STRONGLY HOMOTOPY-COMMUTATIVE MONOIDS
REVISITED

MICHAEL BRINKMEIER

ABSTRACT. We prove that the delooping, i.e. the classifying space,
of a grouplike monoid is an H-space if and only if its multiplication
is a homotopy homomorphism, extending and clarifying a result
of Sugawara. Furthermore it is shown that the Moore loop space
functor and the construction of the classifying space induce an
adjunction of the according homotopy categories.

INTRODUCTION

In [Sug60] Sugawara examined structures on topological monoids,
which induce H-space multiplications on the classifying spaces. He in-
troduced a form of coherently homotopy commutative monoids, which
he called strongly homotopy commutative. His main result is that a
countable CW-group G is strongly homotopy-commutative if and only
if its classifying space BG is an H-space. The proof proceeds as follows.
One first shows that the multiplication G X G — G of a strongly ho-
motopy commutative group is a homotopy homomorphism (Sugawara
called such maps strongly homotopy multiplicative), i.e. a homomor-
phism up to coherent homotopies. Then one shows that this map in-
duces an H-space structure on BG. The proof of the converse is very
sketchy and far from convincing.

We start with an easy to handle reformulation of the notion of homo-
topy homomorphisms. The well-pointed and grouplike monoids (cmp.
Def. 2.4) and homotoy classes of these homotopy homomorphisms form
a category HGrpy. If Topy; is the category of well-pointed spaces and
based homotopy classes of maps, then the classifying space and the
Moore loop space functors induces functors By : HGry — Topj; and
Qp : Topy;, — HGry. We first prove the following strengthening of a
result of Fuchs ([Fuc65]).

Theorem (3.7). The functor By is left adjoint to Q.
The adjunction induces an equivalence of the full subcategories of

monoids in HGrg of the homotopy type of CW -complexes and of the
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full subcategory of Topy, of connected spaces of the homotopy type of
CW -complezes.

We then reexamine Sugawara’s result starting with grouplike
monoids whose multiplications are homotopy homomorphisms. They
give rise to H-objects (i.e. Hopf objects) in the category HGrpy. We
obtain the following extension of Sugawara’s theorem.

Theorem (3.8 and 4.2). The classifying space of a grouplike and well-
pointed monoid M is an H-space if and only if M is an H-object in
HGI‘H.

As mentioned above the multiplication of a strongly homotopy com-
mutative monoid is a homotopy homomorphism. We were not able to
prove the converse and consider it an open question.

I would like to thank Rainer Vogt for his guidance and help during
the preparation of this paper, and James Stasheff for his corrections and
suggestions. The author was supported by the Deutsche Forschungsge-
meinschaft.

1. THE W-CONSTRUCTION

Let Mon be the category of well-pointed, topological monoids and
continuous homomorphisms between them. Here well-pointed means,
that the inclusion of the unit is a closed cofibration.

Remark 1.1. One can functorially replace any monoid M by well-
pointed one by adding a whisker (cmp. [BV68], pg 1130f.). This does
not change the (unbased) homotopy type of M.

Definition 1.2. Let M and N be topological monoids. A homotopy
H,: M — N 1s called a homotopy through homomorphisms if for each
t € I the map H; : M — N is a homomorphism.

Definition 1.3. (cmp. [BV73],[Vog73],[SV86]) We define a functor
W : Mon — Mon. For M € ob Mon the monoid WM 1s the space

WM =[] M x 1"/ ~

neN
with the relation
(.Io,tl, % P ,tn, .In) =
(Zoy - tict, Tica Tistiga, ooy L) fort; =0
(z1, tz,..., T,) for xp = e
(zoy- .., micy,max(t;, tiv1), Tip1, ..., T,) for z; =€
(zo,- .. ,tn_l, Tpo1) for z,, = e.

The multiplication is given by
(Zoy -yt o) - (Yos S15 -5 Uk) = (Toy -« s tny Ty LYo, S15 - -+, Uk)-
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A continuous homomorphism F : M — N is mapped to WF : WM —
W N with

WF(xo,t1,21...,2,) = (F(xo),tl, F(x1),..., F(;cn)))

The augmentation epr : WM — M with ear(zo, ..., 2,) = 29 - Tn
defines a natural transformation ¢ : W — id. If 13y : M — WM is the
inclusion, which maps every element x of M to the chain (z), we get
em © 1y = 1dy; and a non-homomorphic homotopy h; : WM — WM
from iy 0 e to 1dps, given by

ht(l'o,tl,.rl, e ,tn,xn) = (.ro,ttl,.rl, e ,ttn,.fn).

