THE PARABOLIC SUBGROUPS OF EXCEPTIONAL
ALGEBRAIC GROUPS WITH A FINITE NUMBER OF
ORBITS ON THE UNIPOTENT RADICAL

ULF JURGENS AND GERHARD ROHRLE

ABSTRACT. Let G be a simple algebraic group and P a parabolic
subgroup of G. The group P acts on the Lie algebra p, of its
unipotent radical P, via the adjoint action. We classify all par-
abolic subgroups P of exceptional algebraic groups with a finite
number of orbits on p,. This is achieved by means of an algorith-
mic procedure. Combined with the solution of this problem for all
classical instances from [5] this gives a complete classification of all
such finite orbit cases.

1. INTRODUCTION

Throughout, G is a simple algebraic group over an algebraically
closed field k, and char k is either zero or a good prime for GG. Let
P be a parabolic subgroup of G. We consider the adjoint action of P
on the Lie algebra p, of its unipotent radical P,. By saying that P is
of a particular type, we mean the Dynkin type of a Levi subgroup of
P. The class of nilpotency of P, is denoted by ¢(P,).

The main result of this note is

Theorem 1.1. Suppose G is of exceptional type. Then P acts on p,
with a finite number of orbits if and only if one of the following holds:
(i) £(Py) <4
(i) G is of type Eg, {(P,) =5, and P is of type A3 A,y or As;
(iii) G is of type Er, L(P,) =5, and P is of type A1 Ay.

Theorem 1.1 combined with the analogous result for classical groups
[5] completes the classification of parabolic subgroups P of reductive
groups with a finite number of orbits on p,; this problem was first
posed in [9].

These finiteness results may be viewed in context of the more general
concept of the modality of the action of P on p,, or simply the modality
of P, denoted by mod P := mod(P : p,), which is the maximal number
of parameters upon which a family of P-orbits on p,, depends. Observe
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that mod P is zero precisely when P operates on p,, with a finite number
of orbits.

The basic machinery for investigating the modality of parabolic sub-
groups of reductive groups was introduced in [9]. Apart from the clas-
sification of the finite cases for classical groups from [5], the finite in-
stances for Borel and semisimple rank one parabolic subgroups were
classified in [8] and [9], respectively. Partial results for exceptional
groups were obtained in [6], [9], and [10].

In the cases when the Dynkin diagram of G is simply laced the
finiteness statements of Theorem 1.1 were obtained by means of an
algorithmic procedure which allows one to determine an upper bound
for the modality of the action of P on p,. This program, referred to as
MOP (Modality Of Parabolics), is available as a GAP share package, cf.
[4]. For a description of this algorithm, its mathematical background,
further applications, as well as examples, we refer to [7]. MOP’s ap-
plication is limited to the instances when the Dynkin diagram of G is
simply laced. The computational results obtained in 6] are based on
a precursor of MOP.

2. PRELIMINARIES

We briefly recall the notion of the modality of a group action. Sup-
pose that the connected algebraic group R acts morphically on the
algebraic variety X. For x in X the R-orbit in X through x is denoted
by R -x. The modality of the action of R on X is defined as

mod(R : X) := maxmin codimz R - 2,
Z  z€Z

where Z runs through all irreducible R-invariant subvarieties of X.
In case X is an irreducible variety let k(X)® denote the field of R-
invariant rational functions on X. By a result due to M. Rosenlicht
mingcy codimy R -z = trdeg k(X)®. Therefore, mod(R : X) measures
the maximal number of parameters upon which a family of R-orbits
on X depends. The modality of the action of R on X is zero precisely
when R admits only a finite number of orbits on X.

We require some basic facts concerning modality in our context; the
first of which is elementary (cf. [9, Lem. 4.3], or [10, Lem. 2.8]):

Lemma 2.1. Let QQ C P be parabolic subgroups of G. Then mod P <
mod Q.

