The Hilbert metric and Gromov hyperbolicity

Anders Karlsson* Guennadi A. Noskov'

ETH, Zurich OBIM, Omsk, RUSSTA

August 2000

1 Introduction

Let D be a bounded convex domain in R and let h be the Hilbert metric, which is defined
as follows. For any distinct points z,y € D let 2’ and 3 be the intersections of the line
between x and y with 9D closest to  and y respectively. Then

xy -2y
xx' - yy’'

h(z,y) = log

where zw denotes the FEuclidean distance ||z — w| between two points. For the basic
properties of the distance h we refer to [Bush5| or [dIH93].

We will here give some sufficient conditions for the metric space (D, h) to be hyperbolic
in the sense of Gromov . Namely, we show that a certain intersecting chords property im-
plies Gromov hyperbolicity (Theorem 3.1). This intersecting chords property holds when
the (Menger) curvature of any three points of the boundary of the domain is uniformly
bounded from both above and below in a certain way (Proposition 2.2.1). Domains with
C? boundary of everywhere nonzero curvature satisfy this condition as will be proved in
section 4. Beardon showed in [Bea97| (see also [Bea99]) that a weaker intersecting chords

property holds for any bounded strictly convex domain and he used this to establish some
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weak hyperbolicity results for the Hilbert metric. In section 6 we generalize his results to
any bounded convex domain. It would be interesting to also understand what converse
statements can be, for example what properties of 9D does Gromov hyperbolicity of
(D, h) imply? We give an argument that D must be of class C! in section 5.

Some parts of the results in this paper are already known: Yves Benoist informed us
that a convex domain with C? boundary is Gromov hyperbolic if the curvature of the
boundary is everywhere nonzero. Benoist has also found examples of Gromov hyperbolic
Hilbert geometries whose boundaries are C! but not C2. Tn [Bea99] it is mentioned that
C. Bell has proved an intersecting chords theorem in an unpublished work. We have
however not found the present arguments in the literature.

Since the Hilbert distance can be defined in analogy with Kobayashi’s pseudo-distance
on complex spaces [Kob84|, we would like to mention that Balogh and Bonk announced
in [BB99] that the Kobayashi metric on any bounded strictly pseudoconvex domain with
C? boundary is Gromov hyperbolic.

Note that metric spaces of this type are CAT(0) only in exceptional cases: Kelly and
Straus proved in [KS58] that if (D, h) is nonpositively curved in the sense of Busemann
then D is an ellipsoid and hence (D, h) is hyperbolic space. (This in particular answers
a question later raised in [dIH93].) Compare this to the analogous situation for Banach
spaces: a Banach space is CAT(0) if and only if it is a Hilbert space. Another category of
results are of the type: large (infinite, cocompact, etc.) automorphism group and smooth
boundary imply that the space is hyperbolic in the classical sense. The Hilbert metric
has found many applications, typically using the fact that affine maps cannot increase
Hilbert distances combined with the contraction mapping principle.

The work was mainly done during our stay at Bielefeld University. We thank this

university for its hospitality.



2 Intersecting chords in convex domains

From elementary school we know that if ¢q, ¢ are two chords in a circle and which intersect
each other, then ;1] = Iyl where 1,1}, and Iy, 5 denote the respective lengths of the
segments the two chords are divided into. (It follows immediately from the similarity of

associated triangles, see Fig. 1).

Cc2

l’ lll/l - lQlé

Cc1

Figure 1: Intersecting chords theorem.

A generalization of this fact to any bounded strictly convex domain was given by
Beardon in [Bea97] by an elegant argument using the Hilbert metric. He proved that if D
is such a domain then for each positive 0 there is a positive number M = M(D, ) such
that if ¢1, ¢ are intersecting chords of D each of length at least ¢ divided by the point of

intersection into segments of lengths 1,1}, and [y, l5 respectively, then

-1 lllll
M7 < — <M. (1)

= bl
We say that a domain satisfies the intersecting chords property (ICP) if (1) holds for
any two intersecting chords c¢; and co. It is easy to see that ICP may fail for a general
strictly convex domain (at a curvature zero point or a ”corner”).
We show in this section that ICP holds for domains that satisfy a certain (non-
differentiable) curvature condition. Domains with C* boundary of nonvanishing curvature

satisfy this condition, see section 4.



