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ABSTRACT. Let G be a simple algebraic group and P a parabolic subgroup of G. The group
P acts on the Lie algebra p,, of its unipotent radical P, via the adjoint action. The modality
of this action, mod(P : p,), is the maximal number of parameters upon which a family of
P-orbits on p,, depends. More generally, we also consider the modality of the action of P on
an invariant subspace n of p,, that is mod(P : n). In this note we describe an algorithmic
procedure, called MOP, which allows one to determine upper bounds for mod(P : n).

The classification of the parabolic subgroups P of exceptional groups with a finite number
of orbits on p, was recently achieved with the aid of MOP, cf. [12]. In view of the results
from [10], this completes the classification of parabolic subgroups of all reductive algebraic
groups with this finiteness property.

Besides this result we present other applications of MOP, and illustrate an example.

1. INTRODUCTION

Throughout, GG is a simple algebraic group over an algebraically closed field K and P is
a parabolic subgroup of G. The group P acts on its unipotent radical P, via conjugation
and on p,, the Lie algebra of P,, via the adjoint action. The modality of the action of P on
pu, denoted by mod(P : p,), is the maximal number of parameters upon which a family of
P-orbits on p, depends. More generally, we also want to study the modality of the action of
P on an invariant linear subspace n of p,, that is mod(P : n). The modality of P is defined
as mod P := mod(P : p,); see Section 2 for a precise definition and [16] for some additional
references concerning this notion. Observe that mod(P : n) is zero precisely when P operates
on n with a finite number of orbits.

In this paper we describe the modality algorithm MOP (Modality Of Parabolics) which is
designed to compute upper bounds for mod(P : n). In [16] the general problem was posed
to determine each parabolic subgroup P of G with mod P = 0. After the cases for Borel
and semisimple rank one parabolic subgroups were classified in [14] and [16], respectively, all
modality zero parabolic subgroups of classical groups were classified in [10]. Extending these
results, all such parabolic subgroups of the exceptional groups were determined recently with
the aid of MOP, cf. [12].

Apart from these results we indicate other applications of MOP. For instance, we determine
mod P for some parabolics in Eg by combining lower bounds for mod P from [21] with upper
bounds obtained by MOP. The algorithm is implemented as a share package in the computer
algebra system GAP [8]. MOP generalizes the algorithm outlined in [6] which was designed
to analyze the orbit structure of a Borel subgroup B for the adjoint and coadjoint actions
on b, and on b). MOP only applies in the case G is simply laced. For details on usage and
technical aspects the reader should consult the MOP manual [13].

The second author gratefully acknowledges partial support of a DFG grant.
2000 Mathematics Subject Classification. 20G15, 17B45.
1



2 U. JURGENS AND G. ROHRLE

The basic machinery for investigating the modality of parabolic subgroups of reductive
groups was introduced in [16]. There are several recent articles related to this subject, such
as [5], [10], [11], [12], [15], and [22].

Our general reference for algebraic groups is Borel’s book [3] and for information on root
systems we refer the reader to Bourbaki [4]. The simple roots in a base of a root system of
G are indexed in accordance with [4, Planches I - IX].

2. NOTATION AND PRELIMINARIES

Suppose that the connected algebraic group R acts morphically on the algebraic variety
X. For x in X the R-orbit in X through z is denoted by R - z. The modality of the action
of R on X is defined as

mod(R : X) := maxmincodimz R - 2,
4 z2€Z

where Z runs through all irreducible R-invariant subvarieties of X. In case X is an irreducible
variety let K(X)® denote the field of R-invariant rational functions on X. By a result
of Rosenlicht min,cx codimy R - x = trdeg K(X)¥, for instance, see [17, 2.3]. Therefore,
mod(R : X) measures the maximal number of parameters upon which a family of R-orbits
on X depends. The modality of the action of R on X is zero precisely when R admits only
a finite number of orbits on X, see also [17, 5.2].

