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Introduction

Let GG be a linear reductive algebraic group defined over an alge-
braically closed field k£ and let P be a parabolic subgroup of GG, that is
G/ P is a complete variety. We consider the action of P on its unipotent
radical P, via conjugation and on Lie P, = p,, the Lie algebra of P,,
via the adjoint representation. The modality of the action of P on p,,
denoted by mod(P : p,), is the maximal number of parameters upon
which a family of P—orbits on p, depends. Similarly for the action of
P on P,. See Section 1.2 for a precise definition of this notion. We
write mod P := mod(P : p,) and call this the modality of P. Note
that mod P = 0 precisely when P acts on p, with a finite number of
orbits.

The aim of these notes is to delineate new developments and results
in the theory of modality of parabolic groups. In [58] the problem was
posed to determine each parabolic subgroup P of GG that has a finite
number of orbits on P,, as well as on p,, see also [33, 5.4(8)]. We
present the classifications from [32] and [37] of all these cases along
with the essential ideas and methods of proofs, see the theorem below.

In 1974 R.W. Richardson proved that P admits an open dense orbit
on P,, similarly for the adjoint action of P on p, [62]. There results
a natural dichotomy: the instances when P acts on p, with a finite
number of orbits versus the cases when mod P is positive. Likewise
for the action on P,. In the instances when the number of orbits is
infinite, the geometry of orbits is somewhat intricate, because then, by
Richardson’s Dense Orbit Theorem, infinitely many orbits must occur
in a proper invariant subvariety of p,, while the complement to this
subvariety is the dense orbit in p,. In Corollary 5.33 we show that
in almost all of these instances we can find a subvariety admitting an
infinite number of orbits which is a P-submodule of p,,.

Let P = LP, be a Levi decomposition of P. It follows from another
result of R.W. Richardson that L only has a finite number of orbits
on consecutive quotients of the descending central series of P, [64,
Thm. E|. In particular, this implies that the number of P-orbits on
P, is finite if P, is abelian. Thus parabolic subgroups with an abelian
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unipotent radical provide a natural family with this finiteness property.
A detailed analysis of this case can be found in [65], see also [51]. This
finiteness property was extended to arbitrary closed abelian unipotent
normal subgroups of any parabolic group in [72]. In Chapter 7 we
present the a and elegant approach to this result from [56].

A. Borel and R. Steinberg are credited with posing the question
whether the number of unipotent classes of a reductive group G is finite.
Since any unipotent element of G lies in the unipotent radical of some
Borel subgroup B of G and as all Borel subgroups are conjugate under
the action of GG, the answer is affirmative in those cases where B has
a finite number of orbits on its unipotent radical. Consequently, this
question is of interest only in those instances when the Borel subgroups
of GG are of positive modality. In this context this question was first
pursued by A.E. Zalesskil [94] in 1968. In his note Zalesskii showed
that B operates on B, with an infinite number of orbits whenever G is
of type A,, and r > 5, B,, C,, D,, and r > 6, and also for Eg, E7, and
Eg. We present Zalesskii's argument in a slightly more general setting
in Proposition 3.12 below. The question of finiteness for the number
of unipotent classes of G was settled by R.W. Richardson at the time
under some mild restrictions on char k [61] which were subsequently
removed by G. Lusztig [47].

The basic machinery for investigating the modality of parabolic
subgroups of reductive groups was introduced in [58]. One goal of these
notes is to generalize two basic “monotonicity” results on the modality
of parabolic subgroup actions from [58|. Analogues of Corollary 3.4 and
Theorem 3.10 were proved in [58, Thm. 2.13] under the assumption
that char k is zero. The proofs in [58] do not generalize to positive
characteristic as they make use of the separability of the orbit maps
for the actions involved.

Theorems 2.3 and 2.4 give two general monotonicity results for the
modality of algebraic group actions based on work of R.W. Richardson
[63]. This is followed by a discussion of the basic properties of linearly
reductive groups which are relevant to our purpose.

In Section 3.1 we apply the forgoing theorems in the context of
parabolic group actions. The advantage of this approach is that we
obtain simultaneously the desired monotonicity results for the modality
of the conjugation action of P on P, and for the adjoint action of P
on p,. This avoids any separability considerations of the orbit maps
involved. These monotonicity theorems provide helpful inductive tools
for comparing the modality of various parabolic group actions.
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What follows in Section 3.2 is a brief description of some aspects of
the GAP share package MOP developed jointly with U. Jiirgens to ad-
dress questions of modality of parabolic group actions algorithmically.
The computational results of MOP were crucial in the classification of
the finite orbit instances for exceptional groups.

Instances when a parabolic group controls fusion in its unipotent
radical or its nilradical are given in Propositions 3.12 and 3.13.

In Section 3.4 we relate the modality of the action of P on p, and
on P,. Assuming that char k is a good prime we show mod(P : p,) =
mod(P : P,). The proof utilizes Springer’s map ¢ : W — N, a G-
equivariant bijective morphism between the unipotent variety U of G
and the nilpotent variety N of g.

This is followed by a short discussion on the modality of the coad-
joint action of P on the dual space p; in §3.5. Corollary 3.21 states the
equality mod(P : pf) = mod(P : p,).

We close this chapter with a glance at the action of G on the tangent
and cotangent bundles of the flag manifold G/ P and relate the modality
of the G—action on these bundles to mod P.

In Chapter 4 we discuss parabolic groups of positive modality, for
classical groups, utilizing the inductive tools from Section 3. In Propo-
sition 4.5 we indicate the results for exceptional groups from [69]. In
Theorem 4.2 we present the classification of Borel subgroups of modal-
ity zero due to V. Kashin [41, Thm. 1]. We also include the classifi-
cation of semisimple rank 1 parabolics with that finiteness property in
Theorem 4.3. This was proved in [58, Cor. 1.4].

Combining the results from Chapters 4 and 5, we obtain in Theorem
5.22 the classification of modality zero parabolic groups for classical
groups from [32]. In Theorem 5.30 we present the classification of
modality zero parabolic subgroups for groups of exceptional type from
[37]. The combined statement of the classifications is presented in the
following theorem. By saying that P is of a particular type, we mean
the Dynkin type of a Levi subgroup Lp of P. The class of nilpotency
of P, is denoted by ¢(P,).

THEOREM. Let G be a simple algebraic group and P C G parabolic.
Suppose that char k is either zero or a good prime for G. Then P acts
on p, with a finite number of orbits if and only if one of

(i) £(P,) < 4;

(ii) G is of type D,, L(P,) =5, TP # P, and the semisimple part of
Lp consists of two simple components;

(iii) G is of type Eg, L(P,) =5, and P is of type A2A, or As;

(iv) G is of type Er, ((P,) =5, and P is of type A1Ay,.
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In Section 5.1 we outline the classification of modality zero parabol-
ics for general linear groups in Theorem 5.6. This appears in [31, 32].
In Theorem 5.19 we furnish a complete combinatorial description of the
closure relation on the set of P—orbits on p,, for every finite orbit case
from [19]. Let V be a finite dimensional k-space, GL(V') the general
linear group of V' and P a parabolic subgroup of GL(V'). In Lemma 5.1
we show there is a canonical bijection between the set of P—orbits on
p. and the set of isomorphism classes of A-filtered modules of a par-
ticular dimension vector e of a certain quasi-hereditary algebra A(t).
These isomorphism classes in turn are given by the orbits of a reductive
group G(e) on a certain affine variety R(A)(e) of A(t) modules with
A-filtration and dimension vector e. As it turns out, the closure order
of the action of P on p, coincides with the closure order of the action of
G(e) on R(A)(e) irrespective of the modality of P. This is presented
in Theorem 5.20.

Let X and Y be in F(A)(e), the subcategory of of A(t)-mod of A-
filtered modules of dimension vector e. We write X >y, Y provided
dim Hom(X, I) > dim Hom(Y, I) for every indecomposable module I in
F(A). As in the case of Artin algebras, it turns out that this induces a
partial order on the set of isomorphism classes of F(A)(e). We refer to
this as the hom—order on F(A), see 5.1.4. The principal result concern-
ing this combinatorial ordering is Theorem 5.18. Under the assumption
that the subcategory F(A) of A-mod is of finite representation type,
the closure order on the set of G(e)-orbits on R(A)(e) coincides with
the poset opposite to the hom—order on the set of isomorphism classes
of F(A)(e).

In the Section 5.4 of Chapter 5 we discuss associated parabolics,
i.e., parabolic subgroups with conjugate Levi subgroups. We present
some evidence indicating that the modality is constant on classes of
associated parabolic groups.

In Chapter 6 we study aspects of parabolic groups of higher modal-
ity. In Section 6.1 we give some lower bounds for the modality of
parabolics of classical groups. In Corollary 6.6 we derive a finiteness
result of V.L. Popov [57] asserting that there is only a finite number of
simple algebraic groups admitting parabolic subgroups with prescribed
semisimple rank and fixed modality.

This is followed in Section 6.2 where we present some small rank
cases when the value of mod B is actually known, see Tables 6.3 and
6.4. Here the upper bounds for mod B were computed by MOP or its
precursor, cf. [35]. In Proposition 6.8 we show some instances where
the precise value of mod P can be determined using MOP.
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In Chapter 7 we present the results from [56] where we study the
relationship between spherical nilpotent orbits in the Lie algebra of
a complex reductive group and abelian ideals a of b = Lie B. The
principal result in this context is that, for an abelian ideal a of b, any
nilpotent orbit meeting a is a spherical G—variety, see Theorem 7.3. As
a consequence of this we obtain a short conceptual proof of a finiteness
theorem from [72, Thm. 1.1]. Namely, for a parabolic subgroup P of
G and an abelian ideal a of p in the nilpotent radical p,, the group P
operates on a with finitely many orbits.

In our final chapter we present some examples of Hasse diagrams of
the Bruhat-Chevalley order of the action of P C GL(V') on p,, in some
finite orbit cases.

For helpful discussions on various issues of these notes I am grateful
to many mathematicians. I owe special thanks to B. Fischer and C.M.
Ringel for their continued encouragement, interest and support.

Several of the joint papers referred to throughout the manuscript
were written in part during visits by the coauthors with the SFB 343
“Diskrete Strukturen in der Mathematik” at the University of Biele-
feld. The support and hospitality of the SFB 343 were very much
appreciated.

Financial support by a grant of the Deutsche Forschungsgemein-
schaft from April 1997 until March 1999 is thankfully acknowledged.

Bielefeld, December 2000 G. Rohrle



vi

INTRODUCTION



Contents

Introduction
List of Tables
List of Figures

Chapter 1. Notation and Preliminaries
1.1.  General Notation
1.2. The Modality of Group Actions
1.3.  Reductive Groups
1.4. Richardson’s Dense Orbit Theorem
1.5.  Prehomogeneous Vector Spaces

Chapter 2. Monotonicity of Modality
2.1. Richardson’s Lemma and Modality
2.2.  Linearly Reductive Groups
2.3.  Controlling Fusion

Chapter 3. The Modality of Parabolic Group Actions
3.1.  Monotonicity for the Modality of P Actions

3.2.  Algorithmic Modality Analysis
3.3.  Controlling Fusion for P—Actions
3.4. Global and Infinitesimal Modality
3.5.  Modality and Coadjoint Action
3.6.  Bundles on Flag Manifolds

Chapter 4. Parabolic Groups of Positive Modality

4.1. Preliminary Results
4.2. The Classical Groups
4.3. The Exceptional Groups

Chapter 5. Parabolic Groups of Modality zero

5.1. The General Linear Groups

5.1.1.  Parabolic Groups and A Filtered Modules

5.1.2. The Number of P-Orbits on p,
5.1.3. The Tame Case

5.1.4. Quasi-hereditary Algebras and A-Filtered Modules

vii



viii CONTENTS

5.1.5. The Bruhat-Chevalley Order on the Set of P—Orbits

5.1.6. Hasse Diagrams

5.2. The Classical Groups

5.3. The Exceptional Groups

5.4. Modality for Associated Parabolic Groups
5.5.  Further Consequences

5.6. Some Generalizations

Chapter 6. Parabolic Groups of Higher Modality
6.1. Lower Bounds for Modality
6.2. Some Explicit Examples

Chapter 7.  Abelian Ideals
7.1.  Abelian Ideals and Spherical Orbits
7.2. Maximal Abelian Ideals

Chapter 8.  Appendix: Some Examples of Hasse Diagrams
Bibliography

Index

45
47
48
52
23
25
56

o7
o7
61

65
66
69

7
83
89



4.1

6.1
6.2
6.3
6.4

7.1
7.2

List of Tables

The critical Borel cases

Lower bounds for mod B

Lower bounds for mod B in classical groups
Modality of B for classical G

Modality of B for exceptional G

The maximal abelian ideals of b for classical g
The maximal abelian ideals for exceptional g

ix

26

o7
o8
62
62

70
71



LIST OF TABLES



4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1

7.1
7.2

8.1
8.2
8.3
8.4

8.5

8.6

List of Figures

Some classical examples
The critical Fy cases
The critical Eg cases

The quiver Q(6)

Some examples of fixed point configurations
The significant cases from Proposition 5.26
The crucial F} cases from Theorem 5.30

[lustrating the proof of Proposition 6.2

The function o +— dim a, for classical g

The function o +— dim a, for exceptional g

The poset of the B-orbits on b, in GL3(k)
The poset of the B-orbits on b, in GL4(k)
The poset of the B orbits on b, in GLs(k)

The Bruhat-Chevalley poset of the P(d)-orbits on

p.(d) in GLy(k), where d = (1,2, 3,4)

The Bruhat-Chevalley poset of the P(d)-orbits on

pu(d) in GLs(k), where d = (2,1,2)

The Bruhat-Chevalley poset of the P(d)-orbits on

pu(d) in GLs(k), where d = (2,2, 1)

Xi

30
32
33

37
51
52
53

61

75
75

78
78
79

81

81



xii LIST OF FIGURES



CHAPTER 1

Notation and Preliminaries

All algebraic varieties are taken over a fixed algebraically closed
field k and all algebraic groups considered are affine. As general refer-
ences for algebraic groups we cite the books by A. Borel [6] and T.A.
Springer [82], as well as the notes from the Séminaire C. Chevalley
[23]. In general, we follow the notation and terminology therein. For
facts about conjugacy classes of algebraic groups, see R. Steinberg’s
lecture notes [87] and J.E. Humphreys’ survey [33]. Concerning basic
properties of subgroups of reductive groups normalized by a maximal
torus, we refer to the work [8] by A. Borel and J. Tits. For information
on root systems the reader should consult N. Bourbaki [11].

The general theory of representations of finite-dimensional algebras
can be found in the books by M. Auslander, I. Reiten, and S. Smalg [1],
P. Gabriel and A.V. Roiter [28], and C.M. Ringel’s monograph [66].

1.1. General Notation

Throughout, the Lie algebra of an algebraic group G is denoted
by LieG or g, the identity component of G' by G, and its unipotent
radical by G,. For the Lie algebra of G, we write g,. The identity
element of G is labeled by e.

For x € G let Int(x) be the inner automorphism of G given by
conjugation by x. For a subset S of G we denote the centralizer of S
in G by Cg(S) :={g € G |Int(s)g = g for all s € S}, and likewise the
centralizer of S in g by ¢y(S) :={Y € g | Ad(s)Y =Y for all s € S}.

Let X be a G—set. We write g - x for the image of x € X under
the action of g € GG, and denote by G - x the G—orbit of x in X. For a
subset Z of X, the G—saturation is the set of G—orbits U,c,G - z and
is denoted by G - Z. For a subset S C G, we write X for the set of
S fixed points on X, that is X° :={z € X | s-2 =z for all s € S}.
If S = {s}, then we write X* instead of X{*}. In particular, viewing G
as a G—set, we have G° = Cg/(S).

For an algebraic variety X and =z € X we write T,(X) for the
tangent space of X at x.
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If G acts morphically on the algebraic variety X, we also call X a
G—variety. In that case we write ¢, : G — G - x for the orbit map at
x € X and say that G acts separably on G-x provided ¢, is a separable
morphism, that is provided the differential (d¢,). : g — T,(G - x) of
¢, is onto [6, Prop. 6.7]. The closure order, or Bruhat-Chevalley order,
on the set of G-orbits on X is given by the orbit closures, that is given
two G—orbits, O; and Oy, we write

0, <0,

whenever O is contained in the Zariski closure of Oy, see [6, Prop. 1.8].
If S is an algebraic group acting on G by means of automorphisms of
G, we say that G is an S—group.

Let © be an automorphism of G. Then 6 = dO, is the correspond-
ing automorphism of g. By G® and g’ we denote the © fixed point
subgroup of G and the 6—fixed point subalgebra of g respectively. An
automorphism of G is called semisimple if it can be achieved by conju-
gation by a semisimple element of some general linear group containing
G [85] or [82, §4.4].

1.2. The Modality of Group Actions

Suppose that the algebraic group G acts morphically on an algebraic
variety X. The modality of the action of G on X is defined as

(1) mod(G : X) = max mi? codimy G - z,
z€

where Z runs through all irreducible G%—invariant subvarieties of X.
In case X is an irreducible variety let k(X)% denote the field of G-
invariant rational functions on X. The following fundamental invariant-
theoretic fact is due to M. Rosenlicht [74] (see also [59, 2.3|)
(2) Ixrél)Ifl codimy G - = trdeg k(X)“.
Therefore, mod(G : X) measures the maximal number of parameters
upon which a family of G—orbits on X depends. The modality of the
action of G on X is zero precisely when GG admits only a finite number of
orbits on X. In turn, using (2), we can interpret the modality in terms
of invariant theory. For instance, if mod(G : X) = 0 then k(Z)¢ = k
for every irreducible, G—invariant subvariety Z of X.

The notion of modality originates in the work of V.I. Arnold on
the theory of singularities [3]. Our definition (1) here is due to E.B.
Vinberg [91], see also [59, 5.2].
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1.3. Reductive Groups

Suppose that G is reductive. Let T be a fixed maximal torus in
G and ¥ = Y(G) the set of roots of G with respect to T', and let
r = dim 7T = rank GG be the rank of G. Fix a Borel subgroup B of G
containing 7" and let Il = {07, 09,...,0,} be the set of simple roots
of U defined by B such that the positive integral span of II in ¥ is
Ut = ¥(B). Let W be the Weyl group of G. The highest (long) root
in W is denoted by p. If all roots in ¥ are of the same length, they are
all called long.

