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ABSTRACT. We discuss the Brown Representability Theorem for triangulated cate-
gories having arbitrary coproducts.

In this paper we discuss the Brown Representability Theorem for triangulated cate-
gories having arbitrary coproducts. This theorem is an extremely useful tool and various
versions appear in the literature. All of them require a set of objects which generate the
category in some appropriate sense. Depending on the proof, there are essentially two
types: the first type is based on the analogue of iterated attaching of cells which is used
in the topological case; the second type is based on solution sets and applies a variant
of Freyd’s Adjoint Functor Theorem.

Motivated by recent work of Neeman [7] and Franke [2], we prove a new theorem of the
first type (Theorem A) and add, as an application, a Brown Representability Theorem
for covariant functors (Theorem B). The final Theorem C establishes a filtration of a
triangulated category which clarifies the relation between results of the first and the
second type.

THE MAIN THEOREM
Let 7 be a triangulated category and suppose that 7 has arbitrary coproducts.

Definition 1. A set of objects Sy perfectly generates T if the following holds:

(G1) an object X € 7 is zero provided that (S, X) = 0 for all § € Sy;
(G2) for every countable set of maps X; — Y; in 7 the induced map

is surjective for all S € Sy provided that (S, X;) — (S,Y;) is surjective for all i
and S € Sp.

Here, (X,Y’) denotes the maps from X to Y. For example, (G2) holds if every S € Sy
is small, that is, the functor (S,—) preserves arbitrary coproducts. Therefore the fol-
lowing result generalizes the classical Brown Representability Theorem for triangulated
categories having a set of small generators [5].

Theorem A. Let T be a triangulated category with arbitrary coproducts, and suppose
that T is perfectly generated by a set of objects. Then a functor F: T°° — Ab is
representable if and only if F' is cohomological and sends coproducts in T to products.

In [7], Neeman proves a Brown Representability Theorem for triangulated categories
which are well generated. A well generated triangulated category has a set of perfect
generators so that one gets a quick proof for Neeman’s result.

Examples of perfectly generated categories arise very naturally from triangulated cat-

egories having a set of small generators. Take for instance the stable homotopy category
1



2 HENNING KRAUSE

of CW-spectra or the unbounded derived category of modules over an associative ring.
Let 7 be a set of objects and let 7 be the smallest full triangulated subcategory which
is closed under coproducts and contains 7y. Then 7 is perfectly generated by a set of
objects [7].

The proof of Theorem A is based on a reformulation of condition (G2) which is given
in Lemma 3. Let us start with some preparations. We fix an additive category 7.
Following Auslander [1], a functor F': 7°? — Ab into the category of abelian groups is
called coherent if there exists an exact sequence

(—,X) — (YY) —F ——0.

The natural transformations between two coherent functors form a set, and the coherent
functors 7°P — Ab form an additive category with cokernels which we denote by 7 (see
also [3] for this concept). A basic tool is the Yoneda functor

T —7, X (- X).
Given an additive functor f: § — 7, we denote by f*: S — T the right exact functor
which sends (—, X) to (—, fX).

Lemma 1. Let 7 be an additive category.

(1) If T has weak kernels, then T is an abelian category.

(2) If T has arbitrary coproducts, then T has arbitrary coproducts and the Yoneda
functor preserves all coproducts.

Proof. Recall that a map X — Y is a weak kernel for Y — Z if the induced sequence
(_7X) - (—’Y) - (_:Z)

is exact. The proof of (1) and (2) is straightforward. Note that for every family of
functors F; having a presentation

(X)) " (%) — R —0
the coproduct F' =[], F; has a presentation

(=11 ¢4)
—J[x) = .J[v) — F—o.
i i
O

Given a class S of objects in an additive category 7, we denote by Add S the closure
of § in 7 under all coproducts and direct factors.