We denote the Lie algebra of G’ by Lie G or by g; likewise for subgroups. The Lie algebra
of P, is denoted by p,. Let T be a maximal torus in G and ¥ the set of roots of G with
respect to T. Fix a Borel subgroup B of G containing T and let IT be the set of simple
roots of ¥ defined by B, then U = W(B) is the set of positive roots of G. We may assume
that every parabolic subgroup of G under consideration contains B, i.e. is standard. For a
subset J of II we denote by P; the standard parabolic subgroup corresponding to J such
that Py = B. Further, {(P,) denotes the length of the descending central series of P,, that
is its class of nilpotency. We denote the Weyl group of some Levi subgroup of P by Wp. By
saying that P is of a particular type, we mean the Dynkin type of a Levi subgroup of P.

A prime dividing one of the structure constants of the Chevalley commutator relations for
G is called a very bad prime for G.

Let 8 € Ut Write 8 = > ca(B)a, with c,(8) € Zg for each o € II. For J a subset
of I, we call }_ ip\ ;ca(3) the J-height of 3; cf. [1]. For J = @ this is the usual height
function.

If char K is not a very bad prime for G and P = Py, then ¢(P,) is just the J-height of the
highest root in W, [1, Lem. 4].

Let H be a closed connected subgroup of G normalized by T (that is H is a regular
subgroup of G, cf. [7]); likewise for subalgebras of g. In that case the root spaces of h
relative to T' are also root spaces of g relative to T', and the set of roots of H with respect
to T, W(H), is a subset of W. If char K is not a very bad prime for G, then W(H) is closed
under addition in W. Furthermore, if H is reductive and regular, then W(H) is a semisimple
subsystem of ¥. For a root a of G we denote by U, the corresponding one-parameter
unipotent subgroup of GG. For every root a we choose a generator x, of the corresponding
root space LieU, = g, of g.

The support of a subset S of b,, denoted by supp S, is the set of all roots a such that the
restriction to S of the projection from b, onto g, is non-trivial.
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By a Levi subgroup of a reductive group G we simply mean a Levi subgroup of some
parabolic subgroup of G.

We require some basic facts concerning the modality of parabolic groups; the first one is
elementary (cf. [16, Lem. 4.3], or [20, Lem. 2.8]):

Lemma 2.1. Let Q C P be parabolic subgroups of G. Then mod P < mod Q.

Proof. Since Q C P, we have p, C q,. Any irreducible P-invariant subvariety Z of p, is
also @Q-invariant and codimz P - z < codimz @ - z for any z in Z. Consequently, we get
mod P < mod @), by the definition of modality above. O

We require Theorem 1.2 from [22], see also [15, Thm. 4], [16, Rem. 2.14]:

Lemma 2.2. Suppose that char K is zero or a good prime for G. Let H be a closed reductive
subgroup of G normalized by T. Set Q := PN H. Then mod @ < mod P.

Remark 2.3. In the special case of Lemma 2.2 when H is a Levi subgroup of G' normalized
by T or the derived subgroup thereof the statement of Lemma 2.2 is valid without any
characteristic restrictions [22, Cor. 3.10].

For [ € Ny let pg ) denote the I-th term of the lower central series of Pu-

Remark 2.4. 1f char K is not a very bad prime for GG, then pg_l)/pg) >~ @dg,, where the sum

is taken over all those roots a in W of J-height [ € N, see [1, Lem. 4].

Observe that in the context of our algorithm this hypothesis on char K is always fulfilled,
since MOP only applies when G is simply laced and then the structure constants of the
commutator relations are +1.

We need a special case of a general theorem due to R.W. Richardson [19, Thm. EJ.

Lemma 2.5. Let P = LP, C G be a parabolic subgroup of GG. Then L operates on the
(1+1)

quotient pg)/pu with a finite number of orbits for each I > 0.
Remark 2.6. If char K is zero or a good prime for G, then mod(P : P,) = mod(P : p,)
thanks to [22, Thm. 1.3]. Thus we obtain similar results for the action of P on P,.

The statements in Lemmas 2.1 and 2.2 (and the one in Remark 2.6) also apply if we
replace p, by some P-invariant linear subspace n of p,, see [22, Rem. 3.13].