Therefore s 1s a homotopy equivalence and M a strong deformation
retract of WM at space level, 1.e. its homotopy inverse is no homomor-
phism.

One of the most important properties of the W-construction is the
following lifting theorem, which is a slight variation of [SV86, 4.2] and

is proven in the same way.

Theorem 1.4. Given the following diagram in Mon with 0 < n < 0o
such that
H

TS oo -
WM B 1. M s well-pointed and
x % 2. L is a homotopy equivalence.
N
Then there exists a homomorphism H : WM — B and a homotopy
K, : WM — N through homomorphisms from Lo H to F. Furthermore
H is unique up to homotopy through homomorphisms.

2. HOMOTOPY HOMOMORPHISMS

Definition 2.1. Let M and N be two well-pointed monoids. A homo-
topy homomorphism F from M to N is a homomorphism F : WM —
WN. The map f:=éeyoFoipy : M — N is the underlying map of F.
Let HMon be the category whose objects are well-pointed, topolog-
ical monoids, and whose morphisms are homotopy homomorphisms.

Remark 2.2. Our homotopy homomorphisms are closely related to
Sugawara’s approach. If we compose a homotopy homomorphism with
the augmentation, we obtain a map WM — N which is, up to the
conditions for the unit, a strong homotopy multiplicative map in Sug-
awara’s sense. Since ¢y 1s a homotopy equivalence, the resulting struc-
tures are equivalent, after passage to the homotopy category.

The Moore loop-space construction ;X and the classifying space
functor B define functors Qw : Top* — HMon and By : HMon —
Top™ by Qw(X) = QuX and Bw(M) = B(WM) on objects and
Qw(f) = WQu f and By (F) = BF on morphisms.
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For a based map f : X — Y let [f]. denote its based homotopy class.
For a homomorphism F of monoids let [F] denote its homotopy class
with respect to homotopies through homomorphisms.

Let Top}, be the category of based, well-pointed spaces and based
homotopy classes of based spaces and HMony the category of well-
pointed monoids and homotopy classes of homotopy homomorphisms.

Remark 2.3. One can prove that the homotopy homomorphisms, which
are homotopy equivalences on space level, represent isomorphisms in

HMong.

Since Qw and Bw preserve homotopies, they induce a pair of func-
tors.

By : ‘IO]J?-_I = HMong : Qf

Definition 2.4. A monoid M with multiplication g and unit e is called
grouplike, if there a continuous map ¢ : M — M such that the maps
x> p(x,i(z)) and x — p(i(z), ) are homotopic to the constant map
on e.

Since the Moore loop-spaces are grouplike and since this notion is
homotopy invariant, an additional restriction is necessary for Theorem
3.7 to be true. Let HGr be the full subcategory of HMon, whose
objects are grouplike, and let HGry be the corresponding homotopy
category. Then By and ( give rise to a pair of functors

BH : Topfq = HG’I‘H : QH

We make use of a construction from [SV86]. For an arbitrary monoid
M let EM be the contractible space with right M-action such that
EM/M ~ BM. We define a monoid structure on the Moore path

space

P(EM;e, M) :=
{(w,l) € EM®+ xR, : w(0) = e,w(l) € M,w(t) = w(l) for t > l}.

The product of two paths (w,!) and (v, k) is given by (p,l + k), with

) ifo<t<li
P(t)—{w(g).,,(t_g) fl<t<l+k.

The end-point projection mp @ P(EM;e, M) — M, (w,l) — w(l) a
continuous homomorphism. Since P(EM;e, M) is the homotopy fiber
of the inclusion 7 : M — EM and since EM is contractible, my; is a
homotopy equivalence.

By Theorem 1.4 there exists a homomorphism Thy : WM —
P(EWM;e,WM) such that the following diagram commutes up to
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homotopy through homomorphisms.

WM T P(EW M;e, W M)
WM

Because Ty is strictly natural in WM, Ty is natural up to homotopy
through homomorphism.

Obviously we have P(BW M, *,%) = QyBWM. Hence the pro-
jection pwa @ EWM — BWM induces a natural homomorphism
P(pwwm) : P(EWM;e, WM) — QyBW M. Because WM is grouplike,
P(pw) is a homotopy equivalence. Therefore we obtain a homomor-
phism Ty : WM — WQy BWM, which is induced by Theorem 1.4

and the following diagram.
WM —— WQyBWM

TMl lEQMBWM

P(EWM; e, WM) 5o Qu BWM
M

Since all morphisms are natural up to homotopy through homomor-
phisms, the Ths form a natural transformation [T] from idygr, to
Qg By and each Ty is a homotopy equivalence and hence an isomor-
phism in HGry. Its inverse [Ky] can be constructed by Theorem 1.4
and the following diagram.