Lemma 2. Let T be an additive category with arbitrary coproducts and weak kernels.
Let Sy be a set of objects in T and denote by f: S — T the inclusion for S = Add Sp.
(1) S has weak kernels and S is an abelian category.
(2) The assignment F — F|s induces an exact functor fo: T — S.
(3) The functor f*: S — T is a left adjoint for f..
(4) feof*=id and f« induces an equivalence ’]A'/Ker fe — S.
Proof. First observe that for every X € 7, there exists an approzimation X' — X such

that X' € S and (S, X') — (59, X) is surjective for all S € S. This follows from Yoneda’s
lemma if we take X’ = [Jgcq, Xs where Xg =[]5 x)S.
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(1) To prove that S is abelian it is sufficient to show that every map in S has a weak
kernel. To obtain a weak kernel of a map Y — Z in S, take the composite of a weak
kernel X — Y in 7 and an approximation X' — X.

(2) We need to check that for F € 7 the restriction F|g belongs to S. It is sufficient
to prove this for FF = (—,Y). To obtain a presentation, let X — Y’ be a weak kernel
of an approximation Y’ — Y. The composite X’ — Y’ with an approximation X’ — X
gives an exact sequence

(= X)|s — (=Y')|s — Fl|s — 0.

Clearly, F' +— F|gs is exact.
(3) Let F' € S and G € 7. Suppose first that F' = (—, X). Then

(f°F,G) = (=, [X), G) = G(fX) = (F, [.G).

This implies the adjointness isomorphism for an arbitrary F' since f* is right exact.
(4) We have (f.of*)(—, X) = (=, X) for all X € S, and f.o f* = id follows since
fwo f* is right exact. For the rest we refer to Proposition IIL.5 in [4]. O

Lemma 3. Let T be a triangulated category with arbitrary coproducts. Let Sy be a set
of objects in T and let S = Add Sy. Then the functor

h: T—)S\, X = (= X)|s,
is cohomological. It preserves countable coproducts if and only if (G2) holds for Sp.
Proof. We apply Lemma 2. To this end write h as composite
he T — T I S.

The Yoneda functor is cohomological and f, is exact. Therefore h is cohomological. It
is clear that h _preserves coproducts if and only if f* preserves coproducts. We know
that f,: T — 8 induces an equivalence ’T/ Ker f, — S and it is not hard to see that f,
preserves coproducts if and only if Ker f, is closed under taking coproducts. We fix a
coproduct F' =[], F; in 7 and for each F; a presentation
(_’¢Z)

Now suppose that F; € Ker f, for all i. Thus (S, ¢;) is surjective for all S € S and all 7.
We have F' € Ker f, if and only if the induced map

is surjective for all S € §. Clearly, it is sufficient to have this for all S € Sy, and we
conclude that h preserves countable coproducts if and only if (G2) holds for Sp. O

Proof of the Theorem A. We fix a perfectly generating set Sy of objects in 7 and put
S = Add Sy. Replacing Sy by {X"S | n € Z, S € Sy}, we may assume that 3(Sp) = Sp.
Let F': T°? — Ab be a cohomological functor which sends coproducts in 7 to products.
We construct inductively a sequence

XOﬂXlﬂXgﬁ---

of maps in 7 and a set of maps 7;: (=, X;) — F for i > 0 as follows. Let U = g, F'S.
Each € U corresponds to an element in F'S, and we put Xo = [[,c; Sz. We get an
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element in

I[ 7S = FXq,

zeU
and using Yoneda’s lemma, this gives a map mp: (—, Xo) — F. Suppose we have already
constructed 7;: (—, X;) — F for some ¢ > 0. Let K; = Kerm; and let U; = Uses, KiS-
We define T; = H:ceU,- S, and apply again Yoneda’s lemma to obtain a map T; — X;.
We complete this to a triangle

T, 25 X, 25 Xy X5 5T,

and get an exact sequence

FET) 24 rxg 2% rx, B pr

since F' is cohomological. The construction implies (F'v;)m; = 0 and this gives an element
mi+1 € FX;41 such that (F¢;)m;11 = m. Thus we have a factorization
(=¢1) Tit1
mi: (= Xi) = (=, Xip1) — F.
For each 7 > 0 the map v; induces an epimorphism (—, T;)|s — Kj|s and we get therefore
an exact sequence