3. SOME APPLICATIONS OF MOP

The original motivation for developing MOP was to determine modality zero parabolics
in exceptional groups, i.e., ones with a finite number of orbits on the Lie algebra of the

unipotent radical. Recently a complete description of all these instances was achieved with
the aid of MOP, cf. [12]:

Theorem 3.1. Suppose G is of exceptional type and that char K is either zero or a good
prime for G. Let P C G be parabolic. Then mod P = 0 if and only if one of

(i) £(Py) < 4;

(i) G is of type Eg, L(P,) =5, and P is of type A3Ay or Az;

(iii) G is of type Er, L(P,) =5, and P is of type A1 Ay.
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Some of the cases of Theorem 3.1 are also valid for certain bad primes for GG; see 4.9 below.

The algorithm, however, can be applied more widely to determine parabolic subgroups of
higher modality. For instance, for Borel subgroups B of simple groups of small rank mod B
can be determined by combining lower bounds for mod B from [21] with upper bounds
calculated by MOP, extending results from [11]; the latter are based on a precursor of MOP.

More specifically, as an application we calculate explicit upper bounds for the modality of
all parabolics in case G is of type Eg:

Type of P | Borel Al A% A‘z’ AQ A1A2 A%
mod P < 5 4 3 2 2 1 1

TABLE 1. Upper bounds for mod P in Ej

In all other instances we have mod P = 0. For P = Pj in Table 1 it follows from a
construction in [21] that the given values are in fact also lower bounds for mod P whenever
one of the following holds: P is of type A; A, or A2, or J does not contain the triality simple
root. That is, in these instances mod P equals the value shown.

Besides computing upper bounds for mod(P : p,), we can specify an arbitrary invariant
linear subspace n of p, and calculate an upper bound for mod(P : n). Using a particular
feature of MOP we can specify such a subspace n and can analyze the P-orbits in n. Remark
3.3 below is such an instance. (In fact n does not have to be P-invariant, we can simply
specify any subspace n and then we can analyze the modality of the action of P on the
P-saturation of n, that is the P-variety P -n.) For details concerning this feature, see [13].

We discuss a consequence of the classification results from [10] and [12].

Corollary 3.2. Suppose P is a non-mazimal parabolic subgroup of G and mod P > 0. Then
there exists a proper P-invariant subspace n of p,, such that mod(P : n) > 0.

Proof. This follows from an analysis of the inductive construction of all the instances when
mod P > 0. More precisely, the statement follows from the classification results in [10] and
[12], the argument of the proof of [20, Thm. 6.3], together with [10, Lem. 3.2] and [11, Lem.
3.13]. O

The following Fg example illustrates that the statement of Corollary 3.2 is false if the
non-maximality condition on P is relaxed.

Remark 3.3. Suppose G is of type Eg and P is conjugate to Py, where J =11\ {o5}. It was
shown in [20] that mod P > 0. Since P is a maximal parabolic subgroup of G, the various
members of the descending central series of p, are the only P-invariant linear subspaces of
p,. Using MOP one can show that mod(P : p;,) = 0. In particular, mod(P : n) = 0 for every
proper P-invariant subspace n of p,.

As a consequence, P admits a dense orbit on pff) for each 7 > 1. By Richardson’s Dense
Orbit Theorem [18] P also has a dense orbit on p, itself. Consequently, every P-invariant
linear subspace of p,, is a prehomogeneous vector space for P, but nevertheless, mod P > 0.
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4. THE MOP PROGRAM

In this chapter we give a description of the modality algorithm MOP and discuss some
of its features. For further details on usage we refer to the MOP manual [13]. Throughout
this chapter, the notation of the previous sections is in force. Let P = P; be a standard
parabolic subgroup of G for some J C II.

4.1. MOP. As mentioned above, our algorithm is implemented in the computer algebra
system GAP. The advantage of using GAP for our purposes is that firstly it comes with a
useful package called CHEVIE for calculations involving Weyl groups and root systems [9],
and secondly it provides convenient data structures, so-called records, to handle objects which
depend on a variety of different parameters specified in record fields. For further information
concerning commands in GAP we refer the reader to the GAP and CHEVIE manuals [8], [9].
The source file containing the program and data is built up in a similar fashion as the files
in GAP. Loading the MOP package is achieved by the following command:

gap> RequirePackage ("mop") ;
The fact that CHEVIE is not available as of yet for GAP4, limits MOP to GAP Version 3.4.4.