Suppose that G is simple (over its center). A prime is said to be bad
for G if it divides the coefficient of a simple root in p, else it is called
good for G [84, §1.4]. Furthermore, we say that a prime is very bad
for GG if it divides a structure constant of the Chevalley commutator
relations for G; for these structural relations see for example [85, p.
30]. Thus, if chark = p is very bad for G, there are degeneracies in
these relations. This only occurs if p = 2 and G is of type B,, C,,
Fy, or G, or p = 3 and G is of type G5. The same notions apply to
reductive groups by means of simple components [86, 3.6].

Let N be a closed subgroup of G in B, normalized by 7. Then also
n is normalized by 7', and the root spaces of n relative to T" are root
spaces of g (relative to T), that is n is T" regular in the sense of [27,
Ch. IT]. As a consequence, n is the direct sum of its root spaces, [6,
Prop. 13.20]. Define the set of roots of n or N (with respect to T') by

Un):=V(N):={feV¥|gs Cn},
and likewise we define the set of simple roots of n or N by
[I(n) :=II(N) := ¥(n) NI
In particular, we have
i @ o
BET(n)

Thanks to [6, Prop. 14.4(2a)], N is connected and moreover N = [[ Up,
where the product is taken in some fixed order over W(N). In the
situations we are going to study W(V) is usually closed under addition
in U. This is automatically satisfied whenever char k is not a very bad
prime for G.

We may assume that each parabolic subgroup P of G considered
contains B, i.e. that P is standard. Sometimes we denote a Levi sub-
group of P by Lp, so that

P=LpP,
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is a Levi decomposition of P. By the semisimple rank of P we mean
the rank of the derived group of Lp, and denote it by ranks P. By
saying that P is of a particular type, we mean the Dynkin type of a
Levi subgroup of P.

Let =) n,(8)o be a root, where o is in II. The P-level of 3 is
the sub-sum of the coefficients n,(3) over the elements of II(P,), that
is ZH(PH) ne(B), see [2].

By a Levi subgroup of G we mean the Levi subgroup of some par-
abolic of G.

The descending central series of P, is defined as usual by C°P, := P,
and G P, := (C'P,, P,) for i > 0. Since P, is nilpotent, the smallest
integer m such that €™ P, = {e} is the class of nilpotency of P,, that
is the length of this series, and is also denoted by ¢(P,). If chark is
not a very bad prime for G, then W(C'P,) consists precisely of all roots
whose P-level is at least i + 1, see [2].

Suppose that char k is not a very bad prime for G. Owing to the
Chevalley commutator relations, the class of nilpotency of P, is readily
determined to be the P level of the highest root o, that is

(3) (P)= ), no(0):
c€ll(Py)
see [8, Prop. 4.7(iii)].
Throughout, we use the labeling of the Dynkin diagram of GG, that
is of II, in accordance with N. Bourbaki [11, Planches I - IX].

1.4. Richardson’s Dense Orbit Theorem

Suppose that GG is connected and reductive and P is a parabolic
subgroup of G. R.W. Richardson proved that P acts on P, with a
dense orbit; likewise for the adjoint action of P on p, [62]. The proof
relies on the fact that the number of unipotent classes of G is finite.
This was first proved also by Richardson under some mild restrictions
on the characteristic of the ground field [61]. Afterwards, these were
removed by G. Lusztig [47]. An alternative proof of Richardson’s Dense
Orbit Theorem, due to R. Steinberg, can be found in [88, Cor. 4.2]; see
also [33, 5.3]. For a detailed proof of the Lie algebra analogue, see [22,
Thm. 5.2.3]. We refer to G. Lusztig and N. Spaltenstein [48] for an
important generalization of this theorem, in the context of induction
of unipotent classes.

The unique nilpotent class of g which meets p, in the open P—orbit
is called the Richardson class of P; likewise for the unique unipotent
class of G meeting P, densely.
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The existence of a dense orbit is of course a necessary condition for
P to have a finite number of orbits on p, or on P,, as both, p, and
P, are irreducible varieties. It is, however, not sufficient. So, in this
setting, the question of finiteness is a completely different one from
that of density; unfortunately, the existence of a dense P—orbit is of no
help in determining the instances when P operates on p, or P, with
finitely many orbits only.

1.5. Prehomogeneous Vector Spaces

Suppose the connected algebraic group H acts on the rational H-
module V' with a dense orbit. Then V is called a prehomogeneous
vector space for H. Owing to Richardson’s Dense Orbit Theorem, p,,
is a prehomogeneous vector space for the parabolic group P. If V
is faithful and irreducible as an H-module, then H is reductive. In
characteristic zero prehomogeneous vector spaces for reductive groups
were classified by M. Sato and T. Kimura [75]. Call V' a finite orbit
module if H has only a finite number of orbits on V. Clearly, if V' is
a finite orbit module of H, then it is a prehomogeneous vector space
for H. In [39, Thm. 2] V. Kac classified all the finite orbit modules for
H reductive and k = C. This classification was extended to positive
characteristic by R. Guralnick, M. Liebeck, D. Macpherson, and G.
Seitz in [30].

The classification results from Chapter 5 address the question when
the prehomogeneous vector space p, is a finite orbit module for the
non-reductive group P.

Frequently, the basis for determining parabolic subgroups with an
infinite number of orbits on their nilradical is the existence of a proper
P—invariant subspace n of p,, that is an ideal of p, which fails to be
a prehomogeneous vector space for P in certain low rank cases, see
Table 4.1. Accordingly, in default of a dense orbit, P acts on n with
an infinite number of orbits and likewise on all of p,,, see Lemma 4.1.
Further examples of parabolic groups with an infinite number of orbits
are then readily established by means of the inductive methods from
Section 3.1.

There are examples, however, where P acts on p, with infinitely
many orbits, and nevertheless, every linear P-submodule of p,, is still
prehomogeneous for P, see Remark 5.34 below.
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CHAPTER 2

Monotonicity of Modality

2.1. Richardson’s Lemma and Modality

In this section we present two monotonicity results for the modality
of algebraic group actions. Throughout this section, G is an algebraic
group acting morphically on an algebraic variety X and H is a closed
subgroup of G.

LEMMA 2.1. Suppose that X is irreducible. Let 7 be an irreducible
H invariant subvariety of X. Assume that
i) X=G-Z, and
(i) G- z N Z is a finite union of H-orbits for z € Z in general
position.
Then

trdeg k(X)® = trdeg k(Z)".

Proor. Changing X and Z by appropriate invariant open subsets,
we may assume, by Rosenlicht’s Theorem [74, Thm. 2] (see also [59,
Thm. 4.4]), that there exist geometric quotients

nex: X — X/G and 7pz:Z — Z/H.

For any function f € k(X)% the set of points in X where f is not
regular is G—invariant and closed. Therefore, it follows from (i) that
the restriction f|z of f to Z is well-defined. The mapping f — f|z
is the embedding of the fields k(X)¢ — k(Z)". Since

4)  mex(R(X/G) =k(X)® and  my,(k(Z/H))=k(Z2)",
this embedding defines a dominant rational mapping n : Z/H — X/G
such that the following diagram is commutative:

7 ., X

WH,ZJ/ J{WG,X

Z/H 1= X/G
7
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Since the fibers of mg x are G-orbits, it follows from this diagram and

(ii) that, for a point @ € X/G in general position, the set
(nomuz)""(a) = 1gx(a) N Z

is a union of finitely many H-orbits. Since the fibers of 7y ; are H-

orbits, this shows that 77*(a) is a finite set. Further, as 7 is dominant,

it follows from here and from the theorem on the dimension of the
fibers of a morphism [6, Thm. 10.1] that dim X/G = dim Z/H. The
claim now follows from (4) and the definition of dimension. O

COROLLARY 2.2. Assume as in Lemma 2.1. Then

min codimx G - £ = min codimz H - z.
reX z2€Z

PrOOF. This follows from Lemma 2.1, the equation (2) on page 2,
and the fact that the minimum of the codimensions of orbits is attained
on the orbits of points in general position [59, §1.4]. O

Lemma 2.1 and Corollary 2.2 appear in [58, Thm. 2.11].

THEOREM 2.3. Let G be an algebraic group acting on an algebraic
variety X. Let H be a closed subgroup of G and Y a locally closed
H—invariant subset of X. Let ¢, : G — G -y be the orbit map in X
aty € Y. Assume that
(5) T,(G-y)NT,(Y) C (do,).(h) for each point y €Y.

Choose y € Y and let O := G -y. Then:

(i) Each irreducible component of O NY is a single H° orbit. In
particular, O NY is a union of finitely many H—-orbits each of
which is open and closed in ONY.

(ii) H acts separably on each orbit H -y for anyy € ONY.

(iii) We have the inequality

mod(G : X) > mod(H : Y).
Proor. Without loss we may assume that H = H". Since H -y

c
G-ynY, we have T,(H-y) C T,(G-yNY), and since T, (G-yNY) C
T,(G-y)NT,(Y), it follows from (5) that

(6) Ty(H -y) CTy(G-y) NTy(Y) C (ddy)e(h) € Ty(H - y).
Consequently, we have
T,(H-y) = T,(G-yNY).

Let Z be an irreducible component of G -yNY containing H -y. Then
the containments H -y C Z C G -yNY imply

dmH -y <dimZ <dimT,(G-yNY).
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Because H -y is smooth, we have dim H -y = dim T (H - y). It then
follows that dim H -y = dim Z. Whence the closure of H-yin G-yNY
coincides with Z. Thus, as H -y is open in its closure, H -y is open in
7. Further, Z \ H -y is a union of H-orbits each of which is also open
in Z by the same argument. Therefore, H - y is also closed in Z and
we conclude that H -y = Z. Thus (i) now follows.

By (6) we have (d¢,).(h) = T,(H -y), and thus ¢,|p : H — H -y
is separable [6, Prop. 6.7], whence (ii) holds.

For the modality statement (iii) we argue as follows, see [58, Thm.
2.13]. Let Z be an irreducible H—invariant subvariety of Y such that

mod(H :Y) = mincodimy H - z.

zEZ
By the first part of Theorem 2.3 conditions (i) and (ii) of Lemma 2.1
are satisfied for Z and G° - Z. Then it follows from Corollary 2.2 that

min codimy H - 2 = min codimz - G° - z.
— GY.-Z
2€Z 2€GO-Z

From the definition of modality (1) on page 2, we have

mod(G : X) > miicodimGO.ZG0 - T,
z€GO.Z

Finally, the desired inequality in (iii) follows. O

Parts (i) and (ii) of Theorem 2.3 are proved in [63, Lem. 3.1]; see
also [90, p. 469], [59. Lem. 1.10], or [58, Thm. 2.13].
For our purposes we require the following

THEOREM 2.4. Let A be an affine algebraic group, G a closed con-
nected normal subgroup of A, and S a closed subgroup of A. Suppose
that A acts morphically on an algebraic variety X. Set H := (G%)°
andY = X5, Fory €Y let © =G -y. Assume that

(i) the adjoint action of S on g is semisimple, and

(i) Lie H = g°.
Then H acts transitively on each connected component of 05 = ONY .
In particular, H has only a finite number of orbits on ONY and each
such H—orbit is open and closed in O NY .
As a consequence, we have the inequality

mod(G : X) > mod(H : Y).

PRrROOF. The first part of the theorem is the principal result from
(63, Thm. A]. The proof of the inequality for the modality of both
actions is identical to that of Theorem 2.3. O

Suppose as in Theorem 2.4; if GG acts separably on O, then so does
H on each orbit H -y, where y € ONY [63, Cor. 3.2].
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REMARK 2.5. The H-orbits in O NY in Theorem 2.3 necessarily
all have the same dimension. For, in its proof we see that for any
y € ONY we have

dmHA -y <dimONY <dimT,(ONY)=dimT,(H -y) =dim H - y.

So that dim H -y =dimONY forany y € ONY.
In contrast, this is not the case in the situation of Theorem 2.4 in
general, for instance, see [63, Ex. 3.3].

REMARK 2.6. We emphasize that the connectedness assumptions
on G and H in Theorem 2.4 are not required for the finiteness and
modality statements, as G° has finite index in G and mod(GY : X) =
mod(G : X) by definition of modality (1); likewise for the action of H
onY (see [77, Rem. p. 334]).

Finite decomposition results like Theorems 2.3, 2.4, or variations
thereof, such as [77, 1.2], are often referred to in the literature as
Richardson’s Lemma. In connection with so called reductive pairs such
a result appeared for the first time in Richardson’s fundamental paper
(61, Thm. 3.1]; see [77, 1.3] for examples of such reductive pairs.

2.2. Linearly Reductive Groups

An algebraic group S defined over k is called linearly reductive pro-
vided every rational representation of S is semisimple. Concerning
basic properties of these groups, see T.A. Springer’s review [83] or H.
Kraft’s book [45, 11.3.5, All]. In characteristic zero, S is linearly re-
ductive if and only if S is reductive, see [83, V. §1.1], or [45, 11.3.5
p. 109]. If char k = p, then S is linearly reductive if and only if S” is
a torus and the order of S/S? is relatively prime to p, by work of M.
Nagata [52]. In particular, any finite group (viewed as an algebraic
group over k) whose order is relatively prime to p is linearly reductive
(see Maschke’s Theorem).

Our aim is to apply Theorem 2.4 for linearly reductive groups. The
following fact is [63, Lem. 4.1].

LEMMA 2.7. Let S be linearly reductive and G an S—group. Then
we have Lie(G®) = g°. In particular, conditions (i) and (ii) of Theorem
2.4 are satisfied in this instance.

LEMMA 2.8. Let G and S be closed subgroups of the affine algebraic
group A. Suppose that G is normal in A and S is linearly reductive.
Then we have

(G2)" = (G*)u.
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PRroor. As G, is a characteristic subgroup of G, it is also an S—
group and so is G/G,, for the induced action. By definition G/G,, is
reductive and therefore, so is (G/G,,)®, by [63, Prop. 10.1.5].

Since S is linearly reductive, we have Lie(G®) = g°; and likewise for
G, and G/G,, by Lemma 2.7. As g is a semisimple S—module and g, is
an S—submodule, there exists an S—submodule ¢ of g so that g = g, ®r.
Therefore, g/g, = t as S—modules, and so (g/g,)° = t°. Furthermore,
since g, and t are S—submodules of g, we also have g° = g5 ® ¥, and
so g°/g7 =5 as S—modules. In particular, dim g°/g° = dim(g/g.)°.

Because Lie(G/G,)° = (g/g.)° and Lie G /GS = g5/g5, we con-
clude that dim G°/GY = dim(G/G,,)".

Note that the image of G under the canonical epimorphism G —
G/G, is a subgroup of (G/G,)° isomorphic to G¥/G?. Then, since
these two groups have the same dimension, their identity components
are isomorphic. A linear algebraic group is reductive precisely when
its identity component has this property. Thus G°/G? is reductive.
As G®/(G%), is the largest reductive quotient of G, we infer that
dim(G¥), < dimG?. Clearly, G¥ is unipotent. Therefore, (G3)° C
(G?),. Finally, comparing dimensions, we conclude that (G®),
(G50, as desired.

ol

We emphasize that if S is diagonalizable and specifically if S =
(0), where O is a semisimple automorphism of G, then S is linearly
reductive, and thus conditions (i) and (ii) of Theorem 2.4 are satisfied.
In case S is diagonalizable Lemmas 2.7 and 2.8 are well known, see [6,
Prop. 9.4(1)] and [6, Cor. 13.17]. Also, in that case G is known to be
connected [6, Prop. 9.4(1)], or [6, Thm. 10.6(5)].

REMARK 2.9. Suppose G and S are closed subgroups of the affine
algebraic group A, that G is connected and normal in A and S is linearly
reductive. Let P be a parabolic subgroup of G which is normalized
by S, that is P is an S group. Then P?® is a parabolic subgroup of
(G%)° [63, Prop. 10.2.1]. Note that, as a characteristic subgroup of P,
its unipotent radial P, is also an S—group. Now suppose in addition
that G is reductive. Then G° is again reductive, by [63, Prop. 10.1.5].
Moreover, by [63, Prop. 6.1], there exists a Levi subgroup L of P which
is also normalized by S. Consequently, using Lemma 2.8,

PS’ _ LSPS

is a Levi decomposition of P%.
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2.3. Controlling Fusion

Let GG be an algebraic group and H a closed subgroup of G. Suppose
that X is a G—variety and Y is an H—-invariant subvariety of X. We say
that H controls fusion in'Y with respect to the action of G provided

G-ynY =H-y foranyyeY.

In certain instances of the setting of Theorem 2.4 it turns out that
H controls fusion in Y for the action of G. Naturally, this is of interest
if one is concerned with comparing the numbers of orbits of the actions
of G on X versus that of H on Y in case mod(G : X) = 0. As an
example, we refer to [49, Prop. 2.1], where the group S in Theorem 2.4
is a cyclic group of order two. We describe several instances of fusion
for parabolic group actions in Section 3.3 below; see Propositions 3.13
and 3.12, as well as Remarks 3.15 and 3.16.



CHAPTER 3

The Modality of Parabolic Group Actions

The results in this chapter generalize work from [58] and [73]. More
specifically, Corollaries 2.6 and 2.8 from [58] (in case char k = 0) and
Theorems 1.1 and 1.2 in [73] (in positive characteristic). In Sections
3.2 through 3.6 we assume that G is reductive.

3.1. Monotonicity for the Modality of P—Actions

Throughout this section, G denotes a linear algebraic group defined
over an algebraically closed field k and P is a parabolic subgroup of GG
with unipotent radical P,. We consider the modality of the action of
P on closed connected normal subgroups N C P, by conjugation, as
well as the adjoint action of P on ideals n C p, of p. With the aid of
Theorem 2.4 we first show some monotonicity results for the modality
of the action of P on N and Lie N = n. We call

mod P := mod(P : p,)

the modality of P.

The advantage of Theorem 2.4 for our purpose is that it allows
us to obtain the desired monotonicity results for the modality of the
conjugation action of P on P, as well as for the adjoint action of P on
p. simultaneously, avoiding any separability considerations of the orbit
maps involved.

