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Abstract

We introduce quantum finite state transducers (qfst), and study the class of relations which
they compute. It turns out that they share many features with probabilistic finite state trans-
ducers, especially regarding undecidability of emptiness (at least for low probability of success).
However, like their ‘little brothers’, the quantum finite automata, the power of gfst is incom-
parable to that of their probabilistic counterpart. This we show by discussing a number of
characteristic examples.

1 Introduction

The issue of this work is to introduce and to study the computational model of quantum finite
state transducers. These can be understood as finite automata which compute a relation between
strings, instead of a decision (which we read as a binary valued function). After the necessary
definitions (section 2), the relation to quantum finite automata is clarified (section 3), then decid-
ability questions are addressed (section 4): it is shown that emptiness of the computed relation is
undecidable both for gfst and pfst. However, we present some evidence that it may be decidable for
high probability of success. Next, the relation between deterministic and probabilistic transducers
is explored (section 5), and in section 6 qfst and pfst are compared.

We feel our extension of quantum automata studies to this new model justified by the following
quote from D. Scott [9]:

‘The author (along with many other people) has come recently to the conclusion that
the functions computed by the various machines are more important — or at least more
basic — than the sets accepted by these devices. (...) In fact by putting the functions
first, the relationship between various classes of sets becomes much clearer’.
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2 Definitions

We start be reviewing the concept of probabilistic finite state transducer. For a finite set X we
denote by X* the set of all finite strings formed from X, the empty string is denoted e.

Definition 1 A probabilistic finite state transducer (pfst) is a tuple T = (Q, X1, 32, V, f, 90, Qaccs Qrej)s
where Q is a finite set of states, X1, 39 is the input/output alphabet, qo € Q is the initial state, and
Qace, Qrej C Q are (disjoint) sets of accepting and rejecting states, respectively. (The other states,
forming set Quon, are called non—halting). The transition function V : 31 X Q — Q is such that
Jor all a € ¥y the matriz (Vy)qp is stochastic, and fq, : Q — X is the output function. If all matriz
entries are either O or 1 the machine is called a deterministic finite state transducer (dfst).

The meaning of this definition is that, being in state ¢, and reading input symbol a, the transducer
prints f,(¢) on the output tape, and changes to state p with probability (V;)qp, moving input and
output head to the right. After each such step, if the machine is found in a halting state, the
computation stops, accepting or rejecting the input, respectively.

To capture this formally, we introduce the total state of the machine, which is an element

(PnoN, Pacc Prej) € €1(Q x 35) @ £1(33) & (' ({REJ}),
with the natural norm

||(Pxons Pacc, Prei) | = || Pnvonll1 + [[Paccllt + [Prejl-

At the beginning, the total state is ((go,€),0,0) (where we identify an element of @ x X3 with its
characteristic function). The computation is represented by the (linear extensions of the) transfor-
mations

Ta : ((qa w)a PACC:prej) = Z (Va)qppv wfa(q) aP//%(}Cap;ej ;
PEQnon

of the total state, for a € ¥1, with

P//;CC (I) _ PACC(I) + ZpeQacc(Va>qp if z = wfa(Q)a
Pacc(z) else,

and p;ej = Prej + ZpeQrej (Va)gp-

For a string z; ...z, the map T} is just the concatenation of the T;,. Observe that all the Tj,
conserve the probability.

Implicitely, we add initial and end marker symbols (I, $) at the input, with additional stochastic
matrices Vi and Vg, executed only at the very beginning, and at the very end. We assume that Vj
puts no probability outside Qacc U Qre;j.

By virtue of the computation, to each input string v € X there corresponds a probability
distribution T'(:|v) on the set X35 U {REJ}:

T(REJ|v) := Ti5((q0,€), 0,0)[REJ]
is the probability to reject the input v, whereas
T(w‘v) = Tiv$ ((qu 6)7 07 0)[11)]

is the probability to accept, after having produced the output w.



