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Abstract


In this paper, we characterize the natural opposition relation on the set of flags


of a generalized polygon. We also investigate when a certain relation on any rank 2


geometry of finite diameter is equivalent to the opposition relation in a generalized


polygon. As a consequence we obtain a new definition of generalized polygons.


Finally, we also characterize the opposition relation in twin trees, which are the


analogues of polygons with infinite diameter.
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1 Introduction


One of the most fundamental concepts in the theory of generalized polygons is the opposi-
tion relation in both, the set of flags and the set of elements. For instance, the opposition
relation on elements of a generalized polygon enables one to define the groups of projec-
tivity via bijections of the “stars” of opposite elements. In fact, to define these bijections,
one only uses the “1-twinning” property of opposition of flags, as introduced by Mühlherr
in [5]. In the latter paper, the author characterizes twin buildings (a concept introduced


∗The first author is supported by the Deutsche Forschungsgemeinschaft through a Heisenberg fellow-


ship


1







by Ronan and Tits generalizing spherical buildings) as pairs of buildings endowed with a
certain opposition relation that is a 2-twinning (which implies that it is a 1-twinning).


The question raised by Mühlherr whether twin buildings can even be characterized by
just using the 1-twinning property first led both authors to constructing rank 2 counter-
examples (which will be presented in detail in Subsection 5.2 below) and then to joint
systematic investigations of the opposition relation and of 1-twinnings in spherical and in
twin buildings. These investigations were published in [2], respectively will appear soon
in [3]. In the present paper, we develop further our general notions and ideas in the rank
2 situation, where the one-dimensionality of the apartments permits some more elegant
and unexpected characterizations. An important additional feature is that, though 1-
twinnings originally were only considered in connection with buildings, we do not only
consider generalized polygons here but also arbitrary (firm connected) rank 2 geometries.
In this way one of our main results, namely a new characterization of generalized polygons
amongst the rank 2 geometries (cf. Theorem 4.5), can be derived. Though the present
paper emerged from twin building theory, it should be mentioned that the first four
sections do not presuppose any knowledge of this theory but are written in the language
of (rank 2) incidence geometry. We hope that this way our results and proofs are easier
accessible to geometers.


We now describe a little more detailed the contents of the present paper. Restricted
to the spherical case, one can read the main result of [5] as a characterization of the
(natural) opposition relation of chambers “up to equivalence” (this notion of equivalence
will be introduced, together with other basic concepts, in Section 2 below.) For rank
2 buildings, Mühlherr’s result becomes void. In [3], we have characterized twin build-
ings, and consequently the opposition relation in spherical buildings, using the concept
of a 1-twinning, together with one further axiom which boils down, roughly speaking, to
require at least one twin apartment. In the case of generalized n-gons, this additional
assumption can be replaced by some other natural condition, as we shall show in Sec-
tion 3 (cf. Proposition 3.1). We also give a characterization of the opposition relation
in generalized n-gons not referring to 1-twinnings (and being specific to the rank 2 situ-
ation) in Proposition 3.2. All the conditions (and some variants of them) used in one of
these propositions, and among them in particular the 1-twinning property, make sense for
arbitrary rank 2 geometries. So in Section 4, we do not only characterize the opposition
relation by means of these conditions but, more importantly, we show that appropriate
combinations of them are sufficient (and necessary) in order to force the rank 2 geometry
to already be a generalized n-gon. As an application, we obtain our new definition of a
generalized n-gon, and we show that the class of near 2n-gons which are also dual near
2n-gons coincides with the class of generalized 2n-gons.


So the main purpose of the present paper is to state characterizations of the opposition
relation in generalized polygons, and to characterize the generalized polygons themselves
by means of that relation. In Section 5, we include twin trees in one of these charac-
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terizations (cf. Proposition 5.2), giving a nice combinatorial condition for a 1-twinning
between two trees to yield a twin tree in the sense of Ronan and Tits [7]. In this context,
the language of twin building theory certainly can not be avoided any longer (there are
no “one copy models” for twin trees). As already claimed, the 1-twinning property alone
does not characterize the opposition relation in twin buildings. Counter-examples of rank
2 proving this assertion are also discussed in Section 5 (cf. Proposition 5.4). Here gener-
alized polygons (yielding some counter-examples already alluded to in [5]) and trees are
treated simultaneously.


Using the classical language, it was necessary to introduce what we mean by a relation
on flags to be equivalent to the (natural) opposition relation in a generalized polygon.
We give a precise definition below, and we shall explain in our final Section 5.1 how this
definition translates to the twin case, and how this twin case motivates that definition.
On that occasion, we also state a generalization of one of our results to spherical buildings
of arbitrary rank.


2 Definitions and preliminary results


2.1 Basic definitions


Definition 2.1 A rank 2 pregeometry Γ = (P ,L,F) consists of a set P of points, a set L of
lines, with P ∩L = ∅, and a set of flags F ⊆ {{p, L} | p ∈ P and L ∈ L}. It is called thick
(firm) if every point and every line is contained in at least three (two) flags. If {p, L} ∈ F ,
then we usually say that p and L are incident, or that p (respectively L) is incident with
L (respectively p). For a given geometry Γ, the incidence graph G(Γ) = (X(Γ), E(Γ)) is
the graph obtained from Γ by putting X(Γ) = P ∪ L (the set of vertices of G(Γ)) and
E(Γ) = F (the set of edges of G(Γ)). We call Γ connected if the graph G(Γ) is connected.


In this paper we will call a (rank 2) geometry any rank 2 pregeometry which is firm and
connected. From now on, we assume that Γ is a geometry.


The (local) diameter of Γ is by definition the (local) diameter of G(Γ) (in a certain vertex
v; i.e., the distance in G(Γ) from v to an element at maximal distance from v) and the
girth of Γ is the girth of G(Γ). Note that the girth, if finite, is always an even natural
number (the girth is ∞ if there are no circuits); therefore one sometimes considers the
gonality of Γ, which is half of the girth. When the diameter of Γ is finite and equal to
the gonality of Γ, then we say that Γ is a generalized polygon (see [12]; these objects were
introduced by Tits in [10]). This, in fact, is equivalent with saying that the simplicial
complex with set of vertices P ∪ L and set of maximal simplices F is a spherical rank 2
building (for an explicit proof, see e.g. [14]).
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A rank 2 geometry the incidence graph of which is an infinite tree without finite end
points is equivalent to a non-spherical building of rank 2 and will be called a tree itself,
or sometimes a generalized ∞-gon (but not polygon).


Corresponding to a geometry Γ there is also its flag graph F (Γ). The vertices of F (Γ) are
the flags of Γ, and two flags are adjacent if they share exactly one common element. The
distance function in F (Γ) will be denoted by δ. When we talk about adjacent flags, then
we mean adjacency in F (Γ).


A path (f0, f1, . . . , fk) of flags fi, i ∈ {0, 1, . . . , k}, is a sequence of flags such that fi−1 is
adjacent with fi, for all i ∈ {1, 2 . . . , k}. Such a path is called simple if fi−1 ∩ fi+1 = ∅ for
all i ∈ {1, 2, . . . , k − 1}. It is called minimal if δ(f0, fk) = k. It is called closed if f0 = fk.
The length of the above path is by definition equal to k.


If Γ is a generalized n-gon, then the diameter of the flag graph F (Γ) is equal to n and
two flags at distance n are called opposite. The relation thus defined on the set of flags is
called the natural opposition relation in Γ and we write f opp g to denote opposite flags
f, g. We also write f opp for the set of all flags opposite f in Γ.