In the next subsection we will clarify exactly the relation between the curvature of

any triple of endpoints and the ratio as above that two intersecting line segments define.

2.1 Intersecting line segments

This subsection contains a piece of elementary geometry. Consider two line segments that
intersect each other in one point, see Fig. 2. Each three of the four endpoints defines a
circle going through these points. From elementary geometry we know that the radii of

the four circles so obtained are

c d d c
5 s Ta2 = - 1= 5 T2 =557
2sina;’ “? 2sinay’ ” 2sin 3’ A 2 sin 3,

Talr =

Figure 2: Two intersecting line segments.

Proposition 2.1.1 In the notation above, the following equality holds:

1@z  Tp1Tp2
b1bs Ta1T a2

Proof. By the sine law we have

a1ao  Sinagsina, 2sina; ¢ 2sinas  d 3172

biby sinfisinfy ¢ 2sinfBy d  2sinfBi  ToiTes




2.2 The intersecting chords property and Menger curvature

Let K(x,y, z) denote the (Menger) curvature of three distinct points which in a Fuclidean
space equals the reciprocal of the radius of the circle passing through these three points,

cf. the previous subsection.

Proposition 2.2.1 Let D be a bounded convex domain in R™, n > 1. Assume that there

is a C > 0 such that
K(z,y,2)
K(z',y', 2')

for any two triples of distinct points in 0D all lying in the same 2-dimensional plane.

<C (2)

Then D satisfies the intersecting chords property.

Proof. Any two intersecting chords define a plane and by Proposition 2.1.1 we have

102 _ Ko Koo < (2 (3)
blbg KﬁlKﬁg - )

O

2.3 Chords larger than J

Proposition 2.3.1 Let D be a bounded conver domain in R™,n > 1. Given ¢ such that
the length of any line segment contained in 0D is bounded from above by some § < 0.
Then there is a constant C' = C(0) > 0 such that if x,y,z € 0D ,xy > 6§ we have

C(6) < K(z,y,2) < % (@)

Proof. The angle a(x,y,v) := Z,(xy, v) is continuous in z,y € R* and v € UT,(0D ),
the unit tangent cone at y. If [z, y]| does not lie in D , then 0 < a(z,y,v) < 7. The set

S ={(z,y,v) € 0D x 0D xUT,(0D ):xy >} (5)

is compact. Hence there is a constant oy > 0 such that

ay < af(z,y,v) <7 —ag (6)
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for every (z,y,v) € S. By the definition of the tangent cone and compactness there is an

e > 0 such that for any y, 2z € 9D ,0 < yz < € there is v € UT, (0D ), for which

0 < Z,(yz,v) < ap/2. (7)

The estimates (6),(7) imply the existence of C' > 0 and the other inequality in 2.3.1

is trivial. 4

Corollary 2.3.2 (Cf.[Bea99|) Let D be a bounded conver domain such that any line
segment in 0D has length less than &' < 0. Then intersecting chords property holds
for any two chords each of length > 6.

Proof. This immediately follows from Propositions 2.3.1 and 2.1.1.

Remark 2.3.3 In view of this subsection it is clear that ICP implies restrictions on the

curvature k. We were however not able to establish the converse of Proposition 2.2.1.

