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1 Introduction

One way to represent the generator of a Markov process is given by pseudo differential operators.
Above all this is due to the fact that the generator satisfies the so-called positive maximum
principle. Then by a result of Ph. Courrege [4] it is known that a linear operator A : Cg°(R") —
C(R") which satisfies the positive maximum principle, that is for any ¢ € C3°(R") and =5 € R"
we have
o(xo) = sup p(x) > 0 implies Ap(xy) <0,
zeR™

has a representation as a pseudo differential operator

(L) Aple) = —p(e, D)p(a) = = [ €“Ip(e.€)- () de, € CFRY).

R
Here the symbol p(z, €) is a function p : R" xR"™ — C which has the basic property that for fixed
x € R" the function & — p(z,&) is a continuous and negative definite function. Symbols with
this property we call negative definite symbols. We refer to Berg, Forst [3] for the definition and
properties of negative definite functions. Conversely a negative definite symbol defines by (1.1)
an operator satisfying the positive maximum principle. Here ¢ = [pn e @8 p(x) dz denotes
the Fourier transform and d§ = (27)7" d¢€.

Starting with a symbol of this type there had been several attempts to construct an associated
Markov process or semigroup (see Jacob [13],[14] and also [7],[8],[9]). The fundamental idea
is to fix a continuous negative definite function a?> : R” — R as a reference function. Then
the z-independent symbol a?(€) defines by (1.1) an operator —a?(D) and it is well-known that
—a*(D) is the generator of the Lévy process with characteristic exponent a?(¢). In [7],[8],[9]
and [13],[14] assumptions on the symbol p(z, £) are expressed in terms of the reference function
a*(€). More precisely, there are upper bounds of the symbol and its derivatives with respect to
x up to a certain order:

(1.2) p(z,€) < e(1 + a*(€))
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as well as a lower bound
(1.3) p(z.&) > §a*(§), €| large,

which should be regarded as a kind of ellipticty condition. But note that (1.3) is no ellipticty
condition in the usual sense since the growth of a? might be quite anisotropic and hence the
symbol might be degenerated.

Under assumptions of this type it was shown that either the operator extends to the generator
of a Feller semigroup or the corresponding martingale problem is well-posed.

The purpose of this article is to give similar results in an explicitly non-elliptic situation, that
is in the case of operators of variable order. Recently several investigations were made in the
case of the best known example, the generator of the so-called stable-like process which is given
by the symbol

(1.4) p(z.€) = [¢["
or to avoid problems with differentiability
(1.5) p(.€) = (L + €)=,

where 0 < a(z) < 2. For fixed z the operator —p(z, D) coincides with the generator of a
symmetric a(x)-stable process, but the order varies with x. Note that in particular for fixed «
the symbol is a negative definite function.

In the one-dimensional situation Bass [1] proved well-posedness of the corresponding martingale
problem under weak assumptions on a(z). In the higher dimensional case the process corre-
sponding to (1.4) was constructed by Tsuchiya [29] as the solution of a stochastic differential
equation. Symbols as in (1.5) are contained in the Hormander classes S7’s and were studied
by the symbolic calculus of pseudo differential operators by Unterberger, Bokobza [27],[28],
Unterberger [26], Visik, Eskin [31], [32] and Beauzamy [2].

In [15] Jacob and Leopold constructed a Feller semigroup generated by operators with symbols
(1.5). Their approach is mainly based on the method of Jacob concerning the generation of
Feller semigroups by pseudo differential operators in [13],[14], and the results of Leopold on
pseudo differential operators of variable order and corresponding Sobolev spaces, [17],[18],[19].
See also Negoro [25] and Kikuchi, Negoro [22] for further results concerning existence of tran-
sition densities and path behaviour of stable-like processes.

In this paper we consider a more general situation. The functions |¢|* and 1+ |¢]* in (1.4) and
(1.5) are associated to a diffusion process, i.e. Brownian motion. Thus the stable-like process
can be regarded as a diffusion subordinated by a subordinator given by the exponent %a(:):),
but the subordinator depends on x. Our starting point will be the generator —a?(D) of a Lévy
process or even a generator with variable coefficients which satisfies upper and lower estimates
with respect to a*(€) in the sense of (1.2), (1.3). We denote this symbol by s(z,£) and consider
the symbol

(1.6) p(z,€) = s(z, &)™,

where 0 < m(z) < 1. Note that if s(x,&) is a negative definite symbol, then p(z,¢) also is
negative definite.