4.2. Strings. Instead of working with individual orbits of P on p,, we simultaneously con-
sider all P-orbits passing through particular kinds of affine subvarieties S of p,, of the form
S=> Kaxg+) Mz, where M = K\ {0}, and the two sums are taken over disjoint subsets
of W(p,), of which one may possibly be empty (that is S & M?K®, where a,b € Ny). In
particular, S is a locally closed affine subvariety of p,. Such a subvariety of p, is called a
string or a string of p,. The support of S is the set of roots in W(p,) whose coefficient is
either M or K.

With respect to a total ordering of ¥, such a subvariety S can be represented symbolically
by a sequence of symbols “0”, “M”, and “K”, where a “0” indicates that the corresponding
root 3 say, is not in the support of S, while x5 has a nonzero coefficient in case of the label
“M” and an arbitrary one if “K” occurs, cf. [6], [16, §6], and [11]. This explains the origin of
this terminology. For example, for A3 the usual ordering of positive roots is ay = a3 +as, as =
ag + as, and ag = oy + as + as. Therefore, the subvariety Mxz,, + M2y, 410, + KZaytas Of
b, is represented by the string “MO0M K0”.

In MOP a string S is a record with two record fields m and k, which are boolean lists
for the positions of S labeled with M or K, respectively. The print function for the record
(string) S returns the root numbers of the support of S.

The concept behind the program is straightforward. Suppose we aim to show that
mod P < m, where m € N. The basic objective is to construct a finite set of strings S
of p,, with the property that firstly, every P-orbit in p, has a representative in some S in this
list, and secondly, mod(P : P -S) < m for each such S. The desired inequality mod P < m
then follows, since mod P = maxgmod(P : P - S), where the maximum is taken over all
strings S in our finite collection. MOP proceeds to construct such a finite set of strings by an
intricate iteration process of various splitting and elimination operations discussed below.

4.3. The Stack. A finite collection § of such subvarieties S of p,, satisfying the first property
that every P-orbit on p, is represented by some string S, is called a stack of P or a stack of
strings of P. In our analysis, we initially start out with the stack 8 consisting only of the
string p,, itself. By setting an optional parameter when calling the MOP function Modality
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it is possible to initialize the stack with another string S in order to compute mod(P : P-.5),
see [13].

4.4. Operations on Strings. We perform two operations on strings in the stack 8§ which
preserve the property that each P-orbit in p, passes through some S in 8. These operations
are aimed at reducing the support of the strings in the stack 8, while preserving this property
of § at the same time. The term “stack” reflects the fact that MOP keeps the strings in the
well-known data structure of the same name.

4.4.1. Splitting Operation. The first one is simply a splitting or branching procedure. Let S
be a given subvariety in 8§ with K at position 5. Then S is the union of the two subvarieties
S" and S”, where in position 3 the K is replaced by 0 in S’ and by M in S”. Thus S’ is of
smaller support, than S, and in S” we have a new position labeled with M which allows for
new applications of the elimination technique described next. In this situation we replace S
by S" and S” on the stack.

4.4.2. Elimination Operation. This we refer to as an elimination or reduction operation.
In its most elementary form it works as follows. Let S be a string from the stack § with
coefficient M at § and K at a + (3, with a € U(P). Suppose that S is invariant under the
adjoint action of the root subgroup U,, that is U,-S C S. Now let x be an arbitrary element
in the variety S. By definition, x has a non-zero coefficient at xz. By acting on = with a
suitable element from the root subgroup U, of P we can remove a + [ from its support.
Consequently, every P-orbit passing through S also has a representative in the variety S’
say, which (as a string) is obtained from S by replacing the coefficient K at a + 5 by 0. By
our assumption that S is U,-invariant, no other roots are introduced into the support of S’
in this process, and thus its support is smaller than that of S. Finally, we replace S by S’ on
the stack 8. And we may repeat this elimination process with this new collection of strings.