This follows readily from the definition, since p,, C g, and any irre-
ducible P-invariant subvariety of p, is also Q-invariant.



PARABOLICS IN EXCEPTIONAL ALGEBRAIC GROUPS 3

For an automorphism © of G we denote the set of fixed points by
G®, likewise for ©-stable subgroups of G. We recall [11, Thm. 1.1] (cf.
9, Cor. 2.8]):

Lemma 2.2. Suppose that © is a semisimple automorphism of G and
that P is ©-stable. Then mod P® < mod P.

Since char k is assumed to be zero or a good prime for GG, we have
mod(P : P,) = mod(P : p,), thanks to [11, Thm. 1.3]; thus we obtain
the finiteness statement of Theorem 1.1 also for the action of P on P,.

3. PROOF OF THEOREM 1.1

We combine the exceptional cases from [10, Thm. 3.1] and [6, Lem.
3.13]:

Proposition 3.1. Suppose G is of exceptional type. Then P acts on
p. with an infinite number of orbits provided one of the following holds:

(i) G is of type Es, Fy, or Gy and ((P,) > 5;

(ii) G is of type Eg or Er and ((P,) > 6;

(iii) G is of type Eg, L(P,) =5, and P is not of type A2A; or As;
(iv) G is of type E7, ((P,) =5, and P is not of type A1 Ay.

Proof of Theorem 1.1. It follows from Proposition 3.1 that mod P > 0
provided none of the conditions of Theorem 1.1 is satisfied.

In each of the cases of Theorem 1.1 when the Dynkin diagram of G
is simply laced the desired finiteness statements were obtained directly
using MOP. The classification of modality zero parabolics in G5 already
follows from [2, Table 2] and [9, Thm. 4.2].

Thus, only the instances of Fj remain. Let G be of type Eg and
let 7 be the graph automorphism of G of order 2. The fixed point
subgroup G7 is of type Fj. Let @) be a parabolic subgroup of G”. Then,
mod @ > 0 provided ¢(Q,) > 5, by Proposition 3.1(i). In order to show
the converse it suffices to prove that mod @) = 0 provided @ is minimal
with respect to satisfying £(Q,) < 4, by Lemma 2.1. This leads to
the three instances when @Q is of type By, A1As, or A;A,, where A;
represents a subsystem of type A; consisting of short roots. Each such
@ can be realized as the 7-fixed point subgroup of a parabolic subgroup
P of G; see Figure 1 below. Each occurring P satisfies {(FP,) < 4 and
thus mod P = 0 by the finiteness result for Fs. The desired result for
Fy then follows by Lemma 2.2. O
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Figure 1 presents the crucial F cases from the proof of Theorem 1.1.
The solid nodes indicate the Levi subgroup of P and P7, respectively.

Owing to the Chevalley commutator relations ¢(P,) is readily deter-
mined to be the sum of the coefficients of the simple roots « in the
highest root of GG such that g, C p,, as indicated in Figure 1.
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We conclude with two a posteriori consequences of the classification
of modality zero parabolic groups.

Remark 3.2. Suppose P and () are associated parabolic subgroups of
G. Then mod P = 0 if and only if mod @ = 0. This follows from [5,
Thm. 1.1] and Theorem 1.1 using the classification of the conjugacy
classes of parabolic subsystems of W (cf. [1, Prop. 6.3], [3, Thm. 5.4]).

This supports the conjecture that more generally mod P = mod @)
whenever P and () are associated parabolic subgroups of G.

Remark 3.3. Suppose that mod P > 0. Then there exists a connected
simple regular subgroup H of G such that the parabolic @ := HN P
of H is the standard Borel subgroup of H and mod P > mod @ > 0.
More specifically, H can always be chosen to be of type As, Bz, Cs,
Dy, or GGy. This is a consequence of the inductive construction of all
the cases when P is of positive modality, see [10, Thm. 3.1], [6, Lem.
3.13], and [5, Lem. 2.3].
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