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Abstract

It is proved that any subgroup of a Coxeter group has a finite index subgroup

which either is abelian, or has a non-abelian free quotient.

1 Introduction

Following [Gro82] we say that a group is large if a subgroup of finite index in it
has a non-abelian free quotient. Largeness of some classes of groups was proved
in [BP78], [GS81]. [Gro82], [Sto83], [Edj84]. [Lub96]. [How98], [Boh00], [MV0O].
In particular, in [MV00] it was proved that any non-affine infinite indecomposable
Coxeter group of finite rank is large. We prove

Theorem. Any subgroup I' of a Coxeter group W of finite rank is either large
or virtually abelian.

We make use of the technique of trees of [MV00] and the Moussong complex of
a Coxeter group [Mou88].

The work was mainly done during our stay at Bielefeld University. We thank

this university for its hospitality.



2 Piecewise Euclidean cell complexes

A Euclidean cell is a compact intersection of a finite number of affine half-spaces in
R™. A piecewise Euclidean cell complex X is a connected locally finite cell complex
made up by gluing together Euclidean cells via isometries of their faces. The canon-
ical metric in each cell allows to measure the lengths of finite polygonal paths in
X. The path metric d on X is defined by setting the distance between x,y € X to
be the infimum of the lengths of polygonal paths joining z to y. Under assumption
that there are only finitely many isometry types of cells in X, the path metric is
proper, that is any closed bounded subset in X is compact and, hence, there is a
length minimizing path between any two points in X [BH99], Chapter 1.7.

Let A be a geodesic triangle in X. The comparison triangle for A is the Euclidean
triangle A’ with the same side lengths as A. We say that X is nonpositively curved,
if for any geodesic triangle A in X and two points z,y on A, the distance between x
and y in X is less than or equal to the Euclidean distance between the corresponding
points z’,7/ on the comparison triangle A’. The nonpositive curvature condition
implies the uniqueness of geodesics and the geodesicity of local geodesics.

Let X be a nonpositively curved piecewise Fuclidean cell complex with finitely
many isometry types of cells and g be an isometry of X without fixed points. An axis
of g is a g-invariant bi-infinite geodesic (on which g acts as a non-trivial translation).
The existence of an axis can be proved as follows. Let d, : X — Ry be the
displacement function of g defined by d4(z) = d(gz,x). Assume that it attains a
(positive) minimum at some point € X. Then the union of the geodesic segments
[g"x, g" 1 2],ez is an axis of g [BH99.

It is easy to see that the translation length is one and the same for all axes of g
[BH99]. It follows that, if the function d, attains a minimum, any axis is obtained
in the way described above.

The existence of a minimum for the displacement function can be proved by

means of the following

Lemma 2.1 Let I' be a cocompact discrete group of isometries of a proper metric

space X. Then, for any g € T, the displacement function d, attains a minimum.
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Proof. Let |g| = inf{d,(z) : z € X}, and let D be a fundamental domain of T..
Then there exist z,, € D and g, € I (n € N) such that dy(g,z,) — |g|. Since D is
compact, we may assume that z,, tends to some xg € D. Then dy(g,20) — |g|-

We have d,(gn70) = d(g,, 1 ggnT0, To). Since the points g, *ggnzo lie in a bounded
subset, there are only finitely many of them. Passing to a subsequence, we may
assume that g, tgg,xo = go_lggoaso for some gp € I" and all n € N. Then d4(goxo) =

d(galggozo,xo) = |g|, so the function d, attains a minimum at gozo. O

3 Moussong complex of a Coxeter group

In [Mou88] G. Moussong constructed for any Coxeter group W of finite rank a
contractible piecewise Euclidean complex My, of nonpositive curvature on which
W acts discretely and cocompactly by isometries. Moreover, there are only finitely
many isometry types of cells in Myy. In particular, Myy is proper relative to the
path metric. All the cells with their Euclidean metric are isometrically embedded
into Myy.

If W is finite, then My is just one cell, which is obtained as the convex hull
P of the W-orbit of a suitable point p in the standard linear representation of W
as a group generated by reflections. The point p is chosen in such a way that its
stabilizer in W be trivial and all the edges of P be of length 1. The faces of P are
naturally identified with the Moussong complexes of the subgroups of W conjugate
to standard subgroups.

In the general case, the complex My is built up of the Moussong complexes
of maximal finite subgroups of W gluing together along their faces corresponding
to common finite subgroups. The 1-skeleton of My, considered as a combinatorial
graph is isomorphic to the Cayley graph Cy of W with respect to the standard
generating set.

The walls in Myy are the fix point sets of reflections in W. The intersections
of a wall H with cells of My supply H with a structure of a piecewise Kuclidean

cell complex with finitely many isometry types of cells. Any geodesic joining two



points of H entirely lies in H. It follows that the induced metric of H coincides
with its path metric. Hence, H is nonpositively curved. The same is true for any

non-empty intersection of walls.

Lemma 3.1 Let Hy,..., H; be walls such that Hy N ...N Hy # 0 and, for any i, H;
does not contain Hy N ...N H;_1. Then the codimension of Hy N ... Hy in My is
at least k.

Proof. Let r; be the reflection in H;. It follows from the condition that rq, ..., %
generate a finite subgroup and, for any 4, r; is not contained in the subgroup gener-
ated by rq1,...,7_1. Let C be the cell defined by any maximal finite subgroup of W
containing 71, ...,7,. Then, for any ¢, H; N C' does not contain H; N...N H; 1 NC.

