

while

Oé3(f, J(h17h27h3)) - 63 © (Bf X hl X h2 X h3)
and the two maps differ by the isomorphism (id x o).

A homomorphism « : X — Y of BM:spaces induces a functor
Co:Cx — Cy, (f,C)r— (ao f,C)
and C, 1s a strict homomorphism of lax P-categories.
4.7 Lemma: There is a natural map
n:BCx — X

compatible with the lax action of BP on BCx and the action of BM on X.

Proof: An n-simplex in the nerve of Cx is a sequence of functors of prisms

CO f1>01 f2> fn>0n

together with a map of spaces g : BC,, — X. Counsider [n] as a category
and define a functor [n] — C,, by sending k to the image of the last vertex
of Ct in C,. Realization defines a singular n-simplex

A" = B([n]) — BC, -+ X
in X and we obtain a simplicial map
NCx — Sing X

where Sing X is the singular functor on X. We define n to be the composite
of the realization with the canonical weak equivalence

BCxy — |Sing X| — X.

Let Simp/ X C Cx denote the full sub category of standard simplices over X,
i.e. its objects are pairs (g, [n]) with continuous maps g : A" = B([n]) — X.
It is well-known that the composite

N(Simp/X) — N(Cx) — Sing X
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is a weak equivalence (e.g. [7]). The inclusion functor Simp/X — Cx
is a weak equivalence by Quillen’s Theorem A [10] because for each object

(f,C)eCx
B(Cx(—,(f,C)),Simp/X,*) = B(Simp/BC) ~ | Sing BC| =~ x.
It remains to check the compatability of n with the actions of P and M. Let
o:Id—Sing|—| and  f:|Sing(—)| — Id

denote the adjunction morphisms. Since the singular functor preserves prod-
ucts, Sing(BM) is an operad in the category of simplicial sets operating on
Sing X. The adjunction o defines a map of operads a : NM — Sing BM.
Hence N M operates on Sing X and BM on |Sing X|. Moreover, since the
inverse of the natural map | Sing X x Sing Y| — | Sing X| x | Sing Y| is cel-
lular (e.g. see [9, Thm. 11.5]), the action of BM on |Sing X| is cellular.
Given an n-simplex o in NM(k) and a collection of k singular n-simplexes
7; of X, the singular n-simplex defined by the operation of o on the 7; is the
composite

(o710, 7Tk)

AP BM(k) x X*

X.

Since

B(BM)o |a(NM)|=1id: BM — |Sing BM| - BM
the natural map | Sing X| — X is a homomorphism of BM-spaces.

The compatability of the map NCx — Sing X with the action of NP and
NM follows immediately from the definitions. O

In the same way one can show

4.8 Lemma: The functor 7 : P — M of lax operads is a weak equivalence.

For later use we restate part of the proof of Lemma 4.7:

4.9 Lemma: Let M be a Cat-operad and X a BM-space. Then |Sing X|
is a BM-space with cellular action, and the natural map | Sing X| — X is a
weak equivalence of BM-spaces.
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5 A functor from 7op®™ to SCat™

If P were a genuine operad acting strictly on Cx, we would proceed as follows:
let P denote the monad associated with P. We would form the functorial 2-
sided bar construction Bes(M,P,Cx) to obtain the required simplicial object
in Cat™. Since P is only a lax operad acting in a lax way on Cx, we have to
detour:

1. We replace the monad construction PP by the homotopy monad con-
struction,

IP’hC = Hp(k) thk Ck

k>0
2. For this we need the homotopy orbit construction in Cat.

3. We then mimic the 2-sided bar construction Be(M, Py, Cx) and obtain
a lax functor Q.(X) : A? — Cat™.,

4. We finally rectify this lax functor to obtain a strict functor Q.(X) :
AP — Cat™.

The homotopy orbit construction in Cat: Given a category K and two func-
tors

F:K? - Cat, G:K — Cat

we define

C:FXh)cG

to be the following category: objects are triples (z,k,y) with & € ob K,
xz € 0b F(k), y € obG(k). A morphism