MOP’s elimination procedure is in fact considerably more intricate. Suppose now that in
the example S above a suitable operation with the root subgroup U, removes the entry K
at a+ 3, however, if there is a K, say at position v and a 0 at position a++, then the action
of U, also produces a new entry in that coordinate. Nevertheless, suppose that this new
entry can be removed again using a different root operation which in turn may or may not
reintroduce new roots in the support of the resulting string. We can continue this procedure
until no further new roots are being introduced. Then we have obtained a closed system of
equations only involving the various positions and operators that are affected in this process.
If the corresponding coefficient matrix is invertible, then the desired elimination can actually
be performed. MOP checks whether such a system is solvable. The prime divisors which
oceur in such a process (in the Gaussian elimination) are written into a separate list in the
record field factorlist of the output. Consequently, the result of the modality calculation
is valid assuming that char A is not in this factorlist. See the example of an output below
in 4.11.

In such a more involved elimination process new positions labeled with an “M” or “K”
are introduced and a subsequent operator also acts on these new positions. Therefore, the
order in which a set of operators is applied matters. In the course of analyzing a given string
MOP simultaneously builds up all possible systems of equations aimed at eliminating a given
targeted position in the support of the string respecting the different orders of operators.
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Once a consistent system of operators is obtained, MOP tries to eliminate the targeted
position using this system. This guarantees that always a minimal set of operators is used.

There are certain size and time restrictions built into MOP in order to limit the elimination
process. If a critical time limit is reached MOP aborts its attempts to eliminate a certain
element from the support of a string and proceeds to split at that targeted position.

MOP eliminates a targeted position whenever possible. A splitting only takes place if all
attempts to eliminate that position failed or if the attempt is timed out. As long as there
are positions labeled with a “K”, MOP proceeds to eliminate the one with the smallest root
number, i.e., one of minimal height. Once all roots in supp S with coefficient “K” have been
removed, MOP proceeds to eliminate the positions labeled with “M”.

The algorithm proceeds by an iteration and combination of these splitting and elimination
operations. We have proven that mod P is bounded above by m, once we have arrived at a
stack § satisfying mod(P : P -S) < m for each S in 8.

Observe that these two operations do in fact always yield a new stack which is again
labeled 8 for simplicity, that is another finite collection of strings with the desired property
that every P-orbit through p, passes through some string in 8.

4.5. Induction. MOP works inductively in the following sense. Let H be a proper semisim-
ple regular subgroup of G and let @ = PN H. Inductively, mod @) is known and in particular,
we may assume that mod @ is at most m, as otherwise mod P > m by Lemma 2.2. It follows
from the proof of Lemma 2.2 in [22, Prop. 2.2] that mod(P : P - q,) = mod Q. Therefore,
we only need to consider the P-orbits in p, \ P - q,. This applies to any such @. Here it
obviously suffices to only take those H which are maximal among such subgroups leading to
maximal candidates for (). Hence, we only take maximal rank subgroups or Levi subgroups
H of corank 1 in G. We form the list of all conjugates of subsystems W(H)", where H
runs through this fixed set of regular semisimple subgroups of G of large rank, such that
U(H)* C U, We refer to this list of subsystems W(H)* as the InductionList of G.

If G is of type A, or D, then we use Levi subsystems of type A,_; and D,_; with their usual
embeddings. In that case MOP computes the InductionList at each run anew. For Eg, Fr,
and Fg we also use maximal rank subsystems, e.g., for E; we use standard subsystems of
type Eg, A7, A1Dg and Ay As. Since the computation of the induction lists in the exceptional
cases takes some time, they are provided as external files. Instead of being computed, these
can be read from the external files, see [13]. The symmetric subsystems corresponding to
such semisimple subgroups H of G are determined by means of the algorithm of Borel-de
Siebenthal, cf. [4, Exc. Ch. VI §4.4]. In [7] all conjugacy classes of such subsystems of ¥
under the action of the Weyl group of G are classified; see also [2].

For our purpose we need to examine the various parabolic subgroups Q = P N H that
actually occur in any given instance, where W(H ™) runs through the InductionList of G as
defined above. MOP has a device to calculate each of these and writes the information into
the output record with the record fields SubDiagrams and SubDiagramsDetail. In the first
one MOP writes all occurring types of @ and in the second lists explicitly all embeddings of
H into G affording such @’s, see [13].