3 Hyperbolicity of Hilbert’s metric
Let (Y, d) be a metric space. Given two points z,w € Y, let
1
(zlw)y = 5(d(z,y) + d(w,y) — d(z, w))

be their Gromov product relative to y. We think of y as a fixed base point. The metric space

Y is Gromov hyperbolic (or é-hyperbolic) if there is a constant § such that the inequality
(z[2)y = min{(z[w)y, (w|z),} — 0
holds for any three points x, z, w. By expanding the terms this inequality is equivalent to
d(z, z) + d(y, w) < max{d(z,y) + d(z,w),d(y, z) + d(z,w)} + 26. (8)

Theorem 3.1 Let D be a bounded convexr domain in R™ satisfying the intersection chords

property. Then the metric space (D, h) is Gromov hyperbolic.
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Proof. Suppose that intersecting chords property holds with a constant M. Let y be
a fixed reference point and consider any other three points z,z,w in D. Set A(u,v) =
h(u,v) + h(w,y) — h(u, w) — h(v,y) for any two points u,v. By (8) we need to show that

there is a constant ¢ independent of z, z, w such that

min{A(z, z), A(z,z)} < 20 9)

Figure 3: 4 points.

Now we have using the definition of A and the notation in the picture that

.TZ” . le/

Az, 2) = log (

wy” X yw” - ww 22 - yy/
zx' - z2"  ww” - yy" zw' -wx' zy' -y

(rearranging the members of the product)

/ "

) xx' - x2" yy cyw”  zZ - za” ww' - wy” <
zx! - zw' oy -ys 22 -zy ww - wr!

xx’
x//

o <M f:i:: and similar inequalities for the other fractions)

(using

I 7

xZ" yw” zz" wy”
zw' oy zy wr

§M'+210g<

< (since y is fixed and zy’, wy” are bounded from above and below respectively)



zw' - wx!

", 1"
ngfmog(M )

So (9) is equivalent to the boundedness of

) a2 s !
1min .

zw' - wx' 2w - w2

from above. By symmetry we can without loss of generality assume that zz” < zz”. Now
we have two cases:
Case 1. zw > z2" or zw > zx”

If zw > zw (so zw > za” for sure), then

x2" - za < (xz 4 22")(zx + z2”) < (zw +wz + 22") (2w + wz + x2”)

(3zw)? <9
rw' - wa' T (zxw)? (xw)?

(zw)? =

<

When zw > zw, we estimate instead the other fraction (coming from switching = and z)
in the same way.

Case 2. zw < zz2" and 2w < z2”

7 " / /! / 1
rz" -2y rx - zx rzx (rw + wz + 2T
———— < (chords at ) M ——— < M /< - ) <3M
Tw' - wx xa” - wx wx xx
since za” - xz" < M(z2’ - zw'). O

Remarks 3.2 Since the n-dimensional ball B" obviously satisfies the condition of Propo-
sition 2.2.1 with C' = 1, this shows in particular the standard fact that (B™, h), which is

Klein’s model of the n-dimensional hyperbolic space, is Gromov hyperbolic.

4 Intersecting chords theorem for convex C*-domains

Theorem 4.1 Let D be a bounded convexr domain in R™. Suppose that the boundary
dD is smooth of class C? and the curvature of D is everywhere nonzero. Then there
is a constant M such that if ci,co are intersecting chords of D, divided by the point of

intersection into segments of lengths 11,1}, and ly, I}, respectively, then
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!
M1'< % < M. (10)

Remarks 4.2 The following sketch of the proof in dimension 2 looks the most attractive.
Assume that D is a domain in R? with C? boundary of nowhere vanishing curvature. It is
a standard fact that the circle through three points converge to the osculating circle at p
when the three points converge to p, see [BG88]. It is also easy to see that when two of the
points collapse to a point g the circles converge to the circle through the third point and
tangent to the tangent line at ¢. By compactness and continuity it follows that D satisfies
the condition in Proposition 2.2.1 and thus it satisfies the intersection chords property.
We have been unable to make this sketch rigorous, although in the paper [BM70] it is
proven that for a curve in R? of class C® the Menger curvature coincides with the classical

one.