W Qs BW M oo BM e - WM

T~

WQNBW M

For each well-pointed space X, we chose Ex to be the dotted arrow
in the following diagram.

BKgq

BWQuBWQ, X MY BWQuX
Beaymwanx l lBE”M"
BQwBW QX BQuX
S l lex
BW Qg X oo P - X

Here the e, are the maps described in Proposition 5.1. Since all solid
arrows, except for ex, are based homotopy equivalences the morphism
Ex exists and is uniquely determined up to based homotopy. The nat-
urality of Ex follows from the naturality up to homotopy of all other
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maps. Hence we have a natural transformation [F], from ByQy to the
identity on Top7.

Theorem 2.5. The functor By : HGry — Ropj; is left adjoint to Qp.
The natural isomorphism [T] is the unit, and the natural transformation
[E]. the counit of this adjunction.

Proof. The definition of Egw s and the naturality of several morphisms
imply
[Egwa 0 BT o egwum], = [eBwuml],

and since egwps 1s a based homotopy equivalence by Proposition 5.1
this results in

[EBy(m)« © Br[Tu] = [Epwuml« © [BTu)« = [idBar]s.
The definition of Ex implies
(WQMmEx o WQumepwayx © Wy Beaysway,x © Wy BTa,,x] =
[WQMGX o] WQMBeﬂMX]
and the naturality of several maps leads to
[WQMEX @) WQMGBWQMX @) WQMBzSQMBWQMX @) WQMBTQMX] =
[WQMEX o] WQMB€QMX o WQMBWQMEX o] WQMBTQMX] .

Since eq,,x and Qy7ex are homotopy equivalences the homomorphisms
WQnex and W Qgeq,,x represent isomorphisms in HGry. Therefore
we have

WM BWQMEx o WQamBTo,,x] = [idwa,,Bwa,,x] -
The facts that Tq,,x 1s an 1somorphism in HGry and that
[Tayx o WQyEx o Ty x| =
[WQyBWQuyEx o WQyBTa,,x © Tayx]
imply
Qu[Ex)« o [Tagzx)] = WOQMmEx o Tayx] = [idway,x] -

3. HOPF-OBJECTS

Definition 3.1. An H- or Hopf-object (X, p,p) in a monoidal cate-
gory' (C,®,€) is a non-associative monoid, i.e. an object X of C to-
gether with morphisms p: X ® X — X and p : e — X such that the

For a definition of monoidal categories see [McL71].
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following diagram comiutes.

pRid x idx®p

eRQX—XX<~—X®e

N

X.

A morphism of H-objects (or H-morphism) f : X — Y is a morphism
such that py o (f ® f) = f o ux. The H-objects of C and the H-
morphisms form a category HopfC.

Proposition 3.2. Let (C,®,e¢) and (D, ®, ep) be monoidal categories
and

(F,G.,n,e):C—D

an adjunction of monoidal functors® such that the diagrams

YooY cy— GFY © GFY FGX @ FGX — F(GX 0 GX)

[ R |

GFY®OY)~—GFY®FY) XoX FG(X ® X)

commute for each X € C and Y € D, then there exists an adjoint pair
of functors

HopfF : HopfHC < HopfD : HopfG.
Proof. HopfF is given by
HopfF(X,p,p) = (FX,Fuop,Fp) and HopfF(f) = Ff,
with ¢ : FX ® FX — F(X © X) the natural transformation. Its

adjoint HopfG is given analogously. The two commutative diagrams
imply that the units ny and the counits ey of the adjunction are H-
morphisms. Therefore they form the unit and counit of an adjunction.

O

FEzample 3.3. Topj; with its product is a monoidal category. The H-
objects in FTopy; are precisely the H-spaces with the base point as
unit. The homotopy class [u]. of the multiplication is called H-space
structure of X. H-morphisms are the homotopy classes of H-space mor-
phisms up to homotopy.

Ezample 3.4. HGry has a monoidal structure @ given on objects by
M @ N =M x N. For morphisms F' : WM — WM' and G: WN —
WN'" we define F @ G : W(M x N) — W(M' x N') as follows: Let
Sun = (Wpry, Wpry) : W(M x N) - WM x WN be induced by

2For a definition of monoidal functors see [BFSV98]
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the two projections. Then the diagram

~

Sm.N

W(M x N) ’ WM x WN
m A
M x N.

commutes. Obviously Sy n is a homotopy equivalence. By Theorem
1.4 the homotopy class of Syr,n in HMon is uniquely determined.

