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Abstract

For any bipartite graph G = (X , Y, E) the matching capacity of

G is

γ(G) = lim
n→∞

1

n
log ν(G⊗n),

where G⊗n is the n-th power of G and ν(G⊗n) is its matching number.

Ahlswede and Cai [1] showed that

γ(G) = max min
(P,Q)∈K(G)

{H(P ), H(Q)},

where H is the entropy function and K(G) is the set of König-Hall

pairs of distributions. In this paper an iterative method of computing

the matching capacity of an arbitrary tree is presented. The following

estimation is obtained

|H(Qt+1) − γ(G)| ≤
ct

2t
,

where c is a constant and t is the number of iterations.

1 Basic concepts and auxiliary results

Let G = (X , Y, E) be a tree, where (X , Y) is the bipartition of G and

E is the set of edges. Suppose |X | ≤ |Y|. We use the following notations

ΓG(v) = {v′ : (v, v′) ∈ E}
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ΓG(S) =
⋃

v∈S

ΓG(v)

K(G) = {(P, Q) : P ∈ P(X ), Q ∈ P(Y), P (S) ≤ Q(ΓG(S)) ∀S ⊂ X}.

where P(X ) (resp. P(Y) ) is the set of probability distributions on X (resp.

Y), and

P (S) =
∑

x∈S

P (x),

Q(ΓG(S)) =
∑

y∈ΓG(S)

Q(y).

The matching capacity γ(G) of a bipartite graph G = (X , Y, E) is given by

γ(G) = max min
(P,Q)∈K(G)

{H(P ), H(Q)},

where

H(P ) = −
∑

x∈X

P (x) log P (x)

is the well known entropy function.

Observation 1 Let Pu ∈ P(X ) be the uniform distribution. If there exists

Q ∈ P(Y) such that

(Pu, Q) ∈ K(G) and H(Pu) ≤ H(Q)

then

γ(G) = H(Pu) = log |X |.

Proof. For every P ∈ P(X )

0 ≤ H(P ) ≤ log |X | = H(Pu). �
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Given two distributions

P = (P (0), . . . , P (α − 1))

and

Q = (Q(0), . . . , Q(α − 1)),

we say that P majorizes Q and write P � Q, if

k
∑

i=0

P [i] ≥

k
∑

i=0

Q[i] for k = 0, 1, . . . , α − 1

where P [i](resp. Q[i]) is the i-th largest component of P (resp. Q).

A function ϕ : P(X ) −→ R is Schur-concave, if P � Q implies

ϕ(P ) ≤ ϕ(Q),

and it is strictly Schur-concave, if P � Q and P 6= Q imply

ϕ(P ) < ϕ(Q).

It is well known [2]

Proposition 1 The entropy function H is strictly Schur-concave. �

Construction 1 Given the uniform probability distribution P ∈ P(X ) con-

struct a probability distribution Q ∈ P(Y) such that

(P, Q) ∈ K(G)

and

max
Q′: (P,Q′)∈K(G)

H(Q′) = H(Q). �

This is a linear programming problem. Given linear constraints described

by conditions P (S) ≤ Q(ΓG(S)) for all S ⊂ X of the set K(G), we want to

maximize entropy H. But we have exponentially many constraints since we

have 2|X | many subsets. Therefore the known methods are not effective and

we give the following construction.
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Remark 1 A graph with the bipartition (x, ΓG(x)) for x ∈ X we will call a

star.

Definition 1 The local root of a star is the closest to the current vertex

vertex of the star.

Definition 2 The branch corresponding to a vertex x is the subtree T =

(V (T ), E(T )) with the following properties

1. x ∈ V (T )

2. any star of T has a positive value in its local root

3. for any star S = (V (S), E(S)) of T with x ∈ V (S), x is the local root

of S

4. any star of T contains a vertex with the value equal to the value of x

5. T is the maximal tree with properties 1-4, i.e. any subtree T ′ satisfying

1-4 is a subtree of T .

For a vertex x ∈ X consider the following sequence of values

Q(1) = Q(2) = . . . = Q(i1) <

Q(i1 + 1) = . . . = Q(i1 + i2) < . . . (1)

Q(i1 + i2 + . . . + in−1 + 1) = . . . = Q(i1 + i2 + . . . + in−1 + in)

where

Q(1) = Q(2) = . . . = Q(i1)

are the smallest values of the incident vertices ΓG(x) of the vertex x and

Q(i1 + i2 + . . . + ik−1 + 1) = . . . = Q(i1 + i2 + . . . + ik−1 + ik)
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are the smallest values greater than Q(ik−1) on the union of the branches

corresponding to the vertices associated with the previous values

Q(1), . . . , Q(i1 + i2 + . . . + ik−1)

( If Q(1) = Q(2) = . . . = Q(i1) are zeros, then Q(i1 + 1) = . . . = Q(i1 + i2)

are the smallest nonzero values of ΓG(x)).

For k = 1, . . . , n, set

ω(k) =

1
|X|

+ i1Q(i1) + i2Q(i1 + i2) + . . . + ikQ(i1 + i2 + . . . + ik)

i1 + i2 + . . . + ik
.