Negative definite symbols are in general not in Hormander classes S, they are even mnot
differentiable with respect to £&. But if we restrict to the situation that the associated jump type
processes only have jumps of bounded size, then the corresponding negative definite functions



turn out to be infinitely often differentiable and certain estimates for the derivatives hold true.
In [9], see also [10], this behaviour is used as the motivation to define appropriate symbol classes
S’g””\. More precisely, let a? : R” — R be a continuous negative definite reference function as
above with the property that the Lévy measure of a? has bounded support (see section 2).
Moreover we will assume that a? has a minimal growth behaviour at infinity, i.e. there are
constants 7 > 0 and ¢ > 0 such that

(1.7) a*(€) > cle]”, g large.

It turns out to be more convenient to express estimates for the symbol in terms of the square
root

(1.8) M) = (1+a*(§)"?
instead of a2 itself. Moreover let

(1.9) ok) =kA2,  keN,.

Then the class S;””\ of symbols of order m € R is defined as the set of all C*°-functions
p:R" x R" — C such that

(1.10) 10207p(x,6)| < capA(@m0), 2 ER", EERY, 0,8 N,

Negative definite symbols that can be compared to a?(£) typically belong to SZ’A (see also
section 2). Our main result is the following

Theorem 1.1. Let a® : R™ — R be a continuous negative definite function such that the Lévy
measure of a* has bounded support and (1.7) holds. Let s € SZ”\ be a real-valued negative
definite symbol which is elliptic, i.e. there is a 6 > 0 such that

(1.11) $(2,€) > 6 X2(€).
Consider a C*-function m : R" — (0;1] with bounded derivatives and let M := supm(x),
zeR™
W= mler]lgnm(x)
If
1
(1.12) M—pu< 5 and >0
then
(1.13) p(w,€) = s(,)"

defines by (1.1) an operator —p(z, D) : C5°(R") — C«(R"), the set of continuous functions
vanishing at infinity. The operator —p(z, D) is closable in Coo(R™) and the closure is the
generator of a Feller semigroup (1), i.e. a strongly continuous sub-Markovian semigroup in

O (RM).

The conditions in Theorem 1.1 can be relaxed by a localization argument using the martingale
problem as carried out in the last section. In this way we obtain



Theorem 1.2. Let s(z,&) be as in Theorem 1.1, m : R" — (0; 1] be a C*°-function and p(x,§)
as in (1.13).
Then —p(z, D) : C(R") — Coo(R™) has an extension that generates a Feller semigroup (1;).

The proof of Theorem 1.1 relies on the theorem of Hille-Yosida. In particular for some 7 > 0
we have to find solutions of the equation

(1.14) (p(z. D) +1)u=f

for sufficiently many right hand sides. We split the proof into a part concerning the existence
of (weak) solutions and a part dealing with regularity. We treat both parts using typical
techniques for pseudo differential operators, but in a suitably modified way. For that purpose
we introduce an appropriate scale of anisotropic Sobolev spaces, which are defined in terms of
the function A(§):
(1.15) H**R") = {u € S'(R") : [ull,, < oo}, s €R,
where

1/2
(116 Jullp = ([, 2@ la@)F &)
Note that H**(R") coincides with the space H*/2°(R™) defined in [12], in particular Ho(R") =
LA(R") and Cg°(R™) is dense in H**(R™) for all s € R.
To prove existence of solutions we first apply a modified version of Friedrichs symmetrization
that yields a sharp Garding inequality, that is a lower bound for the corresponding bilinear form

in terms of the lower order norm ||-||, \. Then we show that the bilinear form is continuous on
the space obtained by closing the symmetric part of the form and finally show

Theorem 1.3. Let p(x,€) be as in Theorem 1.1 and T > 0 sufficiently large. Then for any
f € H*MNR") there is a unique u € H*(R™) such that

(p(z, D) 4+ 1)u = f.