Proof of ICT in dimension 2. Let r : R — R? be a periodic arc length parame-
terization of the curve 9D such that r is of class C? and r” does not vanish everywhere.
Then for the curvature x(s) of 9D at the point r(s) we have |k(s)| = |[r”(s)|. Let k > 0
be such that k < r”(s) < k™! for s € R. By aray in DUJD we mean a segment joining
a point of D (origin of the ray) with the point of D ( limit point of the ray.) Suppose
that the origin of the ray R lies inside some osculating circle C. By a companion of R in
O we call a ray R’ of the interior of O such that R € R' or R' C R. For a A > 0 we write
R ~y R if X < |R|/|R| < A%, By a projection of p € D onto D we call any point
P € 0D minimizing the distance function = — |z — p|. It is easy to see that the line,
passing through p’ and orthogonal to the segment [p, p'] is a supporting line for D that is

all of D lies on one side of the line.

Lemma 4.3 There is an € > 0 and a constant A = \(€) such that for any ray [p,q| of
the length at most € and any projection p' of p such that |p — p'| < ¢ and any companion

R’ of R in the osculating circle at p' we have R ~, R'.

Proof. Choose 0 < ¢ < 1/2 such that near any point r(s) the curve 9D is a graph of

a C? function y = f(z),z € (g,€) in a canonical Cartesian coordinate in the point r(s).

9



Recall that the osculating circle of 9D at the point r(s) is a circle of radius r =

r(s)l
and with a center (0,7) in coordinates x,y. Since f”(0) = r”(s) ([Rut00], 7.8) we may

assume, decreasing ¢, that 1/2 < % < 3/2,z € (g,¢). Let R be the ray from yq to
the point p € 9D and suppose that the Euclidean length of R is not greater than /2.
Then p = (a, f(a)) for some a € (¢,¢). The Euclidean ray, extending R, intersects the
osculating circle in some point g = (b, f(b)),b € (e, ¢). Elementary geometry ensures that

ifagb,then%ga/bg1andifa2b,then1§a/b§3. O

Completing the proof. Let € be the constant chosen as in Lemma 4.3. Consider a pair
of chords ¢, ¢y of D, divided by the point of intersection p into the rays Ry, R} and Ry, R},
of lengths [y, 1}, and lo, I}, respectively. If d(p, 0D ) > e then all the chords are large enough
and we can refer to the Proposition 2.3.1. If d(p,0D ) < e then take the projection point
p’ of p onto D as the origin for the canonical Cartesian coordinate system and let C'
be the osculating circle at p’. The rays Ry, R}, R2, R}, by extending define the companion
rays Ry, R}, Ry, R, of C. If one of the rays Ry, R}, Ry, R}, say Ry, is of length < ¢ then by
Lemma 4.3 R ~, R’ with a universal constant \. If one of the rays is of length > ¢ then

its length is bounded from both above and below by two positive constants. In any case

Il
l2lé

the ratio is bounded from both above and below by two positive constants depending

only on D.

n-Dimensional case. It is enough to prove

Proposition 4.4 Let D be a bounded convex domain in R™™,n > 2. Suppose that the
boundary 0D is smooth of class C* and the Gauss curvature of 0D is everywhere nonzero.
Then there are positive constants ¢ < C' depending only on D such that for any plane

section S of D and any two points py,ps € S

K(p1)

= nlp)

< C,

where k(p) denotes the curvature at p € S.