Definition 3 The union of the branches associated with sequence (1) is

called the current tree.

Definition 4 ω(k) is called the average value and the vertices associated

with the values

Q(1), . . . , Q(i1 + i2 + . . . + ik)

the averaging vertices of the vertex x, where

k =



























n if ω(l) > Q(i1 + . . . + il+1)

for l = 1, . . . , n − 1

min {l : ω(l) ≤ Q(i1 + . . . + il+1)} otherwise

.

For a star with the local root y consider the following subsequence of

sequence (1):

Q(i1 + i2 + . . . + ij1−1 + 1) = . . . = Q(i1 + i2 + . . . + ij1−1 + ij1) < . . .

Q(i1 + i2 + . . . + ij2−1 + 1) = . . . = Q(i1 + i2 + . . . + ij2−1 + ij2) < . . . (2)

Q(i1 + i2 + . . . + ijn−1 + 1) = . . . = Q(i1 + i2 + . . . + ijn−1 + ijn
)

where

Q(i1 + i2 + . . . + ij1−1 + 1) = . . . = Q(i1 + i2 + . . . + ij1−1 + ij1)
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are the values of the vertices from the branch of y having the same value as

y and

Q(i1 + i2 + . . . + ijk−1 + 1) = . . . = Q(i1 + i2 + . . . + ijk−1 + ijk
)

are the values from (1) on the union of branches corresponding to the vertices

associated with the previous values

Q(i1 + i2 + . . . + ij1−1 + 1), . . . , Q(i1 + i2 + . . . + ijk−1).

Definition 5 The union of the branches associated with sequence (2) of a

star is called the tree associated with this star.

Definition 6 The weight of a star is the value

w =

k
∑

t=1

(ω(k) − Q(i1 + i2 + . . . + ijt−1 + ijt
))ijt

,

where ω(k) is the average value of the current vertex.

Definition 7 A star is correct if its weight is not greater than the value of

this star contained in the local root.

Step i.

If there are vertices not chosen before in Step i, then take a vertex x ∈ X

with the minimal degree from them and call it the current vertex.

Step ii.

If all vertices are chosen, then stop.

Step iii.

If there is an incorrect star in the current tree, then consider a new current

tree obtained by cutting from the current tree all smallest trees associated

with the incorrect stars (smallest means that there are no incorrect stars in

these trees).
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Step iv.

If there are no incorrect stars, then change the values of the averaging vertices

to ω(k) and go to Step vi.

Step v.

Let γ be the sum of all values which have these incorrect stars in the local

roots. Let ω(k) be calculated with respect to the new current tree (we do

not consider the cut trees ) taking instead of 1
|X|

the value 1
|X|

− γ and go

to Step iii.

Step vi.

If there is a cut incorrect star obtained by Step iii, then consider the closest

to the current vertex cut incorrect star and the tree associated with it (closest

means there is no incorrect star, which was not considered in Step vi before,

between this incorrect star and the current vertex ). Let ω(k) be calculated

with respect to this tree taking instead of 1
|X|

the value γi of the incorrect

star in the local root. Consider this tree as the current tree and go to Step iii

taking instead of 1
|X|

the value γi.

Step vii.

If there are no cut incorrect stars, then go to Step i.

Remark 2 Going from Step vi to Step iii, the correctness of the incorrect

stars should be checked at first. If an incorrect star becomes correct for these

new parameters, then all correct stars of the tree associated with this incorrect

star will remain correct.

Construction 2 Given a probability distribution Q ∈ P(Y) construct the

probability distributions Q1 ∈ P(Y) and P1 ∈ P(X ) such that

∑

y∈Y

|Q(y) − Q1(y)| = α,

max
Q′ :

∑

y∈Y
|Q(y)−Q′(y)|=α

H(Q′) = H(Q1)
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where

α ≤
1

2

∑

y∈Y

|Q(y) −
1

|Y|
|,

(P1, Q1) ∈ K(G)

and

max
P ′: (P ′,Q1)∈K(G)

H(P ′) = H(P1) �.

Suppose Q is distributed in the following way

Q[1] = Q[2] = . . . = Q[i1] >

Q[i1 + 1] = Q[i1 + 2] = . . . = Q[i1 + i2] >

Q[i1 + i2 + 1] = . . .

We use the following notation

δk = (Q[i1] − Q[i1 + 1])i1+

(Q[i1 + i2] − Q[i1 + i2 + 1])(i1 + i2) + . . .

(Q[i1 + . . . + ik] − Q[i1 + . . . + ik + 1])(i1 + . . . + ik)

and δ0 = 0. If

δk <
α

2
≤ δk+1

then change the values

Q[1], . . . , Q[i1 + i2 + . . . + ik+1]

to

Q′[1] = . . . = Q′[i1 + i2 + . . . + ik+1] = Q[i1 + . . . + ik+1] −
α/2 − δk

i1 + . . . + ik+1
.