On the other hand, Theorem 2.3 is particularly useful if the base
field is of characteristic zero, e.g., see [58], when separability of the
orbit maps is guaranteed.

LEMMA 3.1. Let Q C P be parabolic subgroups of G. Let N C P,
be a closed normal subgroup of P. Then mod(P : N) < mod(Q@ : N).
In particular, we deduce
(i) mod(P : P,) <mod(Q : Q,), and
(ii) mod P < mod Q.

PROOF. Since Q C P, we have N C P, C @,. Any irreducible
P—invariant subvariety Z of N is also Q—invariant and codimy P - z <
codimy @ - z for any z in Z. Consequently, we get mod(P : N) <

13
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mod(@ : N), by the definition of modality (1) above. In particular,
setting N = P,, we infer

mod(P : P,) <mod(Q : P,) <mod(Q : Qu),

and (i) follows.
The proof of (ii) is analogous to that of (i) replacing N by n, etc. O

Next we address our principal application of Theorem 2.4.

COROLLARY 3.2. Suppose that G,S C A are closed subgroups of
the affine algebraic group A, that G is normal in A and S is linearly
reductive. Let P be a parabolic subgroup of G and let N C P, be a closed
normal subgroup of P. Suppose that both, P and N are normalized by
S, that is both are S—groups. Then we have the inequalities

(i) mod(P% : N%) <mod(P : N), and

(i) mod(P? : n) < mod(P : n).

PROOF. For A := P x S, P’ and X := N the hypotheses of
Theorem 2.4 are satisfied. Note that P° is a normal subgroup of P x S.
Hence for each  in N the intersection P° -z N N is a finite union of
(P%)%—orbits and mod((P*)° : N¥) < mod(P° : N) by Theorem 2.4.
Finally, by Remark 2.6 we infer that mod(P° : N¥) < mod(P : N), as
claimed.

Part (ii) follows mutatis mutandis. O

As a special case of Corollary 3.2 we obtain

THEOREM 3.3. Suppose that G, S C A are closed subgroups of the
affine algebraic group A, that G is normal in A and S is linearly re-
ductive. Let P be a parabolic subgroup of G which is normalized by S.

Then we have
(i) mod(P?% : (P%),) <mod(P: P,), and
(ii) mod P® < mod P.

PROOF. Since P, is a characteristic subgroup of P, it is also S—
stable, as S operates on P by automorphisms. It follows from Lemma
2.8 above that (P%), = (P?)°. The statement (i) now follows from
Corollary 3.2(i).

For part (ii) observe that Lie(P?), = Lie P by Lemma 2.8 and
Lie P? = (Lie P,)® by Lemma 2.7. The result then follows from Corol-
lary 3.2(ii):

mod P® = mod(P? : Lie(P?),) = mod(P? : Lie P?)
= mod(P? : (Lie P,)%) < mod(P : p,),
as desired. O
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We proceed with some particular instances of Theorem 3.3.

COROLLARY 3.4. Suppose that © is a semisimple automorphism of
G and that P is © stable. Set H := G® and Q :== P® = PNH. Then
we get
(i) mod(Q@ : Q) < mod(P : P,), and
(ii) mod @ < mod P.

Proor. This is the special case S = (O) of Theorem 3.3. O

COROLLARY 3.5. Let s € P be semisimple. Set H := Cg(s) and
Q:= PN H. Then we have the inequalities
(i) mod(@ : Q,) < mod(P : P,), and
(ii) mod @ < mod P.

PROOF. Observe that © = Int(s) is a semisimple automorphism of
G, and H = G®. The result is a special case of Corollary 3.4. O

COROLLARY 3.6. Let T be a maximal torus of G in P and S a
subtorus of T. Set H := Cg(S) and Q := PN H. Then we have the
imequalities

(i) mod(@ : Q,) < mod(P : P,), and

(ii) mod @ < mod P.

PROOF. By [6, Prop. 8.18] there exists an element s € S such
that Cg(s) = Cg(S). Thus Corollary 3.5 applies and the desired result
follows. Note that H is connected whenever G is, by [6, Cor. 11.12]. O

For the remainder of this section we assume that G is reductive.

REMARK 3.7. For our main concern of studying mod(P : P,) and
mod P we may assume without loss that G is connected, simply con-
nected, and semisimple. For, as P N G has finite index in P, we have
mod PN G° = mod P. So, we may suppose that G is connected. Then
G =G'Z(G)°, where G’ is semisimple. Since P and P N G’ only differ
by central elements, we have mod P NG’ = mod P. So we may further
assume that G is semisimple. If G is simply connected and G is in the
same isogeny class as G, then mod PNG = mod P, as P — PNG
has finite central kernel. Hence we may assume that GG is a connected
simply connected semisimple algebraic group.

The same reductions apply if we consider the related expressions
mod(P : N), mod(P : N/M), or mod(P : n/m), where M C N C P,
are closed normal subgroups of P.

If G is a connected simply connected semisimple algebraic group
and O is a semisimple automorphism of G, then G® is reductive and
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again connected by [86, 8.1|. In particular, this applies to Cg(s), where
s is a semisimple element of G [86, 8.5], whence to H in Corollaries
3.5 and 3.6. Thus by Remark 3.7 we may replace H by H’ in these
statements. In Corollary 3.6, the centralizers of sub-tori of maximal
tori of G are precisely the Levi subgroups of G [8, 4.15]. Thus we may
reformulate Corollary 3.6 in this case as follows.

THEOREM 3.8. Let G be reductive and P C G a parabolic subgroup
of G containing T'. Let H be a Levi subgroup of G normalized by T', or
the derived subgroup thereof. Set QQ :== PN H. Then we have

(i) mod(Q : Q,) <mod(P : P,), and

(ii) mod @ < mod P.

Let G be a connected, simply connected simple algebraic group.
The following criterion of D.I. Deriziotis [25, Prop. 2.3] gives precise
information as to when a reductive subgroup H of G is the centralizer
of a semisimple element of G. Let IT := ITU {—p}. The set II is
associated with the extended Dynkin diagram, see [11], [7]. In [21,
Prop. 11] R.W. Carter proves a criterion which is equivalent to the one
by Deriziotis, but also applies in characteristic zero. Recall, W denotes
the Weyl group of G.

PROPOSITION 3.9. Let G be a connected, simply connected simple
algebraic group. Assume that chark is a good prime for G. Let H be
a connected reductive subgroup of G of mazrimal rank. Fix a maximal
torus T of G in H. Then H 1is the centralizer of some semisimple
element of G if and only if V(H) has a basis which is W —conjugate to

a proper subset of 1.

Ultimately, we consider the setting of a closed reductive subgroup
of G normalized by a maximal torus 7" of G.

THEOREM 3.10. Let G be a reductive algebraic group and suppose
that char k is zero or a good prime for G. Let H be a closed reductive
subgroup of G normalized by a mazximal torus T of G and P a parabolic
subgroup of G containing T'. Set Q) == PN H. Then we have the
imequalities

(i) mod(Q@ : Q) < mod(P : P,), and

(ii) mod @ < mod P.

ProOOF. Thanks to Remark 3.7, we may suppose that G is con-
nected, simply connected, and semisimple, and likewise that H is con-
nected and semisimple. Let W(H) be the set of roots of H relative to
T which is a closed symmetric subsystem of the root system ¥ of G
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relative to 1. These can be determined by means of the algorithm of
Borel-de Siebenthal [7] applied to each of the simple components of G,
see also [11, Exc. Ch. VI §4.4]. According to that, H is the derived
subgroup of a Levi subgroup of some connected semisimple subgroup
of G of maximal rank. By Theorem 3.8 we may assume that H is
a connected semisimple subgroup of G' of maximal rank. Such an H
can be obtained by successive applications of the Borel-de Siebenthal
algorithm applied first to the simple components of G and then succes-
sively to further irreducible components. If H is maximal among such
groups, it is then the centralizer of some semisimple element of G ac-
cording to Proposition 3.9 applied to each of the simple components of
G. Inductively we obtain a chain of connected semisimple subgroups of
G of maximal rank each of which is the centralizer of some semisimple
element of the next group with H at the beginning and G at the end
of the chain. If chark is a good prime for G, it is also a good prime
for each connected semisimple subgroup of G of maximal rank [84,
4.7]. Since each of these simple components is also simply connected,
the result then follows from Corollary 3.5 and Proposition 3.9. In case
char k = 0 we argue analogously. O

REMARK 3.11. Observe that the proofs of Corollaries 3.5 and 3.6,
and of Theorems 3.8 and 3.10 equally apply if we consider the P—action
on a closed normal subgroup N of P in P, instead of P, itself and the
@—action on @, N N instead of @,; likewise for the adjoint action of P
on n and the one of Q) on g, Nn.

In characteristic zero Corollary 3.4(ii) and Theorem 3.10(ii) are
proved in [58, Cor. 2.6, 2.8| and in positive characteristic in [73, Thm.
1.1, 1.2].

REMARK. If O is a finite automorphism of ¢, then it is semisimple
provided char k does not divide its order. If GG is semisimple, then the
group of outer automorphisms of G is finite [86]. In particular, if ©
is a graph automorphism of GG, Theorem 3.3 applies provided char k
satisfies this condition. No characteristic restrictions are required for
applications of Corollaries 3.5, 3.6 and Theorem 3.8.

3.2. Algorithmic Modality Analysis

The results of Sections 4.1 and 6.1 show that we have good tools in
order to construct lower bounds for mod P (e.g. see Lemma 4.1). The
situation is different, once we turn to upper bounds. An algorithm,
developed with U. Jiirgens, is an effective method to establish such
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bounds for mod P. This program, referred to as MOP (Modality Of
Parabolics), is available as a GAP share package, cf. [29]. MOP’s ap-
plication is limited to the instances when the Dynkin diagram of G is
simply laced. This program is specifically designed to address modality
questions for groups of exceptional type, and in particular, to deter-
mine parabolic subgroups of the latter of modality zero, in default of
an adequate reduction technique, as available for classical groups. (see
Lemma 5.24).

The use of this algorithmic procedure was crucial in establishing
the classification of the modality zero parabolic subgroups in excep-
tional algebraic groups from [37], see Theorem 5.30 below. The results
obtained in [35] are based on a precursor of MOP.

The program generalizes an algorithm due to H. Burgstein and
W.H. Hesselink [20], which was designed to analyze the orbit structure
of a Borel subgroup B for the adjoint and coadjoint actions on b, and
on b}, see also [58]. In contrast to the methods from [20] and [58], this
algorithm is inductive in the following sense. Suppose G is reductive,
P C @G is parabolic, and we aim to show that mod P < m, for m € N.
Let H be a proper semisimple regular subgroup of GG and let Q = PNH.
Inductively, mod @ is known and we may assume that mod @) is at most
m, else mod P > m by Theorem 3.10. It follows from the proof of this
theorem and Remark 3.11 that mod(P : P - q,) = mod Q. Therefore,
we only need to consider the P—orbits in p, \ P - q,. This applies to
any such ). Here it obviously suffices to only take those H which are
maximal among such subgroups leading to maximal candidates for Q).
Hence, we only take maximal rank subgroups or regular semisimple
subgroups H of corank 1 in G. We form the list of all subsystems
W(H)", where H runs through this fixed set of regular semisimple
subgroups of G of large rank such that W(H)" C ¥*. The symmetric
subsystems corresponding to such semisimple subgroups H of G can
be determined by means of the algorithm of Borel-de Siebenthal [7],
see also [11, Exc. Ch. VI §4.4]. In [4] all conjugacy classes of such
subsystems of ¥ under the action of the Weyl group of G are classified.

This inductive feature allows one to effectively compute the upper
bound of mod P in several instances. This is demonstrated for in-
stance in the classification of the modality zero parabolic subgroups in
exceptional groups in Theorem 5.30. In Section 6.2 we present several
instances where the modality of parabolic groups of positive modality
can be calculated explicitly with the aid of MOP.

For a detailed description of the MOP program, its mathematical
background, and further applications, we refer to [36] and the MOP
manual [38].
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3.3. Controlling Fusion for P—Actions

In this section we delineate two fusion results for the P-actions
studied above. The first one, generalizes an argument by A.E. Zalesskii
[94], while the second one is the Lie algebra counterpart of the first,
extending V.V. Kashin’s argument [41, Lem. 1].

ProrosITION 3.12. Let G be reductive and P C R C G parabolic
subgroups of G containing T. Let H be the standard Levi subgroup of
R or its derived subgroup. Set () :== PN H. Then @ controls fusion in
Q.. for the action of P, that is

P-xanNQ,=Q- -z forevery x € Q,.
As a consequence, we obtain
mod(Q : Q,) <mod(P : P,).

PrOOF. By Théoreme 1 in [23, exp. 17] @ is a parabolic subgroup
of H, see Remark 2.9. First we suppose that H = Lg. Since P C R,
we have Lp C H and thus Lp = Lg. Thus it suffices to consider
P,—conjugate elements of ),,. Moreover, by construction, P, = Q,R,,.
Now let z, 2’ be two elements of Q, and y € P, such that 2/ = yay~'.
Write y = qu, where ¢ € Q, and u € R,,. Thus we have Q, > ¢ 'a2'q =
uzu . Now, as this element and z lie in @, and since R, is normal in
P,, we get that z~tuzu™t € Q, N R, = {e}. Consequently, 2’ = qrq™1,
that is 2’ and z are Q conjugate, as desired.

In case H = L, the same result also holds, since T = TyCr(H)
([23, exp. 17, Lem. 2]), where Ty := H NT is a maximal torus of H.

Now since any two P—conjugate elements of (), are already -
conjugate, the map @ - x — P - x defines a bijection between the set
of Q—orbits in @, and the set of P—orbits in P - Q,. Accordingly, we
conclude

mod(@ : Q,) =mod(P: P-Q,) <mod(P: P,),
as claimed. 0

PROPOSITION 3.13. Assume that G, P C R, H, and Q) are as in
Proposition 3.12. Then Q controls fusion in q, for the action of P,
that is

P-xNq,=Q-x forevery x € q,.
As a consequence, we obtain

mod ) < mod P.
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PROOF. The argument is similar to that in the proof of Proposition
3.12. Suppose first again that H = L. Since P C R, we have Lp C H
and thus Lp = Lg. Thus it suffices to consider P, conjugate elements
of q,. As before, P, = Q,R,, and thus p, = q, @ t,. Let v,v" be two
elements of q, and y € P, such that v" = y - v. Write y = xu, where
r € Q, and u € R,. Thus we have q, > 27! -9’ = u-v. Note that u
and v are of the form

U= H Un(&,) for some &, € k, and

a€V(Ry)

v = Z Cgep for some (g € k.
BEY(qu)

As the adjoint action of a root element on a root vector satisfies

Ualba) €5 € e+ > keppia
i>1
(see [85]), we see that u - v = v + 0", where v € v, since ¥(t,) is an
ideal in Ut (see [85, p. 24]). Consequently, we have v = u-v —v €
quNt, = {0}. Thus, u-v=wvand sov' =y-v=q-v, as claimed.

In case H = L, we argue as in the proof of the previous proposition.
The same result also holds, since T' = Ty Cr(H) (see [23, exp. 17, Lem.
2]), where Ty := H NT is a maximal torus of H, and Crp(H) acts
trivially on b.

The argument for the conclusion on the modality of the two actions
is analogous to that of Proposition 3.12. O

REMARKS 3.14. The case P = B in Propositions 3.12 and 3.13 is
the one treated in [94] and [41], respectively. Note that there are no
characteristic restrictions involved.

In [94, p. 130] A.E. Zalesskit shows that mod(B : B,) > 0 provided
G is of type A, and r > 5, or B,, C,, D,, and r > 6, Eg, F;, or Eg.
The modality statement follows from the result for type A, for r > 5
(see [94, Thm. 1]), the observation that each of the simple groups in
this list admits a Levi subgroup of type As, and the case P = B from
Proposition 3.12.

For our purpose of comparing the modality of different group ac-
tions the application of both propositions is limited to the case when
the semisimple parts of the Levi subgroups of P and @) are isomorphic.
The monotonicity statements for the modality of the actions involved
in both propositions equally follow from Theorem 3.8.

REMARK 3.15. Suppose G, P, H and, Q = H N P are as in the
setting of Theorem 3.8 or Theorem 3.10. In addition suppose that
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chark = 0 and @, is abelian. Then @ controls fusion in @, (resp. q.)
for the action of P. For, since chark = 0, condition (5) of Theorem
2.3 is satisfied for the actions of P and @ on P - @, (resp. P - q,),
(58, Prop. 2.5]. Consequently, P -z N @, is a finite union of Q—orbits
for x € @Q,, each of which is of the same dimension, by Remark 2.5.
By [65, Prop. 2.16], no two Q—orbits in @, have the same dimension.
Thus P-xNQ, = Q - x, as claimed. Likewise, for the adjoint action
we derive P-xNgq, = Q -z, for any x € q,.

We close this section by pointing to a fusion result of a different
nature.

REMARK 3.16. Suppose G is reductive and P C G parabolic with
P, abelian. Then, owing to [65, Cor. 2.18|, Lp controls fusion in P,
for the action of G. More generally, according to a result of G. Seitz,
Lp controls fusion in Z(F,), the center of P,, for the action of G for
any parabolic P, [68, Prop. 2.12].

3.4. Global and Infinitesimal Modality

In characteristic zero the exponential mapping is a P—equivariant
isomorphism between the affine varieties p, and P,, and therefore
mod(P : P,) = mod(P : p,). In positive characteristic a similar result
can be proved using Springer’s map between the variety U of unipotent
elements of G and the variety N of nilpotent elements of g, [80].

For the remainder of this section, suppose that char k = p.

PROPOSITION 3.17. Let G be a connected, simply connected, simple
algebraic group, P C G parabolic, and N C P, a closed normal sub-
group of P. Suppose that char k is a good prime for G. Then there is a
P—equivariant bijective morphism of P—varieties ¢ : N — n affording
a bijection between the sets of P—orbits on N and on n.