Definition 2 Let R C X7 x X5.

For a > 1/2 we say that T computes the relation R with probability « if for all v, whenever
(v,w) € R, then T(w|v) > «, and whenever (v,w) & R, then T(w|v) <1—«

For 0 < a < 1 we say that T computes the relation R with isolated cutpoint « if there exists
€ > 0 such that for all v, whenever (v,w) € R, then T'(w|v) > a+ €, but whenever (v,w) & R, then
T(wlv) < a—e.

The following definition is modelled after the previous one and the one for quantum finite state
automata [7]:

Definition 3 A quantum finite state transducer (qgfst) is a tuple T = (Q, X1, X2, V, f, 90, Qacc, Qrej)
where Q is a finite set of states, X1, X9 is the input/output alphabet, gy € Q is the initial state,
and Qace, Qrej C Q are (disjoint) sets of accepting and rejecting states, respectively. The transition
Junction V : ¥1 x Q — Q is such that for all a € ¥ the matriz (Vy)qp is unitary, and fq : Q — X%
18 the output function.

Like before, implicitely matrices Vi and Vg are assumed, Vg carrying no amplitude from Qnon to
outside Qacc U Qrej- The computation proceeds as follows: being in state ¢, and reading a, the
machine prints f,(g) on the output tape, and moves to the superposition Zp(Va)qpp of internal
states. Then a measurement of the orthogonal decomposition Eyon @ Face ® Erej (with the subspaces
E; = span Q; C I2(Q), which we identify with their respective projections) is performed, stopping
the computation with accepting the input on the second outcome (while observing the output),
with rejecting it on the third.
Here, too, we define total states: these are elements

([¥nON)s Pacc, Prej) € 2(Q x X3) @ €1(X3) @ (*({REJ}),

with norm
[ (1nonDs Pacc: Prej) || = [ll¥non) |13 + | Pacclli + [Prej-

At the beginning the total state is (|go) ® |€),0,0), the total state transformations, for

W) =) la) ®wg),  with |wg) = D agulw),

q€Q weR}

are (for a € ¥1)
T, : (|¢>3PACCaprej) = (Enonzva|q> & |qua(Q)>7PACCvp;ej> 5
q

where |wyfa(a)) = 3., agolwfa(q)), and

2
PJIACC(@") = Pacc(z) + || Pacc Z O4qua|Q> )
q,w s.t. z=w fa(q) 9
2
4 2

Observe that, again, the T, preserve the norm. Hence the distributions 7'(-|v) are defined, and so
are the concepts of computation with probability « or with isolated cutpoint a.



Notice the physical benefits of having the output tape: whereas for finite automata a super-
position of states means that the amplitudes of the various transitions are to be added, this is no
longer true for transducers if we face a superposition of states with different output tape content.
L.e. the entanglement of the internal state with the output may prohibit certain interferences. This
will be a crucial feature in some of our later constructions.

3 Quantum Finite Automata and Quantum Transducers

The definition of qfst is taylored in such away that by throwing away the output tape and the
output function, we get a quantum finite automaton. One, however, with distinct acceptance and
rejection properties, as compared to the gfst.

Nevertheless, the decision capabilities of gfst equal those of quantum finite automata:

Theorem 4 A language L is accepted by a 1-way quantum finite automaton with probability
bounded away from 1/2 if and only if the relation L x {0} U L x {1} is computed with isolated
cutpoint.