Proof. Let p be a C? defining function for D that is the following properties hold:
D={zxeR":p(x)>0},R*"\ D ={xrcR": p(z) <0} and gradient n(z) = Vp(z) is of
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the length 1 for all x € 9D . Then n(z) is a normal vector field on 9D directed inside D.
Curvature. The curvature operator W, : T,,0D — T,0D is defined by setting W, (v)
equal to the directions derivative of the normal in the direction of v, that is W, (v) =
V.n(z) =v-V?p(x), v € T,0D . The second fundamental form is the bilinear form I7,
on the tangent space 1;,0D given by I (v,w) =w W, (v) =31, %wivﬁ
where v, w are tangent to 0D at z. The value I1,(v,v) = k(v) on the unit tangent
vector v is called the normal curvature of 9D in the direction v. It is equal to the normal
component of acceleration at = of every parameterized curve in 9D passing through x
with velocity v. Further insight into the meaning of normal curvature can be gained from
normal sections. The normal section determined by the unit vector v at T,,0D is an affine
2-plane II, passing through = and containing the vectors v,n. There is neighbourhood
of x in which the intersection C, of normal section with 0D 1 is a plane curve, and the
curvature at z of this curve is equal to the normal curvature x(v) [Tho94].

The determinant K (x) of W, is called the Gauss curvature of 9D at x. The n eigenval-
ues of W, are called the principal curvatures of 0D at z. By assumption and in view of com-
pactness of D there is a constant xp such that kp < k(v) < kp', v € T1,0D ,x € 0D .

Parameterization of plane sections. Let p € 0D ,n = n(p). For any choice of an
orthonormal basis e = (ey, eq, ..., €,) of T,0D and any choice of an angle #,0 < 0 < /2
there is an affine 2-plane Il g, containing p and spanned by the unit vectors e;,v =
sin@ ey + cos @ n. Clearly 0 is equal to the angle between Ilep and n and to the angle
between v and n. The intersection Cep = Ilep N OD is a C? plane curve in IT, -
[Tho94],thm.1,§12. It is easy to see that an arbitrary nondegenerate plane section of 9D

is of the form Cep.
Lemma 4.5 (Meussnier, 1776, [KIi78]).

k(e1) = Kk cos O,
where Kk is a curvature of Ceyg at p.

Pinching 0. In view of Meussnier’s lemma and since r(e;) is positively pinched it is

enough to prove that the variation of the cos @ along any 2-dimensional section of 9D is
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uniformly bounded in the following sense. There are positive constants ¢ < C' depending
only on D such that the ratio z—; € [c, C] for any two angles at the points of the section.
Compactness arguments show that it is enough to bound the ratio for small sections, i.
e. for section of diameter < ¢ where ¢ is some positive constant. We will choose ¢ in
several steps. We switch to an alternative point of view onto plane sections. Given a
point p € 8D , we can choose the coordinate axis of R"*! so that the origin O of the
coordinates is at p and the z( axis is directed along the positive normal of S at p. It
follows that in a neighbourhood of p the surface 9D can be represented in the form
xg = f(x1,29,...,2,), = (T1,22,...,2,) € U C R™, where U is an open set and f is
a C? function with f(0) = 0, f,,(0) = 0,7 = 1,...,n. We have a 2-dimensional section
C.: f(z1,22,0,...,0) = e. From this point of view the angle § = 6(q) equals to the angle
between n(¢) and plane IT = Re; + Res. Thus we need to bound the variation of the angle
0 = Z(n(q),n(p)),q € C-.. Clearly

1
cos Z(n(q),II) = \/ 2+ f2
((q) ) \/1+f$21+--+ xgn 1 f2

Pinching the variation of a gradient. Since the denominator in formula above can

be made uniformly close to 1 in the neighbourhood of p, we reduce the question to
bounding the variation of function \/m on C.. Using the notations x = x1,y =
xo, f(z,y) = f(x1,29,0,...,0) we reformulate the problem as the problem to bound the
variation of the gradient |V f| = \/m when ¢ runs through C.. By rotation in the
plane z,y we may assume the x and y axis along the direction of maximal principal
curvature. Thus, f,,(0,0) = 0 and the principal curvatures in p are a = f;,(0,0),b =
J(0,0), kp <a,b< nBl. The second fundamental form of 9D at p applied to the vector
(u,v) € R? becomes, in this case ITy(u,v) = (au® + bv?). By developing f(z,y) into a
Taylor’s expansion about the origin, and taking into account that f,(0,0) =0 = f,(0,0),
we obtain f(z,y) = 3(az® + by®) + r, where r vanishes at (0,0) together with all its
derivatives up to second order. We have Vf = (ax,by) + Vr := £ + Vr. Since a,b are

pinched there are positive constants ¢, C, depending only on D such that ¢ < L’y)g < C.