(f7a7g) : ($07k07y0) — (*rl)khyl)

consists of a morphism « : kg — k1 in K, a morphism f : g — F(a)(21) in

F(ko), and a morphism ¢ : G(a)(yo) — y1 in G(ky).
Composition of two morphisms

f 7a 1, f 7a ?
(.I’(), kO) yO) % (:1717 kl) yl) % ($27 k27 y2)

is defined to be

(F(a1)(f2) o fi,ap0ai,g20 G(%)(Ql)) : ($07k07y0) — ($2,k2,y2)-



5.1 Proposition: Let G be a group considered as category with one object.
Let X' be a category with right G-action and Y a category with left G-action.
Then

B(X XpgY) ~ B(BX,G,B)Y)

Proof: Construct a functor H : G — Cat, by sending the single object to
X x Y and a morphism 7 to the functor

X xy—mxrE) vy,

The Grothendieck construction G [ H is the following category: ob(G [ H) =
ob X x ob). A morphism is a pair
(’ﬂ', (fag)> : (5[:0, y0> — (3717 yl)

with 7 € G and (f,9) : H(7)(zo,y0) = (z1,y1), 1.e. f a9 7" = 21 and
g :mYyo — y1. The composition of the two morphisms

m1,(f1,91 m2,(f2,92
(.I’(), yO) M) ('rla yl) M) (.1'2, y2)

is the morphism

(7T2 0T, (f2792) © H(Wz)(fl,gl)) : (l‘o,yo) — (l‘z,yz)

Lemma: X Xpg YV = GfH

Proof: The functor U : X X6 Y — G [ H, given by the identity on objects
and by U(f,7,g) = (7,(f - 7~',¢)) on morphisms, is an isomorphism of
categories. O

Hence B(X xpc Y) = B(G [ H). By [12, Thm.1.2] there are two natural
homotopy equivalences connecting B(G [ H) and hocolimg(B o H), i.e. the
homotopy colimit of the G-diagram sending the single object to BAX x BY
and 7 to the map

BX x BY = BX x BY, (z,y)rs (z-77",7-y).
It is well-known that hocolimg BX x BY = B(BX,G, BY). O

5.2 Remark: If G acts freely on X or ), then the canonical map
B(BX,G,BY) — BX xg BY
is a homotopy equivalence. Hence the canonical functor

(Ythy—>X><Gy

is a homotopy equivalence in this case.
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The homotopy monad P,: For any small category C we define

IP’;,C = Hp(n) XhE, cr.

n>0
The lax action of P on Cx induces a kind of action
£:PCx — Cx
of the homotopy monad P, on Cx: Let (f,m,¢9) : (po,Xo) — (p1,X1) be a
morphism in P(n) Xy, C% with f:pg — p1 -7 in P(n) and ¢ : X — X3

and x; in C%. Then

f.id,id id,mid id,id,
(f.m,.9): (po, Xo) — 22D (57, x0) — 8D L () mx0) — 20 () xs)

Hence it suffices to define &, : P(n) Xpy, C% — Cx for the three types of
morphisms (f,id,id), (¢d,m,id), and (id,id, g). On objects we define

£ ((p, C); (21, D1), ... (20, Dy)) = (Bpo(BpXaiX. .. Xx,),C XDy X...xXDy)
where 3, : BM(n) x X" — X is the BM-structure on X:

B(Cx Dy x...xD,)=BCxBDyx...x BD,
BpXziX...XTp
BM(n) x X"

Bn

X

The morphisms &,(f,id,id) and &,(id,id, g) are the obvious ones. E.g. the

morphism
Co ! Cl
./M (n)

is mapped to f xid: Co x Dy X ...x D, - Cy x Dy x ... x D, in Cx.
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€a(id,m,1d) is the permutation morphism
CxDyX...x Dy —CXDprqyX... X Dy
which is a morphism over X by (4.6).