PRrROOF. Let U be the unipotent variety of G' and N the nilpotent
variety of g with the usual G—actions. In [80] T.A. Springer showed
that, under the hypotheses of the theorem, there is a G—equivariant,
bijective morphism

(7) e:U— N

which is a homeomorphism of topological spaces; see also [84, Thm.
3.12]. If chark = p is a very good prime for G (that is p is a good
prime for G and it does not divide r + 1 in case G is of type A, ), then
there is such a map which is even an isomorphism of varieties, since N
is known to be normal in this instance [89, 6.9], see also [5, 9.3.6(c)].
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For an alternative approach to Springer’s map (7) by means of Luna’s
slice theorem in positive characteristic, see [5, 9.3.4].

Let x € B, be a regular unipotent element of G. Since ¢ is G
equivariant, ¢(z) is regular nilpotent, and thus is contained in the Lie
algebra of a unique Borel subgroup B of G [79, Lem. 5.3|. Likewise, the
centralizer of a regular unipotent element is contained in a unique Borel
subgroup [79, Lem. 4.3]. Thus we have Cg(z) C B and Cg(p(x)) C B.
By the G-equivariance of ¢, we have Cg(z) = Cg(p(x)), and thus
B = B. Since ¢ is a homeomorphism and B, = B - z, it follows that
#(B.) = B-p(@) = by,

Observe that N is connected and N = [[ Us, where the product is
taken over W(NN) in some fixed order, and n = @gg, where § € U(N)
6, Prop. 14.4(2a)]. Let a € ¥*. Since dimp(U,) = 1 and ¢(U,) is
a T—invariant subvariety of b,, there is some root 3 € ¥* such that
©(U,) C gg. For, if p(U,) meets at least two root spaces non-trivially,
then, using the action of 7', we see that dim p(U,) > 2 (assuming that
rank G > 1, else p(U,) = g, for the single root a in ¥+ by the previous
paragraph). But then the T-invariance forces the equality p(U,) = gg-
Since ¢ is T—equivariant and k is infinite, § = a. In particular, this
shows that any connected T-regular subgroup of B, corresponds to its
Lie algebra under . The desired result thus follows. 0J

COROLLARY 3.18. Let G be reductive, P a parabolic subgroup of G,
and N a closed normal subgroup of P contained in P,. Suppose that
char k is a good prime for G. Then we have the equality

mod(P : N) = mod(P : n).

ProOOF. Thanks to Remark 3.7 we may suppose that G is con-
nected, simply connected, and semisimple. Then, as each simple com-
ponent of (G is also simply connected, and char k is a good prime for
each of these components, and, since P is the direct product of its irre-
ducible components and likewise for N, there results a P—equivariant
bijective morphism of P—varieties ¢ : N — n affording a bijection
between the sets of P—orbits on N and n by Proposition 3.17. O

The case N = P, of Corollary 3.18 then yields

COROLLARY 3.19. Let G be reductive and P C G parabolic. Sup-
pose that char k is a good prime for GG. Then we have the equality

mod(P : P,) = mod(P : p,).

A bijection between the sets of P—orbits on p, and on P,, as as-
serted by Proposition 3.17, is considerably stronger than the equality
statement of Corollary 3.19 which merely requires that the maximal
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number of parameters of both actions are the same. It would be inter-
esting to know whether this equality also holds even when char k is a
bad prime for G.

3.5. Modality and Coadjoint Action

Let G be a linear algebraic group. In this section we are concerned
with the modality of the coadjoint action of a parabolic subgroup P of
G on the dual space of p,,.

Modifying an argument from the proof of [60, Thm. 1] we show

ProprosiTION 3.20. Let G be an algebraic group and let V' be a
rational G—module. Then we have the equality

mod(G : V*) = mod(G : V).

Moreover, if mod(G : V') =0, then there is a bijection between the sets
of G-orbits on'V and V*.

PROOF. Let dimV = n. For each j € N we define V7 := {v € V|
dim G - v = j}; then V = {J,5, V3. Consider the subvariety

M:={(v,f) e VxV*| f(gv)=0forallge G} CV x V",
Let m : V x V* — V be the projection onto the first factor. We
define M7 := 7=Y(V/) N M. Then M = J, 5 M’ and dimM =
max;>odim M’. By duality, each fiber of the map = : M7 — V7

has dimension n — j. Therefore, dim M’ = dimV’ +n — j. As
mod(G : V) = max;>o(dim V7 — j5), see [40, 1.9], we have

dim M = maxdim M’ = max(dim V? — j) +n = mod(G : V) + n.
720 Jj=0

By dual considerations we also have dim M = mod(G : V*) + n, and
thus the desired equality follows.

The second statement of Proposition 3.20 follows from the proof of
(60, Cor. 2], which is also valid in positive characteristic. O

Proposition 3.20 is also proved in [54, §2].

COROLLARY 3.21. Let G be a linear algebraic group and P a par-
abolic subgroup of G. Then we have the equality
mod(P : p)) =mod(P : p,).
Moreover, if mod P = 0, then there is a bijection between the sets of
P orbits on p,, and those on p;,.
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3.6. Bundles on Flag Manifolds

Now consider the principal fiber bundle G — G/P; since P is
parabolic this bundle is locally trivial [8, 3.24, 3.25]. For Y a P-
variety, we may consider the associated fiber bundle G x¥ Y which is
the quotient of GxY by P, see [76, 11.3.7]. The class of (g,y) in GxTY
is denoted by g*y. Clearly, G acts on G xF'Y via left translation. This
construction plays an important role in the resolution of singularities,
see [76], [10]. Observe that G' x¥ p, is the cotangent bundle and
G xT p* the tangent bundle of the flag manifold G/P. In the special
case when P = B, the collapsing of the bundle

G x® B, — U,

given by g*x +— gxg~, is the desingularization of the unipotent variety
U [80, 1.4], (88, 1.1|. Analogously, the moment map

G xBb, — N,

given by gxx — Ad(g)z, is a resolution of singularities of the nilpotent
variety N [80], [81]. There is a close relation between these two reso-
lutions by means of Springer’s map (7) from page 21, see [76, 11.4.7].

By construction, the G-orbit of a point in G x¥ Y meets the fiber
over some point in G/P (which is isomorphic to Y) in a single P—
orbit on Y. So, there is a canonical bijection between the G' orbits on
G xP'Y and the P-orbits on Y. In particular, considering the case
when Y = p,, we get mod(G : G x¥ p,) = mod P. This fact and
Corollary 3.21 imply

1

COROLLARY 3.22. Let G be a linear algebraic group and P C G a
parabolic subgroup of G. Then we have

mod(G : G xF p,) = mod P = mod(G : G x* p).
Moreover, if mod P = 0, then there is a bijection between the sets of
G—orbits on these two G—bundles.

REMARK. By Corollary 3.22 and Theorems 5.22 and 5.30 below we
get a complete description of all instances when G admits only a finite
number of orbits on the tangent and cotangent bundles of G//P.



CHAPTER 4

Parabolic Groups of Positive Modality

Throughout this chapter G is a (connected) simple algebraic group,
T C B are a fixed maximal torus of G and a fixed Borel subgroup and
P D B is a parabolic subgroup of G.

4.1. Preliminary Results

If N is a closed normal subgroup of P contained in P,, then N
is connected and N = []Up, where the product is taken over W(N)
in some fixed order [6, Prop. 14.4(2a)]. Moreover, n = @gg, where
B € W(N). Let r = rank G = dim 7" denote the rank of G. Define

w(N) = p(n) :=2dimn — dimp — dim[n, n].
The following bound appears in [57, Prop. 1].
LEMMA 4.1. Let P and N be as above. Then
mod P > p(n).
PROOF. The action of P on n induces an action of P on n/[n,n]

and this action factors through P/N, as N acts trivially on this coset
space. Whence we have

mod P > mod(P : n) > mod(P : n/[n,n])
= mod(P/N : n/[n,n]) > dimn/[n,n] — dim P/N
= p(n),
as desired. O

REMARK. The proof above equally shows that p(N) is a lower
bound for mod(P : P,). When mod P is positive, there need not be an
ideal n C p,, of p with p(n) > 0. For instance, see [58, Rem. 3.5].

The following classification of Borel subgroups of modality zero is
due to V.V. Kashin [41, Thm. 1] (in case chark = 0).

THEOREM 4.2. We have mod B = 0 if and only if one of
(i) G is of type A, forr < 4;
(ii) G is of type Bs.

25
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PRrROOF. It follows from Lemma 4.1 and Table 4.1 below that mod B
is positive in each of the cases listed. Each of the simple groups A,
for r > 6, B, and C, for r > 4, D, for r > 5, Egs, E7, Eg, and F}
admits a standard Levi subgroup whose type appears in Table 4.1. By
Proposition 3.13, we see that mod B > 0 in each of these instances as
well. For let R be the parabolic subgroup of G whose Levi subgroup
is of the appropriate type from Table 4.1 and P = B is the Borel
subgroup of G. According to Proposition 3.13 we infer that

0 < mod B; <mod B,

where B = By N L is the Borel subgroup of the corresponding group
from Table 4.1. Consequently, mod B is positive whenever G is not as
in (i) or (ii).

The fact that mod B = 0 in all instances when G is as in (i) or (ii)
follows from the results in [20]. O

In Table 4.1 we record some ideals n of b with the property that
pu(n) =1 (relative B). In the second column we list the roots a such
that n is the minimal B-submodule of b, containing the root spaces
go- By Lemma 4.1 we have p(n) < mod B. In fact mod B = 1 holds in
each of the cases in Table 4.1, see Section 6.2 below.

Type of G n dimn p(n) ‘

As ap, s, a5 13 1
Bs Qi 7 1
Cs a1, s 8 1
D, (e %) 9 1
Go Qg ) 1

TABLE 4.1. The critical Borel cases

In [41] Kashin uses a different ideal for D,, namely the one gener-
ated by the root spaces relative to the simple roots corresponding to
the end nodes of the D, diagram.

In [94] A.E. Zalesskii shows that mod(B : B,) > 0 whenever G is
of type A, for r > 5, B,, C,, D,, for r > 6, Fg, Fr, and Fyg using the
As entry from Table 4.1 in connection with Proposition 3.12.

The following classification of semisimple rank 1 parabolics of modal-
ity zero is proved in [58, Cor. 1.4] in case char k = 0; like Theorem 4.2
it is valid in any characteristic.
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THEOREM 4.3. Suppose ranks P = 1. Then mod P = 0 if and only
if one of the following holds:
(i) G is of type A, forr <5;
(ii) G is of type B, or C, forr < 3;
(iii) G is of type Dy, or G.

4.2. The Classical Groups

It was observed in [69] that there is a close connection between
((P,), the length of the descending central series of P,, and the question
whether mod P is positive. Earlier results showed that the number of
P—orbits on p, is infinite given that ((P,) is sufficiently large, e.g., see
[94], [41]. On the other hand there is a finite number of P—orbits on
p, provided ¢(P,) is small. For instance, if /(P,) = 1, that is when P,
is abelian, then mod P = 0, see [64, Thm. E|. Also, in [71, Thm. 1.4]
it was shown that mod P = 0 provided G is classical and ¢(P,) < 2.

In case GG is of type D, let 7 be the graph automorphism of G of
order 2 (stemming from the interchange of the simple roots o,._; and
0,). Our next result combines [69, Thm. 3.1] for classical groups and
(32, Lem. 3.2].

PROPOSITION 4.4. Let GG be classical and P C G 1is parabolic. Then
mod P is positive provided
(a) G is of type A, By, or C, and ¢(P,) > 5; or
(b) G is of type D,, and one of the following holds:
(i) L(P,) > 6; or
(ii) ¢(P,) =5 and TP = P; or
(iii) ¢(P,) =5, TP # P, and L' consists of three simple com-
ponents.

ProOOF. First, we combine the proofs for (a) and (b)(i - ii). In all
these cases the idea is to induct on the rank of G by reducing to a
suitable simple regular subgroup H of G of the same classical type as
that of GG, but of smaller rank, and then to invoke Theorem 3.8.

Let G and P be as in (a) or (b)(i - ii). We may assume that P is
standard, that is P = P;, where J C II and in view of Lemma 3.1,
it suffices to consider only those P which are maximal subject to the
conditions in our proposition, that is

(A) If G is of type A,, then we may assume that ¢(P,) = 5.

(B) If G is of type B,, C,, or D, then we may assume that either
((P,) = 5, or {(P,) = 6 and each parabolic subgroup R of GG
which contains P properly satisfies /(R,) < 4.
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In case G is of type D, this implies that 7P = P. For, this is
clear if ¢(P,) = 5 by hypothesis (b)(ii). Suppose that P satisfies
the maximality condition (B), and ¢(P,) = 6, but 7P # P. Then
{o, 1,0,} N J| = 1. Let R be the standard parabolic subgroup of
G corresponding to J U {o,-1,0,}. Then R contains P properly and
((R,) = 5, and TR = R. This contradicts the choice of P. Thus
TP = P, as claimed.

We argue by induction on rank G = r. In case G is of type A, and
r < 4, or in case of B, or C, with r < 2, it follows by (3) on page 4
that the statement of the proposition holds trivially.

If G is asin Table 4.1, then J is empty, that is P = B and ¢(B,,) = 5.
The result follows in each of these cases from Theorem 4.2.

So we may assume that J is non-empty. Let G and P be as in
(a), (b)( - ii) with P satisfying (A) or (B), and suppose that these
statements hold for all simple groups of rank less than 7.

We are going to construct a simple regular subgroup H of G so
that H is the derived subgroup of a Levi subgroup of G and rank H =
rank G — 1. Since J is non-empty, there exists a pair of simple roots
which are adjacent in the Dynkin diagram of G where precisely one of
them is in J. We fix such a pair which is either of the form {o;, 041}
for some ¢ < r, or {0,_2,0,} in case G is of type D,. For the definition
of H we distinguish three cases:

(I) For G of type A,, By, or C, andi <r —1,0or D, and i < r — 2,
let H be the connected simple regular subgroup of G defined by
the set of simple roots

I(H):=1{01,...,0i-1,0i + 0it1,0442,... ,0p}.

(IT) If G is of type C, and i = r — 1, then let H be the connected
simple regular subgroup of G with simple roots

I(H) :={01,...,00 9,20, 1+ 0}

(III) In case G is of type D, and the chosen pair of consecutive sim-
ple roots is either {0, 5,0, 1} or {0,_2,0,} we let H be the
connected simple regular subgroup of GG given by

I(H):={01,... .00 2+ 04 1,0, 2+ 0}

In each case the subgroup H is of the same classical type as that of GG
and

rank H = rank G — 1.



4.2. THE CLASSICAL GROUPS 29

Define ) := P N H. As, by construction, only one of the two chosen
simple roots is in J, we see that either

(8) rank H —rank; ) = rankG —rankg P, or
rank H — rank, ) = rankG —rank, P + 1.

The latter equality only occurs in case (I11) above when {o,_;,0,} C J.
We wish to compare £(Q,) with ¢(P,). From (8) we get
() 4Qu) = £(P.) = 5, or
(b) G is of type B, or D,, i =1, 0y is in J, and ¢(Q,) = {(P,) — 1,
or

(¢) Gisof type C,i=1—1, 0, isin J, and £(Q,) = ¢(P,) — 1.
Further, in the latter two cases it follows from properties of the re-
spective root systems and (B) above that ¢(P,) must be even, whence,
((P,) = 6. Therefore, £(Q,) = 5 in (b) and (¢). Thus, in all cases,
H and @ satisfy the hypotheses of the proposition. By applying the
induction hypothesis to H and @, we have mod ) > 0. Owing to The-
orem 3.8 we conclude mod P > 0. This completes the proof of parts
(a) and (b)(i - ii) of the proposition.

Finally, we consider the case (b)(iii). Combined, the conditions
there imply that r is at least 6. For » = 6 there is just one case up to
conjugacy by the graph automorphism. Namely, for GG of type Dg the
standard parabolic subgroup P of G with V(P) = {—0y, —03,—05} U
Ut satisfies the conditions of (b)(iii).

In this case let H be the regular simple subgroup of G relative to
the subsystem of W which is spanned by

H(H) = {Ul + o9 + 03,04,06,03 + o4+ 05, 02}-

Then H is the derived subgroup of a Levi subgroup of G of type As;
and @ = H N P is the standard Borel subgroup of H relative to IT1(H).
It follows from Theorem 4.2 that mod@ > 0 thus by Theorem 3.8
mod P is positive as well. We illustrate this critical Dy case in Figure
4.1 below.

The general case where GG is of type D, for r > 6 and P is as
in (b)(iii) reduces inductively to this particular Dg configuration just
discussed by applying Theorem 3.8. We can argue in the induction as
in the previous cases. Again, by Lemma 3.1, we may suppose that P is
maximal with respect to the conditions in (b)(iii). Since r > 6, we can
construct a simple regular subgroup H of G of type D,_; by means of
(D).

This completes the proof of our proposition. O
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G L >0 O—— =0
o1 02 03 04 01 02+03 04
G=DBy, P, ((P)=5 H=Bs3,Q,((Q,) =5
e = O——0&—0
0y 02 03 04 01 02 203+04
G:C47P7€(Pu>:6 H:C37Q7€(Qu):5
04 03+U4
01 Oz O3 01 02
05 O3+05
G:D5~P~€(Pu):5 H:D4~Q~£(Qu):5
05
G O
01 02 03 04 o1+09+03 04 Og | 09
76 0'3+0'4+0'5
G:D67P7€(Pu):5 H:A57Q7€(Qu):5

FIGURE 4.1. Some classical examples

ExAMPLES. We illustrate the construction in some cases from the
proof of Proposition 4.4 in terms of Dynkin diagrams in Figure 4.1
below.

Our first example is, in a sense, the generic situation (I) from the
proof above; namely, when o; and o;,; are both of the same length
and £(Q,) = £(P,). In the second one we have £(Q,) = ¢(P,) — 1,
and o; and o0;,; are of different lengths. This is an instance from (IT)
above. The next case is an occurrence of the construction from (I1I).
Finally, we present the significant Dg configuration from Proposition
4.4(b)(iii).
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In the first column of Figure 4.1 the parabolic subgroup P = P; of
(G is indicated by coloring the nodes corresponding to the simple roots
J C Il in the Dynkin diagram of G. Here we follow the labeling of II as
in [11]. In the second column we give the diagram for H, labeled by the
simple roots [I(H) of H. Also, @ = HN P is shown in a similar fashion
to P. The absence of any colored nodes in this diagram indicates that
@ is the corresponding Borel subgroup for H. This is the case in each
of these instances.