Proof: First observe that for finite automata (probabilistic and quantum), recognizability with
an isolated cutpoint is equivalent to recognizability with probability bounded away from 1/2 (by
“shifting the cutpoint”: just add in the I-step possibilities to accept or reject right away with
certain probabilities). We have to exhibit two constructions:

Let there be given a quantum finite automaton. We may assume that it is such that Vs is a
permutation on Q. [This can be forced by duplicating each ¢ € Qaec U Qrej ¢ and modifying
the transition function as follows: denote by o the map interchanging ¢ with ¢’ for ¢ € Quon, and
being the identity on Qo,. Define a unitary U such that for ¢ € Quon

Ulg) = Z(V$)qp|‘7p>a

P
and Ulq) = |q) for ¢ € Qacc U Qrej- Now let
vV :=UWV, Vi =o, V! .=Uv, U

It is easily checked that this automaton behaves exactly like the initial one]. Construct a qfst as
follows: its states are Q U @, with Q@ = {§ : ¢ € Qacc U Qrej} being the accepting states, and no
rejecting states. Let the transition function be W with

Walg) = Valq) for ¢ € Quon, but

Wa|Q> = |qA> for qc Qacc U Qrej-

Since Vg is the permutation o on @), we may define
W$ _ |0/-(\]> for oq € Qacc U Qrejv
log) for o4 € Quon.

Finally, let the output function be (for ¢ € Q)

" =<0 f € aces
Ja(q) orgeq 1 for oq € Qrej.

€ fOI‘ q G Qnonv
0 for oq € Qacm
fs(q) = {
1 for q € Qrejs



and e otherwise. It can be checked that it behaves in the desired way.

Given a qfst, construct a quantum finite automaton as follows: its states are ) x Z;t, where
the second component represents the tape content up to ¢ = 1 + max, 4 |f,(g)| many symbols.
Initial state is (gop,€). Observe that by definition of the 7}, amplitude that once is shifted onto
output tapes of length larger than 1 is never recovered for smaller lengths. Hence we may as well
cut such branches by immediate rejection: the states in @ x 2222 are all rejecting, and so are
(Qace U Qrej) x {1}. The accepting states are Qacc x {0}.

The transition function is given by

Walg, w) == Z(Va)qpm wfa(q))

PER

(for a = $§ this is followed by mapping |p,€) to a rejecting state, while leaving the other halting
states alone), i.e. the automaton performs like the gfst on the elements of @), and uses the second
component to simulate the output tape. One can check that this construction behaves in the desired
way. a

4 Decidability questions

As is well known, the emptiness problem for the language accepted by a deterministic (or nondeter-
ministic) finite automaton is decidable. Since the languages accepted by probabilistic and quantum
finite automata with bounded error are regular [8, 7], these problems are decidable, too.

For finite state transducers the situation is more complicated: In [5] it is shown that the
emptiness problem for deterministic and nondeterministic fst is decidable. In contrast we have

Theorem 5 The emptiness problem for pfst computing a relation with probability 2/3 is undecid-
able.

Likewise, the emptiness problem for qfst computing a relation with probability 2/3 is undecidable.

Proof: By reduction to the Post Correspondence Problem: let an instance (v1,... ,vg), (wi,... ,wg)
of PCP be given (i.e. v;, w; € ¥T). It is to be decided whether there exists a sequence i1, ... ,i,
such that

Vi eV, = Wy W

Construct the following gfst: it has states qo, gv, quw, and grej. The initial transformation produces
a superposition of gy, Gy, grej, €ach with amplitude 1/ v/3. The unitaries U; are all identity, but the
output function is defined as f;(q.) = x;, for z € {v,w}. The endmarker maps q,, g, to accepting
states. It is clear that 41,...,4, is a solution iff (i ...4,,v;, ---v;,) is in the relation computed
with probability 2/3.

By replacing the unitaries by stochastic matrices (with entries the squared moduli of the corre-
sponding amplitudes) the same applies to pfst.

Since it is well known that PCP is undecidable, it follows that there can be no decision procedure
for emptiness of the relation computed by the constructed pfst, or qfst, respectively. O

Remark 6 Undecidable questions for quantum finite automata were noted first for “l%fway” au-
tomata, i.e. ones which move only to the right on their input, but may also keep their position on
the tape. In [1] it is shown that the equivalence problem for these is undecidable. The same was
proved for 1-way—2-tape quantum finite automata in [3].