It is mandatory that we examine the list of sub-configurations in SubDiagrams, in order
to ensure that no case is added to the induction list by mistake which does not satisfy
mod @) < m, otherwise the outcome of the algorithm is meaningless.
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Furthermore, this feature may help to find new cases of higher modality. For instance,
the fact that mod P > 0 in case P = P, in E; for J = {ag, a3, ay, a5} was discovered by
examining the information in this list of sub-configurations; here it turns out that one of the
cases occurring is the Borel subgroup of a simple subgroup of type As, cf. [11, Lem. 3.13].

Because of the inductive nature of our method, and because of the fact that we simulta-
neously study a collection of orbits passing through strings, we do not get any information
on the number of orbits in case we have shown that mod P = 0.

4.6. Managing the stack. If a sequence of splitting and elimination operations yields a
string S satisfying mod(P : P -S) < m, then, instead of keeping it, we may simply delete S
from the stack 8. Thus, we will ultimately have reached our goal of showing that mod P is
at most m, precisely when all the strings which were generated in the course of this process
have again been eliminated, that is when the resulting stack is empty. In our next section
we discuss the various possibilities when a string S can be removed from the stack, that is
when S satisfies mod(P : P - S) < m.

The strings which we considered in the last section on elimination and splitting operations
form a tree; we define p, to be the root of the tree, and for the elimination operation, S is
the parent node of S’, and for the splitting operation, S is the parent node of S” and S”. The
leaves of this tree form a stack of the operation of P on p,. MOP starts with p,, and builds up
the tree until every leaf has at least one of the following two properties, either no splitting or
elimination operation can be applied to it, or one of the criteria discussed below can be used
to prove that its modality is at most m. In order to save memory and time, MOP does not
keep the whole tree in the memory. Instead it enumerates the nodes of the tree in a depth-
first-search order. Whenever it finds a string for which none of the criteria applies and none
of the operations can be performed, MOP writes it into the CannotAnalyzeList. If this list
is empty after a run of the program, then mod P < m, otherwise MOP computes an upper
bound for the modality of P from the strings in this list. The nodes of the tree are stored
in a stack, which is the usual first-in-last-out data structure. The explicit use of a stack has
the advantage that we can save it to a disc file and recover the data in case of a system
crash. First MOP initializes the stack with a string which is just the string p,, in the default
setting. As long as there are strings left on the stack, MOP removes the one from the top. If
one of the deletion criteria defined below applies to it, we have reached a leaf node and just
continue. Otherwise we try to apply a splitting or elimination operation, put the resulting
string(s) back onto the stack and continue. If these attempts fail, we have reached a leaf
node again and apply the ExtendedOperation (see below). If this operation does not prove
that the string fulfills the modality condition, we add the string to the CannotAnalyzeList.
In any case we continue with the next string on the stack.

4.7. Deletion Criteria. We now describe the four different deletion criteria which enable
us to remove a string S from the stack 8, that is criteria ensuring mod(P : P - S) < m.

4.7.1. Redundancy Criterion. Instead of removing the string from the top of the stack im-
mediately, we leave it there and mark it as “done”. Whenever we find a string S on the
stack marked “done”, we know that this string has been treated already. In this case MOP
puts it into what is called the RedundancyList. Apart from merely writing S into the
RedundancyList, we also write every conjugate of S under the simple reflections of the
Weyl group Wp of P (i.e. those corresponding to J) into this list, as each such conjugate
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also can be considered as analyzed. In principle one could add the entire Wp-orbit of S in
p, to the RedundancyList. However, calculating the orbit is too time consuming. Initially,
the RedundancyList is empty and in the course of the program run MOP adds strings to it
which have already been analyzed. Thus, compared to the induction list, this is a dynamic
list which is updated continually. Whenever we find a string S which is a subvariety of a
string in the RedundancyList, we may consider S also as analyzed and in this case we simply
drop S.