4.3. The Exceptional Groups

Combining the results of [73, Thm. 3.1] for exceptional groups and
(35, Lem. 3.13] we get the following counterpart to Proposition 4.4.

PROPOSITION 4.5. Suppose G is of exceptional type and P C G is
parabolic. Then mod P > 0 provided one of the following holds:
(i) G is of type Es, Fy, or Gy and ((P,) > 5;
(ii) G is of type Eg or Er and ((P,) > 6;
(iii) G is of type Es, L(P,) =5, and P is not of type A2Ay or As;
(iv) G is of type Er, {(P,) =5, and P is not of type A Ay.

PROOF. The result for G5 follows directly from Theorem 4.2.

We illustrate the crucial cases of the argument in case of Fy and
Eg in terms of Dynkin diagrams in Figures 4.2 and 4.3 below. In
each instance we construct a simple regular subgroup H of G, so that
@ = H N P satisfies mod @) > 0 according to Proposition 4.4 and thus,
by Theorem 3.8, we obtain mod P > 0, as claimed.

Thanks to Lemma 3.1 we only need to consider those P which are
maximal with respect to satisfying ¢(P,) > 5 in case of Fy. The simple
regular subgroup H of G used in each instance is shown in Figure 4.2.

In case G is of type Fg we argue similarly. Again, by Lemma 3.1,
we only have to study those parabolics maximal with respect so certain
conditions. There are two different kinds of parabolic subgroups P we
have to study.

The first kind are those P which are maximal with respect to sat-
isfying £(P,) > 5 and are not of type A?A, or Az. These are the first
five cases illustrated in Figure 4.3 up to symmetry.

The ones of the second kind are those P which are maximal with
respect to being properly contained in a parabolic subgroup of type
A3 A, or Az; note that then £(P,) > 6. Cases 7 through 8 of Figure 4.3
are of this nature. In each of the remaining instances it turns out that
we can embed P properly in one of the parabolic subgroups of the first
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kind and then apply Lemma 3.1 to derive that mod P > 0. We leave
the details to the reader (see also Table V.2 in [69]).

For the cases shown in Figure 4.3, it follows from the construction,
Theorem 3.8, and Proposition 4.4 that mod P > 0.

For proofs of the relevant configurations in the remaining instances
in E7 and Eg we refer to [69, §5] and [35, Lem. 3.13]. O

ExAMPLES 4.6. In Figures 4.2 and 4.3 the significant Fy and FEjg
cases from Proposition 4.5 are listed respectively. For convenience we
record ((P,) and ¢(Q,), see (3) on page 4.

In Figure 4.2 let § = 09 + 203 + 204 and v = 01 + 205 + 203 be
the highest roots of the standard subsystems of type C'5 and Bs of Fy,
respectively.

In order to avoid bulky labels in Figure 4.3, we abbreviate o3 + o4
by o34, and o4 + 05 4+ 0¢ by 0456, etc.

G, P, ((P) H,Q=HNP, (Q,)
g 3 _ 1 2 2
o1 02 03 04 B 01 " oytoz
2 4 1 2 2
C—ee—>0—9
01 09 03 04 6 g1 09103
3 4 1 2 2
—C—30—0
o1 02 03 04 g o1+oy 03
. :4 % 2 2 1
o1 09 03 04 o3 04 %
3 2 1 2 2
——C—>8—0
o1 02 “03 o0y 01409 09+203 04

FI1GURE 4.2. The critical Fy cases
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G, P, ((P,)
3
01 03 04 Os 06
2009
2 2
01 03 04 Os 06
2009
1 3 1
G L L O
o1 03 104 05 O
()
1 2 2
o O * °
01 03 10'4 05 Og
02
2 1
[ 9 @ O
01 03 104 05 06
2002
2 3 2
01 (o8] 04 Op Og
02
2 3 1
[ @ O
01 03 104 05 06
)
1 2 3
01 03 04 Os 06
02

H,Q=HNP, ((Q,)

013456 02 04

100345
1 2 1
o—0——0

FIGURE 4.3. The critical Eg cases
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CHAPTER 5

Parabolic Groups of Modality zero

In this chapter, we delineate the classifications for classical groups
from [31, 32| as well as those for groups of exceptional type from
[37]. Moreover, for the general linear groups we render a complete
combinatorial description from [19] of the closure relation on the set
of P—orbits on p,, that is the Bruhat-Chevalley order, in all the finite
orbit events. Finally, we present generalizations of these classifications
from [14] and [18].

5.1. The General Linear Groups

In the present section, we outline the classification from [31, 32] for
general linear groups and furnish a complete combinatorial description
of the closure relation on the set of P—orbits on p,, for every finite orbit
case from [19]. Our standard reference on categories of A-filtered
modules over quasi-hereditary algebras is [26].

More generally, in [14] and [19] the action of P on the [-th member
of the descending central series of p,, is studied, where this series of p,,
is defined by p&o) = p, and pq(f) = [pu,pg_l)], for [ > 1, see Theorem
5.35 below. Though all the results from [19] apply in this more general
situation, we only present them here for the action of P on p,.

For further generalizations in the setting of general linear groups,
we refer to more recent work by T. Briistle and L. Hille, [15] and [16].
In [15] they show that the action of any standard parabolic subgroup
P of GL(V') on a normal unipotent subgroup U C P, of P can be inter-
preted in terms of the A—filtered modules of a certain quasi-hereditary
algebra. While [16] explains the occurrence of quasi-hereditary alge-
bras in connection with classification results for parabolic group actions
in general linear groups. In this context see also [17].

5.1.1. Parabolic Groups and A—Filtered Modules. We main-
tain the notation from above. A Levi subgroup L of P is (isomorphic
to) a product of general linear groups, say GL(d;), for 1 < i <t for some
t € N, with dim V' = 5" d;. The ordered tupled = (dy, ... ,d;) € N* de-
termines the conjugacy class of P in GL(V'). To indicate this, we often

35
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write P = P(d). Fix t € N and define a category F(t) as follows. The
objects are pairs (F, f), where Flisaflag{0} =1, CV; C-.-CV, =V
of length t of subspaces of some finite-dimensional k£ vector space V/,
and f is an endomorphism of V' which lies in p,, where P is the sta-
bilizer of F' in GL(V'). Consequently, f(V;) C V,_; for 1 <i <t. Let
(F, f) and (F’, f') be in F(t). A morphism ¢ : (F, f) — (F', f') is
a linear map ¢ : V. — V' such that ¢(V;) C V/ for 1 < i <t and
of = flo. For (F, f)in F(t) weset d; := dim V;—dim V;_; for 1 <i <t
and call d = (dy, ... ,d;) the dimension vector of (F, f) and write

dim F' :=d.

For d € N* we denote by F(t)(d) the subcategory of F(t) of all objects
of dimension vector d.

If o : (F,f) — (F', f") is an isomorphism in F(¢), then d = d’
and so dimV = dim V’. After identifying V' with V' and F with F’
we see that o lies in P = P(d) and f' = ¢f¢™!, that is f and [’ are
endomorphisms in p, conjugate under the action of P.

LEMMA 5.1. For anyt € N and d € N* the isomorphism classes
of objects in F(t)(d) correspond bijectively to the P—orbits on p, for
P = P(d). This correspondence is induced by the map (F, f)+— P - f,
where P is the stabilizer of the flag F' and f lies in p,.

Proor. It follows from the remarks above that there is a well-
defined map from the set of isomorphism classes of objects in F(t)(d)
to the set of P—orbits on p, for P = P(d). Clearly, it is onto, as for
any f in p,, the pair (F, f) lies in F(¢)(d) and its class maps to the
P—orbit through f. Moreover, since for any two pairs (F, f), (F, f’) in
F(t)(d) and ¢ € P = P(d) satisfying f" = ¢fp~! the linear map ¢
defines an isomorphism between (F, f) and (F, f'), this correspondence
is injective. U

Instead of working directly with F(t), we pass to an equivalent
category. For that purpose let Q(f) be the quiver defined as follows:
the set of vertices is simply {1,... ¢} and the arrows of the quiver are

i it tlandi+1 Zsifori=1,....,t—1. Let J be the ideal in
the path algebra kQ(t) of this quiver given by the following relations:
Grar = 0 and Gy = «a;_10;-1 for 1 < i < t. Then we denote the
finite-dimensional quotient algebra kQ(t)/J by A(t).

We illustrate the example Q(6) in Figure 5.1.

Let A(t) mod be the category of all finite-dimensional left A(t)
modules and by M(t) we denote the full subcategory of modules M in
A(t)-mod subject to the condition that all maps M, are injective for
1< <t—-1.
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F1GURE 5.1. The quiver Q(6)

The following key observation is due to P. Gabriel.

LEMMA 5.2. The category F(t) and the subcategory M(t) of A(t)—
mod are equivalent for each t € N.

PROOF. Let (F, f) be in F(t) and define a representation M (F, f)
of the quiver Q(t) above via the flag associated to F' as follows:

a1 at—1
Vi—Vy s Vi — W,

where the maps M, are simply the inclusions V; <— V;;; and the maps
Mgp, are the restrictions of f to Vi;;. One easily checks that M(F, f)
satisfies the conditions above, that is M (F, f) is in M(t), and that the
map (F, f) — M(F, f) defines an equivalence of categories. O

Crucial to our approach is the following fact, see [26, §6 - 7]

LEMMA 5.3. The subcategory M(t) of A(t)-mod is precisely the
category F(A) of Afiltered modules over the quasi-hereditary algebra
A(t), fort € N.

REMARK 5.4. Let ¢t € N. Then F(t) is a Krull-Schmidt category,
that is every object in F(t) has a unique decomposition into a direct
sum of indecomposable ones (up to the order of the summands). Being
closed under taking direct summands, the subcategory M(t) inherits
the Krull-Schmidt property from A(t) mod, whence so does F(t) by
Lemma 5.2.

We observe that A(t) is the Auslander algebra of the representation-
finite algebra k[z]/(a), see [26, §6 7], see also [17]. The key result for
our purpose is [26, Prop. 7.2]:

THEOREM 5.5. Lett € N. Then the representation type of M(t) is
finite precisely when t <5, it is tame for t =6, and wild if t > 7.

The first part of the statement follows from the finiteness of the
Auslander-Reiten quivers of M(t) for t <5, as exhibited in [26].
We can now state the principal result of this section:
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THEOREM 5.6. Lett € N, d € N and let V be a finite-dimensional
k—vector space so that dimV = > d;. Let P = P(d) be the standard
parabolic subgroup of GL(V') associated to d. Then the number of P—
orbits on p,, is finite if and only if t < 5.

PrOOF. Note that ((P,) =t — 1. Because of the equivalence above
(Lemma 5.2), Theorem 5.5 also holds for F(t) in place of M(t). The
finiteness statement follows from the first part of Theorem 5.5 and
Lemmas 5.1 and 5.2. Since mod P > 0 whenever ((P,) > 5, that is
when t > 6, by Proposition 4.4, the claim follows. O

REMARK. In [46, §3] representations of Q(t) with the same re-
lations but without the injectivity condition demanded for M(t) are
used to describe closures of nilpotent conjugacy classes for general lin-
ear groups.

5.1.2. The Number of P-Orbits on p,. Let Z(t) be a complete
set of representatives of isomorphism classes of indecomposable objects
in F(t). According to Lemma 5.2 and Theorem 5.5, the set Z(t) is
finite precisely when t < 5. By [; denote the j-th member of Z(¢) for
1 <j <m:=|Z(t)|. By Remark 5.4, F(t) is a Krull-Schmidt category,
thus each object in F(¢) has a unique decomposition as a direct sum of
indecomposable ones (up to the order of the summands). The number
m of isomorphism classes of indecomposable objects in M(t) for t < 5
and their dimension vectors can be determined from the Auslander-
Reiten quivers listed in [26]. There are 7, 16, and 45 such classes in
M(t) for t = 3,4, 5, respectively.

Next we present a formula for the number of orbits in all the finite
cases. The proof follows at once from the first part of Theorem 5.6,
Lemma 5.1, and the fact that F(¢) is a Krull-Schmidt category, see
Remark 5.4.

COROLLARY 5.7. Lett <5, d € N, and V is a finite-dimensional
k wvector space with dimV = Y d;,. Let P = P(d) be the standard
parabolic subgroup of GL(V') associated to d. Set m = |Z(t)|. Then the
number of P—orbits on p,, equals the number of m—tuples (a1, ... ,ay,) €
Ng* such that

(9) d=> a;dimI;.
j=1

The dimension vectors dim I; of the representatives of all inde-
composable objects in F(t), for t < 5, can be determined, from the
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Auslander-Reiten quivers in [26] or [19, §8]. Then formula (9) of Corol-
lary 5.7 can be used to explicitly compute N(d), the number of orbits
of P(d) on p,(d), for d € N, algorithmically. An implementation
based on this formula was also used to obtain the number of orbits in
the examples of the appendix.

The parabolic subgroups P,Q C GL(V) are associated provided
they admit G—conjugate Levi subgroups. Our next result shows that
in case t < 5 the number of orbits only depends on the conjugacy class
of a Levi subgroup of P = P(d) in GL(V), that is on the association
class of P, rather than on the conjugacy class of P. Let N(d) denote
the number of P-orbits on p,.

COROLLARY 5.8. LetV be a finite-dimensional k vector space, P =
P(d), and P' = P(d’) parabolic subgroups of GL(V'), where both d and
d’ are of length t <5. If P and P’ are associated, then

N(d) = N(d).

PROOF. Since P and P’ are associated, there is a permutation o
of {1,...,t} such that d' = od = (d,1,...,ds). Considering the
dimension vectors dim /; for I; in Z(¢) and ¢t < 5 (these can be worked
out directly from the dimension vectors of the AR-quivers in [26], for
instance, see the appendix of the preprint version of [32]), one observes
that the multiplicity of each ¢-tuple dim /; equals that of o dim /; for
any permutation o of {1,...,t} and any [; for ¢ < 5. The claim now
follows readily from formula (9) in Corollary 5.7. O

REMARK 5.9. In GL(V) the Richardson class of a parabolic P(d)
depends only on the partition obtained from the composition d [78,
IT §5]. Since any two associated parabolics have the same Richardson
class, for instance, [78, Prop. 11.3.7], Corollary 5.8 states that the
number of P(d)-orbits on p,(d) only depends on the Richardson class
of P(d). We emphasize that there is no known canonical bijection
between the sets of orbits for any two associated parabolic subgroups
of GL(V) in general. Although the number of orbits is the same, the
difference of these two actions is stressed, for instance, by the fact that
the closure posets may differ entirely. This feature is illustrated by a
small example in the appendix (Figures 8.5 and 8.6).

REMARK. For a parabolic subgroup P of GL(V') the map 2 +— 142
is a P—equivariant morphism from p, to P,. Thus we obtain the same
results as above for the action of P on P, instead of p,.

REMARK. The categories F(t) and M(t) can be defined for an
arbitrary field k£ and the results relating to these categories are still
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valid. In particular, Theorem 5.6 and Corollary 5.7 are valid for an
arbitrary infinite field k, see [31, 32].

Moreover, all the results above can be applied and interpreted for
finite fields as well. Let k be algebraically closed of characteristic p
and o a Frobenius endomorphism of G = GL(V). Let P = P(d) be a
parabolic subgroup of GG and suppose that ¢ < 5. Then, by Theorem 5.6
and Corollary 5.7, the number of orbits of P on p? equals the number
of orbits of P on p,. It follows from [84, 1.3.4] that the centralizer
in P of an element in p, is connected; likewise for the action of P on
P,. This connectedness property is well known for the centralizers of
unipotent elements in the ambient group G, see [78].

REMARK 5.10. Let k be a field and n € N. Suppose that the
equation 2" = p can be solved in k for every p in k. Then GL, (k) =
SL,(k) - D, where D = {diag()\,... ,\) | A € k* = k\ {0}} is a one-
dimensional central torus of GL, (k) and SL, (k) N D is finite. Since D
is central in GL,(k), it acts trivially on both p, and P,. Therefore,
in this case the statements of the results of this section also hold for
SL(V) in place of GL(V'). In general, if P is a parabolic subgroup
of GL(V) such that P acts on p, with an infinite number of orbits,
then so does SL,,(k) N P. The converse, however, does not hold. For
instance, let B be a Borel subgroup of GLy(Q). Then B has two orbits
on Lie B,,, while BNSLy(Q) admits an infinite number of orbits on the
Lie algebra of its unipotent radical, as Qf/(Q¥)? is infinite.

REMARK. Matrix representatives of all the indecomposable objects
in F(t) for t <5 can be computed explicitly using the Auslander-Reiten
quivers in [26]. For a fixed dimension vector d one can then obtain
representatives for all orbits of P = P(d) on p, by means of taking
direct sums according to formula (9) in Corollary 5.7. This corresponds
to taking direct sums of objects in F(¢), see Lemma 5.1.

5.1.3. The Tame Case. For our purpose of classifying parabolics
in classical groups of modality zero, we need more detailed information
on the tame situation of Theorem 5.5, that is the instance when ¢ = 6.

By Theorem 5.5 the module category M(6) is of tame represen-
tation type and so is F(6) by Lemma 5.2. Accordingly, a family of
non-isomorphic indecomposable objects in F(6) depends only on a sin-
gle parameter. Owing to [26, Prop. 7.2], M(6) is of tubular type. This
implies that there exist two dimension vectors in M(6), say d; and
d,, with the property that whenever M(6)(d) admits a one-parameter
family of indecomposable non-isomorphic objects, d is of the form
d = a1d; + aody for some non-negative integers a; and a,, see [66,
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§5]. In this case we simply say that d admits a one-parameter family
of indecomposable non-isomorphic objects in M(6). It turns out that
d; and dy are linearly dependent in this case [32, Prop. 4.8]. Thus
the same holds in F(6) by Lemma 5.2. This fact is significant for our
study of parabolics of modality zero in groups of type D,, see Propo-
sition 5.26.

LEMMA 5.11. Any dimension vector in F(6) which admits a non-
trivial one-parameter family of indecomposable objects is an integer
multiple of (1,1,1,1,1,1).