Conjecture 7 The emptiness problem for probabilistic and quantum fst computing a relation with
probability 0.99 is decidable.

The emptiness problem for probabilistic and quantum fst computing a relation with a single
letter input alphabet, with probability 1/2 + € is decidable.

To prove this, we would like to apply a packing argument in the space of all total states, equipped
with the above metric. However, this fails because of the infinite volume of this space (for finite
automata it is finite, see [8] and [7]). In any case, a proof must involve the size of the gap between
the upper and the lower probability point, as the above theorem shows that it cannot possibly work
with gap 1/3.

Still, we can prove:

Theorem 8 If the relation R is computed by a pfst or a qfst with an isolated cutpoint, then
Range(R) = {y : Jx (z,y) € R} is a recursive set (so, for each specific oulput, it is decidable
if it is ever produced above the threshold probability).

Proof: Let the cutpoint be «, with isolation radius d, and let y = y; ...y, € 5.
Define Y = {y1...y; : 0 < i < n}, the set of prefixes of y. Consider the output y truncated
total state, which is an element

(1), Pace, Prej) € £2(Q X Y) @ £1(Y) @ FL({REJ}) < £2(Q x ¥5) & £1(X5) @ (L ({REJ}).

It is obtained from (|1), Pacc, prej) — With |¢) =37 aqulq) @ |w) — by defining

W;) = Z aqw“l> ® |w),

qEQ,wEY
Pacc = Pacclys

5rej = Prej + Z |aqw|2 + Z PACC(w)-
qEQ,wgY wgyY

Let us denote this transformation by J. Now observe that in the total state evolution of the gfst
probability once put outside Y never returns, and likewise, amplitude once put outside @) X Y never
returns (compare proof of theorem 4). Formally, this is reflected in the relation

T (1), Pacc, Prej) = JT5 I To(|8h), Paccs Prcj)-

Hence, if we want to know if T'(y|x) > a+4¢ for some x, we may concentrate on the space of output—
y—truncated total states, which is finite dimensional, and its transformation functions fa = JT,.
It is easily seen that there is a constant v such that for all truncated total states s,t and all
w € X7
| Tws — Tt < vlls — .

Hence, for z,2’,w € X7, if
| Ts2(l90) @ l€), 0,0) = Tiar (|g0) @ [€), 0,0)[| < 5/,

then B B
||Tia:w$(|q0> ® |€>307 0) - Tia:’w$(|Q0> ® |€>v OvO)H < 0.

Because of the cutpoint isolation we find that either both or none of (z,y), (z’,y) is in R. Now,
because of caompactness of the set of truncated total states reachable from the starting state, it



follows that there is a constant ¢ such that for all x € £7 of length |x| > ¢ one can write x = vagw,
with |zg| < ¢, such that

| Truo (10) ® 1€),0,0) — Trol|go) @ [€), 0,0)]| < 5/7.
Hence B B
[Ty (|90) @ |€),0,0) — Tizs(lao) ® [€),0,0)]| <6,
and thus, if z had produced y with probability at least a + §, so had the shorter string vw. This

means that we only have to consider input strings of length up to ¢ to decide whether y € Range(R).
O

Remark 9 Obuviously, this reasoning applies to pfst, too.

5 Deterministic vs. Probabilistic Transducers

Unlike the situation for finite automata, pfst are strictly more powerful than their deterministic
counterparts:

Theorem 10 For arbitrary € > 0 the relation
Ri={0m1",2™):m > 0}
can be computed by a pfst with probability 1 — e. It cannot be computed by a dfst.

Proof. The idea is essentially from [4]: for a natural number k choose initially an alternative
j€{l,... ,k—1}, uniformly. Then do the following: repeatedly read k 0’s, and output j 2’s, until
the 1’s start (remember the remainder modulo k), then repeatedly read k 1’s, and output k — j 2’s.
Compare the remainder modulo k& with what you remembered: if the two are equal, output this
number of 2’s and accept, otherwise reject.