Also, still for a generalized n-gon Γ, it is easily seen that the length of a simple closed path
is at least 2n. If it is exactly 2n, then we call the set of flags of the path an apartment
(by abuse of language) of Γ.


2.2 Opposition in generalized polygons


Below we will list a few properties of the natural opposition relation in a generalized
polygon. These properties are intrinsic in the sense that they only depend on the structure
of the sets f opp, and not of {f} ∪ f opp. Using these properties to try to characterize the
natural opposition relation, one also finds relations which are not exactly the natural
opposition relation, but only modulo an automorphism. Hence it makes sense to have the
following definition.


Definition 2.2 Let O ⊆ F × F be a symmetric relation in the set of flags F of the
generalized polygon Γ = (P ,L,F). Then we say that O is equivalent to the natural
opposition relation if there is an automorphism α of Γ such that fOg if and only if f opp
α(g). Note that we do not require that α is type preserving (so α may interchange the
sets P and L).


Of course, since O in the previous definition is symmetric, we deduce that f is opposite
α(g) if and only if α(f) is opposite g, which happens if and only if α2(f) is opposite α(g),
since α is an automorphism. Noting that f is the unique chamber at distance n from
f opp, we see that f opp determines f uniquely, and hence α has order at most 2.
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Due to the results of [2], there is an easy criterion to decide whether a given relation is
equivalent to the natural opposition relation. In the following lemma, we write fO :=
{g ∈ F | gOf}.


Lemma 2.3 A symmetric relation O ⊆ F × F on the set of flags of a thick generalized
polygon Γ is equivalent to the natural opposition relation in Γ if and only if for every flag
f there is some flag g such that fO = gopp.


Proof. The “only if” part is clear. For the “if” part, the assumption enables us to define
a map α : F → F by α(f)opp = fO. Then obviously, for any pair of flags f, g, we have
that g opp α(f) implies that gOf , which implies by the symmetry of O that f is opposite
α(g). Now Corollary 5.5 of [2] implies that α can be extended to an automorphism of Γ
of order at most 2, and we are done. ¤


2.3 1-twinnings in geometries


The main purpose of the present paper being analyzing the consequences of a 1-twinning
for rank 2 geometries, we now define what we understand by 1-twinning.


Definition 2.4 Let Γ = (P ,L,F) be a geometry as defined above. We consider a non-
empty symmetric relation O ⊆ F ×F , and we write fOg if (f, g) ∈ O, for any two flags
of Γ. Also, for any flag f ∈ F , we denote fO := {g ∈ F | gOf}. Finally, for f, g ∈ F , we
put `∗(f, g) := min{δ(h, g) |h ∈ fO}. In words, `∗(f, g) is the distance in the flag graph of
g to the set fO. Below we shall see that fO is always non-empty, and hence that `∗(f, g)
is a well defined natural number, for any pair of flags f, g.


We call O an even (respectively, odd) 1-twinning of Γ if, given (f, g) ∈ O and elements
x ∈ f and y ∈ g of the same (respectively, different) type, then for any flag f ′ containing
x there exists precisely one flag g′ containing y such that (f ′, g′) /∈ O.


The relation O is called a 1-twinning if it is an even or an odd 1-twinning. Two elements
x, y ∈ P ∪L are said to be of O-opposite type if either O is an even 1-twinning and x and
y are of the same type (i.e. x, y ∈ P or x, y ∈ L), or O is an odd 1-twinning and x, y are
not of the same type. We say that two simple paths (f0, f1, . . . , fk) and (g0, g1, . . . , gk) (of
the same length) are of O-opposite type if fi−1 ∩ fi and gi−1 ∩ gi are of O-opposite type,
for all i ∈ {1, 2, . . . , k}.


The motivation for this definition comes from the fact that the natural opposition relation
in generalized polygons (and more generally, in spherical buildings and twin buildings)
is a 1-twinning. But also every symmetric relation equivalent to the natural opposition
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relation in a generalized polygon is a 1-twinning. The converse, however, is not true, as is
proved by the counter-examples in Section 5 below. Part of the aim of the present paper
is to give additional conditions under which a 1-twinning is equivalent to the natural
opposition relation. We summarize the most important properties that we will encounter
in the course of this paper in the following lemma.


Lemma 2.5 Let Γ = (P ,L,F) be a generalized n-gon, and let O ⊆ F×F be a symmetric
relation equivalent to the natural opposition relation. Then the following properties hold.


(A) O is a 1-twinning. More precisely, if the involution α corresponding to O is type
preserving, then O is an even 1-twinning if n is even, and it is an odd 1-twinning
if n is odd. If α does not preserve types, then it is the other way around.


(B) For every flag f ∈ F and every simple path (f0, f1, . . . , fk) of Γ with f0, fk ∈ fO and
fi /∈ fO, for all i ∈ {1, 2, . . . , k − 1}, we automatically have that k is odd whenever
k < 2n.


(C) For every flag f and every pair of flags f ′, f ′′ ∈ fO, there exists a simple path
(f ′ = f0, f1, . . . , f2n = f ′′) with fi /∈ fO, for all i ∈ {1, 2, . . . , 2n− 1}.


(D) For every flag f and every apartment Σ of Γ we have Σ ∩ fO 6= ∅.


Proof. (A) is obvious (as it is the original motivation to introduce 1-twinning, it is
remarked by Mühlherr [5]). It follows directly from the fact that the gonality and the
diameter of Γ is equal to n.


(B) will be proved more generally in Section 5, see Proposition 5.2. The interested reader,
though, can prove (B) directly as an exercise.


(C) follows from considering minimal paths from f ′ and f ′′ to α(f) (which lies at distance
n from both f ′ and f ′′); there are two kinds of such paths depending on the type of the
intersection of α(f) with the unique adjacent element of the path. Combining different
types of paths for the different flags f ′ and f ′′ yields (C).


(D) finally is a direct consequence of the fact that, if (f0, f1, . . . , fn) is a simple path, then
f0 is opposite fn (which follows immediately from the fact that the gonality of Γ is equal
to n). Now one extends a minimal simple path connecting α(f) and any element of Σ
suitably to a path of length n to obtain (D). ¤


Property (C) will play an important role in Section 4. There it will also be shown, in the
more general context of arbitrary rank 2 geometries, that (A) and (C) together already
imply a stronger version of condition (D).
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2.4 Some elementary properties of 1-twinnings


In this subsection we assume that O is a 1-twinning of a rank 2 geometry Γ = (P ,L,F).
We will prove some elementary properties of O, which will be used throughout the paper.
The crucial observation is that Lemma 5.3 of [5] holds in this general rank 2 context. This
is Lemma 2.7 below. We deduce some more properties after that.


Lemma 2.6 Given f, g ∈ F , we have


(i) fO 6= ∅,


(ii) `∗(f, g) = `∗(g, f).


Proof. Given a simple path (h0, h1, . . . , hk) and a flag h′0 ∈ hO0 , there exists a simple
path (h′0, h


′
1, . . . , h


′
k) of O-opposite type such that hiOh


′
i, for all i ∈ {0, 1, . . . , k}. This


immediately follows inductively by applying the definition of a 1-twinning. Now this
elementary observation is applied twice.


(i) We choose an arbitrary pair (h0, h
′
0) ∈ O (which exists by the assumption that O


is non-empty) and an arbitrary simple path (h0, h1, . . . , hk) with hk = f (which
must exist because Γ is connected). Then the above observation shows that fO is
non-empty.