\ 24y

Next |Vr| = (1, 7y)] = |(rez(2")z, 7y (y)y)| for some 2’ € (0,z),y" € (0,y). Hence,
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decreasing e, we assume that |Vr| < %\/W if \/m < e. We conclude that
0/2<%2T’Z)2|<201f\/m<5.

Pinching the variation of x® + y* on the plane section. By the previous equality it
remains to show the boundedness of the variation of the function 2% + 42 on C..

Decrease € $0 that |7y,), [reyl, |ryy| < 36p in the e-neighbourhood of p uniformly with
respect to p € dD . By Taylor’s formula r(z,y) = d*r(as,ay (¢, y) for some a € (0,1)
and hence |r(z,y)| < $rp(a? +y?). Hence 1rp(a® +4?) < f(z,y) < 2kp(a® + y?). Since
f(z,y) = € on the curve C. we conclude from the last equation that the variation of

2% + 92 is bounded on C. — this proves the last claim and the proposition too. (]

5 Consequences of Gromov hyperbolicity for the shape
of boundary

Proposition 5.1 Let D be an bounded convex domain in R™,n > 1 and let h be a Hilbert
metric on D. If h is Gromov hyperbolic then the boundary 0D is strictly conver, that is

it does not contain a (nondegenerate) segment.

This can be proven by following the proof of N. Ivanov [Iva97] of Masur-Wolf’s theorem
IMW95] that the Teichmiiller spaces (genus > 2) are not Gromov hyperbolic. The proof

makes use the Gromov’s exponential divergence criterion.

Theorem 5.2 Let D be an bounded convex domain in R?, and let h be a Hilbert metric

on D. If h is Gromouv hyperbolic then the boundary 0D is smooth of class C*.

Proof. First, by the previous result, D is strictly convex. Let y = f(z),z € (—a,a)
be an equation of 9D near some point. Then f is strictly convex and hence one-sided
derivatives f’ (x), fi (x) exist and are strictly increasing on (e, ¢), [RV73], §11.

We prove that f’(0) = f7(0). Suppose not, then by choosing appropriate Cartesian
coordinates we may assume that f’ (0) < 0, f1(0) > 0. For each sufficiently small & build

an ideal triangle A = A(e) in D with one vertex 0 and two other vertices corresponding
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to the intersection of the line y = ¢ with 0D . We assert that the slimness of A(e) tends
to co when ¢ tends to zero. Namely we show that the Hilbert distance between the point
P = (0,¢) and any point @ of the side [0, B] tends to co. Let f (0) = tana,0 < oo < /2.
Let 1 < x5 be the points such that f(z1) = ¢ and f}(0)z; = e. Then

PQ > eccosa = f(x) cosa. (11)

Let O, R be the intersection points of the line PQ with 9D . We have therefore

QR < xy— a1 = Sy _ T = flz) = /1 (O (12)

f4(0) f4(0)

and hence combining the last two inequalities

PQ _ JL(0)f(z)cosa
QR = J(w1) — F4(0)2:

(13)

!
0
= % — 00 when z; — 0. (14)
- I ()

It follows that

h(P,Q)zln(l—kﬁ—ﬁ) (1+g—g) — 00 when 21 — 0

and hence the slimness of A(g) tends to co when ¢ tends to zero.

Figure 4: Hyperbolicity implies C*.