It is immediate that on input 01" this machine outputs 2" with certainty. However, on input
0™1™" each 2" receives probability at most 1/k.

That this cannot be done deterministically is straightforward: assume that a dfst has produced
f(m) 2’s after having read m 0’s. Because of finiteness there are k,[ such that after reading k 1’s
(while ny 2’s were output) the internal state is the same as after reading [ further 1’s (while n 1’s
are output). So, the output for input 0™1%+7 is 2/ (m)+no+rn and these pairs are either all accepted
or all rejected. Hence they are all rejected, contradicting aceptance for m = k + rl. O

By observing that the random choice at the beginning can be mimicked quantumly, and that
all intermediate computations are in fact reversible, we immediately get

Theorem 11 For arbitrary € > 0 the relation Ry can be computed by a qfst with probability 1 — €.
O

Note that this puts qfst in contrast to quantum finite automata: in [2] it was shown that if a
language is recognized with probability strictly exceeding 7/9 then it is possible to accept it with
probability 1, i.e. reversibly deterministically.

Theorem 12 The relation
R2 = {(w2w,w) : w € {0,1}"}
can be computed by a pfst and by a qfst with probability 2/3.
Proof: We do this only for qfst (the pfst is obtained by replacing the unitaries involved by the
stochastic matrices obtained by computing the squared moduli of the entries): let the input be 2y

(other forms are rejected). With amplitude 1/v/3 each go to one of three ‘subprograms’: either
copy x to the output, or y, or reject without output. O



6 ... vs. Quantum Transducers

After seeing a few examples one might wonder if everything that can be done by a qfst can be done
by a pfst. That this is not so is shown as follows:

Theorem 13 The relation
Ry = {(0™1"2% 3™) :n#A kA (m=kVm=n)}
can be computed by a qfst with probability 47 — €, for arbitrary € > 0.

Theorem 14 The relation R3 cannot be computed by a pfst with probability bounded away from
1/2. In fact, not even with an isolated cutpoint.

Proof (of theorem 13): For a natural number [ construct the following transducer: from gy go to
one of the states q., [7,b] (j € {1,...,0 — 1}, b € {1,2}), with amplitude \/3/—7 for ¢. and with
amplitude /2/(71) each, for the others. Then proceed as follows (we assume the form of the input
to be 0™1"2F, others are rejected): for g, output one 3 for each 0, and finally accept. For [4,b]
repeatedly read ! 0’s and ouput j 3’s (remember the remainder m mod ). Then repeatedly read
[ b’s and output [ — j 3’s (output nothing on the (3 — b)’s). Compare the remainder with the
one remembered, and reject if they are unequal, otherwise output this number of 3’s. Reading $
perform the following unitary:

. . 1 1 1
G-Nes( 1 )
Accepting are all [§', 2], rejecting are all [, 1].

Now assume that the input does not occur as the left member in the relation: this means either
m # k and m # n, or m = n = k. In the first case all the outputs in each of the b-branches of
the program are of different length, so get amplitude y/2/(7l). The final step combines at most
two of them, so any output is accepted with probability at most 4/(7l). The second case is more
interesting: in all branches the amplitude is concentrated on the output 3™. The rotation Vg
however is made such that the amplitude on [j’,2] cancels out, so we end up in a rejecting state
[4/,1]. In total, any output is accepted with probability at most 3/7 + e.