(ii) Here, we set k = `∗(f, g) and we choose a simple path (h0, h1, . . . , hk) such that h0Of
and hk = g. Applied to h′0 = f , the above observation yields `∗(g, f) ≤ k = `∗(f, g)
(since h′kOhk). Similarly, `∗(f, g) ≤ `∗(g, f). ¤


Lemma 2.7 Let there be given two flags f, g ∈ F with k = `∗(f, g) and two simple paths
(g0, g1, . . . , gk = g) and (f = f0, f1, . . . , fk) of O-opposite type. Then g0Of0 if and only if
gkOfk.


Proof. We apply induction on k, the case k = 0 being trivial. So assume k > 0 and
g0Of0 = f . By construction, `∗(f, gk−1) = k − 1. Hence fk−1Ogk−1 by the induction
hypothesis. But (fk−1, gk) /∈ O since otherwise `∗(g, f) ≤ k − 1 contradicting `∗(g, f) =
`∗(f, g) = k (using Lemma 2.6(ii)). So the 1-twinning condition yields gkOfk (recall that
gk−1 ∩ gk and fk−1 ∩ fk are of O-opposite type). Similarly gkOfk implies g0Of0 and the
lemma is proved. ¤


We will mainly use the above lemma in the following form.
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Lemma 2.8 Let f be any flag of Γ and let (f0, f1, . . . , fk, . . . , f2k) be a simple path with
fi ∈ f


O if and only if i = 0 or i = 2k, for all i ∈ {0, 1, . . . , 2k}. Then `∗(fk, f) = k, every
flag g with δ(fk, g) = k belongs to fO, and no flag g′ with δ(fk, g


′) < k belongs to fO.


Proof. Clearly `∗(fk, f) ≤ k. But if ` := `∗(fk, f) < k, then Lemma 2.7 implies that
either fk+` or fk−` would belong to fO (depending on the type of the minimal simple path
connecting f with fO


k ). The rest of the lemma follows directly from Lemma 2.7. ¤


Finally, we prove a rather technical lemma, which we will need two times below, and so
it is convenient to prove it here separately.


Lemma 2.9 Let f and g be two adjacent flags of Γ and let (f0, f1, . . . , f2n) be a simple
path with f0 = f2n, with f0 ∈ fO \ gO and with fi /∈ fO, for all i ∈ {1, 2, . . . , 2n − 1}.
Then for exactly one i ∈ {1, 2, . . . , 2n} we have fi ∈ gO, and this i necessarily belongs to
the set {1, 2n− 1}.


Proof. Considering types and parity, we immediately see that f0 ∩ f1 6= f2n−1 ∩ f0. So,
by symmetry, we may assume that the elements f ∩ g and f0 ∩ f1 have O-opposite types.
Since f0 ∈ fO \ gO, the definition of 1-twinning implies gOf1 (the symmetric argument
gives gOf2n−1). Now suppose that gOfi, i ∈ {2, 3, . . . , 2n− 1}. If i is odd, then fi−1 ∩ fi
and f ∩ g have O-opposite types, and the 1-twinning implies that one of fi−1, fi belongs
to fO, a contradiction. If i is even, a similar argument shows that either fi or fi+1 belongs
to fO, likewise a contradiction. The lemma is proved. ¤


3 Characterizations of opposition in generalized po-


lygons


Proposition 3.1 Let Γ = (P ,L,F) be a thick generalized n-gon. If O is a 1-twinning of
Γ, and if there exists some flag f ∈ F and some simple path (f1, f2, . . . , f2n−1) in Γ such
that fi /∈ fO, for all i ∈ {1, 2, . . . , 2n− 1}, then O is equivalent to the natural opposition
relation in Γ.


Proof. Let f and (f1, f2, . . . , f2n−1) be as in the statement of the proposition. We first
show that fO = f opp


n . Note that by Lemma 2.6, the set fO is not empty.


Put k := `∗(f, fn). If we had k < n, then Lemma 2.8 would imply that either fn+k or fn−k


belongs to fO, hence k = n and fO ⊆ f opp
n . But now Lemma 2.8 implies that f opp


n ⊆ fO.
Hence fO = f opp


n .


8







Now we show that for any flag f ′ ∈ F there exists a simple path (f ′
1, f


′
2, . . . , f


′
2n−1) with


f ′
i /∈ f ′O, for all i ∈ {1, 2, . . . , 2n − 1}. By connectivity it suffices to show this for f ′


adjacent to f .


So let f ′ be adjacent to f . Using the fact that O is a 1-twinning, we easily see that there
exists g ∈ fO \ f ′O. Consider such g and let Σ be the unique apartment of Γ containing
the opposite flags fn and g. Let g′ be the unique flag belonging to Σ such that f ∩ f ′ and
g ∩ g′ have O-opposite types. Then Lemma 2.9 implies that path (f ′


1, f
′
2, . . . , f


′
2n−1) we


are looking for can chosen to be the unique path of length 2n− 2 contained in Σ \ {g ′}.


As a result we found for every flag g ∈ F a flag g′ such that gO = g′opp. The proposition
now follows from Lemma 2.3. ¤


The previous proposition characterizes the natural opposition relation in polygons as a
1-twinning together with an additional assumption which follows from property (C) in
Lemma 2.5. A similar result can be shown by replacing the additional condition by (B) of
Lemma 2.5. Since the latter also holds for twin trees, we state and prove this in Section 5,
see Proposition 5.2. We leave it to the interested reader to formulate it for one generalized
polygon. Note that Proposition 5.2 also holds in the non-thick case. In fact, using results
from twin building theory, in particular the paper [3], the thickness assumption can be
dispensed with in Proposition 3.1 (see Proposition 5.2 in [4] and the discussion at the
end of Section 5.1). However, we preferred to present “twin free” proofs in this and the
next section, the more so, since the main results of Section 4 do not require any thickness
assumptions anyhow.


The next result characterizes the natural opposition relation in generalized polygons with-
out the assumption of a 1-twinning. The conditions we assume here arise naturally in
other characterizations, see Propositions 4.2 and 5.2 below.


Proposition 3.2 Let Γ = (P ,L,F) be a thick generalized n-gon. Let O ⊆ F × F be a
symmetric relation which satisfies conditions rm(B) and (D) of Lemma 2.5 as well as
the following weakening of condition (C).


(C∗) For every flag f , there exists a simple path (f0, f1, . . . , f2n) with f0, f2n ∈ fO, and
fi /∈ f


O, for all i ∈ {1, 2, . . . , 2n− 1}.


Then O is equivalent to the natural opposition relation in Γ.


Proof. Let f be an arbitrary flag of Γ. Due to (C∗), there exists a simple path
(f0, f1, . . . , f2n) with f0, f2n ∈ fO and fi /∈ f


O, for all i ∈ {1, 2, . . . , 2n− 1}.


We first show that fO ⊆ f opp
n . So let g ∈ fO and assume by way of contradiction that


g /∈ f opp
n . Let (fn, g1, g2, . . . , gk, g) be the unique simple path in Γ connecting fn and g,
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with k < n − 1. We choose g such that k is minimal, i.e., we assume that gi /∈ fO, for
all i ∈ {1, 2, . . . , k}. Put g0 = fn and let ` ∈ {0, 1, . . . , k} be maximal with respect to
the property g` ∈ {f0, f1, . . . , f2n} (note that certainly g does not belong to the latter
set) and let m ∈ {0, 1, . . . , 2n} be such that g` = fm. By symmetry we may assume that
m ≤ n. Then (f0, f1, . . . , fm−1, g`+1, g`+2, . . . , gk, g) is a simple path with the property
that f0, g ∈ f


O and all other flags of that path — and there are exactly m+k− `−1 such
— do not belong to fO. Similarly, (f2n, f2n−1, fm, g`+1, g`+2, . . . , gk, g) is a simple path
with the property that f2n, g ∈ f


O and all other flags of that path — and this time there
are exactly 2n+ k−m− ` such — belong to fO. Note also that 2n+ k−m− ` < 2n− 1
since ` = n −m. But (2n + k −m − `) − (m + k − ` − 1) = 2n − 2m + 1 is odd, which
contradicts (B). Hence fO ⊆ f opp


n .