Next we show that the operator p(z, D) admits a (left-)parametrix, i.e. there is a symbol ¢
such that
q(z, D)o p(z, D) =id +r(z, D),

where r(z, D) is an operator of negative order, hence has smoothing properties. We then easily
obtain the following regularity result.

Theorem 1.4. Let p(x,&) as in Theorem 1.1 and u be a solution of (1.14) for some f €
HEMR™), k> 0. Then for all € > 0 we have

= Hk+2#_E’A(Rn).

Financial support by DFG-Habilitanden-Stipendium Ho 1617/2-x is gratefully acknowledged.



2 Symbolic calculus

In this section we recall some results from [9] and [10], where a symbolic calculus for pseudo
differential operators with negative definite symbols is developed. Let again a? : R™ — R be
a continuous negative definite reference function. Then by the Lévy-Khinchin formula a? has
the unique representation

2.1) ) =cta@)+ [, (1= cos(y.)w(dy)

where ¢ is a nonnegative constant, ¢ is a positive definite (possibly degenerate) quadratic
form and the so-called Lévy measure v is a symmetric Borel measure on R™ \ {0} satisfying

2
Jrm (0 %V(dy) < o0.
Important examples of continuous negative definite functions are £ — |£]%, 0 < a < 2 which
lead to the symmetric a-stable process, but they also illustrate that in general continuous
negative definite functions are not differentiable. However if we consider a continuous negative
definite function with a Lévy measure that has bounded support, that is supprv C Bg(0) for
some R > 0, then we have, see [9], Prop.2.1 or [10], Prop.1,

a2 € C=(R")

and
(2.2) 02a*(©)] < coal (), (k) =k A2, a €N,

where the constants ¢, depend only on the (finite) absolute moments of the Lévy measure of
order > 2 and the maximal eigenvalue of the quadratic form ¢. Supposing that a continuous
negative definite symbol

p:R"xR" =R

also has Lévy measures supported in Bz(0) and is controlled by a? in the sense that

p(z.€) < c(l+a*(€))
then using the notation of (1.8) the estimate (2.2) yields
‘5’?19(3;’5)‘ < caa® el (g) < e A (£)@ellaD)
and the constants ¢, are independent of x. Therefore the condition p € SZ”\, that is
(2.3) 0202p(2,6)] < caph(€) 20D, 2R, £€R", 0,8 EN;
is nothing but the assumption that we have the same behaviour for the z-derivatives of the

symbol.
Moreover we will use the larger class Sgl’/\ which we obtain from (1.10) by replacing o by 0:

(2.4) ]agafp(a:,g)( <capME)™, T ER" £ER", a,8€NL
Note that in particular X (&) is an intrinsic example of a symbol in SZ”A.
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In [9] a symbolic calculus for these classes of pseudo differential operators was developed similar
to the results of Kumano-go [23] for symbols with general weight functions A. Since our weight
function A doesn’t satisfy the differentiability properties which are assumed for the basic weight
functions of [23], it does not fit into that framework. Thus modified proofs were necessary, using
explicitly properties of negative definite functions. We will need the following results:

For p € S{"* the operator p(z, D) is a well-defined object that satisfies ([9], Prop.3.2)
p(z, D) : S(R") — S(R") continuously.
Therefore it makes sense to talk about composition of operators and formally adjoint operators.

Proposition 2.1. ([9],Cor.3.5,3.11, [10],Th.2,4) Let p; € S;"*, py € S5,
Then py(x, D) o pa(z, D) is again a pseudo differential operator with symbol in SpmtmaA,
If moreover p, € S;”l’)‘, P2 € 5';”2’)‘ we have

(2.5) p1(z, D) o pa(x, D) = (p1 - p2)(x, D) + r(x, D),
where the product of the symbols satisfies py - pa € Sglﬁmz’)‘ and r € Syt
By p*(x, D) we denote the formally adjoint of p(x, D), which means
(p*(x, D)u,v) = (u, p(x, D)v), u,v € S(R"),
where (-, ) is the L?-inner product.