PROOF. See [32, Prop. 4.8]. O

This property of F(6) allows us to still determine mod P in the
tame case:

PROPOSITION 5.12. Let d € N® and let V' be a finite-dimensional
k—vector space so that dimV = > d;. Let P = P(d) be the parabolic
subgroup of GL(V') associated to d. Then

mod P = min{dy, ... ,ds}.
PROOF. See [32, Prop. 4.10]. O

Our next corollary is a direct consequence of Theorem 3.8 and
Proposition 5.12.

COROLLARY 5.13. Let t > 7, d = (dy,...,d;) € N, and V s
a finite-dimensional k vector space of dimension dimV = > d;. Let
P = P(d) be the standard parabolic subgroup of GL(V') associated to
d. Let m be the minimum of the six largest components d; of d. Then

mod P > m.

PrOOF. Let H be the standard Levi subgroup of GL(V') corre-
sponding to these six largest parts of d. Setting QQ = H N P we get,
by construction, ¢(Q,) = 5. By Theorem 3.8 and Proposition 5.12 we
conclude

mod P > mod Q = m,

as claimed. O

5.1.4. Quasi-hereditary Algebras and A—Filtered Modules.
In the following sections we address the main results from [19]. For
representation-finite algebras it was shown by G. Zwara [95] that the
geometric degeneration of modules can be characterized in terms of
dimensions of morphism spaces. The aim of [19, §4] was to obtain
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the analogous result for the category of A-filtered modules of a quasi-
hereditary algebra. Proposition 5.16 ensures that the relation defined
by comparing dimensions of spaces of homomorphisms yields a partial
order for A-filtered modules, the hom—order. We recall some defi-
nitions and relevant properties of quasi-hereditary algebras. Unless
stated otherwise we refer to [67] for proofs of the statements listed
below.

Let A be a finite-dimensional algebra over k and let E(1),... , E(?)
be a set of representatives of the isomorphism classes of simple A-—
modules. For each i we fix a projective cover P(i) of E(i) and denote
by A(i) the maximal factor module of P (i) with composition factors in
{E(1),...,E(i)}. The A(¢)’s are called the standard modules of A and
F(A) denotes the category of all A-modules M which have a filtration
M = My D --- D M, = 0 such that each factor M;_;/M; belongs to
{A(1),...,A(t)}. The algebra A is called quasi-hereditary provided
End(A(i)) = k and P(i) belongs to F(A) for each i.

Suppose from now on that A is quasi-hereditary. Then the full
subcategory F(A) of A-mod is closed under direct summands and
extensions. A module X in F(A) is called (relative) Ext-projective if
Ext (X, M) = 0 for all M € F(A); likewise for Ext-injective modules
in F(A). The indecomposable Ext-projective modules in F(A) are just
the projective A modules P(1),..., P(t), whereas the indecomposable
Ext-injective modules in F(A) are the so-called characteristic modules
T(1),...,T(t); the direct sum T := @T (i) is a tilting module, see [67].

Denote by rad the Jacobson radical of the category A-mod, see 28,
6§3.2]. An almost split sequence in F(A) is a non-split exact sequence

0-X2v 2 z_0

in A-mod with XY, Z in F(A) such that each radical morphism
v € rad(M, Z) with M € F(A) factors through 5 and each radical mor-
phism § € rad(X, M) with M € F(A) factors through .. The category
F(A) admits almost split sequences; by that we mean: if X is indecom-
posable and not Ext-injective in F(A), then there exists an almost split
sequence 0 - X — Y — Z — 0 in F(A). Moreover, Z is determined
uniquely up to isomorphism by X and is often denoted by 7, X. Con-
versely, if 7 is indecomposable and not Ext-projective in F(A), then
there exists an almost split sequence 0 - X — Y — Z — 0 in F(A);
likewise, the module X is determined by Z up to isomorphism and is
usually denoted by 7AoZ. The map 74 is called the Auslander-Reiten
translation and the sequence above is also called an Auslander-Reiten
sequence. The quiver whose vertices are the isomorphism classes of
indecomposable modules in F(A) and whose arrows are given by the
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maps in almost split sequences is called the Auslander-Reiten quiver of
the underlying module category F(A), see [1], [28], or [66].

For a finite-dimensional A module M and an indecomposable mod-
ule Z we denote the multiplicity of Z in M as a direct summand by
w(M, 7). Observe that u(M, Z) can be computed via

w(M, 7Z) = dimHom(M, 7) — dimrad(M, 7).

LEMMA 5.14. Let 0 - X — Y — Z — 0 be an almost split se-
quence in F(A) and let M be in F(A). Then we have
(1) p(M, Z) = dimHom(M, X & Z) — dim Hom(M,Y),
(2) p(M, X)=dimHom(X & Z, M) — dim Hom(Y, M).

PRrROOF. (1) From the definition of an almost split sequence we
obtain an exact sequence

0 — Hom(M, X) — Hom(M,Y) — rad(M, Z) — 0.

Thus, we get dim Hom(M, X®Z)—dim Hom(M,Y') = dim Hom(M, Z)—
dimrad(M, Z) = u(M, Z). We obtain (2) by duality. O

Up to Morita-equivalence we may assume that the algebra A is
presented in the form A = kQ/J where @ is a quiver and J is an
admissible ideal of the path algebra kQ of @ see [28, §8]. The quiver
Q = (Qo, Q1,t, h) is described by its set of vertices Qo, the set of arrows
@1 and two maps t, h : Q1 — QQy which determine tail and head of each
arrow.

An A-module M is a family M = (M;, M,)icqy.0c0,, Where each
M; is a finite-dimensional vector space and each M, : M, — My, is a
k-linear map such that M, = 0 for all £ € J, where M is defined as
follows: the element £ € J is a linear combination of paths w in kQ),
say £ = > ¢,w with ¢, € k; we set M,, = M,, o---0M,, for any path
w=aj -y and define My =" ¢, M,

For each A-module M we denote by dim M € N! the dimension
vector of M. There are several equivalent descriptions of the dimension
vector:

(dim M); = dim M; = dim Hom(P (i), M)
3

REMARK. Note that for M and N in F(A) we have dim M =
dim N precisely when dim Hom(M, T'(7)) = dim Hom(N, T'(7)) for each
i—1,... .1

fori=1,...

Now fix k-spaces M; for each 1 = 1,... ,t, set ¢; = dim M; and
e = (e1,...,e). The affine variety R(e) of A-modules with dimension
vector e consists of tuples of k-linear maps (M, : Miyy, — Mpa)acq,
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such that M¢ = 0 for all £ € J. Clearly, this variety contains represen-
tatives of all isomorphism classes of A-modules of dimension vector e.
Throughout, we identify A-modules or representations of the associ-
ated quiver of dimension vector e with points in the variety R(e).
The reductive group G(e) := [[ GL(e;) acts on R(e) by conjugation
in each vector space M; and the orbits are precisely the isomorphism
classes of e-dimensional modules. The modules in F(A) with dimen-
sion vector e form a G(e)-stable subset R(A)(e) of R(e). We
consider the restriction of the Bruhat-Chevalley order to the orbits in

R(A)(e).

REMARK 5.15. For ¢ = 1,2 let N; be in F(A)(e) and let O; be
the G(e) orbit of IV; in R(A)(e). Whenever O; < Oy in the closure
order, by abuse of notation, we simply write N; < N, and call N; a
(geometric) degeneration of Nj.

PROPOSITION 5.16. Let M and N be in F(A)(e). Then M and
N are isomorphic provided dim Hom(M, X) = dim Hom(N, X)) for all
X € F(A).

Proor. We argue by induction on e. Let Z be a non-Ext-projective

indecomposable module in F(A) with almost split sequence 0 — X —
Y - Z — 0in F(A). By Lemma 5.14 we obtain

uw(N,7Z) = dimHom(N,X & 7) — dim Hom(N,Y)
= dimHom(M, X & Z) — dimHom(M,Y) = u(M, 7).
If u(N,Z) > 0,then N =N ®Z, M = M'® Z and we apply induction
to N' and M’. On the other hand, if (N, 7) = 0 = u(M, Z) for all
non-Ext-projective modules Z in F(A), then M and N are projective
A-modules of the same dimension vector. Hence they are isomorphic,
as the dimension vectors dim P(1),... ,dim P(¢) are linearly indepen-
dent for any quasi-hereditary algebra. O

REMARK 5.17. Let M and N be in F(A)(e) such that
dim Hom(N, X) > dim Hom(M, X) for all X € F(A).
Then we write
[N] Zhom [M],

where [Y] denotes the isomorphism class of the module Y in A-mod.

Thanks to Proposition 5.16, this defines a partial order on the set
of isomorphism classes of F(A)(e), called the hom-order. If [N] >pom
[M], then, by abuse of notation, we write N >y, M, and call N a
Hom-degeneration of M.
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We say that a quasi-hereditary algebra A is A—finite provided the
category F(A) of A-filtered A-modules is of finite representation type.
The main result from [19] in this context is

THEOREM 5.18. Suppose that A is a A—finite quasi-hereditary al-

gebra.  Then for each dimension vector e the following posets coincide:
(i) the closure order on the set of G(e)-orbits on R(A)(e);

(ii) the poset opposite to the hom—order on the set of isomorphism

classes of F(A)(e).

For the long and intricate proof of Theorem 5.18 we refer the reader
to [19, §4].

5.1.5. The Bruhat-Chevalley Order on the Set of P-Orbits.
In this section we return to the setting of Section 5.1.1 and the discus-
sion of parabolic groups P in general linear groups GL(V'). The aim is
a complete combinatorial description of the Bruhat-Chevalley order on
the set of P—orbits on p,,, given this set is finite. In [31, 32] precisely
all these instances are determined.

For d € N* let e = Xd be the t-tuple defined by the partial sums
ej =y 1_,d; for 1 < j <t. We denote by F(A)(e) the subcategory
of F(A) of all modules of dimension vector e of the quasi-hereditary
algebra A(t). Observe that the collection of all A(¢)-modules in F(A)
of fired dimension vector e together with a fixed set of k—spaces V; of
dimension e;, for 1 < ¢ < ¢, is an algebraic variety. We denote this
variety by R(A)(e). It is defined as the locally closed subvariety of the
k—vector space

R(e) = P Hom(V;, Vir1) & @) Hom (V1 V)
o Bj

of all possible linear maps corresponding to the arrows o; and 3; in
the quiver Q(t) satisfying the relations fia; = 0 and S0 = a;_1 6,1
for 1 < i < t from above (closed condition) and such that the col-
lection of direct summands corresponding to the arrows «; consist of
injective linear maps (open condition). Since the injectivity of the
linear maps M, is preserved by isomorphisms, we infer that the nat-
ural action of the reductive group G(e) := [[ GL(e;) on R(e) leaves
R(A)(e) invariant. The action of an element g = (g1, ¢2,...) in G(e)
on R(A)(e) is given by base change in each of the spaces V;, that is
g- M(F, f) = ( - 7gi+1Maig;17 Tt vgiMﬁigi;ll’ T )7 where gi € GL(ez)
for each 1.

The principal result from [19] concerning the action of P on p,, is
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THEOREM 5.19. Lett € N, d € Nt and let V' be a finite-dimensional
k-vector space such that dimV = 3" d;. Let P = P(d) be the standard
parabolic subgroup of GL(V') associated to d. Set e = Xd. Suppose
that the number of P—orbits on p,, is finite. Then the following posets
coincide:

(i) the closure order on the set of P—orbits on p,;
(i) the closure order on the set of G(e)-orbits on R(A)(e);
(iii) the poset opposite to the hom order on the set of isomorphism
classes of F(A)(e).

For our setting the advantage of working with the hom-order is
due to the fact that it is given purely by discrete invariants, more
specifically, by the ordered tuples hdim X whose j-th entry consists
of dim Hom(X, [;), where I; runs through a complete set of represen-
tatives of isomorphism classes of indecomposable modules in F(A).
Consequently, once the square matrix (dim Hom(Z;, 1;)); ; is computed,
the hom-order on F(A)(e) can be computed explicitly in any finite
instance. Thus Theorem 5.19 allows us to explicitly determine the clo-
sure relation for the P—orbits on p, purely combinatorially with the
aid of this hom order. We illustrate some examples in the appendix.

Theorem 5.19 follows readily from Theorem 5.18 and our next result
(19, Thm. 1.2].

THEOREM 5.20. Lett € N, d € N, and V is a finite-dimensional
k—vector space so that dimV = > d;. Let P = P(d) be the parabolic

subgroup of GL(V') associated to d. Set e = ¥d. Then the following
posets coincide:

(i) the closure order on the set of P—orbits on p,;
(i) the closure order on the set of G(e)-orbits on R(A)(e).

PROOF. Observe that R(A)(e) and p,(d) are not isomorphic va-
rieties; p,(d) can be identified with the proper subvariety of R(A)(e)
consisting of all those representations M of Q(t) with a fized set of in-
jective maps M,,. For our purpose, however, it is enough to construct
morphisms between these varieties in both directions preserving the
orbit structure, as such morphisms do preserve orbit closures.

We fix vector spaces V; together with injections V; — V.1, where
dimV; = e;. Let P be the stabilizer in GL(V') of the flag {0} = 1 C
VicVW,C---CV,.; CV,=V. For f in p, we define a representation
M(f) == {M,,, Mg} for 1 < i <t in F(A)(e) of A(t) by setting
Mpg, := flv,,, and M,, is just the fixed injection in the flag. The map
f+ M(f) obviously defines a morphism from p,(d) to R(A)(e).
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It remains to construct a morphism in the opposite direction. For
that purpose let {M,,, My, } be a representation in F(A)(e) with vec-
tor spaces Vi,...,V; with dimV; = e;, then M,, Mg, , is an endo-
morphism of V; lying in p,(d). Both morphisms preserve orbits which
is easily deduced from the equivalences of the corresponding categories
constructed above. O

We stress that the equivalence of Theorem 5.20 is valid independent
of the representation type of F(A), that is it does not require that p,
is a finite orbit module for P, as needed for Theorem 5.19.

REMARK 5.21. In Section 5 of [19] we discuss a more conceptual
approach to degenerations of A-filtered modules of an arbitrary A-—
finite quasi-hereditary algebra. The crucial concept here is the notion
of a global minimal hom—degeneration in F(A); that is a pair of mod-
ules X and Y in F(A) of the same dimension vector without common
direct summand such that the difference hdim X —hdim Y is a standard
basis vector in Q™, where m is the number of isomorphism classes of
indecomposable modules in F(A). The main result in [19, §5] shows
that such pairs correspond bijectively to almost split sequences in the
Auslander-Reiten quiver of F(A). In that section we give a definition
of a globally minimal degeneration which applies to both, the geomet-
ric setting given by orbit closures, as well as to the combinatorial setup
of the hom order. Finally, we refer to Appendix B in [19] for a list of
the Auslander-Reiten quivers of F(t) in the significant finite instances
along with normal forms for the indecomposable modules.

5.1.6. Hasse Diagrams. For every d € N, and ¢ < 5, the data
consisting of the orbits, their dimensions, and closure relations, that is
the Hasse diagram, can be generated by machine calculations based on
formula (9) from Corollary 5.7 and the m x m-matrix

Given an m-tuple a := (ai,...,a;) such that d = ) a;dim [; as in
Corollary 5.7, let F, be the associated object in F(t), that is

Fa = Z(l]]]

Then we readily obtain the m—vector hdim F, whose j-th entry consists
of dim Hom(F,, I;) simply by matrix multiplication

hdim F, = a - D.

Comparing these m—vectors in the resulting finite set obtained from all
m~tuples a from Corollary 5.7 then allows us to determine the exact



48 5. PARABOLIC GROUPS OF MODALITY ZERO

poset structure of the hom—order. By Theorem 5.19 we then obtain
the desired poset of the closure order simply by taking the opposite of
the hom—poset. Our examples in the appendix were generated in this
fashion; see [19, §7] for additional ones.

5.2. The Classical Groups

In this section we address the principal result from [32, Thm. 1.1].
Under the assumption that char k is zero a partial classification was
obtained in [31]. Throughout, for G' of type D, we denote by 7 the
usual graph automorphism of G of order 2 as above.

THEOREM 5.22. Let G be simple classical and P C G is parabolic.
Suppose that char k is either zero or a good prime for G. Then mod P =
0 if and only if one of the following holds:

(1) £(P) <4

(ii) G is of type D,., {(P,) =5, TP # P, and the semisimple part of
Lp consists of two simple components.

The proof of Theorem 5.22 essentially consists in a reduction to
the case of general linear groups, that is to Theorem 5.6, by means of
taking fixed points of graph automorphisms.

REMARK 5.23. Since k is algebraically closed, GL(V') and SL(V)
only differ by central elements, and thus by Remark 5.10 the statements
of the previous section also hold for SL(V) in place of GL(V). If P =
P(d) is a parabolic subgroup of SL(V) with d € N*, then ¢(P,) =t—1.
Hence, Theorem 5.6 implies the desired finiteness statement of Theorem
5.22 for SL(V).

LEMMA 5.24. Let G = SL(V). Then each of the classical groups
SO(V) and Sp(V') can be realized as a fixed point subgroup of G for a
suitable semisimple automorphism © of G, that is G® equals SO(V') or
Sp(V). Moreover, each parabolic subgroup of G® can be obtained as a
fized point subgroup P® for some ©—-invariant parabolic subgroup P of
G. In case G® is SO(V) and dim V is even, P® is only determined up
to equivalence under the graph automorphism of G°.

For a proof of the assertion on G°, see [85, §11 p. 169]. The re-
maining statements concerning parabolics follow easily from the ex-
plicit description of © in [85]. Note that £(P®) < ¢(P,). In general,
this inequality may be strict.

We formulate a first consequence for the other simple classical
groups from the finiteness result for SL(V'). In case H is of type D, let
T be again the graph automorphism of H of order 2.
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COROLLARY 5.25. Let H be simple classical and QQ C H is para-
bolic. Suppose char k # 2. Then mod Q) = 0 provided

(a) H is of type B, or C, and £(Q,) < 4; or

(b) H is of type D,., and one of the following holds:
(i) £(Qu) <3, or
(ii) 4(Qy) =4, and TQ = Q.