Clearly &, preserves composition of morphisms of the same type. To prove
that &, is a functor, we have to show that it respects the relations

5.3
(id,m,id) o (f,id,id) = (f,m,id) = (f-7"'id,id)o (id,m,id)
(vd,id,g) o (id,m,id) = (id,m,g) = (id,m,id)o (id,id,7-g)
(ed,id,g)o (f,id,id) = (f,id,g) (f,id,id) o (id,id, g)

For the third relation this is clear. The left side of the first relation is mapped
to

fxmxCox Dy x...xDyp—Cy X Dp—1(1y X ... X Dy
such that

B fxid id X
BCoxBD;X..xBDy, f—> BC1 xBDXx..xBDy, XTI Boy XBD __1 ) X..xBD__1 (n)
pro XX prl-ﬂ‘XX prl XT o1 (1) X oo XT 1y
BM(n)xX" = BM(n)xX" BM(n)xX"
\ l
[627)
[677)
X

commutes. The outer part of the diagram is the same the outer part of

d Bfn xid
BCoxBD; X...x BDp ——% BCoxBD,_ 1, x...xBDW_l(T{)u BC1XBD 1y X..XBD 1,

proXX

BM(n)x X" BM(

Hence the first relation holds. The second relation is shown the same way.

Bpo-m~lxx prlxrrx

| J S

)X X" BM(n)x X"

[627)
[e37)

S

The multiplication PyP,C 5 P,C of the homotopy monad is defined on objects
by

w((p,C); ((q1, D1)sxay oy T1ey)s v o s ((@ny D) Tnty o ooy Tory))

=((q, E); @11y« s T1ryye e s Tnry - v o s Tnpy)
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with (g, E') given by

C x _D1
lp)(gh)( Xqn

M(n) x M(r1) x ... x M(ry)

2

M(ri+ ... 4 ry)

On morphisms (f,m,g) with f : (po,Co) — (7, C1) in P(n), # € ¥,,, and
g € (BC) g = (¢1,... ,9n), we define g in a manner analogous to &,:
p(f,ed,id) is given by

Cox Dy x...x D, MClxDl ...x D,

and the identity on the other components.

p(id, 7, id) is given by the permutations

(CXxDiyX...XDy,p-TXq X...XGny X1,...,Xn)
+
(C X _Dﬂ-—l(l) X ... X Dﬂ.—l(n), p X Qr—1(1) X ... X q-1(n)s Xng—1(1)5--- ,Xﬂ.—l(n))

and p(id,id, g) is the obvious morphism.

It is straight forward to check that this is a functor. The “multiplication
functor” p is associative up to natural isomorphisms, because of the lax
operad structure of P. It admits a strict unit

n:C—=PC, z—(1,2) € P(1) xpy, C=P(1) xC
The functor 7 : P — M induces a right action of PP, on M:

P(n) xns, C* 28 M(n) xux, C" — M(n) xg, C"

Since the permutation functors Dy x ... x D, = D11y X oo X D1y
preserve the last vertex, we obtain a natural transformation p : MP, — M
such that the following diagrams commute:
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Mg MP
MIP,,2 MIP, MP,3 H . MP,2
PPy p MuPp, pMp
M,
MP, ? M MP,2 — M

and M 22 MIP, —25 M is idy.
These data allow us to define the lax functor
Qe(X) : AP — Cat"

of the next step in our program. We set @, (X) = MP,"Cx, The structure
maps are given by

MP," ¢ 1 =0

» d' =3 MP,"" BT Cx 0<i<nm
E]P’h"_lcx 1=n

s = MPhn_ir]IP’hiCX 0<:1<n

u

with 7 : MP, Y MM M.

Finally we apply the rectification (3.16) to Q«(X) to obtain a strict functor
Qu(X) : A% —s Cat™.
Since all our constructions are functorial in M and X, this defines a functor

Q. : Top®" —s SCat™.

6 Proof of Theorem 2.7

Throughout this section let M be a Y-free Cat-operad.
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6.1 Proposition: | — | : cwSTop®" — TopPM induces an equivalence of

categories
cwSTopP" [we™"] ~ Top®[we™"].

Proof: Let T = | Sing(—)| : Top — Top be the functorial CW-approximation
and

B(X):TX — X
the associated natural weak equivalence. Let
Top(A*, =) : Top — STop

be the continuous singular functor right adjoint to the realization functor,
and let

a'P(Ye) 1 Yo — Top(A®, Ya),  BP(X) : [Top(A*, X)| — X
be the natural continuous adjunction maps. Since Top(A®, —) is a continuous
product preserving functor, it defines a functor Top®" — STop®" right
adjoint to the realization functor | — | : STopP" — TopPM. By (4.9) the
functor T also induces a functor T' : Top®" —s TopPM and f(X) : TX —
X is a morphism of BM-spaces for BM-spaces X. Let T, : STop®" —
STop®M be the prolongation of T'. Now define
Q =T, o Top(A®, =) : Top"" — cwSTop™™
Claim 1: Let X be a BM-space. Then the composite
BP(X) o |B(Top(A®, X)) : |QX| — |Top(A®, X))| — X
is a weak equivalence in TopPM.