Proposition 2.2. ([9],Cor.3.6,3.11, [10], Th.2,4) Let p € SB’L’A. Then the formally adjoint
p*(z, D) is again a pseudo differential operator with symbol in Sg"”\.
If moreover p € SZQ”\ we have

(2.6) p*(z, D) = plx, D) +1/(x, D).
where the complex conjugate p of the symbol satisfies p € S;””\ and ' € 5'6”_1”\.

Therefore up to lower order terms composition and taking the formally adjoint have easy
interpretations on the level of symbols.
By duality the formally adjoint allows for p € SB"’/\ to extend the operator continuously to

(2.7) p(z,D): S'(R") — S'(R")

and we now can find a natural meaning of the order of an operator. Recall the definition of the
spaces H**(R") in (1.15), (1.16).

Proposition 2.3. (9], Theo.3.7, [10], Th.3) Let p € S;"*. Then for every s € R the operator
(2.8) p(z, D) : H*"™NR") — H*NR")
15 continuous.

Finally we will need the Friedrichs symmetrization, which in a modified form is also available
in this context (see [9], Theo.4.1, 4.4).

Theorem 2.4. Let p € SZL’)‘ be a real-valued non-negative symbol. Then there is a symbol

Pr € 5’6”)‘ such that p — pp € Sz)n*l”\ and the operator pr(x, D), the Friedrichs symmetrization,
is a symmelric non-negative definite operator in L*(R™), i.e.

(2.9) (pr(z, D)u,u) >0
for all v € S(R™).



3 Existence of solutions
In this section let s € SZ)‘ be a negative definite elliptic symbol, i.e. there is a ¢ > 0 such that
(3.1) s(z,€) 2 M), =z, ER,

and let m : R™ — (0; 1], m € C3°(R") be as in Theorem 1.1, that is for

(3.2) M = sup m(x), p = inf m(z)
z€R™ zER™

we assurne .

(3.3) M—u<§, w>0

and consider
plx, &) = s(z, &)™,

The first property we have to check is whether p(z, ) is a symbol in the symbol classes Szl”\.
Since the exponent m(z) depends on z, differentiation of p with respect to z yields certain
logarithmic term of s(x,€). In the case of symbols (1.5) this can be treated by considering the
Hormander classes Sy with 6 > 0. A similar procedure for symbols in S;””\ causes problems for
the symbolic calculus, since the order of the derivatives 0¢p(x, §) does not decrease arbitrarily
as |a| — oo. Therefore it is more convenient to capture the effect of the z-derivatives by slightly
increasing the order of the symbol, i.e. p € SZM e for e > 0. First we need

Lemma 3.1. Let G,K,L : RY — R be C®-functions, G > 0, L # 0. Then we have for
veNy, I=1]

(i) l,
d"exp K =exp K - Z Clyi} H 0K,
N+ =7 i=1
1'=0,1,...]

(it)
N . L oG
0" log G = Z c{%}izl_[lT if v # 0,

Mt n=y

(iii)

11 L oL
FATL < BN | S
L L Y1+t n=y b =1 L
The summation is taken over all choices of multiindices v1,..., vy € NY and y1,...,7 € NY,

respectively, that have sum . The constants cg,y, cf{%,} and c’{’%} depend on the choice of the
multiindices.

The proof by induction is an elementary application of the chain rule. See also Fraenkel [6] for
general higher order chain rules in higher dimensions.
We now are able to prove



Proposition 3.2. Let p(z,£) be as above. Then for all e > 0
(3.4) 02 02p(, )| < Cape pla, ) - ATUDF(E),
In particular p € S§M+E’”\.

Proof: We have to estimate the derivatives

8?8519(96, &) = 8?858(1’, £m@ = 8?85 exp (m(z) -log s(z,§)) .
We apply Lemma 3.1 (i) with N = 2n, v = (a, ), | = |a| + |3]. Thus

l/

(35) lagafp(xaf)‘ < €xp (m(m) : logs(x,f)) : Z Clag,Bi} - H tai,@i(l'?g)

al+...tap=a =1
Br+...+By=03
I'=0,1,..1
where
(36) 1o (0.6) = 002 (m(e) ogs(e,€) = 3 () 2“hmte) 9202 o .