For two homotopy homomorphisms F : WM — WM' and G :
WN — WN', we define FR G : W(M x N) — W(M' x N') to be the
lifting in the following diagram.

W(M x N) 25 w(M' x N')

SM’N\L lSM”NI

WM x WN ——= WM x WN".
xG

This construction is compatible with the composition and we can define
a functor ® : HGryg x HGryg — HGryg with M @ N = M x N and
[Fl®[G] =[F ® G].

The projections [Py] and [Py] on M ® N are given by [p; o S n],
where p; is the according projection from WM x WN. It is easy to
check that ® and these projections form a product in HGry and that
the trivial monoid * is a terminal and initial object of HGr . Therefore
HGry is monoidal and we have a notion of H-objects in HGry.

The unit of an H-object in HGry is always the unit of the underlying
monoid.

Lemma 3.5. If (M, [F]) is a H-object in HGrpy, then the underlying
map f of F is homotopic to the multiplication u of M.

Proof. The homomorphism F = ¢3r o F has the property [F o Wiy] =
[en] for & = 1,2. The homotopy by : M x M — M with hy(z,y) =
F((m,e),t, (e,y)) runs from f(z,y) to f(z,e)f(e,y), and hence f and
i are based homotopic. 0

Thus the multiplication p of an H-object (M,[F]) in HGry is
homotopic to the underlying map of F, and therefore homotopy-
commutative with the commuting homotopy from zy to yz derived
from F((e, y),t, (z, e)). The relations in W(M x M) define higher ho-
motopies so that the underlying monoid is homotopy commutative in
a strong sense.

We now want to examine the structure on a monoid M, that leads
to the existence of an H-space multiplication on its classifying space.

Proposition 3.6. By and Qg are monoidal functors.
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Proof. For M, N € HGry the morphism
syn: BW(M x N) — BWM x BWN

is given by the based homotopy equivalence (BWp;, BWp;), where
p1,p2 i M X M — M are the projections.

For X, Y € Topj, the morphism Qp(X xY) ~ QpX @ QxY is given
by W(QMpl,QMp2> : I/VQM(X X 1/> — W(QMX X QMY) O

Theorem 3.2 now implies

Theorem 3.7. By and Qp induce an adjunction
HopfBy : HopfHGry S HopfXop}, : HopfQy

with
HopfBy(M,[F]) = (BWM,[BF o spruml«)

and

HopfQn (X, [p]s) = (QuX, [WQnp o Rx x]).

Theorem 3.8. The classifying space BM of a grouplike and well-
pointed monoid M is an H-space if and only if M is an H-object in
HGI‘H.

Proof. It M is an H-object, then BW M and thus BM are H-spaces.

Now let BM be an H-space. Then QyBW M is an H-object in
HopfHGr . Since Thy : WM — WQuyBW M is a homotopy equiva-
lence, M is an H-object, too. O

4. EXTENSIONS

A monoid in HopfTop}y is a homotopy-associative H-space (X, ).
A monoid HopfHGr g consists of a well-pointed and grouplike monoid
together with homotopy homomorphisms Fy : W(M x M) — WM and
F3 :W(M x M x M) — WM such that (M, [F,]) is an H-object and

[Fyo (F;®id)] = [F5] = [Fy 0 (id @ Fy)].
We call the H-object (M, [F;]) associative.

Since these structures are invariant under isomorphisms we obtain,
similar to the non-associative case, the following

Theorem 4.1. The classifying space BM of a well-pointed, grouplike

monoid M is an homotopy associative H-space, if M is an associative

H-object in HGry.

As we realized earlier, the morphism ex : BQyX — X need not
be a homotopy equivalence. But by Proposition 5.1 Qex is a based
homotopy equivalence. Hence, if we restrict to connected, based spaces
of the homotopy type of CW-complexes, ey is a homotopy equivalence.

This implies that the adjunction

By : HGryg S ‘Iop}‘q : QO
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induces an equivalence of categories, if we restrict to the full sub-
categories of based spaces of the homotopy type of connected CW-
complexes and grouplike monoids of the homotopy type of CW-
complexes.

Theorem 4.2. The full subcategories Hopf HGr S C HopfHGry of
H-objects of the homotopy type of CW-complexes, and Hopf‘:COPBCW C
HopfTopy of connected H-spaces of the homotopy type of CW-

complexes, are equivalent.

5. APPENDIX: THE EVALUATION MAP
This section is dedicated to the proof of the following theorem.

Proposition 5.1. For each based space X there exists a natural map
ex : BOyX — X such that

1. Quarex is a homotopy equivalence for each based space X and
2. if M is a grouplike wellpointed monoid then egar is a homotopy
equivalence.