On the other hand, if the input occurs as the left member in the relation, exactly one of the
two b-branches of the program concentrates all amplitude on output 3", whereas the other spreads
it to [ different lengths. This means that the output 3™ is accepted with probability at least
(I —1)-1/(7l), and others are accepted with probability at most 1/(7) each. In total, the output
3™ is accepted with probability at least 4/7 — ¢, all others are accepted with probability at most
3/7+e. O
Proof (of theorem 14): See appendix A. O

In general however, computing with isolated cupoint is strictly weaker than with probability
bounded away from 1/2 (observe that for finite automata, probabilistic and quantum, recognizabil-
ity with an isolated cutpoint is equivalent to recognizability with probability bounded away from
1/2, see theorem 4):

Theorem 15 The relation
Ri={(0"1"a,4"): (a=2—1=m)A(a=3—1=n)}

can be computed by a pfst and by a qfst with an isolated cutpoint, but not with a probability bounded
away from 1/2.



Proof: First the construction (again, only for gfst): initially branch into two possibilities ¢y, c1,
each with amplitude 1/1/2. Assume that the input is of the correct form (otherwise reject), and in
state ¢; output one 4 for each 4, ignoring the (1 —¢)’s. Then, if a = 241, accept, if a = 3 — i, reject.
It is easily seen that 4! is accepted with probability 1 /2 if (0™1"a, 41) € R4, and with probability
0 otherwise.

That this cannot be done with probability above 1/2 is clear intuitively: the machine has to
produce some output (because of memory limitations), but whether to output 4™ or 4™ it cannot
decide until seeing the last symbol. Formally, assume that |m —n| > 4¢, with ¢ = max, | fo(q)|. If

Tiominas((qo, €),0,0)[4™] = T(4™]0™1"2) = 1/2 + 6,
necessarily
Tigm1n((gos€),0,0)[4™] + Thgmin ((go, €), 0,0)[@non x 4m=2m 2] > 1/2 4 4,
But this implies
Tiom1n((qo, €), 0,0)[4"] + Tyom1n ((gos €), 0,0)[Quon x 4 2n 2] < 1/2 — 4,

hence
Tiom1n3$((q0,€), 0,0)[4"] =T(4"[0™1"3) < 1/2 —4.

O
To conlude from these examples, however, that quantum is even better than probabilistic, would
be premature:

Theorem 16 The relation
Rs = {(wz,z) :w e {0,1}",z € {0,1}}

cannot be computed by a qfst with an isolated cutpoint. (Obviously it is computed by a pfst with
probability 1).

Proof. The construction of a dfst computing the relation is straightforward. To show that no gfst
doing this job exists, we recall from [7] that {0,1}*0 is not recognized by a 1-way quantum finite
automaton with probability bounded away from 1/2, and use theorem 4 for this language. O

7 Conclusion

We introduced quantum finite state transducers, and showed some of their unique properties:
undecidability of the emptiness problem, as opposed to deterministic finite state transducers and
finite automata, and incomparability of their power to that of probabilistic and deterministic finite
state transducers. As open questions we would like to point out primarily our conjecture 7. Another
interesting question is whether a relation computed by a qfst with probability sufficiently close to
1 can be computed by a pfst. This would be the closest possible analog to the “7/9-theorem”
from [2].



A Appendix: Proof of theorem 14

Let R3 be computed by a pfst 7" with isolated cutpoint a. The following construction computes
it with probability bounded away from 1/2: assuming a < 1/2 (the other case is similar), let
=

3 for each 0, and ignore the other symbols (we may assume that the input has the form 0m172F),
with probability 1 — p run 7" on the input. It is easily seen that this new pfst computes the same
relation with probability bounded away from 1/2.

Hence, we may assume that 7' computes R with probability ¢ > 1/2, from this we shall derive
a contradiction. The state set Q) together with any of the stochastic matrices Vg, Vi, Vs is a Markov
chain. We shall use the classification of states for finite Markov chains (see [6]): for V; @ is
partitioned into the set R; of transient states (i.e. the probability to find the process in R; tends
to 0) and a number of sets S;; of ergodic states (i.e. once in Sj; the process does not leave this set,
and all states inside can be reached from each other, though maybe only by a number of steps).
Each S;; is divided further into its cyclic classes Cjj, (v € Zdi]-), Vi mapping Cjj, into Cjj,41. By

Run one of the following subprograms probabilistically: with probability p output one

considering sufficiently high powers V¢ (e.g. product of all the periods d;j) as transition matrices,
all these cyclic sets become ergodic, in fact, V;d restricted to each is regular.