Bi<Bi
Again by Lemma 3.1 (ii), if & = |o;| + 8] # 0

, k a%aﬂa
8?"(951' log s(z, &) = > 4,7} H g £)

a1+ tap=ay

B1+...+Br=0;

Since s(z,€) is an elliptic symbol in S2* we find

k
O 0% logs(x.€)| < cay S TIATUD(g

O~£1+...+O:¢k=ai j:1
B1+...+Br=0;

< Caiﬁ{-)‘ig(lail)(g)a

where we used the subadditivity of ¢ in the last step. Moreover we always have [log s(z,§)| <

clog A(€) < c.A*/H(€). Since m € C°(R™) we therefore get from (3.6)

A—elail) gy, i # 0
|t04iﬁi (I7§)| < Ca;Bie { )\5/1(5)(’5) aiOé:f)

and finally by (3.5)

0e0p(x.6)| < p@.&) case D [T rbe)- T r)
al+...fap=a i=1,..., 1A i=1,..., 4
Bi+...+8y=p3 ;70 a;=0
'=0,1,...1

< p(a,€) - cage ATUDFE(E),
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The second statement follows immediately from p(z, &) < c A2M(€). O
We want to consider the equation
(3.7) (p(z, D) +7)u = f
for 7 > 0. Let p,(x,&) = p(x, &) + 7 and
B (u,v) = (p,(z, D)u,v), u,v € C(R"),
be the associated bilinear form. Here (-, ) is the inner product in L*(R"). We note

Lemma 3.3. Let g € S5™". Then the bilinear form
(u,v) — (¢(z, D)u,v), u,ve CFR"),
has a continuous extension to H™*(R™).

This follows immediately from
|(g(x, D)u,v)| = |(A"™(D) 0 g(w, DYu, ""(D)v)| < ¢ [[ull ]l »

by Cauchy-Schwarz inequality, since by Proposition 2.1 both A= (D) o ¢(x, D) and A™(D) are
operators of order m.
Observe that by the ellipitcity of s there is a ¢’ > 0 such that

(3.8) p(z, &) > &' N*#(€).

Theorem 3.4. Let ¢ > 0 such that M — p+e < 1/2 and let M' = M +¢/2. Then B, extends
continuously to HM MR™) and if T is sufficiently large, the lower estimate

!

1)
(3.9) B (u,u) > 7 [|uly
holds.

Proof: The first statement is immediate from Lemma 3.3 since p, € S?)M/’”\. Let Q(x,&) =

p(x, &) — 0 N*(€) € SZM/’A. By (3.8) we have Q(z,&) > 0 and hence by Theorem 2.4 we know
that the Friedrichs symmetrization Qp(z, D) is a symmetric nonnegative operator with symbol
Qr € S(Q)M/”\ such that r = Q — QF € S(Q)MLI”\.

Then by Lemma 3.3

(p(z, Dyu,w) = ' ||ull;, = (Qz, D)u,u)
= (Qp(z,D)u,u)+ (r(xz,D)u,u)

2 2
> > =5 lullyx = (0 lully

7|
Note that the first inequality represents a modified form of the sharp Garding inequality. In
the last step we used the fact that M’ — % < p and the inequality

2
—C ||u||M’71/2,/\

[ully, 0 < Allully, » + c(A) [Ju]

82,A — 53,A
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for s; > so > s3 and any A > 0 (see [8], (2.9)). Choosing 7 > ¢(d") proves (3.9). O

B, is continuous bilinear form on H*"*(R™) but satisfies a lower bound only with respect to
a lower order norm, which of course reflects the character of varying order. To get a weak
solution of (3.7) in terms of this form B, we will use a method which is known in the case of
degenerate elliptic differential operators, see Louhivaara, Simader [20] [21]. For that purpose
let