PrROOF. Let G = SL(V) and let © be the automorphism of G as
in Lemma 5.24 such that G® equals H. Since © has order two, the
assumption on the characteristic of k ensures that © is semisimple.
Thus Corollary 3.4 applies in this instance. By Lemma 5.24 we can
obtain Q as a fixed point subgroup P® for some ©-invariant parabolic
subgroup P of G. In each of the cases considered this can be done for
a suitable P with ¢(P,) < 4. The desired result for H then follows
from Corollary 3.4 and the finiteness result for G. We illustrate a few
examples below. O

Next we address the remaining incidences of Theorem 5.22 of type
D,.

PROPOSITION 5.26. Let H be of type D,, r > 5, and Q C H 1is
parabolic. Suppose chark # 2. Then mod Q = 0 provided

(i) £(Qu) =4, and TQ # Q; or
(ii) £(Qu) =5, 7Q # Q, and the semisimple part of Lg consists of
two simple components.

PROOF. We argue as in the proof of Corollary 5.25. Let G = SL(V)
and let © be the semisimple automorphism of G' as above such that
H is equal to G®. As asserted by Lemma 5.24, we can obtain Q as
a fixed point subgroup P® for some © invariant parabolic subgroup
P of G. However, in all of these cases ¢(P,) = 5 and mod P > 0
by Proposition 4.4. Whence, Corollary 3.4 does not yield the desired
finiteness statement for P® = Q.

The parabolic subgroups P = P(d) of G that occur in this way
have the feature that d is of the form (1,a,b,b,a,1) or (a,1,b,b,1,a),
with a,b € N, depending on whether ¢(Q,,) equals 4 or 5, respectively.
Thus mod P = 1, by Proposition 5.12, and the only minimal dimension
vector admitting a one-parameter family of orbits which is a summand
of such a particular dis (1,1,1,1, 1, 1), by Lemma 5.11. This dimension
vector corresponds to the standard Borel subgroup B in SLg(k). In this
instance there is a unique one-parameter family of B—orbits on b, with



50 5. PARABOLIC GROUPS OF MODALITY ZERO

representatives of the form

where A € k and the dots represent zero entries. A conjugate one-
parameter family already appears in Zalesskii's paper [94]; see also
[20]. One readily checks that no B—conjugate of any member of this
family is invariant under dO., the differential of ©; a necessary condi-
tion for dO.-invariance is that the entries of the second main diagonal
are all equal to zero. But the 1 in position (3,4) cannot be removed
using elements from B. Embedding this family into p, by taking direct
sums gives rise to a family of P orbits on p, with the same property,
namely, that no P—conjugate of any of its members is d©.—invariant.
Consequently, the intersection of the single non-trivial one-parameter
family of P—orbits on p, with g, is empty. According to the proof of
Corollary 3.4, a P—orbit on p,, intersects q, either trivially or in a finite
union of Q—orbits. Thus, @ in turn only has a finite number of orbits
on q,. This completes the proof of the proposition. O

Finally, we do have all the ingredients to complete the

PrROOF OF THEOREM 5.22. The result follows from Proposition
4.4, Theorem 5.6 (and Remark 5.23), Corollary 5.25, and Proposition
5.26. 0

REMARK 5.27. We may also obtain the result of Corollary 5.25 for
groups of type D, from the result for groups of type B,. For, let G be
of type B, and let H be the simple regular subgroup of G whose root
system consists of the set of long roots in W. Then H is of type D,, e.g.,
see [85, §11]. Let @ be a parabolic subgroup of H as in Corollary 5.25.
There exists a parabolic subgroup P of G with ¢(P,) < 4 such that
PN H is either @) or the image of () under the graph automorphism 7
of H. The desired result for H then follows from the result for G and
Theorem 3.10.

We illustrate the procedures in the proofs of Corollary 5.25, Propo-
sition 5.26, and of Remark 5.27 by some examples in Figures 5.2 and
5.3.
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FI1GURE 5.2. Some examples of fixed point configurations

EXAMPLES 5.28. Let G and P be as in Corollary 5.25. The colored
nodes in Figure 5.2 indicate the simple roots in II(P) and likewise for
[I(H). In our first example different automorphisms lead to different
fixed point subgroups. For an explicit description of the automorphisms
in terms of matrices consult [85, §11]. The last pair of diagrams in
Figure 5.2 demonstrates the method outlined in Remark 5.27.

ExaAMPLES 5.29. Our examples in Figure 5.3 demonstrate the min-
imal rank incidences of Proposition 5.26. Suppose G, P, H = G®, and
Q = P° are as in Proposition 5.26. As before the colored nodes in-
dicate the simple roots in I1(P) and II(Q), respectively. In our first
example the class of nilpotency of @, is 4, and 5 in the second, see (3)
on page 4. The corresponding dimension vectors d of the groups P(d)
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FiGure 5.3. The significant cases from Proposition 5.26

in SLyg(k) ared = (1,2,2,2,2,1) and d = (2,1, 2,2, 1, 2), respectively.
The class of nilpotency of P, equals 5 in both events. The general cases
only differ from those shown by larger Levi components.

5.3. The Exceptional Groups

In this section we present the classification of all parabolic sub-
groups P of exceptional algebraic groups of modality zero from [37].
This was achieved by means of the GAP share package MOP referred
to in Section 3.2. Partial results for exceptional groups were obtained
in [35], [58], and [69].

THEOREM 5.30. Suppose G is of exceptional type and that chark
is either zero or a good prime for G. Let P be a parabolic subgroup of
G. Then P acts on p, with a finite number of orbits if and only if one
of the following holds:

(i) L(P,) < 4;

(ii) G is of type Eg, L(P,) =5, and P is of type A3 Ay or As;
(iii) G is of type Er, {(P,) =5, and P is of type A1 Ay.

Theorems 5.22 and 5.30 give a complete classification of parabolic
subgroups P of reductive groups with a finite number of orbits on p,,.

Proor. It follows from Proposition 4.5 that mod P > 0 provided
none of the conditions of Theorem 5.30 is satisfied.

In each of the cases of Theorem 5.30 when the Dynkin diagram
of G is simply laced the desired finiteness statements were obtained
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directly using MOP. The classification of modality zero parabolics in
G5 already follows from [20] and [58, Thm. 4.2].

Thus, only the instances of Fy remain. Let G be of type Fg and
let 7 be the graph automorphism of G of order 2. The fixed point
subgroup G7 is of type Fy. Let () be a parabolic subgroup of G”.
Then, mod @ > 0 provided ¢(Q,) > 5, by Proposition 4.5(i). In order
to show the converse it suffices to prove that mod @) = 0 provided @ is
minimal with respect to satisfying ¢(Q,) < 4, by Lemma 3.1(ii). This
leads to the three instances when @Q is of type B, Algg, or A, As, where
A; represents a subsystem of type A; consisting of short roots. Each
such @) can be realized as the 7-fixed point subgroup of a parabolic
subgroup P of G; see Figure 5.4 below. Each occurring P satisfies
((P,) < 4 and thus mod P = 0 by the finiteness result for Ez. The
desired result for £ then follows by Corollary 3.4. 0J

Figure 5.4 presents the crucial Fj cases from the proof of Theorem
5.30. As before, the solid nodes indicate the simple roots in the Levi
subgroup of P and P, respectively.

FIGURE 5.4. The crucial F} cases from Theorem 5.30

5.4. Modality for Associated Parabolic Groups

Suppose that G is reductive. The parabolic subgroups P,Q C G
are associated provided they admit G—conjugate Levi subgroups. It
is a common phenomenon that a certain construction defined for a
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conjugacy class of P only depends on the association class of P, that
is on the equivalence class of parabolics associated to P, rather than
the class of P. A typical example is the induction of unipotent classes
48], a special case of which is the fact that two associated parabolics
have the same Richardson class, see [34], or [9, Cor. 5.18].

We discuss some results concerning the modality of associated par-
abolic subgroups of GG. In Corollary 5.8 we have seen that associated
parabolics in general linear groups of modality zero do in fact have the
same number of orbits on the unipotent radical.

PrRoOPOSITION 5.31. Let G be reductive and P, () associated para-
bolic subgroups of G. Then mod P = 0 if and only if mod Q) = 0.

Proor. This follows from Theorems 5.22 and 5.30 and the classi-
fication of conjugacy classes of Levi subgroups of G from [4, Prop. 6.2,
6.3], based on E.B. Dynkin’s classification of regular subalgebras of g
(27, Thm. 5.4]. O

For general linear groups Proposition 5.31 extends to

PROPOSITION 5.32. Let P,Q be associated parabolic subgroups of
GL(V). If ¢(P,) <5, then

mod P = mod Q).

PROOF. Set ¢ = ((P,) = ((Q,). For ¢ < 4 this is evident from
Theorem 5.6. For ¢ = 5 this follows immediately from Proposition
5.12. Since the Levi subgroups of P and ) are conjugate, we see that
P = P(d) and Q@ = P(d’), where d = (dy,... ,ds) and d’ = od for
some permutation o of {1,...,6}. Thus the modality of both groups
equals min{dy, ... ,dgs} by Proposition 5.12. O

See Proposition 6.8 for some instances in exceptional groups where
mod P only depends on the association class of P.

REMARK. These results suggest that the map which assigns to a
given parabolic P its modality mod P is constant on association classes.
Moreover, several examples indicate that this map is in fact constant
on classes of parabolics sharing the same Richardson class. For general
linear groups these two equivalence relations on the set of parabolics
are identical, see Remark 5.9.
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5.5. Further Consequences

We discuss some additional consequences of the classification re-
sults, Theorems 5.22 and 5.30. Throughout this section, G is reductive.

COROLLARY 5.33. Suppose P is a non-mazximal parabolic subgroup
of G and mod P > 0. Then there exists a proper P-submodule s of p,,
such that mod(P : s) > 0.

PRroOOF. Without loss, we may suppose that GG is simple. The state-
ment of the corollary is a consequence of the inductive construction of
the cases when P is of positive modality, see [69, Thm. 3.1|, [35, Lem.
3.13], and [32, Lem. 2.3]. Thanks to Theorems 5.22 and 5.30, G and
P are as in Propositions 4.4 or 4.5. The desired statement follows in-
ductively from the method employed in the proofs of these results, see
(69, Thm. 6.3|. For, by construction, this follows for G as in Table
4.1 and P = B, by Lemma 4.1. If G and P are as in Propositions 4.4
or 4.5 and P # B, then, by induction, there exists a simple regular
subgroup H of G of type As, Bs, Cs, or Dy, such that Q = HN P
is the Borel subgroup of H. Let n be as in Table 4.1 and define s to
be the minimal P-submodule of p, containing n. By choice, we have
mod(@ : n) > 0. Thus, according to Theorem 3.8 and Remark 3.11,
we derive mod(P : s) > 0 as desired. The fact that s is proper in
pu, provided P is not maximal, does not follow a priori. This is clear
for classical groups from the proof of Proposition 4.4. For exceptional
groups it follows from inspection of the tables and the construction in
(69, §5]. O

The following Fg example from [36] illustrates that the statement of
Corollary 5.33 is false if the non-maximality condition on P is relaxed.

REMARK 5.34. Suppose G is of type Eg and P is conjugate to Py,
where J = II \ {o5}. It was shown in [69] that mod P > 0. Since
P is a maximal parabolic subgroup of GG, the various members of the
descending central series of p, are the only P—submodules of p,,. Using
the GAP package MOP it is shown in [36] that in fact mod(P : p!) = 0.
In particular, mod(P : n) = 0 for every proper P—submodule n of p,.

As a consequence, P admits a dense orbit on pff) for each i > 1.
By Richardson’s Dense Orbit Theorem [62] P also has a dense orbit
on p, itself. Consequently, every P—invariant linear subspace of p,, is a
prehomogeneous vector space for P, but nevertheless, mod P > 0.
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5.6. Some Generalizations

We close this chapter by glancing at a generalization of Theorem
5.22. In [14] all parabolic subgroups P of GL(V) with a finite number
of orbits on pg), the [-th member of the descending central series of p,,
were classified for [ > 1. This was extended to all classical groups in
[18]. Here we present the combined results [18, Thm. 1.1]:

THEOREM 5.35. Let G be classical and P C G parabolic. Suppose

that char k is either zero or a good prime for G. Then mod(P : pg)) =0

for 1 > 1 precisely if one of the following conditions holds:

(i) G is of type A, and ((P,) <5+ 2l;

ii) G is of type B, and ¢(P,) < 4+ 2I;

(iii) G is of type C, and ((P,) <5+ 2l;

(iv) G is of type D,, either ((P,) < 4+ 2l, or {(P,) =5+ 2] and
TP # P.

The method of proof of the classification of all parabolic subgroups
P of GL(V) satisfying mod(P : pg)) =0 for [ > 1 from [14] is similar
to the one of Theorem 5.6. There Briistle and Hille generalize the
machinery from Section 5.1 to this situation; in particular, this involves
extensions of results from [26] concerning the category F(A) of A-
filtered modules of a particular quasi-hereditary algebra.

The extension of these results to other classical groups, Theorem
5.35, is analogous to the one of Section 5.2 using folding techniques in
order to reduce the problem effectively to general linear groups. For
details of the discussion and a proof of Theorem 5.35 we refer to [18].



CHAPTER 6

Parabolic Groups of Higher Modality

This chapter complements our preceeding discussion and provides
some explicit results concerning parabolic groups of higher modality.

6.1. Lower Bounds for Modality

The aim of this section is to discuss lower bounds for the modality
of parabolics of classical groups. These are constructed by means of
Lemma 4.1, Theorem 3.10, and other results from Section 3.1. Through-
out this chapter, G is a connected simple algebraic group and r =
rank G. In case char k is zero parts of these results appeared in [70].

PROPOSITION 6.1. Let G be classical. Then we have
mod B > f(r)

where f € Q[t] has degree 2. Here f may be chosen as in Table 6.1,
depending on the type of G.

’

‘ Type of G ‘ f(r) ‘
A, (r? —4r)/12
B, (r*—r—2)/6
C, (r*—r—2)/6
D, | (2 —2r—5)/6

TABLE 6.1. Lower bounds for mod B

ProoFr. In view of Lemma 4.1, Proposition 6.1 follows from the
information provided in Table 6.2 below. For, let n be the minimal
B-submodule of b, containing the root spaces g, relative to the simple
roots o from column 3 of Table 6.2. By Lemma 4.1 we have mod B >
p(n). Thus it suffices to calculate the values p(n) for the chosen ideals.
It turns out that p(n) is a quadratic polynomial in 7. The computations
are omitted. For a fixed classical type we choose for f(r) the polynomial
p(n) which is minimal for that type. These yield the lower bounds in
Table 6.1. O

57
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Type of G r n p(n) ‘
A, 6n Ons T3y O, %(TQ —4r)
6n+1 0,,03,41,O5n42 %(7‘2 —4r 4 3)
6n+2 003041, O5nao %(rz —4r +4)
6n+3 0p, 03341, Osnis %(rz —4r +3)
6n+4 0,,03,42, Osnia %(7"2 —4r)
6n+5 Onti, Osn4ss Osngs (12 —4r +7)
B, 6n Ons Oan, %(TQ — )
6n+1 0,,04,41 %(T2 —)
6n+2 0,41, 04n40 %(r2 —r—2)
6n+3 O, Ounio F(r*—r)
6n+4 Opi1, 04y é(TQ —)
6n+5 Oni1,0unia tr?—r -2
C, 3n Oy O3n %(TQ — )
3n+1 0,,03,41 %(7"2 —)
3n+2 0,,03,40 %(7"2 —r—2)
D, 6n On,yOan s(r*—2r)
6n+1 0, 0441 $(r* —2r —5)
6n+2 0,,04m41 %(7“2 —2r)
6n+3 0,044 F(r* —2r —3)
6n+4 0,044 F(r* —2r—2)
6n+5 0, 0unts $(r* —2r —3)

TABLE 6.2. Lower bounds for mod B in classical groups

REMARKS. For G classical, the dimension of B, (which equals the
number of positive roots of GG) grows quadratically with the rank of G.
Thus the polynomial bounds in Proposition 6.1 are optimal in terms
of their degrees.

We extend Proposition 6.1 to parabolics:

PROPOSITION 6.2. Let G be classical and P a parabolic subgroup
of G with s = rankg P. Then we have

mod P > f(r —s),

where f € Q[t| has degree 2. Again, f may be chosen as in Table 6.1,
according to the type of G.
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PrROOF. The proof consists in an inductive procedure similar to the
one encountered in Proposition 4.4. We may assume that P is standard,
i.e., P = Pj, where J C II. The special case when J is empty is the
one from Proposition 6.1. So we may suppose that J is non-empty.
We are going to construct a sequence of simple regular subgroups G,
of G together with parabolic subgroups P; of G, for t > 1 with certain
properties. This sequence will be obtained by means of an iteration
process whose initial step is defined as follows:

Since J is non-empty, there exists a pair of simple roots which are
adjacent in the Dynkin diagram of G, where precisely one of them is
in J. We fix such a pair which is either of the form {o;, 0,41} for some
i <r,or{o, o,0,}in case G is of type D,. For the definition of GG; we
distinguish three cases:

(i) For G of type A,, B, or C, and i <r —1,0r D, and i < r — 2,

let (G; be the connected simple regular subgroup of G defined by
the set of ‘simple’ roots

I(G1) = {o1,...,0i_1,0i + Oiy1,0i42,... .0, }.

(ii) If G is of type C, and ¢ = r — 1, then let G be the connected

simple regular subgroup of G defined by
(G,y) :=={o1,... ,00 2,20, 1+ 0.}

(iii) In case G is of type D, and the chosen pair of consecutive sim-
ple roots is either {0, 2,0, 1} or {0, 2,0.} we let G; be the
connected simple regular subgroup of G given by

H<G1) = {017 ceeyOpg +0p1,0,2+ Ur}-
In each case the subgroup (G is of the same classical type as that of G
and
rank G; = rank G — 1.

Define P; := P N Gy. As, by construction, only one of the two
chosen simple roots is in J, we see that either
(10) rank G; —ranks P, = rankG —rank, P, or
(11) rank G; —ranky P, = rankG — rank, P + 1.
The latter equality only occurs in case (iii) above when {0, 1,0,} C J.
If P, is not a Borel subgroup of G, we may repeat the same procedure
now with G in place of G, etc. Iterating this process defines the
desired sequence of simple subgroups G; of rank r—t and corresponding
parabolic subgroups P, := Gy N P for t > 1. This procedure stops once

we have arrived at the standard Borel subgroup of the corresponding
simple subgroup. It follows from (10) and (11) that the length of our
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sequence of simple subgroups G, is either s or s — 1. The later case,
illustrated by an example below, occurs precisely when G is of type
D, and {0, 1,0,} C J. In the first case set H := G5 and Q = P,
while in the second we let H be the simple regular subgroup of G4_;
corresponding to the usual subsystem of type D,_; and we set Q) :=
HNP.