Before a string S is added to the RedundancyList we first compare S with any string S’
already in the RedundancyList. If S is a subvariety of some S’ on this list, then we do not
add S. On the other hand, any such S” which is itself a subvariety of S is removed from
the RedundancyList and S is added instead. This comparison feature guarantees that we
maintain an optimal RedundancyList at any time.

4.7.2. Induction criterion. Suppose that in the course of our analysis we encounter a string
S which satisfies supp S C W(H)", where W(H)* is a member of the InductionList of G,
that is S C p, Nh = gy, where @ = PN H. Then, by induction (cf. Section 4.5), we infer
that mod(P : P-S) = mod(Q : @ -S) < mod@ < m, and thus we can remove S from 8.
The equality part of this statement follows from the proof of Lemma 2.2 in [22]. We refer to
this as the induction criterion.

4.7.3. Rank Criterion. Another situation when we can delete a string S from the stack,
arises in the following way. Suppose that the support of S consists of at most dim7T" + m
roots. Let d be the number of linearly independent roots in supp S. Note that d is at most
dim T'. Then for an arbitrary element x in S we can apply suitable elements from 7" to scale
as many as d coefficients of z to equal 1 with at most | supp S| — d coefficients of x remaining
free. Now, if |supp S| — d < m, then the resulting set of P-orbits passing through all the
elements which are obtained by varying the entries in the remaining free coefficients depends
on at most m parameters, and thus, mod(P : P - S) is bounded above by m, as desired.
Thus, we can remove S from the stack 8. If | supp S| < m + d, then we say that S satisfies
the rank criterion.

4.7.4. J-height Criterion. Finally, we have one further possibility to eliminate strings from
the stack. Suppose that for S in 8 each root in the support of S has a fixed J-height [ € N.
Since MOP only applies when G is simply laced, the hypothesis of Remark 2.4 on char K
is fulfilled. Thus we have S C Ggs(= pl Y /pfp), where 3 runs through all roots in ¥ of
J-height [. Now by Lemma 2.5 there are only finitely many orbits of the standard Levi
subgroup of P on this space; whence there are only finitely many P orbits passing through S
and thus we can remove S from the stack; then we say that S satisfies the J-height criterion.

4.7.5. FEffectiveness of the Criteria. In the course of a run of MOP, each of these criteria
may occur many times. However, the induction and the redundancy criteria are generally
the more effective ones of the four. Their advantage is twofold over the others. Firstly,
they only involve a subset check of the support of the string at hand and the members of
the induction list of P, or of the redundancy list. In terms of computing time this is not
too costly provided both of these lists are short. Secondly and more importantly, these
criteria allow us to remove strings from the stack which may have large support. Else these
might take a long time to be analyzed after being broken down into smaller strings using the
elimination and branching operations. The fact that we add all conjugates of any analyzed
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string under the generators of the relative Weyl group Wp to the RedundancyList (cf. 4.7.1)
makes this a very effective criterion. On the other hand, the rank criterion can only be
applied when supp S < dim 7T + m which is usually small compared to dimp,. A further
disadvantage of it is that it requires calculating the rank of matrices which is less favorable
in terms of computing time than a simple subset check as involved in the other three criteria.

4.8. ExtendedOperation. In the course of applying splitting and elimination operations
to strings from the stack § it rarely happens that in the end all the strings that are produced
in this fashion satisfy one of the four deletion criteria from above. Ultimately, it may happen
that strings S occur in 8§ which have the property that the coefficient of any root in supp S is
M (that is no further branching operations are possible), no further elimination is possible
(or aborted due to time limitations), and S does not satisfy any of the four deletion criteria
above, so it cannot be removed from the stack. Then MOP enters a process to which we
refer to as ExtendedOperation. We choose a total ordering of all possible operators, that
is of W(P), starting with the negative roots, ordering by height. We apply these operators
consecutively to S and produce entirely new strings with new entries in that fashion. The
resulting strings are then analyzed further with the aforementioned splitting and elimination
techniques. That is we return to the usual procedure with these new strings created in the
ExtendedOperation. This is a systematic way to obtain a large number of new admissible
strings.