Proof: Let X, denote the constant simplicial space on X so that |X,| = X.
Consider the commutative diagram

T(X) = |T.X| — 1 Top(A®, X)| = [QX]
B(X)=|B(X.)| B(|Top(A*, X))
X = |X,| o Top(A®, X)|
BroP(X)
X



Since a'P(X,) is dimensionwise a homotopy equivalence, so is TeaP(X,).
Since Ty X, and QX are proper as simplicial spaces (i.e. the inclusion of the
space of degenerate n-simplices into the space of all n-simplices is a closed
cofibration for each n), realization gives a weak equivalence TX — |QX]|.
Since (X)) is a weak equivalence, the claim follows.

Claim 2: Let Y, be in cwSTop®™. Then there are weak equivalences in
cwSTopPM
TeatP(Y,)

Y. A T.Y. QY|

Proof: The left equivalence is induced by the homotopy equivalences 5(Y,) :
TY, — Y,. For the right equivalence consider the commutative diagram

1Y — oyl = [T Top(A, Ya)))
|B(Ys)] |B(Top(A®,|Ya]))]
vl o) [Top(A*, |Ya])
BrP([Ys)
Y.l

Since B(Y,) is a weak equivalence, ToaP(Y,) : T.Y, — Q(|Y4]) is a weak

equivalence by Claim 1. O

6.2 Proposition: The functor B : SCat™ — cwSTopPM induces an equiv-
alence of categories

SCat"we™"] ~ cwSTop®M[we™].

Recall the functor Q. : TopPM — SCat™ of the previous section. Define
D : cwSTopP" — SCat™
by D(X.) = d@.(X*), where d stands for the diagonal.

6.3 Lemma: Let X be a CW-complex. Then there is a sequence of weak
equivalences in cwSTopPM natural in X, which join BQ.(X) and the constant
simplicial space X, on X.



The proof is based on an analysis of the rectification v : QX — Qx.

There is a topological version W, of the W-construction (3.2): just replace
L by the unit interval. Let A be a small indexing category. A coherently
homotopy commutative A-diagram in Top is just a continuous functor

D : Wipp A — Top.

This is the topological version of Proposition 3.8. A lax natural transforma-
tion corresponds to the concept of a (coherent) homotopy homomorphism,
and a reduced lax natural transformation to the concept of a source reduced
homotopy homomorphism in the terminology of [15, p. 18]. There is a recti-
fication D : A —» Top of D : Wi A — Top together with a source reduced
homotopy homomorphism

Viop DD

such that each v4,,(A4) : D(A) — D(A) is a homotopy equivalence. vy, has
the following universal property: given an A-diagram E : A — Top and
a source reduced homotopy homomorphism 8 : E — D there is a unique
homomorphism of A-diagrams B:E—D making the following diagram
commute

) D
/ Viop
E ’ D

This is the topological version of Propositions 3.17 and 3.18. If we start
with a strict A-diagram D and take 3 = 1dp we obtain a homomorphism of
A-diagrams p = id : D —s D such that Viop © p = tdp as source reduced
homotopy homomorphisms. Since each each v4,,(A) : b(A) — D(A) is a
homotopy equivalence, p is a weak equivalence of A-diagrams.

If we consider diagrams in Top® where C is any topological operad then the
morphisms vy, 3, and p are homomorphisms of diagrams in Top® and not
just in Top. For more details see [15].

By construction, the classifying space functor maps the categorical situation
onto the topological one. In particular,

B(v) : BQ.(X) — BQ.(X)

is a source reduced homotopy homomorphism of A°P-diagrams of BM-spaces.
The map 7 : P — M of lax operads together with the weak equivalence
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n: BCx — X induce a weak equivalence of W;,,A%-diagrams in Top®M by
(4.7), (4.8), and (5.2)

BQ.(X) — B.(BM, BM, X).
Composing the two we obtain a source reduced homotopy homomorphism
A : BQJX) —s B.(BM, BM, X).

of simplicial BMEspaces, such that each f,, : BQ,(X) — B,(BM, BM, X)
is a weak equivalence. Since B,(BM, BM, X) is a strict A°’-diagram of BM-
spaces we obtain a sequence of weak equivalences of simplicial BM-spaces
defining the botton row of the following diagram.