It remains to show that f’ is continuous. By [RV73],§14 we have

lim fi(x) = fi(zo)

T—z0+
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lim f} (z) = fL(x0)

T—1To—
From this we conclude that f} is continuous in g since f!(zo) = f’(xo). But f'(z¢) =

T4 (o) hence [ is also continuous in .

6 Non-strictly convex domains

This section owes much of its existence to [Bea97] and [Bea99]. We extend some of the
results obtained in those papers to arbitrary bounded convex domains. In addition to
Beardon’s arguments, we take advantage of Proposition 2.2.1 in the present paper and an
argument in [Kar99].

For some collection of open sets {U,} a bounded convex domain D we let
S=S{U.}) =0D x 9D \|JWandD ) x (UsnaD).
Since S is compact, following the proof of Proposition 2.3.1 we get

Lemma 6.1 Let D be a bounded convexr domain. Given neighborhoods U, around every
set o of the type [z, z] (a point or a line segment) contained in OD . Then there exists a
constant C' > 0 such that for any (x,y) € S and any other point z (different from x,y)
in 0D

C < K(z,y,2) <C.

As an immediate consequence of Proposition 2.2.1 and Lemma 6.1 we get

Proposition 6.2 Let D be a bounded convex domain. Given neighborhoods U, around
every set a of the type [z, z] (a point or a line segment) contained in 0D . Then there
exists a constant M > 0 such that for any two intersecting chords, with two pairs of
endpoints in S,

Ll

Mt < 2L <

where 1;, 1) are the lengths of the segments as usual.
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Lemma 6.3 Let D be a bounded conver domain. Let {x,},{y.} be two sequences of
points in D. Assume that x, — T € 0D , vy, — Yy € D and [z,y] € D . Let 2, and y,
denote the endpoints of the chord through x, and y, as usual. Then x| converges to T

and y,, converges to the endpointy' of the chord defined by T and 7y different from .

Proof. Cf. Lemma 5.3. in [Bea97]. Every limit point of chord endpoints must belong
to the line through 7 and 7. In addition, in the case of z! for example, any limit point
must lie in the halfline from 7 not containing 7. At the same time every limit point must
belong to the boundary of D, and the statement follow since the line through = and %

intersect 0D in T and 7. W

Theorem 6.4 Let D be a bounded convex domain. Let {x,} and {z,} be two sequences
of points in D. Assume that x,, —T € 0D , 2, =z € 0D and [T,z] € OD . Then there
is a constant K = K(x,z) such that for the Gromov product (x,|z,), relative to some
fixed point y in D we have

lim sup(z,|2,), < K.

n—oo

Proof. Pick the collection U, suitably (depending on Z and 7, so that

(@,%2),(x.7),(z7") €S

for the limits of the endpoints T Z ¥'y”. By Lemma 6.3 we thus have for all large enough

n that
(f’n///7 27’1”’)7 (f'ﬂ,7 gn,)v (zn//7 gn”) e S7

n
n

and z,z! are

see the picture for the notation. Moreover, there is a 6 > 0 such that z,z
both larger than 9.
Because y is fixed and Proposition 6.2 we then have for all large enough n that

4 " "

! / /!
1 <xnyn o VA VP A T A )

(Tnl2n)y = 7 log
/ / 1" " "
2 TnZy - YY, YY, - 2nZy TnzZ, - 2pdy,
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Figure 5: Weak hyperbolicity.

Corollary 6.5 Let D be a bounded convexr domain and ¢ : D — D be a map which
does not increase Hilbert distances (e.q. ¢ may be an isometry). Then either the orbit
{6™(y) }22, is bounded or there is a limit point y of the orbit such that for any other limit
point x of the orbit it holds that [x,y] C 0D .