~ 1 /
B, (u,v) = =(B,(u,v) + B;(v,u)), u,v € HM MR,
2

be the symmetric part of B,. Then obviously

(3.10) ‘ET(%U)‘ < cllullyp - 0l
and 5
(3.11) B (u,u) > 5 |lully 5

Therefore B, is a symmetric bilinear form on HM *(R") which by (3.11) is positive and not
degenerate, i.e. B,(u,u) = 0 if and only if u = 0, that is B, is an inner product. Of course in
general H™'*(R™) is not complete with respect to this inner product. By H?" we denote the
completion of HM"*(R") with respect to the norm ||-[|, = BY2. Then (H"", [I[I,,,) is a Hilbert
space. By (3.10) and (3.11) we can construct the completion in such a way that the continuous
and dense embeddings

HJ\J’,/\(Rn) s HPT < Hu,)\(Rn)

hold.

Lemma 3.5. B; is a continuous bilinear form on (H?, [-[|, ).

Proof: Since p,(z,&) is real-valued, Proposition 2.2 yields

3( +(2, D) + pr(x, D)) + r1(x, D) = pr(x, D) + 11, D),

L(e(x.D) +p(r. D) = 3

where r, € S2 1 and therefore for u, v € CP(R™)

|Br(u,v)| = |(pr(z, D)u,v)| < ’%((m(% D) + pr(x, D))u,v)| + [(ri(z, D)u, v)]

= ‘éT(u,U)‘ + |(ri(z, D)u,v)|.

B, is continuous on HP" by definition and by Lemma 3.3 (ry(z, D)u,v) is continuous on
HM'=1/2X(R™) and therefore also on HP7, because by M’ — 2 < p we have the continuous
embedding

HP™ H#,A(Rn) SN HM/_1/2’>\(RTL>.
O

Remark: In other words B, with domain H?" is a sectorial form in the sense of Kato [16],
VI.2.
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It is now easy to give a

Proof of Theorem 1.3: By Lemma 3.5 we know that B, is a continuous and by definition
coercive bilinear form on H?P~. Thus by the theorem of Lax-Milgram for any f in the dual space
(HP7)" there is a unique u € H?~ such that

B, (u,v) = (f,v) for all v € HP".

We choose a sequence (ug) in C3°(R™) which converges to u in HP and consequently also in
H®AMR™). Note that for any v € C§°(R") the map u + (u,v) has a continuous extension to
H=2MAR™) and p, (2, D) : H*MNR™) — HF2MA(R™) is continuous. Thus the equation

(pT(x: D)ukav) = BT(ukvv): vE Cgo(Rn>7
yields for k& — oo
(pr(z, D)u,v) = B, (u,v) = (f,v) for all v € Cg°(R")

and therefore

pr(x, D)u= f.
In particular because of the embeddings HP~ — H**(R") and H#*(R™) — (HP") we have a
unique weak solution u € H**(R") of equation (3.7) for any f € H **(R"). O

4 Regularity of solutions

Let p(x,&) as in section 3 and € > 0 such that M — u+ ¢ < 1/2. Our aim is to construct
a (left-)parametix to the operator p,(x, D), that is an inverse modulo a smoothing operator.
From the existence of such parametrix we then easily obtain regularity for the solution of equa-
tion (3.7).

The symbolic calculus for SZ’”\ does not yield expansion series with remainder terms of arbi-
trarily small order. But it turns out to be sufficient to use a first order expansion to get a
smoothing remainder term, i.e. an operator which is order improving with respect to the scale
of Sobolev spaces H¥*(R").

Define
1

pr(z,8)

QT(L 5) -

Lemma 4.1. We have
q- € 5F2u+5,/\
T g .

Proof: We apply Lemma 3.1 (iii) to estimate the derivatives of ¢, (z,&) and it follows with
L= lal+16]:

1 l
Cf~. R.1

(7,€) Z (e -1
Bi+---+61=p5

004, (2, €)| < %" %'p(,€) iagipf(”“”’@' |

pr(z,8)

11



0107 pr (.6)

By (3.4) we have @)

< Coypie A70UDFE(E) for any € > 0 and therefore by (3.1)

02024, (,€)| < cape A721(8) A20D+(g)
for all € > 0 by the subadditivity of o. O

Now the proof of Theorem 1.4 is almost immediate.