If there existed a flag h in f opp
n \ fO, then the unique apartment of Γ containing both


h and fn would not contain any element of fO (by the previous paragraph), and so this
would contradict (D).


Hence fO = f opp
n and the result follows from Lemma 2.3. ¤


4 Characterizations of generalized polygons


Aiming at a characterization of generalized polygons using flags at maximal distance in
a geometry, we first characterize generalized polygons as the only geometries admitting a
certain — for the time being abstract — opposition relation. Later on, we shall define a
concrete relation in geometries and prove that, if it is a 1-twinning, then the conditions
of the Proposition 4.2 are satisfied. We first need a lemma. Note that the condition on O
we assume in addition to being a 1-twinning is precisely the property (C) of Lemma 2.5,
which was stated there for generalized n-gons but also perfectly makes sense for arbitrary
rank 2 geometries.


Lemma 4.1 Let Γ = (P ,L,F) be a (rank 2) geometry and let n be a positive integer.
Suppose that O is a 1-twinning satisfying the condition (C) of Lemma 2.5.


Then O also satisfies the following modification of property (D).


(D∗) For every flag f and for every simple path (f1, f2, . . . , f2n) in Γ, there exists i ∈
{1, 2, . . . , 2n} such that fi ∈ f


O.


Proof. Let, by way of contradiction, the simple path (g1, g2, . . . , g2n) be a counterexample
to (D∗). By Lemma 2.6, the set fO is nonempty. Suppose first that some flag g ∈ fO


exists such that g1 ∩ g2 is not nearer to g than g1 \ g2 (in the incidence graph of Γ). Then
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we can extend the above simple path to a simple path (gk, gk+1, . . . , g2n), with k ≤ 0, such
that gi /∈ fO, for all i ∈ {k + 1, k + 2, . . . , 2n} and gk ∈ fO. By shifting indices we may
assume k = 0.


Now suppose that for all flags g ∈ fO, the element g1 ∩ g2 is nearer to g than g1 \ g2.
Put ` = `∗(f, g1). If ` < 2n, then Lemma 2.7 implies that g1+` ∈ fO, a contradiction.
Hence ` ≥ 2n and, changing notation, we may again assume that there is a simple path
(g0, g1, . . . , g2n) with gi ∈ fO if and only if i = 0, for all i ∈ {0, 1, . . . , 2n}.


Now let (g0 = f0, . . . , fn, . . . , f2n = g0) be a simple path as in (C). An immediate check
of types and parity yields that f0 ∩ f1 6= f2n−1 ∩ f0. By the definition of 1-twinning, one
of f1 or f2n−1 must be equal to g1. Without loss of generality, we may assume f1 = g1.
Note that from Lemma 2.8 it immediately follows that `∗(f, fn) = n.


Now let ` ≤ 2n − 1 be maximal with respect to the property “fi = gi for all i ∈
{0, 1, . . . , `}”. If ` < n, then applying Lemma 2.8 to the simple path (fn, . . . , .f`+1, g`+1, . . . , g2`+1)
yields g2`+1Of , a contradiction. If ` ≥ n, then Lemma 2.8 implies that g2nOf , again a
contradiction.


We conclude that (D∗) holds. ¤


Note that condition (C) of the previous lemma excludes the case n = 1, since by taking
f ′ = f ′′, the path (f ′, f1, f


′) can never be simple.


The thickness condition in the last sentence of the following proposition is not essential
for the same reason which was mentioned below Proposition 3.1.


Proposition 4.2 Γ = (P ,L,F) be a (rank 2) geometry and let n be a positive integer.
Suppose that O is a 1-twinning satisfying additionally (C) of Lemma 2.5. Then Γ is a
generalized n-gon and, if Γ is thick, O is equivalent to the natural opposition relation in
Γ.


Proof. By the previous lemma, O also satisfies (D∗) of that lemma. We will freely refer
to that condition as (D∗).


Let f ∈ F be an arbitrary flag of Γ. By Lemma 2.6, we may select a flag f0 in fO.
By (C), there is a simple path γ = (f0, f1, . . . , fn, . . . , f2n = f0) with fi /∈ fO, for all
i ∈ {1, 2, . . . , 2n− 1}. Again, an immediate check of parity and types implies that f1 and
f2n−1 cannot be adjacent or equal, or, in other words, f2n−1 ∩ f0 6= f1 ∩ f0.


We claim that, if x, y ∈ fO, and if (x = g0, g1, . . . , gn, . . . , g2n = y) is a simple path with
gi /∈ f


O ,for all i ∈ {1, 2, . . . , 2n− 1}, then gn = fn.


Indeed, let (x = h0, h1, . . . , hn, . . . , h2n = f0) be a simple path in Γ with hi /∈ fO for
i ∈ {1, 2, . . . , 2n−1} (this path exists by (D∗). Since f2n−1∩f0 6= f1∩f0, we may without
loss of generality assume that h2n−1 ∩ f0 = f2n−1 ∩ f0 (and then h2n−1 = f2n−1 because
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O is a 1-twinning). Let j ≥ 1 be minimal with respect to the property hi = fi, for all
i ∈ {j, j + 1, . . . , 2n}. If j > n, then the simple path (h1, h2, . . . , hj−1, fj−1, fj−2, . . . , f1)
contradicts (i). Hence j ≤ n and so hn = fn. Now one similarly shows that hn is the
middle element of any simple closed path of length 2n with extremities x no members of
which lie in fO, except for x. And that middle element is in its turn equal to gn by the
same token. The claim follows.


So we have a well-defined map


α : F → F : f 7→ fn.


We show that α is surjective. It suffices to prove that every flag adjacent to fn is in the
image of α, since Γ is connected by assumption.


So let f ∗ be adjacent to fn. Our first aim is to show that there is a simple closed path γ
of length 2n containing f ∗ and fn and such that exactly one element of that path belongs
to fO.


We start by choosing a simple path (g0, g1, . . . , gn) with gn = fn and gn−1 = f ∗ (by the
firmness assumption, this is possible). By Lemma 2.8, g0 ∈ fO and gi /∈ fO, for all
i ∈ {1, 2, . . . , n− 1}.


Next, we choose a simple path (g0 = g′0, g
′
1, . . . , g


′
2n−1, g


′
2n = g0), with g′i /∈ fO, for all


i ∈ {1, 2, . . . , 2n− 1}, guaranteed by (C). We have shown above that g ′n = fn. Hence we
may assume that gn−1 is adjacent or equal to g′n−1 and consequently g′n+1 is not adjacent
with nor equal to gn−1. Hence γ = (g0, g1, . . . , gn, g


′
n+1, . . . , g


′
2n−1, g


′
2n = g0) is the required


closed simple path.