Proof. This is easily proved using the arguments in [Kar99], compare with Proposition

5.1 in that paper. O

Remark 6.6 The content of Theorem 6.4 is that (D, h) satisfies a weak notion of hyper-
bolicity. This property should be compared with Gromov hyperbolicity, especially with
the fact for Gromov hyperbolic spaces that two sequences converge to the same point of
the boundary if and only if their Gromov product tends to infinity. Theorem 6.4 can be
used as in [Kar99|, Theorem 8 to the study of random walks on the automorphism group
of D, and it is also likely to be useful for analyzing commuting nonexpanding maps or

isometries of (D, h).
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Remarks 6.7 We suggest that the same picture might hold for the classical Teichmiiller
spaces and also more general Kobayashi hyperbolic complex spaces. Hilbert geodesic
rays from a point y that terminate in a line segment contained in the boundary may
correspond to the Teichmiiller geodesic rays defined by Jenkins-Strebel differentials that
H. Masur considered when demonstrating the failure of CAT(0) for the Teichmiiller space
of Riemann surfaces of genus g > 2. The complement of the union of all line segments
in the boundary in 9D may correspond to the uniquely ergodic foliation points on the

Thurston boundary of Teichmiiller space.

References

[BB99] Zoltan M. Balogh and Mario Bonk. Pseudoconvezity and Gromov hyperbolicity.
C. R. Acad. Sci. Paris Sér. I Math., 328(7):597-602, 1999.

[Bea97] A. F. Beardon. The dynamics of contractions. Ergodic Theory Dynam. Systems,
17(6):1257-1266, 1997.

[Bea99] A. F. Beardon. The Klein, Hilbert and Poincaré metrics of a domain. J. Com-
put. Appl. Math., 105(1-2):155-162, 1999. Continued fractions and geometric
function theory (CONFUN) (Trondheim, 1997).

[BG88] Marcel Berger and Bernard Gostiaux. Differential geometry: manifolds, curves,
and surfaces. Springer-Verlag, New York, 1988. Translated from the French by
Silvio Levy.

[BM70] Leonard M. Blumenthal and Karl Menger. Studies in geometry. W. H. Freeman
and Co., San Francisco, Calif., 1970.

[Busb5| Herbert Busemann. The geometry of geodesics. Academic Press Inc., New York,

N. Y., 1955.

18



[d1H93]

[Iva97]

[Kar99]

[K1i78]

[Kob&4]

(KS58]

IMWO5]

[Rut00]

[RV73)]

[Tho94]

Pierre de la Harpe. On Hilbert’s metric for simplices. In : Geometric group
theory, Vol. 1 (Sussex, 1991), pages 97-119. Cambridge Univ. Press, Cambridge,
1993.

Nikolai V. Ivanov. A short proof of Gromov non-hyperbolicity of Teichmiiller
spaces . Preprint, Michigan State University, 1997.

Anders Karlsson. Nonexpanding maps and Busemann functions. To appear in

Ergod. Th. Dyn. Sys., 1999.

Wilhelm Klingenberg. A course in differential geometry. Springer-Verlag, New
York, 1978. Translated from the German by David Hoffman, Graduate Texts in
Mathematics, Vol. 51.

Shoshichi Kobayashi. Projectively invariant distances for affine and projective
structures. In :Differential geometry (Warsaw, 1979), pages 127-152. PWN;
Warsaw, 1984.

Paul Kelly and Ernst Straus. Curvature in Hilbert geometries. Pacific J. Math.,
8:119-125, 1958.

Howard A. Masur and Michael Wolf. Teichmuiller space is not Gromov hyperbolic.
Ann. Acad. Sci. Fenn. Ser. A T Math., 20(2):259-267, 1995.

John W. Rutter. Geometry of curves. Chapman & Hall/CRC, Boca Raton, FL,
2000.

A. Wayne Roberts and Dale E. Varberg. Convez functions. Academic Press [A
subsidiary of Harcourt Brace Jovanovich, Publishers|, New York-London, 1973.

Pure and Applied Mathematics, Vol. 57.

John A. Thorpe. FElementary topics in differential geometry. Springer-Verlag,
New York, 1994. Corrected reprint of the 1979 original.

19