Proof of Theorem 1.4: Let f € H**(R™) and u be the solution of (3.7) which is in H*»*(R")
by Theorem 1.3. Then Proposition 2.1 gives

(4.1) ¢-(z, D) op,(x,D) =id + r(z, D),

where 7 € S5 for —t = (—2u+e)+ (2M +e) —1=2(M — i+ — 1) < 0. We apply (4.1) to
u and obtain

u=¢q-(z,D)op.(z,D)u—r(z,D)u=q (x,D)f —r(z, D)u.

We have ¢ (z,D)f € H¥2==XR") and r(z, D) is order improving, that is u € H*R")
implies r(z, D)u € H***(R") and hence u € H¢FONE+2e=e)\(R™)  Applying this argument
recursively finally gives u € H¥F2#==A(R™). O

In order to find solutions of (3.7) also in C(R™) we need a Sobolev embedding for H**(R")
in C(R™). Recall that for the reference function a? we have imposed the assumption (1.7)

a*(§) = clgl”,  I¢] large,

which was not used up to now. In fact it is easy to see that under (1.7) H®*(R") is continuously
embedded into the ordinary Sobolev space H™/?(R™) and it follows (see [8], section 2)

HR") — Coo(R")  if s > 2.

Let us give the

Proof of Theorem 1.1: Let again € > 0 satisfy M — p+¢e < 1/2. We know that p € SZM””\.
Choose k > 0 such that k > 2. Then H**?M*=X(R™) and H**(R") can be considered as dense
subspaces of C(R") and it follows
(i) that

—p(x, D) . Hk+2M+e,)\(Rn) N Hk,/\(Rn)

is a densely defined operator in C(R").

Moreover p is a continuous negative definite symbol. Hence by the result of Courrege, [4],
Théoreme 3.5, we know that —p(z, D) satisfies the positive maximum principle as an operator
with domain C§°(R"). By an approximation argument, see Jacob [13], Theo. 9.3, we see that
(i) —p(z, D) satisfies the positive maximum principle also on H*?MFeA(R™).

Finally let 7 > 0 be sufficiently large and f € H*2M=#+&)XR™). Then by Theorem 1.3 and
Theorem 1.4 we know that there is a u € HFF2(M-pFe)+2u—eN(R") = [F+2M+NR™) such that

p-(z,D)u = f.
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In other words

(iii) The range of the operator p,(z, D) = 7 — (—p(z, D)) with domain H*+2M+=A(R™) contains
HF+2M=p+e)A(R™) and is therefore dense in Cy (R™).

By the theorem of Hille-Yosida, see [5], Theo. 4.2.2, the conditions (i) - (iii) imply that the
closure of (—p(z, D), H¥?M+XR™)) generates a Feller semigroup (7T}).

But C¢(R™) is dense in H*2MFTeANR™) —p(x, D) maps HF2M+EXNR™) continuously into
HEA(R™) and both HF2M+eA(R™) and H**(R™) are continuously embedded in C. (R™). There-
fore this closure coincides with the closure of (—p(z, D), C§°(R")). O

Remark: By Lemma 3.5 we know that the bilinear form B, with domain H?" is a closed
coercive form in L*(R") in the sense of Ma, Rockner [24]. We deduce that therefore (T}) is also
a strongly continuous semigroup on L?(R"). The sub-Markovian property of (7;) hence implies
that B; has the contraction property in [24], [.4.4, and is a semi-Dirichlet form.

5 Localization by the martingale problem

The restriction (1.12) for the oscillation of the exponent function m(x) implies in particular that
the bilinear form B; is continuous with respect to its symmetric part, i.e. sectorial and therefore
is necessary in the above approach. We can avoid this condition as well as the boundedness of
the derivatives of m(x) if we use an approach via the martingale problem. This is mainly due
to the fact that well-posedness of the martingale problem is closely related to the property that
the operator generates a Feller semigroup, see [30].