Using only these powers amounts to concentrating on input of the form 0™1"2% with i = %,
which we will do from now on. Relabelling, the ergodic sets of V; = Vid will be denoted S;;.
Each has its unique equilibrium distribution, to which every initial one converges: denote it by
m;j. Furthermore, there are limit probabilities a(jo) to find the process Vo in Syj, after long time,
starting from ¢o. Likewise, there are limit probabilities b(j1|jo) to find the process V; in Sy, after
long time, starting from 7g;,, and similarly c(j2|71). So, by the law of large numbers, for large
enough m,n,k the probability that Vp has passed into Spj, after \/m steps, after which V4 has
passed into Sy;, after \/n steps, after which V5 has passed into Sy, after V'k steps, is arbitrarily
close to P(jo, j1,j2) = a(Jo)b(j1|jo)c(jz2|j1)- (Note that these probabilities sum to one).

As a consequence of the ergodic theorem (or law of large numbers), see [6], ch. 4.2, in each of
these events J = (jo, j1, j2) the probable number of 3’s written after the final $, is linear in m, n, k:

T(3[(1—5))\J(m,n,k),(l-}-&))g(m,n,k)]|0m1n2k’ ,]) — 1,

as m,n, k — oo, with
AJ(manvk) = ()[JTTL+,3J7’L+’YJ]€,

and non—negative constants oz, 8.7,7J-
Since we require that for k #m

T(3%m|0m1m2%) > o,
it is necessary that for a set A of events J = (jo, j1,72)
aj+B7=d, v; =0, with P(A) > ¢.

In fact, as for J ¢ A
T(3%™0m1m2%, J) — 0

for certain sequences m,k — oo, we even have

> PH)TBRM™0m1m25,0) > ¢ o(1).
JeA

10



For J € A it is obvious that the transducer outputs no more 3’s, once in Syj,. But this implies
that for m, k large enough, T(3%™|0™1™2* J) is arbitrarily close to 7'(3%™|0™1™2™, .J), hence

T(3%m)0m1m2™) > ¢ — o(1),

which implies that
T(39m0m1™m2™) > ¢,

contradicting (0%m14m2dm 3dmy o R, O

References

(1] M. Amano, K. Iwama, “Undecidability on Quantum Finite Automata”, in Proc. 315 STOC,
1999, pp. 368-375.

[2] A. Ambainis, R. Freivalds, “1 way quantum finite automata: strengths, weaknesses, and gen-
eralizations”, in Proc. 39" FOCS, 1998, pp. 332-341.

[3] R. Bonner, R. Freivalds, R. Gailis, “Undecidability of 2 tape quantum finite automata”, in
Quantum Computation and Learning. Proceedings of an international workshop. Sundbyholms
Slott, Sweden, 27-29 May, 2000, R. Bonner and R. Freivalds (eds.), Malardalen University,
2000, pp. 93-100.

[4] R. Freivalds, “Language recognition using finite probabilistic multitape and multihead au-
tomata”, Problems Inform. Transmission, vol. 15, no. 3, 1979, pp. 235-241.

[5] E. Gurari, Introduction to the Theory of Computation, Computer Science Press, 1989.
[6] J. G. Kemeny, J. L. Snell, Finite Markov Chains, Van Nostrand, Princeton, 1960.

[7] A. Kondacs, J. Watrous, “On the power of quantum finite state automata”, in Proc. 38"
FOCS, 1997, pp. 66-75.

[8] M. O. Rabin, “Probabilistic Automata”, Information and Control, vol. 6, 1963, pp. 230-245.

[9] D. Scott, “Some definitional suggestions for automata theory”, J. of Comput. and Syst. Science,

1967, pp. 187-212.

11