4.9. Prime Restrictions. In terms of restrictions on char K, MOP’s results have to be
interpreted as follows. If MOP is run using the InductionList of G and G is of exceptional
type, then the results obtained are only valid provided char K is not a bad prime for G, cf.
Lemma 2.2. If G is of classical type, then using this list does not imply any characteristic
restrictions, as here only Levi subsystems are involved in the construction, cf. Remark 2.3.
MOP allows a user to disable this inductive feature, e.g., see the example in 4.11 below.
Results obtained without using the InductionList are valid subject only to characteristic
restrictions stemming from the factorlist of the output record, see 4.4.2. Often a certain
bad prime p does not occur in that list, and thus, the modality statement computed is also
valid in case char K = p. For instance, it turns out that each of the finite cases of Theorem
3.1 is also valid when the use of the induction list is suppressed and one observes that the
prime 5 does not occur in the factorlist for any of the Eg cases; one example is illustrated
in 4.11 below. This shows that Theorem 3.1 is also valid in certain bad characteristics as
well.

4.10. Counters. MOP keeps track of a number of parameters. It counts the number of
strings that are analyzed during a run of the algorithm. Each time a string is taken off the
stack we raise a counter by one. Another counter keeps track of the number of splitting
operations that are performed. Of particular interest is the success of the various deletion
criteria; there is a counter for each of the four deletion criteria. Apart from these MOP also
has a counter for the number of calls of the internal function ExtendedOperation, cf. 4.8;
see [13]. If there is no call of ExtendedOperation, then the final values of the counters for
the various deletion criteria and the splitting operation add up to the value of the counter
for the strings. Viewing the strings created by MOP in form of a tree as indicated in 4.6, this
amounts to counting all leaf nodes (deletion criteria) together with all internal branching
nodes (splittings). If there are calls of ExtendedOperation, then the sum of the final values
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of these counters can exceed the counter for the strings, as here new branchings may happen
before MOP returns to the stack. This, for instance, happens in our example 4.11 below.

4.11. An Example. We illustrate a call of MOP in the Fg instance when J = I\ {as}
with the use of the induction list disabled.
gap> RequirePackage ("mop");
gap> r:=Modality("E", 8, [1,3,4,5,6,7,8], rec(UseInductionList:=false));
The first line reads the GAP package MOP initializing a record MOP and defining a function
Modality. This function returns a record with the results of the computation written in its
record fields. All the other functions are internal and are therefore located in the record MOP.
The first three parameters of Modality are mandatory; they define the type of G, rank G,
and the subset J of simple roots defining P. The fourth parameter is optional; it allows
to overwrite the default setting for a number of global parameters. In our example we set
UselInductionList:=false in order to suppress the use of the induction list. For a detailed
list of all optional parameters, we refer to the MOP manual [13].

After a run of MOP the results can be displayed by the print command in GAP for records:

gap> Print(r);
Modality analysis for type E8, J=[1, 3, 4, 5, 6, 7, 8]
E8 2

|

1-3-4-5-6-7-28

19371 strings analyzed
9685 splittings
0 induction list matches
1451 already done
2500 occurrences of rank condition
6160 J-Height criterion invoked

0 unresolved strings
characteristic restrictions: [ 2, 3 ]
The modality of P is O.

The display is more or less self-evident. Apart from the case studied, MOP prints the result
of the counters, the characteristic restrictions stemming from solving various systems of
equations, as well as the modality calculation. Observe that the prime 5 does not occur in
the factorlist and consequently, this finiteness result is also valid in characteristic 5, cf.

4.9.

4.12. Safety Feature. In order to recover intermediate results already obtained in case of
a system crash, we periodically save all this information and the status of the analysis to a

and the function Modality is called again with the same parameters, then MOP reads the
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information and status from this external file and proceeds the analysis. The default setting
for the time period after which this data is recorded anew is 20 minutes.

4.13. The Verbose feature. By setting an optional parameter when calling MOP in the
function Modality the algorithm prints out the entire analysis. In principle, this allows a
user to check every detail of MOP’s calculation by inspection. For details of this feature and
an example in the verbose mode, see the manual [13].

Acknowledgments We are grateful to G. Hiss and F. Liibeck for helpful suggestions con-
cerning programming in GAP.
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