To prove this we will use based simplicial spaces. A based simpli-
cial space is a functor from the dual of the category A of finite, ordered
sets [n] = {0,1,...,n} to Top,. The based standard simplices V .(n) are
given by the quotient space V(n)/V,, with V(n) the n-th standard sim-
plex and V,, its subspace of vertices. They induce a based cosimplicial
space V,: A — Top,.

We define the based geometric realization of a based simplicial space

X as
=[] x(0) A Va(n)/ ~

with the relation ~ generated by the same equalities as in the unbased
case. This induces a functor |- |, from the category of based simplicial
spaces to Top,.

Analogous to the unbased singular complex we can define the based
singular complex S, X : AP — Top, of a based space X by

[n] = Fop.(Vi(n), X).

S, induces a functor from Top, to the category of based simplicial sets.
As in the unbased case this right adjoint to the based realization | - |..
The unit 7. : id — S| - |« is given by

Tx(r) = (t= (2,1)), =€ Xyt € Vi(n)
and the counit 7, : | S, - |« — id by

Nex(w,t) =w(t), we S.Y(n),te Vin).
Definition 5.2. (cmp. [Seg74, A.4.]) A based simplicial space X is

good if for each n and 0 < ¢ < n the inclusion s;(X,-1) — X, is a
closed cofibration.
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Now observe that the based realization |X|. coincides with the un-
based realization |X| if the simplicial space X has only one 0-simplex.
Therefore we obtain the following lemma from well-known facts.

Lemma 5.3. (cmp. [Seg74, A.1]) Let X and Q) be good, based simplicial
spaces with Xg = * = o and let | : X — ) be a based simplicial map.
If each map §f, is a based homotopy equivalence, then the map

s a based homotopy equivalence.

In the following we will show that the nerve Qf3,X of the Moore
loop space of an arbitrary wellpointed space X is homotopy equivalent
to its based simplicial complex. There exists a based simplicial map

a: QX — S5.X, given by

an(wiy oy wn)(toy vy tn) = (W1 4+ + wy) (Z Ztilj>
i=1 j=1
(1; is the length of the loop w; and + the loop addition). Let ¢; =
(to,-..,tn) be the vertex of V(n) given by t; = 1,t; = 0,k # j. Then
a maps the loop w; to the edge running from e;_; to e;.

E. = {(to,...,tn) € V(n) : t; + t;41 = 1 for some i} is a strong de-
formation retract of V(n) and there exists a sequence of homotopy
equivalences

Top, (Vi(n),X) ~%op, (E,, X) ~ (QX)" ~ (A X)"
such that the composition of a with these maps is the endomorphism of
(Qp X)"™ which changes the length of the loops to length 1. This map is
homotopic to the identity, and hence a is a homotopy equivalence. Fur-
thermore a 1s natural in X and defines a natural transformation from
Q% to Si. If X and hence Q3 X and Top, (V. (n),X) are wellpointed,
then ay is a based homotopy equivalence.

The map ex := nux o |ax|« @ |QyX]|« — X is natural in X and
therefore induces a natural transformation from |3, |. to id. Since 3,

is the nerve of a topological monoid, € is in fact a natural transformation
from BQys to idggp, .

By [Seg74, 1.5] the canonical map 7o, x : QuX — QBQyX with
Ty, x(w)(t) = (w;1 — t,t) is a homotopy equivalence because QX
1s grouplike. The composition Qex o mq,,x : QX — QX 1s the map
normalizing the loops to length 1 and hence a homotopy equivalence.
Therefore Qex 1s a homotopy equivalence. Since the maps Q3 X — QX
are natural in X, this implies the first statement of Proposition 5.1.

Let M be a wellpointed grouplike monoid. Using the adjunction of
the based realization and the based singular complex functors, we ob-
tain a sequence

BM = |M*|. — |S.BM|. —— |M*|. = BM
|7, 0 | N, BM
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The map 1. v © |7 e« is the identity. S,BM (1) is precisely the non-
associative loop space QBM and, by [Seg74, 1.5], the map 7, ase is
a homotopy equivalence on the 1-simplices. Furthermore S.BM(n) is
based homotopy equivalent to (QyBM)" and S.BM(n) is special, i.e.
it satisfies the conditions of [Seg74, 1.5]. Therefore 7, ase is a based
homotopy equivalence in each dimension and thus |7'*7M- « and 1. BM.
Since |agar|« is a based homotopy equivalence this implies the second

statement of Proposition 5.1.
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