(=)l g
(= T)ls == (= Xi)ls == F|ls — 0.
We obtain in S for each i > 0 the following commutative diagram with exact rows

mils

0 — Kils — (=Xi)ls — Fls — 0
A
0 — Kils — (= Xip1)ls =2 Fls — 0
where ¥; = (—, ¢;)|s. Each 1; has a factorization

s

Vit (= Xi)|ls = Fls =5 (=, Xis1)s

and therefore m;11|s0¢; = id. This gives the following commutative diagram

(—X)ls 5 (—X)ls 2 (- Xy)ls

| | L
FlsITKils % FlsllKals =2 Fls[1Kyls =2
and taking colimits in S , we get an exact sequence
id—1; i
(+) 0 — [T %ls = [T(=Xls ™ Fls — 0.

Now consider the triangle
[Tx =[x —x —s]x)
and observe that
(m) € [[FXi =2 F(J] X)
induces a map 7: (—, X) — F. We apply the functor
T —8 X (-X)s
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which is cohomological and preserves countable coproducts by Lemma 3. This gives an
exact sequence
id—1; id—X1;
[T x0ls = T X)ls — (- X)ls — [[(—=X)ls =" [1(- =X)ls.

(2 7 2 (2
We compare this sequence with (x). The map id — ¥); is a monomorphism, since
Y(S) = 8, and it follows that w|s: (—, X)|s — F|s is an isomorphism. Moreover, the
subcategory of all Y € 7 such that my is an isomorphism is triangulated, contains S,
and is closed under arbitrary coproducts.

Now let 7’ be the localizing subcategory of 7 which is generated by Sy. Thus 7’
is the smallest triangulated subcategory of 7 which contains Sy and is closed under
coproducts. We claim that 7/ = 7. To see this let Y € 7 and apply the construction in
the first part of this proof to F' = (—,Y"). The corresponding map n: (—, X) — (—,Y)
is induced by a map X — Y since X € 7’. We complete this map to a triangle

W-—sX-—>-Y — YW

and use (G1) to obtain W = 0 = XW since (S, X) — (5,Y) is an isomorphism for all
S e 8y, and X(Sy) = Sp by our assumption. Thus 7/ = 7 and we obtain (—, X) = F in
the first part of the proof. O

Corollary. Let T be a triangulated category with arbitrary coproducts which is perfectly
generated by a set of objects Sy. Suppose that T' is a full triangulated subcategory which
s closed under countable coproducts and contains all coproducts of objects in Sg. Then

7 =T.

Thus perfect generators are strong generators in the sense of [2]. Note that for every
cardinal § > R a [-perfect generating set in the sense of [7] is automatically perfect as
in Definition 1.

Remark. 1If 7 has a set Sy of perfect generators, then the construction of each X € 7
implies that the functor X — (—, X)|s preserves arbitrary coproducts. Therefore the
following stronger condition holds for Sy:

(G2') for every set of maps X; — Y; in 7 the induced map
S, JTx) — 5. 1T

is surjective for all S € Sy provided that (S, X;) — (S5,Y;) is surjective for all i
and S € Sp.

BROWN REPRESENTABILITY FOR THE DUAL

Let 7 be a triangulated category with arbitrary coproducts. In this section we prove a
Brown Representability Theorem for 7°P. The first result of this type is due to Neeman
[6] and requires 7 to be generated by a set of small objects. This has been generalized
in [7]. The concept which is used here stresses the symmetry between 7 and 7°P.

Definition 2. A set Sy of objects is a set of symmetric generators for T if the following
holds:

(G1) an object X € T is zero provided that (S, X) = 0 for all S € Sy;

(G3) there exists a set 7y of objects in 7 such that for every map X — Y in T
the induced map (S, X) — (S,Y) is surjective for all S € Sy if and only if
(Y, T) — (X, T) is injective for all T € 7.



6 HENNING KRAUSE

It is clear that (G3) implies (G2), and that 7 has a set of symmetric generators
if and only if 7°P has a set of symmetric generators. Therefore the following Brown
Representability Theorem for 7°P is an immediate consequence of Theorem A.

Theorem B. Let T be a triangulated category with arbitrary coproducts, and suppose
that T has a set of symmetric generators. Then T has arbitrary products, and a functor
F: T — Ab is representable if and only if F' is cohomological and preserves products.