6.4

T(BQ.(X)) = T((B.(BM, BM, X))") <~ T(B,(BM, BM, X))

| | |

BQ.(X) (B.(BM, BM, X)) <%— B.(BM, BM, X) — X,

Unfortunately, (Bo(BM, BM, X))" is not a simplicial CW-complex. We

resolve this by applying the standard functorial CW-approximation T' =
| Sing(—)|, which defines the rest of the diagram. By Lemma 4.9 the vertical
maps are weak equivalence of simplicial BM:spaces. All spaces of the dia-
gram apart from (B,(BM, BM, X ))" live in cwSTopP" and the maps joining
them are weak equivalences in cwSTop®™. This proves Lemma 6.3.

6.5 Lemma: Let X, be an object in cwSTopP™. Then there is a sequence
of natural weak equivalences in cwSTopP™ joining BD(X.,) and X..

Proof: Diagram (6.4) gives rise to a diagram of bisimplicial BM-spaces

T(BO.(X.)) —2T((Bu(BM, BM, X.))") <~ T(B.(BM, BM, X.))

|

BQ.(X.)

Xex
where X, is constant in the e-direction. The maps are weak equivalences in
each dimension *. The diagonals are objects in cwSTop®™, and we obtain

the required sequence joining BD(X,) and X.,. O
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6.6 Lemma: Let A be an M-category. Then there is a sequence of weak
equivalences in SCat™ natural in A, which joins Q.(B.A) with the constant
simplicial M-category A, on A.

Proof: Let C4 = Pris | A denote the category of prisms over A. The lax
operad P acts on C4 analogous to Construction 4.4, and the last vertex maps
7:P — M and n:Cyg — A are compatible with the lax action of P on
C4 and the strict action of M on A. Let

Qd(A) : AP — Cat™

be the lax functor defined as Q4(X) but with Cx replaced by C4. The last
vertex map defines a strict natural transformation of lax A°-diagrams in
Cat™

Qe(A) = B.(M, M, A)

such that each functor Qr(A) — Brp(M,M, A) is a weak equivalence. We
note that B,(M, M, A) is a strict A°-diagram. Furthermore there is a strict
natural transformation of lax A°P-diagrams in Cat™

F(A): Qu(A) = Qu(BA)
induced by the functor
CA—>CBA7 (f70)'_>(Bf70)

6.7 Lemma: The functor C4 — Cp4 is a weak equivalence.

Proof: By (4.8) the last vertex map defines a homotopy equivalence
BC4 — BA.

By (4.7) the last vertex map defines a homotopy equivalence B(Cpa) —
BA. Hence the result follows. O

We have strict natural transformations of lax A°-diagrams in Cat"
Qu(BA) <= Qu(A) = B.(M, M, A)
such that the functors

Qr(BA) +— Qir(A) — Bip(M, M, A)



are weak equivalences. Applying the rectification functor (3.16) we obtain
natural maps of strict AP-diagrams in Cat™

Qu(BA) <= Qu(A) = B.(M,M, A)"

which are dimensionwise weak equivalences. Since B,(M, M, A) is a strict
simplicial M-category, there is a natural map

B, (M, M, A)" <= B,(M,M, A)

which is dimensionwise a weak equivalence. Supplementing the diagram with
the evaluation to the constant simplicial M-category A, we obtain a sequence
of weak equivalences in SCat™

6.8

Qu(BA) <= Q.(A) = B.(M,M, A)" <= B,(M,M, A) = A.

natural in A. O

6.9 Lemma: Let A, be a simplicial M-category. There is a natural chain
of weak equivalences in SCat" joining DB(A.) and A..

Proof: Diagram (6.8) gives rise to a diagram of bisimplicial M-categories
Q.(B.A*) — Q.(-A*) = B'(Mva A*)A<:B°(M7M7 A*) = A..

consisting of weak equivalences in SCat™ for each fixed dimension *. The
diagonals are the required chain of weak equivalences. O
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