By a solution of the martingale problem for the operator —p(x, D) we denote a probability
measure P € M;(Dgr) on the path space Dgr of all cadlag-functions w : [0;00) — R" such
that for all p € C3°(R")

6.1) P(X) = [ (=ple. DIg)(X,)ds, t20,

is an {F; }-martingale, where X;(w) = w(t) and F; = o(Xs : s < t). The martingale problem is
called well-posed if for every given initial distribution Px, € M;(R") there is a unique solution.

In particular the following result of van Casteren [30], Prop.2.6, holds true.

Theorem 5.1. Let —p(x, D) be a densely defined linear operator in Co(R™) for which the
martingale problem is well-posed. Then —p(z, D) has a unique extension that generates a Feller
S$emigroup.

Remark: Let us first note that we may restrict to the conservative case, that is we may consider
the symbol p(x, &) := p(z, &) —p(x,0). Both p(x, &) and p(z, §) are negative definite symbols and
x — p(z,0) is a bounded continuous function. Therefore both —p(z, D) and —p(z, D) satisfy
the positive maximum principle and their difference is a bounded operator in Co(R"™). By a
standard perturbation result for generators of (Feller-)semigroups hence —p(x, D) generates a
Feller semigroup if and only if —p(z, D) does.

The key result we need in this section is ([7], Theo. 7.1, see also [5], Chapter 4.6)
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Theorem 5.2. Let p,pr : R" x R" — R, k € N, be continuous negative definite symbols such
that p(z, D), pp(z, D) : C(R™) — Cy(R"™) and let (Ug)ren be an open covering of R™ such that

(52) p(xvé.) = pk(xag) fOT’ all x € Uk; f € R™

If the martingale problem for —p(x, D) has a solution for all initial distributions and the mar-
tingale problem for —py(x, D) is well-posed for all k € N, then the martingale problem for
—p(x, D) is well-posed, too.

Proof of Theorem 1.2: Let p(z,£) be as in Theorem 1.2, i.e p(z,€) = s(z, &)@, where
5 € SZ”\ is a negative definite symbol which is elliptic in the sense of (1.11) and m is a C*°-
function on R" with values in (0; 1]. Then

ﬁ($7 5) = p($7 5) o p(xv 0)
is a negative definite symbol such that p(x,0) = 0 and for a suitable ¢ > 0

Bz, €) < c(1+[€).
Thus by [8], Theo. 3.2, there is a solution to the martingale problem for —p(z, D) for any initial
condition.
Next fix zp € R" and choose open relatively compact neighbourhoods U,,, V,, of zy such that
zg € Upy C Uy C Vi and

1
|m(z) — m(zg)| < = for all z € V.
Let ¢4, € C3°(R") such that 0 < ¢,, <1, ¢, =1 in U,, and supp ¢,, C V,, and define
Mo () = o (2) - M) + (1 = o (2)) - 12(0)-

1
Then m,, € C;°(R"), inf my,(z) > 0 and supmy,(x) — inf m,,(z) < = and therefore the
zeR"™ zeR™ z€R™ 2

Pao (2, €) = s(x, €)™

satisfies the conditions of Theorem 1.1 and —p,,(z, D) has an extension that generates a Feller
semigroup. By the above remark the same holds true for —p,,(z, D), where

ﬁwo(xa 5) - ﬁxo(xa g) - ﬁmo(ma 0)
It is well-known that for a given initial distribution generators of Feller semigroups have at
most one solution to the martingale problem (see for example [5], Cor. 4.4.4). Thus again by
the above existence result the martingale problem for —p,,(x, D) is well-posed.
To proceed with the proof of Theorem 1.2 we choose a sequence py(z,&) = p,, (2,€), k € N,

out of the family (p,(x,&)),ern such that | J U,, =R". Since py(z, £) coincides with p(z,€) for

keN
x € Uy,, Theorem 5.2 implies that the martingale problem for —p(z, D) is well-posed.

symbol

The statement of Theorem 1.2 for —p(x, D) or equivalently —p(z, D) is therefore implied by
Theorem 5.1, once we know that —p(z, D) is an operator in C(R"), that is

—p(x, D) : CF(R™) — Cx(R™).
But this follows immediately by [11], Theo. 3.3, since by our assumptions sup p(z,§) — 0 as

zeR™

&E— 0. O
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