By definition of 1-twinning, there exists now a flag g adjacent to f and such that g ′2n−1 ∈
gO and g0 /∈ gO. Lemma 2.9 implies that the only element of γ which belongs to gO is
g′2n−1. Consequently α(g) = fn−1 = f ∗. We have shown that α is surjective.


There is no closed simple path through fn of length k < 2n, since, on one hand, such a
path (which can be juxtaposed arbitrarily often) must contain an element of fO by (D∗),
but on the other hand cannot contain such an element since this would mean `∗(fn, f) < n,
a contradiction. By surjectivity of α, we conclude that Γ has gonality n (note that (C)
guarantees the existence of a closed path of length 2n). Also, there are no flags at distance
n + 1 from fn, since such a flag would be adjacent to a flag f ′ ∈ fO, and hence it would
either itself belong to fO (and then it has distance ≤ n from fn by the fact that α is
well-defined), or it is one of the two unique (by the 1-twinning) flags adjacent to f ′ on
a path of length n from f ′ to fn (and then it has distance ≤ n − 1 from fn). Hence the
local diameter at fn is equal to n, and since α is surjective, the diameter of Γ is equal to
n. We have shown that Γ is a (not necessarily thick) generalized n-gon.


If Γ is thick, it follows from Proposition 3.1 that O is equivalent to the natural opposition
relation. ¤
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The following results characterize generalized polygons amongst all rank 2 geometries. In
fact, they can be seen as weakenings of the so-called gate property, see [8].


Proposition 4.3 Let Γ be a (rank 2) geometry with finite diameter, flag set F and di-
ameter of the flag graph equal to n. For f, f ′ ∈ F we define fOf ′ if f and f ′ are at
distance n in the flag graph of Γ, and we call two flags f and g opposite if fOg. If O is
a 1-twinning, then Γ is a generalized n-gon and O is the natural opposition relation.


Proof. Let f = {x1, x2} and g = {y1, y2} be two opposite flags, where we assume that
the type of yi is O-opposite the type of xi, i = 1, 2. By the definition of 1-twinning,
there are unique flags f1 and g1 containing x1 and y1, respectively, and at distance n− 1
from g and f , respectively. Hence there are simple paths (f = f0, f1, . . . , fn = g) and
(g = g0, g1, ..., gn = f) such that f0 ∩ f1 = {x1} and g0 ∩ g1 = {y1}. Also, the 1-twinning
property implies that fn−1∩fn = {y2} and gn−1∩gn = {x2}. If g


′ = {y′1, y
′
2} is another flag


opposite f , then with similar and obvious notation, we have paths (f = f ′
0, f


′
1, . . . , f


′
n = g)


and (g′ = g′0, g
′
1, . . . , g


′
n = f), with f ′


0 ∩ f
′
1 = {x1}, g


′
0 ∩ g


′
1 = {y′1}, f


′
n−1 ∩ f


′
n = {y′2} and


g′n−1 ∩ g
′
n = {x2}. To see now that condition (C) of Proposition 4.2 (see Lemma 2.5) is


satisfied, we can consider the simple path (g = fn, . . . , f1, f0 = f = g′n, g
′
n−1, . . . , g


′
0 = g′).


It follows now from Proposition 4.2 that Γ is a generalized n-gon. By the definition of O,
it has to be the natural opposition relation in Γ. ¤


This proposition has some nice consequences. For the first one, we say that two vertices
v, v′ of a graph are at maximal distance if all vertices adjacent to v (respectively v ′) are
not further away from v′ (respectively v) than v (respectively v′).


Corollary 4.4 Let Γ be a (rank 2) geometry with finite diameter and with flag set F .
For f, f ′ ∈ F we define fOf ′ if f and f ′ are at maximal distance in the flag graph of
Γ (i.e., the graph with vertex set F and adjacency is just adjacency of flags). If O is a
1-twinning of Γ, then Γ is a generalized polygon and O is the natural opposition relation.


Proof. Let n be the diameter of the flag graph of Γ. We define a new relation O′ on the
set of flags by writing fO′g if f is at distance n from g in the flag graph of Γ. Obviously,
O′ ⊆ O. We now show that O′ is a 1-twinning. To that end, we first show that, if
f = {x1, x2} and g = {y1, y2} are flags at distance n, and if x1 and y1 have O-opposite
types, then any pair of flags f ′ = {x1, x


′
2} and g′ = {y1, y


′
2} at distance n − 1 from each


other, are not at maximal distance. Suppose by way of contradiction that they are at
maximal distance. Let (f ′ = f0, f1, . . . , fn−1 = g′) be a minimal path. If x1 ∈ f1 and
y1 ∈ fn−2, then f and g are also at distance n − 1 from each other, a contradiction. If
x1 ∈ f1 and y′2 ∈ fn−2, then both f and f1 are not at maximal distance from g′, hence,
since O is a 1-twinning, they must coincide. But then f and g are at distance n− 1 from
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each other, a contradiction. So we conclude that x′2 ∈ f1 and y′2 ∈ fn−2. But now x′2 and
y′2 have O-opposite type and the fact that f1 is not at maximal distance from fn−2, nor
from g′ contradicts O being a 1-twinning. Hence f ′ and g′ cannot be at maximal distance.


Obviously, if f ′ = {x1, x
′
2} and g′ = {y1, y


′
2} are at distance n − 2 from each other, then


they are not at maximal distance. Hence f ′ and g′ are at maximal distance if and only
if they are at distance n from each other. Hence O and O′ coincide on the sets of flags
containing x1 and y1, respectively. Thus O′ is a 1-twinning, and the result follows from
Proposition 4.3. ¤


The next result characterizes generalized polygons by means of the existence of projections
from elements x onto elements y at “almost maximal” distance. This is a considerable
weakening of the classical definition, where this is required for all elements x, y of non-
maximal distance, and where also the paths of minimal length between x and y are
required to be unique.


Theorem 4.5 Let Γ be a (rank 2) geometry with finite diameter n. If for every pair of
elements x, y of Γ, with x and y at distance n−1 from each other, there is a unique element
x′ incident with x and nearest to y (in the incidence graph), then Γ is a generalized n-gon.


Proof. Given flags f = {x, x′} and g = {y, y′}, where without loss of generality we assume
d(x, y′) < d(x, y) (d denotes the distance function in the incidence graph of Γ), we observe
that f and g are at distance n in the flag graph of Γ if and only if d(x, y) = d(x′, y′) = n.
Hence our assumption implies in particular that there exist flags which are at distance
n from each other (note that we also need our general assumption of firmness here).
Therefore the diameter of the flag graph (which is always smaller than or equal to the
diameter of the incidence graph) is equal to n. It is now clear that the assumption of
the corollary implies that the relation O of Proposition 4.3 is an odd or even 1-twinning
according to whether n is odd or even. Hence this proposition implies the corollary. ¤


The last corollary is about near 2n-gons, introduced by Shult and Yanushka [9]. A near
2n-gon is a (connected) rank 2 pregeometry Γ = (P ,L,F) of diameter 2n such that (1)
any two lines meet in at most one point, (2) every line is incident with at least 2 points,
and (3) for every point p ∈ P and every line L ∈ L there is a unique point p′ ∈ P on L
nearest to p (in the incidence graph). Let us mention that it has been an open question
since the introduction of near polygons whether a near polygon Γ which is also a dual
near polygon is necessarily a generalized polygon. Noting that such Γ must necessarily
be firm, the next corollary follows immediately from Theorem 4.5.