We used this procedure to push the largest values of Q on value α
2

down. Now

we use the similar procedure to push the smallest values of Q on value α
2

up.
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Proceeding in this way we shall obtain the desired probability distribution

Q1. The property
∑

y∈Y

|Q(y) − Q1(y)| = α

is satisfied by the construction of Q1. The second property

max
Q′:

∑

y∈Y |Q(y)−Q′(y)|=α
H(Q′) = H(Q1)

is satisfied since the entropy function H is Schur − concave.

To construct P1 we use the following notations

S1 :=

i1
⋃

t=1

q(t)

where q(1), ..., q(i1) are vertices associated with values Q[1], ..., Q[i1] and for

l = 2, ..., k + 1

Sl :=

il
⋃

j=1

q(i1 + . . . + il−1 + j)

where q(i1 + . . .+ il−1 + j), j = 1, ..., il are the vertices associated with values

Q[i1 + . . . + il−1 + j], j = 1, ..., il. Subtract from the values associated with

vertices ΓG(S1) the value
(Q[1] − Q′[1])i1

|ΓG(S1)|
.

Subtract from the values associated with vertices ΓG(Sl)−ΓG(Sl−1) the value

(Q[i1 + . . . + il] − Q′[1])il
|ΓG(Sl) − ΓG(Sl−1)|

.

By this procedure we decrease the values of the vertices associated with

the values pushed down during the construction of Q1. Now we use the

similar procedure to increase the values of the vertices associated with the

values pushed up during the construction of Q1. Proceeding in this way we

shall obtain the desired probability distribution P1. The property

(P1, Q1) ∈ K(G)
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is satisfied since the values of Sl are the same and the values of ΓG(Sl) −

ΓG(Sl−1) are the same. Therefore to keep the property of K(G) it is enough

to apply the procedure described above. The second property

max
P ′: (P ′,Q1)∈K(G)

H(P ′) = H(P1).

is satisfied since the entropy function is Schur − concave.

Remark 3 H(Q) < H(Q1) since the entropy function H is strictly Schur−

concave.

2 Iterative procedure and convergence

For the uniform probability distribution P1 ∈ P(X ) using Construction 1

construct a probability distribution Q1 ∈ P(Y) such that

(P1, Q1) ∈ K(G)

and

max
Q′: (P1,Q′)∈K(G)

H(Q′) = H(Q1).

If

H(P1) ≤ H(Q1),

then by Observation 1

γ(G) = H(P1).

If

H(P1) > H(Q1),

then set t = 1 and

α =
1

2

∑

y∈Y

∣

∣

∣
Q1(y) −

1

|Y|

∣

∣

∣
.

10



Step i.

Using Construction 2 construct probability distributions Qt+1 ∈ P(Y) and

Pt+1 ∈ P(X ) such that

∑

y∈Y

|Qt(y) − Qt+1(y)| = α,

max
Q′:

∑

y∈Y |Qt(y)−Q′(y)|=α
H(Q′) = H(Qt+1),

(Pt+1, Qt+1) ∈ K(G)

and

max
P ′: (P ′,Qt+1)∈K(G)

H(P ′) = H(Pt+1)

Step ii.

If

H(Pt+1) > H(Qt+1),

then set t := t + 1 , α := α
2

and go to Step i.

Step iii.

If

H(Pt+1) < H(Qt+1),

then set α := α
2

and go to Step i.

Step iv.

If

H(Pt+1) = H(Qt+1),

then γ(G) = H(Pt+1).
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Remark 4 By the definition of K(G) and Construction 2 for every Q ∈

P(Y) such that Q ≺ Qt the following inequality

H(P ) < H(Pt)

holds, where P is the probability distribution constructed by Construction 2

for given Q such that

(P, Q) ∈ K(G)

and

max
P ′: (P ′,Q)∈K(G)

H(P ′) = H(P ). �

Theorem 1 If Step iv never happens, then the sequences H(Qt) and H(Pt)

produced by the iterative procedure converge to γ(G) and the following

|H(Qt+1) − γ(G)| ≤
c t

2t
(3)

holds, where c is a constant .

Proof. Set

Qop. := lim
t→∞

Qt and Pop. := lim
t→∞

Pt.

By the iterative procedure and Remarks 3 and 4 we have

H(Qop.) = H(Pop.).

By Remark 4 for any Q ∈ P(Y) such that Q ≺ Qop. we have

H(P ) < H(Pop.)

where

H(P ) = max
P ′: (P ′,Q)∈K(G)

H(P ′)

and therefore

H(Qop.) = γ(G).

To prove (3) we use the following lemma [3]:
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Lemma 1 If P and Q are two distributions on Y such that

∑

y∈Y

|P (y)− Q(y)| = θ ≤
1

2

then

|H(P ) − H(Q)| ≤ −θ log
θ

|Y|
. �

Using this lemma and the facts that

∑

y∈Y

|Qt(y) − Qt+1(y)| =
1

2t

∑

y∈Y

|Q1(y) −
1

|Y|
|

and
∑

y∈Y

|Qt+1(y) − Qop.(y)| <
∑

y∈Y

|Qt+1(y) − Qt(y)|

we obtain (3). �

The proof of Step iv. is the same.

Remark 5 For bipartite graphs the statement of Remark 4 is in general not

satisfied and therefore the convergence in this case can not be shown.
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