Hence, the codimension of H; N ... N Hy N C in C is at least k. [l

Lemma 3.2 Let an element g € W of infinite order leaves invariant a non-empty

intersection of walls Hy, ..., H. Then g has an axis contained in Hy 0 ... N Hy.

Proof. Consider an axis of the restriction of g to H1N...N Hy. It is be a geodesic

in My, and hence an axis of g in Myy. O

Lemma 3.3 Let Wy be a normal torsionfree subgroup in W. Then for any g € Wy
and any wall H either gH = H or gH N H = ().

Proof. Let € W be the reflection in the wall H. Then gH is the mirror of the
reflection grg='. If gH N H # (), the element grg~'r fixes gH N H pointwise. By the

choice of Wy it is trivial and thus g commutes with r, so gr¢g™' = r and gH = H.

O

Any wall divides My into two connected components [Nos99]. All the walls
yield a decomposition of My, into (closed) convex sets called chambers. The set
of all chambers with an appropriate adjacency relation is isomorphic to the Cayley
graph Cy . The Cayley graph distance between two chambers equals the number of
walls separating these chambers.

We say that a wall H and a bi-infinite geodesic A are transversal if H N A is a

one point set.



Lemma 3.4 For any bi-infinite geodesic A there is a wall, transversal to A.

Proof. Since the geodesic A cannot lie in one chamber, there are two points of
it that do not belong to one chamber. These points are separated by a wall, which

is thereby transversal to A. O

4 Trees

Let I' be a subgroup in a Coxeter group W and let H be a wall in Cy such that
for any g € T either gH = H or gH N H = (). The walls gH, g € T, yield a partition
of W into (closed) convex sets, which we shall call I'-chambers. Consider the graph
T = T(I', H), whose vertices (resp. edges) are the I'-chambers (resp. the walls
gH, g € T') and the incidence is defined by inclusion. Clearly, 7 is a tree and I" acts
naturally on 7. By construction this action is transitive on the set of edges. The

following assertion may be applied to prove that I is large.

Proposition 4.1 ([MV00], Proposition 2) Let a group I' act on a tree T which is
not a star or a line. Suppose that I' does not reverse edges and its action on the set

of edges is transitive and residually finite. Then I is large.

Recall that an action of a group I" on the set X is called residually finite, if for any
different z, 2’ € X there exist an action of I' on a finite set F' and a I'-equivariant
map f : X — F such that f(z) # f(z’). One sees easily that if an action T' : X
is residually finite then the induced actions A : X, where A is a subgroup of T,
and I' : Y, where Y is an invariant subset of X, are also residually finite. These
properties and the fact that the action of a Coxeter group of finite rank on the set
of reflections (= the action on the set of walls) is residually finite [MV00] imply the

following

Proposition 4.2 Let ' be a subgroup in a Cozeter group W of finite rank and let
H be a wall in My, such that for any g € I' either gH = H or gH N H = (). Then
the action of T on the set of edges of the tree T (L', H) is residually finite.



5 Proof of Theorem

Since the group W is linear, it contains a torsionfree normal subgroup Wy of finite
index. Replacing I' with I' N Wp, we may assume that I' C Wj. Then by Lemma
3.3 for any wall H and any g € I" either gH = H or gH N H = ).

Take any g € I', g # e. Let A be an axis of g. By Lemma 3.4 there is a wall H
transversal to A. If H meets A at a point p, then the points ¢~ !p, gp and, hence,
the walls g~'H, gH, are on different sides of H. It follows that the corresponding
edges of the tree 7 = T (I', H) cannot have a common vertex. This shows that 7 is
not a star.

Possibly passing to a subgroup of index 2, we may assume that I' does not
reverse edges of 7 (see Lemma 3 in [MVO00]). If 7 is not a line, then I is large by
Proposition 4.1.

Let us assume now that the tree T =T (I', H) is a line for any wall H transversal
to an axis of some element of I.

Take any nontrivial element g; € T'. Let A; be an axis of it, and H; a wall
transversal to Ay. If the stabilizer I'; of Hy in I is not trivial, take any nontrivial
element go € I'y. By Lemma, 3.2 it has an axis A contained in Hy. Let Hs be a wall
transversal to As. Obviously, Hy does not contain Hq. Let I's be the intersection
of the stabilizers of H; and Ho in I'. If I's is not trivial, take any nontrivial element
g3 € I'ya. Let A3 C Hy N Hy be an axis of it, and H3 a wall transversal to As.
Obviously, H3 does not contain H1N Hy. Let I's be the intersection of the stabilizers
of Hi,Hs, and Hs in I'. If I's is not trivial, take any nontrivial element g4 € I's,
and so on. The procedure must terminate due to Lemma 3.1.

Thus, we obtain walls Hq, Ho, ..., H; transversal to axes of some elements of
I' such that the intersection of their stabilizers in I' is trivial. According to our
assumption, the tree 7(I', H;) is a line for any i. The natural action of I" on it
defines a homomorphism ¢; of I' to the infinite dihedral group. The intersection of
the kernels of these homomorphisms lies in the intersection of the stabilizers of the
walls Hy, Hs, ..., H, and hence is trivial. Possibly passing to a subgroup of finite

index, we may assume that the group ¢;(I") is (infinite) cyclic for any i. Then T is



abelian.
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