Corollary 4.6 If Γ is a near 2n-gon for some positive integer n, such that the dual of Γ
is also a near 2n-gon, then Γ is a generalized 2n-gon.
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5 Twinnings of rank 2 buildings


5.1 A characterization theorem


In [3], we analyzed which 1-twinnings (in the original sense as introduced by Bernhard
Mühlherr [5]) give rise to twinnings of buildings. Thereby we also obtained a new char-
acterization of twin buildings. In this section we first use this result to prove a new —
typically rank 2 — characterization (in particular yielding a new characterization of twin
trees). Then we want to discuss some 1-twinnings of rank 2 buildings which are not twin
buildings. These counterexamples motivated our analysis of 1-twinnings started in [3] and
continued in the present paper.


In the following, we assume that we are given two generalized n-gons Γε = (Pε,Lε,Fε),
ε ∈ {+,−}, where we allow n = ∞ (see Subsection 2.1). The notion of a 1-twinning of
a pair of generalized n-gons specializes Mühlherr’s concept of a k-twinning of a pair of
buildings (see [5] and also [3]).


Definition 5.1 A non-empty symmetric relation O ⊆ (F+ × F−) ∪ (F− × F+) is called
a 1-twinning of (Γ+,Γ−) if the following condition holds.


(1Tw) For any two flags (f+, f−) ∈ O, for any two elements x+ ∈ f+ and x− ∈ f− of the
same type, for any ε ∈ {+,−} and and any flag f ′


ε 3 xε, there exists a unique flag
f ′
−ε 3 x−ε such that (f ′


ε, f
′
−ε) /∈ O.


Our definition of a 1-twinning in a single geometry as given in Section 2 is of course
motivated by the above definition. Note that in the present context we can always require
that “being of O-opposite type” is equal to “being of the same type” since we can always
replace Γ− with its dual if necessary.


We shall again use the notations f+Of−, f
O
ε , `∗(fε, g−ε) (ε ∈ {+,−}, and we always


assume that objects with a subscript ε belong to Γε). We shall also freely use the obvious
analogies of Lemma 2.6 and Lemma 2.7 in our present situation (cf. also Section 5 of [5],
and Section 2 of [3]).


In the following we always assume that O is a 1-twinning of (Γ+,Γ−). The main result of
[3], namely Theorem 3.5 of that paper, is a new characterization of twin buildings. In the
present situation, it yields a necessary and sufficient condition for the triple (Γ+,Γ−,O)
to “be” a (rank 2) twin building, meaning that O induces a (then uniquely determined)
codistance on (Γ+,Γ−) in the sense of the original definition given in Tits [13]. This
condition reads as follows.


(TA) There exists an ε ∈ {+,−} and a flag fε ∈ Fε such that for any flag f−ε ∈ f
O
ε , there


exists an apartment Σ−ε of Γ−ε satisfying {f−ε} = fO
ε ∩ Σ−ε.
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Due to special features of the rank 2 case, we are able to prove a new characterization of
rank 2 twin buildings now. It is inspired by (B) of Lemma 2.5.


Proposition 5.2 The 1-twinning O yields a twin building (Γ+,Γ−,O) if and only if the
following condition is satisfied for some ε ∈ {+,−} and some fε ∈ Fε.


(B∗) For any simple path (f0, f1, . . . , fk) in Γ−ε satisfying f0, fk ∈ fO
ε , fi /∈ fO


ε , for all
i ∈ {1, 2, . . . , k − 1}, and k < 2n, the number k is necessarily odd.


Proof. First assume that (B∗) holds and suppose ε = + (the case ε = − being similar).
Let f− ∈ f


O
+ be given. We want to construct an apartment Σ− of Γ− such that Σ−∩f


O
+ =


{f−}. To this end, we inductively construct simple paths (f− = g0, g1, . . . , gm) such that
`∗(f+, gi) = i, for all i ∈ {0, 1, . . . ,m}. Whenever m < n, we shall show that there is a
longer simple path (g0, g1, . . . , gm+1) with `∗(f+, gm+1) = m+ 1.


Let x− ∈ gm be different from gm−1 ∩ gm. For all flags g− 3 x−, we obviously have
`∗(f+, g−) ∈ {m − 1,m,m + 1}. Now `∗(f+, g−) = m − 1 would imply the existence of
a simple path (g− = gm+1, gm+2, . . . , g2m) with g2m ∈ fO


+ . Note that g− ∩ gm+2 6= {x−}
since `∗(f+, gm+2) = m− 2. Hence (g0, g1, . . . , gm, gm+1, . . . , g2m) would be a simple path
contradicting (B∗). So `∗(f+, g−) ∈ {m,m + 1}, for all flags g− 3 x−. Choose a simple
path (f+ = f ′


0, f
′
1, . . . , f


′
m) of the same type as (g0, g1, . . . , gm). The Lemma 2.7 (or rather


its appropriate analogue) implies f ′
mOg−, for all g− 3 x− with `∗(f+, g−) = m. But since


O is a 1-twinning there must exist a gm+1 3 x− satisfying (f ′
m, gm+1) /∈ O and hence


`∗(f+, gm+1) = m+ 1 by the previous argument. Now we distinguish two cases.


If n =∞ (and hence Γ− is a tree), we construct by the above procedure a “doubly infinite”
path (. . . , g−1, g0 = f−, g1, g2, . . .) such that g−1 ∩ g0 6= g0 ∩ g1 and `∗(f+, gj) = |j|, for all
integers j. This obviously yields the desired apartment Σ− of Γ−.


If n 6=∞, we first construct a simple path (f− = g0, g1, . . . , gn) with `∗(g+, gi) = i, for all
i ∈ {0, 1, . . . , n}. Then there exists a unique apartment Σ− = {g0, g1, . . . , gn, gn+1, . . . , g2n−1}
of Γ− containing this path. Since `∗(f+, gn) = n, we have that giOf+ is only possible for
the flag g0 = f− of Σ−.


Next we assume that (Γ+,Γ−,O) is a twin building. We want to prove that for all
f+ ∈ F+ condition (B∗) (with ε = +) holds. Assume by way of contradiction that there
is a simple path (f0, f1, . . . , f2`), ` < n, in Γ− such that f0, f2` ∈ fO


+ and fi /∈ fO
+ , for


all i ∈ {1, 2, . . . , 2`− 1}. Since twin buildings have “sufficiently many twin apartments”,
there exists an apartment Σ− of Γ− such that f` ∈ Σ− and Σ− ∩ f


O
+ consists of a single


flag (cf. for instance Lemma 2(ii) of [1]). On the other hand, Lemma 2.7 (in the form
of Lemma 2.8), together with the above assumptions, firstly implies that `∗(f`, f+) = `.
But then the same lemma secondly implies that the apartment Σ− contains two different
flags h, h′ ∈ f+O, both at distance ` from f`, contradicting the choice of Σ−. ¤
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5.2 Some counterexamples


In this section, we will construct 1-twinnings of rank 2 buildings which are not twinnings.
We use the notation of the previous section. In particular, a generalized ∞-gon is just a
tree without finite end points.


We make the following observation. Let (Γ+,Γ−,O) be a 1-twinning of two generalized
n-gons, n possibly infinite. Then for every point p+ of Γ+, the set of points of Γ− not
opposite p+ is a geometric hyperplane Hp+


of Γ−, i.e., a set of points such that any line
L either meets Hp+


in exactly 1 point, or every point of L is contained in Hp+
. Also,


if p− ∈ Hp+
, then p+ ∈ Hp− (with obvious notation). Similarly, for every line Lε of Γε.