Proof. We have a set of perfect generators for 7 and therefore arbitrary products in 7.
In fact, Theorem A implies that for every family (X;)ier of objects the functor [ [,(—, X;)
is represented by an object which is [, X;. The set 75 which arises in (G3) is a set of
perfect generators for 7°P, and it follows from Theorem A that a functor F': 7 — Ab
is representable if and only if F' is cohomological and preserves products. O

An example for a set of symmetric generators is any set Sy of small objects satisfying
(G1). To see this, take for 7y the set of objects representing the functors

T°° — Ab, X+ ((5,X),Q/Z)

where S € S§y. This shows that the stable homotopy category of CW-spectra or the
unbounded derived category of modules over an associative ring have sets of symmetric
generators.

Remark. Let Sy be a set of perfect generators and let S = Add Sp. Each injective object
1 € § gives rise to an object in 7 representing

TP — Ab, X ((—,X)|s, ).
Therefore (G3) holds for Sy if and only if S has an injective cogenerator.

Neeman’s Brown Representability Theorem for the dual in [7] involves the existence

of an injective cogenerator for a category which is equivalent to some S; it is therefore
a consequence of Theorem B.

A FILTRATION

Let 7 be a triangulated category with arbitrary coproducts. In this section we study
a filtration 7 = J,, S, which is defined in terms of a set Sy of appropriate generators.

Let a be a cardinal. Recall that an object S is a-small if every map S — [[..; Xi
factors through []..; X; for some J C [ with card J < a.

i€l
icJ
Theorem C. Let T be a triangulated category with arbitrary coproducts, and suppose

that T is perfectly generated by a set Sy of a-small objects. Let k be the successor of A“
for some cardinal

A > sup{card(S, H Si) | S,S; € Sy and card I < a} + card Sp.
i€l
Then the objects X € T satisfying card(S,X) < k for all S € Sy form a subcategory Si
having the following properties:

(1) Sk is a triangulated subcategory of T which contains Sy;

) Sk is closed under taking coproducts of less than k objects;

) the isomorphism classes of objects in S, form a set;

) every subcategory T' of T which satisfies (1) and (2) contains S,;
) every object in Sy is k-small.
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A triangulated category which is well generated in the sense of Neeman [7] satisfies
the assumption of the preceding theorem. The conclusion of this theorem implies the
condition on a triangulated category which Franke assumes in [2] for his proof of the
Brown Representability Theorem. Note that the proof in [2] is based on a variant of
Freyd’s Adjoint Functor Theorem. Thus Theorem C provides a link between results
having completely different proofs.

Proof of the Theorem C. (1) is clear. To prove (2), let S € Sy and (X;);e; be a family of
less than x objects in S,. Suppose first that X; € Sp for all i. Every map S — [],c; X;
factors through [ [, ; X; for some J C I with card J < a. We have card(S, [[,.; Xi) < A,
and I has at most (A%)* = A subsets of cardinality less than a. Therefore

card(S,HXZ-) <A A=Y < k.
i
Now let each X; € S, be arbitrary. We have for each 7 € I a map T; — X; such that T;
is a coproduct of less than k objects from Sy and the induced map (S,T;) — (S, X;) is
surjective for all S € Sy. Using (G2'), it follows that the induced map

is surjective for all S € Syg. Thus [], X; belongs to S, since [[, T; € Sx by the first part
of this proof.

(3) and (4) follow from the proof of Theorem A where it is shown that each object in
S, can be constructed in countably many steps from objects in Sy by taking coproducts
of less than k factors and cofibers. Note that in each step there is only a set of possible
choices.

(5) follows from (4) since the x-small objects form a triangulated subcategory which
satisfies (1) and (2). O

As an example take the stable homotopy category S of CW-spectra. The set Sy =
{¥"S | n € Z} of suspensions of the sphere spectrum S = S is a set of perfect generators
where a = Ny. For every regular cardinal k > Ny the subcategory

S, ={X €S |cardm.(X) < k}
has the properties (1) — (5) of the preceding theorem.
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