ε ∈ {+,−}, there is a unique dual geometric hyperplane HLε
in Γ−ε. Hence, if we want


1-twinnings which are not twinnings, then we have to look for suitable sets of geometric
hyperplanes, i.e., we must find a set of hyperplanes and dual hyperplanes which intersect
in the right way. The easiest way to make the intersections right is simply to choose
all (dual) geometric hyperplanes disjoint (and it follows that no geometric hyperplane
will contain the set of points of a line; hence, for n 6= ∞, all geometric hyperplanes are
distance-2-ovoids in the sense of Chapter 7 of [14]).


Proposition 5.3 Let Γε be a generalized n-gon, with n ≥ 2. Suppose that there is a
non-trivial partition Πε of the points set of Γε into disjoint geometric hyperplanes, and a
partition Π′


ε of the line set of Γε into dual geometric hyperplanes. Suppose also that there
are pairings b : Π+ ←→ Π− and b′ : Π′


+ ←→ Π′
−. For an element xε of Γε, we denote


by Hxε
the unique (dual) geometric hyperplane of Πε (Π′


ε) containing xε. For chambers
{pε, Lε} of Γε, we define


{p+, L+}O{p−, L−} ⇐⇒ Hb
p+
6= Hp− and Hb′


L+
6= HL− .


Then O satisfies Condition (1Tw) of Definition 5.1 and hence defines a 1-twinning of
(Γ+,Γ−) such that (Γ+,Γ−,O) is not a twin building.


Proof. Obviously, to prove (1Tw) of Definition 5.1, all we have to show is that, up to
point-line duality and plus-minus duality, if for the lines L+ of Γ+ and L− of Γ− the sets
Hb′


L+
and HL− are not the same, then for every point p+ of L+, there is a unique point p−


of L− belonging to Hb
p+
. The existence of p− follows from the fact that Hb


p+
is a geometric


hyperplane. If p− were not unique, then every point of L− would belong to Hb
p+


and hence
L− would not meet any other member of Π−, a contradiction.


Now the function `∗ associated to the 1-twinning (Γ+,Γ−,O) satisfies `
∗(f+, g−) < 3 for


all flags f+, g−, and hence one sees that (Γ+,Γ−,O) can never have twin apartments. ¤
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We now discuss for different values of n how the previous proposition gives rise to explicit
(counter-)examples. We restrict ourselves to the thick case, use the notation of the pre-
vious proposition, and denote by (sε, tε) be the order of Γε (i.e., each line is incident with
sε + 1 points and each point with tε + 1 lines; both numbers can be infinite).


For generalized digons, the only geometric hyperplanes are the points themselves; hence
there is a unique way to form partitions of geometric hyperplanes and dual geometric
hyperplanes of Γ+ and Γ− and we thus obtain 1-twinnings of generalized digons (with
necessarily the same number of points and the same number of lines because of the
pairings b and b′). But it is easy to see that these 1-twinnings are always equivalent to
the natural opposition relation, so Proposition 5.3 does not provide counter-examples in
this case.


For projective planes, the only geometric hyperplanes are the sets of points incident with
a line, and the full point set. Hence there is no way to choose disjoint ones. Consequently
Proposition 5.3 is neither in this case of any use.


Now suppose n ≥ 4 and note that, if Πε and Π′
ε both exist for ε ∈ {+,−}, then necessary


and sufficient for the existence of the pairings b and b′ is obviously that s+ = s− and
t+ = t−. In the finite case, there are no generalized polygons known admitting partitions
of geometric hyperplanes and dual geometric hyperplanes other than the quadrangles
T ∗(O) of Tits (see [6]) and hence the latter admit 1-twinnings which are not twinnings. In
the infinite case, every generalized n-gon with n > 3 admits such partitions by transfinite
induction. For the sake of simplicity, let us explain this in the case s+ = s− = t+ =
t− = |N|. Let us construct a partition Π+ of the point set of Γ+ into distance-2-ovoids,
or briefly ovoids. Let {pi | i ∈ N} be the set of points of Γ+ and let {Lj | j ∈ N} be the
set of lines of Γ+. Our task is to construct a countable set {Oi | i ∈ N} of disjoint ovoids
Oi covering the whole point set of Γ+. Suppose we already constructed all ovoids Oi with
i < k, for certain k ∈ N (this includes k = 0, which corresponds to the first step of the
induction). We now construct Ok, also by induction. Let m be minimal with respect to
the property “pm /∈ O0 ∪ . . . ∪ Ok−1” (for k = 0, just set m = 0) and let m′ be minimal
with respect to the property “Lm′ is not incident with pm”. Then we put Θm′ = {pm}.
Suppose now we have constructed a (finite) set Θ` of mutually non-collinear points such
that every line Li with i < ` is incident with a unique element of Θ`, but no element
of Θ` is incident with L`, for some ` ∈ N. Then we can choose a point x on L` outside
O1 ∪ · · · ∪ Ok−1 and not collinear with any element of Θ`. If `′ is the smallest positive
integer with the property that L`′ is not incident with any element of Θ` ∪ {x}, then we
put Θ`′ = Θ` ∪ {x}. Now we define Ok as the union of all the Θ`, and the construction is
complete.


For trees, the construction is even simpler. Let T+, T− be two isomorphic semi-homogeneous
trees with valencies a and b, more precisely, all vertices in T+ and T− of the first type are
supposed to have valency b (and we call such vertices points) and all vertices of the second
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type to have valency a (and we call these vertices lines). Let I and J be two index sets
with cardinalities a and b, respectively. For any vertex in T+ or T−, denote by N(x) its
set of neighbors. Now choose a function f1 (which can be very easily constructed) from
the set of all points in T+ and T− to I such that the restriction of f1 to any set N(L),
where L is a line, is a bijection onto I. Analogously, construct a function f2 from the set
of all lines to J such that the restriction to any N(p), where p is a point, is a bijection
onto J . The + and − parts of the fibers of f1 (f2) are the (dual) geometric hyperplanes
in T+, T− we wanted.


For projective planes and generalized digons, we can construct 1-twinnings which are not
twinnings in the following way. Consider a pair of projective planes or generalized digons
(Γ+,Γ−) of the same order q (possibly infinite). Let Πε, ε ∈ {+,−}, be a partition of the
flag set of Γε such that every point and every line of Γε is contained in exactly one element
of each member of Πε. Then |Π+| = |Π−| = q + 1 and we can choose a bijection b from
Π+ to Π−. If we define f+Of−, for two flags f+, f− in Γ+, Γ−, respectively, if the image
under b of the class of Π+ containing f+ does not contain f−, then we have a 1-twinning
(Γ+,Γ−,O) which is clearly not a twinning. It is again easy to construct such partitions
for generalized digons and for infinite projective planes. In the finite projective plane case,
we consider for Γ+ and Γ− the Desarguesian projective plane of order q. There, such a
partition can be defined as the set of orbits in the flag set under a Singer cycle. For the
plane of order 2, this was exactly the counterexample alluded to in [5], attributed there
to the second author.


Note that the previous construction also works for generalized n-gons with n > 3.


The previous discussions prove the following result.


Proposition 5.4 For every n ∈ N ∪ {∞}, n ≥ 2, there exists a 1-twinning O of a pair
(Γ+,Γ−) of generalized n-gons such that (Γ+,Γ−,O) is not a twin building.


Taking for Γ+ and Γ− isomorphic generalized polygons in the above examples, and iden-
tifying them by an arbitrarily chosen isomorphism, we have also proved the following (see
also Proposition 6.4 below)


Corollary 5.5 For every n ∈ N, n ≥ 2, there exists a generalized polygon Γ and a
1-twinning which is not equivalent to the natural opposition relation.


6 What about spherical buildings of higher rank?


In the general theory of buildings, a flag in a generalized polygon would be called a
chamber. An immediate consequence of Proposition 3.1 is now the following result.
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Corollary 6.1 Let Γ be a thick generalized n-gon. If O is a 1-twinning of Γ, and if there
exists some chamber f ∈ F and some apartment Σ in Γ such that Σ ∩ fO is a singleton,
then O is equivalent to the natural opposition relation in Γ.


This corollary can directly be generalized to spherical buildings if the occurring notions are
appropriately defined in this more general context. In the following, ∆ is always a spherical
building (considered as a simplicial complex) and C its set of chambers. Chambers c, d ∈ C
at maximal (gallery) distance from each other are called opposite, and we again use the
notation c opp d here and call it the natural opposition relation in ∆. We also choose
an index set I of cardinality the rank of ∆ and a type function (also called numbering)
type: ∆→ 2I as introduced in Subsection 3.8 of [11].


Definition 6.2 Let O ⊆ C×C be a non-empty symmetric relation. Given a permutation
π : I → I of order at most 2, we say that O is a 1-twinning of ∆ with respect to π if for any
pair of chambers (c, d) ∈ O, any two vertices x ∈ c, y ∈ d such that type(x) = π(type(y))
and any chamber c′ containing the panel c \ {x}, there exists precisely one chamber d′


containing d \ {y} which satisfies (c′, d′) /∈ O. The permutation of I corresponding to the
natural opposition relation (which is of course a 1-twinning) will be denoted by ω.


We say that O is equivalent to the natural opposition relation in ∆ if there exists a (not
necessarily type-preserving) automorphism α of ∆ such that cOd if and only c opp α(d)
for any c, d ∈ C (then α is of order at most 2, as was explained in Subsection 2.2).


Now by modifying the proof of Proposition 3.1 appropriately in the special situation
described in Corollary 6.1 above (here the flag fn of that proof can alternatively be
described as the unique flag in Σ opposite the unique flag f ′ ∈ Σ satisfying f ′Of), the
following generalization to arbitrary spherical buildings is easily obtained (a different
proof is indicated at the end of this section).


Corollary 6.3 Let O be a 1-twinning of the thick spherical building ∆ with respect to the
permutation π of I. If there exist a chamber c and an apartment Σ of ∆ such that c′Oc
for precisely one chamber c′ in Σ, then O is equivalent to the natural opposition relation
in ∆.


Note that this corollary implies that π necessarily induces an automorphism of the diagram
associated to ∆ (which was not presupposed!).


Finally, we discuss the connection between relationsO equivalent to the natural opposition
relation in ∆ and twinnings of two copies of ∆. So let a non-empty symmetric relation
O ⊆ C × C be given. We take two copies ∆+,∆− of ∆ (and C+, C− of C); more formally
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we are considering isomorphisms (of simplicial complexes) β+ : ∆+ → ∆, β− : ∆− → ∆.
Now we associate a symmetric relation O′ on C+ × C− ∪ C− × C+ to O by declaring


c+O
′d− :⇐⇒ β+(c+)Oβ−(d−)⇐⇒: d−O


′c+.


We want to decide when the triple (∆+,∆−,O
′) is a twin building (in the sense of the


characterization of twin buildings derived in [3]). Due to the fact that in twin building
theory types are always chosen such that “opposite types” means the same as “equal
types” (and hence no permutation of types occurs in the 1-twinning definition (1Tw)),
the type functions on ∆+ and ∆− will have to be chosen suitably in the following. We
shall assume that the index set I is the same for all the three type functions on ∆, ∆+


and ∆− and that β+ is type-preserving. Then the type function on ∆− will be defined
according to our respective requirements (so that β− usually is not type-preserving). For
instance, if O is a 1-twinning with respect to a permutation π, then (∆+,∆−,O


′) satisfies
(1Tw) if type(β−(x)) = π(type(x)) for any x ∈ ∆−. Now we can formulate the following
result.


Proposition 6.4 The relation O is equivalent to the natural opposition relation in ∆
if and only if the triple (∆+,∆−,O


′) introduced above is, for a suitable choice of type
functions on ∆+ and ∆−, a twin building.


Proof. Assume that O is equivalent to the natural opposition relation and that α is the
corresponding automorphism of ∆. Let πα be the permutation of I satisfying type(α(x)) =
πα(type(x)) for any x ∈ ∆, and denote by π the composite π := παω. Hence O is in
particular a 1-twinning of ∆ with respect to π. So setting type(x+) := type(β−1


+ (x+)) for
x+ ∈ ∆+ and type(x−) := π(type(β−1


− (x−))) for x− ∈ ∆−, O
′ becomes a 1-twinning of


(∆+,∆−). Given chambers c+O
′d−, we easily find an apartment Σ− such that a chamber


e− of Σ− satisfies e−O
′c+ if and only if e− = d− (simply take Σ− := β−1


− α(Σ), where Σ
is the apartment of ∆ containing β+(c+) and αβ−(d−)). Hence by Theorem 3.5 of [3],
(∆+,∆−,O


′) is a twin building.


Now suppose that (∆+,∆−,O
′) is a twin building. Then there exists an isomorphism


θ : ∆+ → ∆− (inducing the permutation ω on I) such that any two chambers c+, d+ ∈ C+
are opposite in ∆+ if and only if c+O


′θ(d+). This is “folklore” in twin building theory
(cf. Proposition 1 in [13]); technically θ can be described as the map assigning to each
x+ ∈ ∆+ its “coprojection” onto the empty simplex in ∆− (cf. Section 4 of chapter I in
[1]). Recalling the definition of O′, we obtain for any two chambers c, d of ∆ that cOd
holds if and only if β−1


+ (c) and θ−1β−1
− (d) are opposite in ∆+, hence if and only if c and


β+θ
−1β−1


− (d) are opposite in ∆. Using the automorphism α := β+θ
−1β−1


− of ∆, we see
that O is equivalent to the natural opposition relation in ∆. ¤


Hence, loosely speaking, we can say that a relation on the set of chambers of a spherical
building ∆ is equivalent to the natural opposition relation if by doubling the building,
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this relation becomes the opposition relation of a twin building. The translation provided
by Proposition 6.4 allows to apply results about twin buildings in order to characterize
(up to equivalence) the opposition relation in spherical buildings. In the situation of
Corollary 6.3 for instance, we first create, as described above, a 1-twinning of a pair of
copies of ∆, we then apply Corollary 3.6 of [3] in order to see that this 1-twinning yields
a twin building and we finally deduce from Proposition 6.4 that the relation O we started
with has to be equivalent to the natural opposition relation in ∆. This reasoning even
works if ∆ is not thick. For similar reasons, the thickness assumption may be dropped in
the Propositions 3.1 and 4.2, as we already remarked earlier.
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[5] Mühlherr B., A rank 2 characterization of twinnings, European J. Combin. 19,
no. 5 (1998), 603 – 612.


71 – 81.


[6] Payne S. E. and J. A. Thas, Finite Generalized Quadrangles, Pitman, Boston,
London, Melbourne, 1984.


[7] Ronan M. A. and J. Tits, Twin trees I., Invent. Math. 116 (1994), 463 – 479.


[8] Scharlau R., A characterization of Tits buildings by metrical properties, J. London
Math. Soc. (2) 32 (1985), 317 – 327.


[9] Shult E. E. and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9
(1980), 1 – 72.
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