Observe that G;_; is the derived subgroup of a Levi subgroup of
G, for each t > 1, setting Gy := G. Thus Theorem 3.8 applies to each
consecutive pair in this sequence.

Since H is again a classical simple group, @ a Borel subgroup of H,
and rank H = r — s, using Theorem 3.8 and Proposition 6.1 we infer
by induction that

mod P > mod @ > f(r —s)
for some f € QJt| from Table 6.1 according to the type of H. O

We demonstrate the procedure in the proof of Proposition 6.2 with
two examples in Figure 6.1 below.

EXAMPLES 6.3. In our first example in Figure 6.1 the group G
is of type B; and ranks P = 3. As before the colored nodes label
the simple roots in the standard Levi subgroup of P. We indicate a
regular embedding of G3 in G. Here H = (5. This example describes
the generic situation (10), while the second one shows an instance when
(11) applies.

Among the bounds in Table 6.1 the one for type A, is minimal (for
r > 4). Thus we may formulate a uniform lower bound for mod P
independent of the type of G:

COROLLARY 6.4. Suppose G and P are as in Proposition 6.2. Then
we have

1
mod P > E((T —5)? —4(r — 9)).
From Corollary 6.4 we immediately derive

COROLLARY 6.5. Let G be classical. Suppose G admits a parabolic
subgroup P with ranky P = s and mod P = m. Then we have

rankG < 2v3m + 1+ s+ 2.

Since there is only a finite number of isomorphism classes of excep-
tional algebraic groups, we readily conclude a finiteness result due to
V.L. Popov [57, §2].
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FiGURE 6.1. Illustrating the proof of Proposition 6.2

COROLLARY 6.6. There is only a finite number of simple algebraic
groups (up to isomorphism) admitting parabolic subgroups with fized
semisimple rank and prescribed modality.

As in the case of Borel subgroups, the degree of the lower bound
f(r — s) in Proposition 6.2 is optimal, since dim P, is a quadratic
polynomial in 7 for fixed s.

6.2. Some Explicit Examples

It follows from work in [35, 36| that for G of type A, for r < 10,
B, for r < 6, or D,, C, for r < 7, the bounds given in Table 6.2 are
also upper bounds for mod B. Thus we have mod B = p(n) in these
instances. We list these cases in Table 6.3 below together with the
ideals n from Table 6.2. For G of type A,, for r < 7, Bs, By, and
(3, the modality of Borel subgroups can also be determined from the
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information in Table 1 in [20]. The upper bounds for mod B were
computed by MOP or its precursor, cf. [35].

Type of G n dimn mod B

As 01,03,05 13 1
Ag 01,03,05 18 1
Ay 01,04,07 22 2
Ag 01,04,07 29 3
Ag 01,04,08 35 4
Aqp 01,05,09 42 5
Bs 09 7 1
B, 01,03 14 2
Bs 01,04 21 3
Bg 01,04 29 5
Cs 01,03 8 1
Cy 01,04 13 2
Cs 01,05 19 3
Cs 09,06 29 5
Cr 09,07 38 7
Dy 09 9 1
Ds o 15 p
Dg 01,04 25 4
D~ 01,05 34 5

TABLE 6.3. Modality of B for classical G

Typeof G n dimn modB
Go o1 5 1
Fy oy 20 4
Es oy 29 5
Er o5 90 > 10
Ey oy 92 > 20

TABLE 6.4. Modality of B for exceptional G
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We emphasize that even in type A, it is not known whether mod B
is in fact a polynomial in r as suggested by the information in Table
6.2.

REMARK 6.7. The modality of a Borel subgroup of a simple group
G of small rank is given as in Tables 6.3 and 6.4. The fact that the
lower bounds u(n) are also upper bounds can be checked directly with
MOP or follow from earlier work in [35]. In these tables we record
those roots o such that n is the minimal B—invariant submodule of b,
containing the root spaces g,. For E; and Eg the modality of B is not
known; we only have lower bounds, as shown.

Next we give some examples where MOP is used to calculate the
modality of parabolic groups P(# B) in some exceptional groups.

PROPOSITION 6.8. Let GG be simple and P C G parabolic. Suppose
char k is not a bad prime for G. Then mod P = 1 provided one of
(i) G is of type Eg and P is of type A Ay, or A2;
(ii) G is of type Er and P is of type Ay or Dy.

PRrRoOOF. The fact that mod P > 1 in each of the instances shown
follows from Proposition 4.5. MOP can be employed directly to show
that mod P <1 in each case. O

REMARK 6.9. It follows from Proposition 6.8 and [4, Prop. 6.2, 6.3]
that any two associated parabolic subgroups of G as in the statement
of Proposition 6.8 have the same modality.

Further explicit modality computations in Fg obtained with the
aid of MOP and more instances of associated parabolic subgroups with
matching higher modality can be found in [36, Table 1].
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CHAPTER 7

Abelian Ideals

Throughout this chapter, G denotes a (connected) reductive com-
plex algebraic group with Lie algebra LieG = g. Let B be a Borel
subgroup of G. The group B acts on any ideal of Lie B = b by means
of the adjoint representation. In this chapter we present the results
from [56] where we study the relationship between spherical nilpotent
orbits and abelian ideals a of b, using the structure theory for these
orbits from [55]. Our chief result is that, for an abelian ideal a of b,
any nilpotent orbit meeting a is a spherical G—variety, see Theorem 7.3.

As a consequence of this we obtain a short conceptual proof of
a finiteness theorem from [72, Thm. 1.1]. Namely, for a parabolic
subgroup P of G and an abelian ideal a of p in the nilpotent radical
P, the group P operates on a with finitely many orbits. The proof of
this fact in [72] involved long and tedious case by case considerations.

In Proposition 7.7 we also prove a partial converse to the result
just mentioned. We say that an ideal of b is ad—nilpotent whenever
it consists of nilpotent elements. In case G is simply laced, we show
that an ad—nilpotent ideal ¢ of b is abelian provided any nilpotent orbit
meeting ¢ is spherical.

Let g = @ g(i) be a Z-grading of g. The largest integer n so that
g(n) # {0} is called the height of the grading. In this context write
V(i) instead of W(g(i)) for each i € Z. It is well-known that g(0) is
reductive, e.g., see [93]. By W (0) we denote the Weyl group of g(0).

A grading is said to be standard if @,_,g(i) is contained in b,.
Any choice of a standard parabolic subgroup P of G canonically de-
fines a standard Z—grading of g as follows. Let P = LP, be the Levi
decomposition of P with standard Levi subgroup L. Let II(L) be the
set of simple roots of L. Define the function d : ¥ — Z by setting
d(o):=0ifoisin II(L) and d(o) := 1 if o is in IT\ II(L), and extend
d linearly to all of ¥. Then for i # 0 we define g(i) := & g, and

d(a)=t
g(0) :=t® € go. Thus we have g = P, g(i) and moreover, [ = g(0),
d(a)=0

p=EDa(i). and p, = P g(i). Clearly, d(o) = >_,cri(r) N0 is the height
i>0 i>0
of this grading.

65
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7.1. Abelian Ideals and Spherical Orbits

A nilpotent orbit (conjugacy class) O in g is said to be spherical
whenever it is a spherical G—variety, that is B acts on it with an open
orbit. Thus, by a fundamental theorem, due to M. Brion [12] and
E.B. Vinberg [91] independently, B acts on O with a finite number of
orbits. Since O is quasi-affine, it is spherical if and only if the algebra
of polynomial functions C[QO] is a multiplicity free G-module [92]. The
following characterization of spherical nilpotent orbits can be found in
153, §3.1] and [55, Thm. 3.2].

THEOREM 7.1. Let O be a nilpotent orbit in g. The following state-
ments are equivalent:
(i) O is spherical;
(ii) (adz)* =0 for every z € O;
(iii) O contains a representative of the form e,, + -+ + €q4,, where
{ai,...,a¢} C1I is a set of mutually orthogonal simple roots.

It is not hard to prove that the number ¢ in Theorem 7.1(iii) does
not depend on the choice of a representative for O. Also, the number
of long and short roots among the q;’s is an invariant of the orbit. This
property means that a minimal Levi subalgebra of g meeting O is the
sum of t copies of sly. This subalgebra is unique up to conjugation. If
{ai,...,a;} consists of s short and [ long roots, then we say that O
is of type sA; + LA;. This notation is consistent with the one used for
denoting nilpotent orbits in the exceptional Lie algebras [24, 27].

The equivalence between parts (i) and (ii) of Theorem 7.1 is proved
in [53, §3.1]. There it is shown a priori that whenever (ad x)* = 0, then
O is spherical and also when (ad x)* # 0, then O is not spherical. Case
by case considerations are only required to show that O is spherical if
(adx)* =0 and (adx)3 # 0 for every z € O.

Making use of Theorem 7.1, we set up a direct link between the
abelian ideals in b and spherical nilpotent orbits. It is easy to show that
any abelian ideal a C b contains no semisimple elements, that is a C b,,.

Therefore, such an a is completely determined by the corresponding
subset ¥(a) of V.

PROPOSITION 7.2. Let a be an abelian ideal of b and let p; € V(a)
foriv=1,...,4. Define the operator T : g — g by T := H?Zl adey,.
Then T = 0.

PROOF. Since a is abelian, T does not depend on the ordering of
the p;’s.

1. We first show that T annihilates the lowest weight space of g,
ie,Te_,=0.
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Assume this is not the case. Then [e,,,e_,] # 0 and hence (4;,0) >
0 for each i (since p is long). More precisely, (u;, 0¥) = 2 in case
pi = o and otherwise (;,0Y) = 1. Since Te_, € g pipy+tpy and
(—o+p1+- -+ g, 0Y) < 2, the only possibility is that (u;, 0¥) = 1 for
eacht=1,...,4 and therefore we have —p+ p; + - - -+ g = p; that is,

(12) 20 = pi + -+ + s

Observe also that adeyade,;(e_,) # 0 for i # j and, since p; + pu; is
not a root, we have o — p; — p; € . It follows from (12) that

D> (o= pmi—py) =60 —3(m + -+ pg) = 0.
1<i<j<4
Therefore, the set {0 — p; — p1;}:,; contains a positive root. Without
loss, we may suppose that o — 3 — s € . Then o — puy; = (0 — p1 —
Wo) + po € ¥(a), since a is an ideal in b. Thus both, p; and ¢ — p are
in W(a) contradicting the fact that a is abelian. Consequently, we have
Te_, =0, as claimed.

2. Here we show that Ye, = 0 for all remaining v € ¥ U {0}.
(If v = 0, then e, stands for an arbitrary element in t.) We argue
by induction on the sum of the coefficients of the simple roots of the
difference v — (—0) = >, koo (0 € 1I), i.e., on > _k,. The case when
this sum is zero is just the one studied in part 1 above. Suppose that
ey = |es, x|, where o € II and either = e, for some 7' € ¥ (such an
equality exists provided v # —p), or, in the case v = o is simple, we
may choose a suitable element x € t that satisfies this relation. By T;
we denote the operator corresponding to the quadruple of roots where
w; is replaced by p; +o. (If p; +0 € U, then T; = 0.) One checks that

4
Te,=le,, Ta]+ ZTil’.
i=1
By induction assumption for the operators T and Y;, we have T x = 0
and T,z = 0. Thus Te, =0, as desired. O

THEOREM 7.3. Ifa is an abelian ideal in b, then any G-orbit meet-
ing a is spherical and G - a is the closure of a spherical nilpotent orbit.

PRrOOF. If z = > e, € a, then (adz)* is the sum of operators
of the form described in Proposition 7.2. Therefore, (adx)* = 0, and
thus G- x is spherical, by Theorem 7.1. Because G - a is irreducible and
the number of nilpotent orbits is finite, GG - a is the closure of a single
nilpotent orbit. O

COROLLARY 7.4. Let a be an abelian ideal in b. Then B has finitely
many orbits in a.
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PROOF. The desired finiteness follows readily from Theorem 7.3
and the finiteness property for spherical varieties. O

We obtain [72, Thm. 1.1] as an immediate consequence of Corollary
7.4:

COROLLARY 7.5. Let P be a parabolic subgroup of G and let a be
an abelian ideal of p in p,. Then P acts on a with finitely many orbits.

Proor. Observe that a C p, C b, is also an ideal of b. Thus, by
Corollary 7.4, B acts on a with a finite number of orbits and thus, so
does P. O

REMARKS 7.6. The particular case when a is in the center of p,
is well-known. Then the action factors through a Levi subgroup of
P. Here the finiteness follows from a result of E.B. Vinberg [90, §2]
(see also V.G. Kac [39] or R.W. Richardson [63, §3]). For a detailed
account of the orbit structure in this situation, see [51] or [65, §2, §5].

Observe that for abelian P—invariant sub-factors in p,, the analo-
gous statement of Corollary 7.5 is false in general. Indeed, this fact is
the basis for constructing entire families of parabolic subgroups which
admit an infinite number of orbits on p,, see Chapter 4. Examples in
this context also show that a parabolic subgroup may have an infinite
number of orbits on ideals in p, of nilpotency class two.

Corollary 7.5 was first proved in [72] in a long case by case analysis.
More specifically, it was shown in [72] that for A a closed normal
unipotent subgroup of P the number of P—orbits on A is finite provided
A is abelian; the proof in [72] is valid in arbitrary characteristic.

ExaMPLE. Abelian ideals of b are readily constructed by means of
gradings. Let g = @ g(i) be a standard Z-grading of g of height d.
Define m := [d/2]+1 and set a :== @, g(¢). Then a is an abelian ideal
of b. Obviously, m is the least possible value ensuring that €, (i)
is abelian. Therefore, any nilpotent orbit in g meeting a is spherical.
In the context of gradings this can be derived by a shorter argument
than the one used in the proof of Proposition 7.2. For, let x be in a.
As the components of x have degree at least m, we have

(adz)'a(j) € € 8(i) = {0}
i>j+4m
for each j € Z. Consequently, (adz)* = 0 on all of g.
We close this section with a partial converse to Theorem 7.3.

PROPOSITION 7.7. Suppose G is simply laced. Let ¢ be an ad—
nilpotent ideal of b such that any nilpotent orbit meeting ¢ is spherical.
Then ¢ is abelian.
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PROOF. Suppose ¢ is not abelian. Then there exist «a, 5,7 € ¥(¢)
so that [e,,eg] = e,. By the assumption on G, the roots a and
span a subsystem of ¥ of type As. Let H be the corresponding sim-
ple subgroup of G of type A;. Then z := e, + e is regular nilpotent
in h. By direct matrix calculation, one obtains (adsz)* # 0. Conse-
quently, (adz)* # 0 on all of g. It follows from Theorem 7.1 that the
corresponding nilpotent orbit in g is not spherical, a contradiction. [

REMARK. It is worth noting that Proposition 7.7 is false if G has
two root lengths. For instance, let G be of type C,. (r > 2) and let P
be the stabilizer of the 1-dimensional space g,. Then P is parabolic
and p, is the Heisenberg Lie algebra of dimension 2r — 1, which is not
abelian. We have, however, (adx)* = 0 for all x € p,.

7.2. Maximal Abelian Ideals

Throughout this section suppose that G is simple. We recall the
classification of the maximal abelian ideals of b from [72] and record
it in Tables 7.1 and 7.2 below.

THEOREM 7.8. Fvery mazimal abelian ideal of Lie B = b is listed
in Tables 7.1 and 7.2.

The fact that each ideal a listed in these tables is abelian follows
from the observation that the sum of any two roots in ¥(a) is not a
root, because it exceeds g in some coefficient. The fact that each of
these ideals is maximal among the abelian ones and that this list is
complete consists of a detailed case by case analysis.

The proof of Theorem 7.8 from [72], involving case by case consid-
erations, is rather unsatisfactory. It would be very desirable to have a
uniform proof of this result.

REMARKS. We are going to explain the various pieces of notation
in Tables 7.1 and 7.2 associated to each maximal abelian ideal a of
b. In the second column we specify the set of generating roots I', for
a, that is I'y is the minimal set of roots a such that a is the smallest
b-submodule of b, containing the root spaces g,. The simple roots
o; are labeled as in [11]. We abbreviate some roots as follows: in
type B, set B; =01+ ---+ 0; and vy; = 0,1 + 20; + - - - + 20,, where
2 < ¢ < r. Similarly, for type D, we define §; = o1 + --- + 0; and
Vi = 0i1+ 20+ + 20,9+ 0,1 +0, for 3 < i < r—2 also
ﬁ = ﬁr—? +0r—1, Y = ﬁr—? + oy, and 0 = Op—2 + Op—1 + Op.
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| G| I, | P dima (d.| 0.
A, o (1<i<r) o; i(r—i+1) | 1 g
B, o1 o1 2r—11] 1 01

B,y (3<i<r) o1,0; | (4r+i2=5i4+2)/2 | 3 | 0,1
C, o, o, (r*+r)/2| 1 o,
D, o1 o1 2r—21| 1 o1
Or1/0y Or_1/0 (r’=r)/2| 1 | o,_1/0,
Bi,vi (3<i<r=2) 01,0; (4r—5i+4%)/2 | 3 | 0i1
B,7,0 | 01,0,_1,0, (r*=3r+6)/2| 3 | 0,9

TABLE 7.1. The maximal abelian ideals of b for classical g

The normalizer of a in GG is a parabolic subgroup of G, since it
contains B. In the third column of the tables we indicate the standard
Levi subgroup L, of P, := Ng(a) by listing the complementary simple
roots 11\ II(L,).

In the next two columns we list dim a and d, := d(p), the height of
the grading afforded by P,, respectively.

It follows from Theorem 7.8 that the number of maximal abelian
ideals of b equals the number of long simple roots of G. In Theorem
7.10 we define a canonical bijection between these two sets. The simple
root o, corresponding to a under this bijection is indicated in column
6 of the tables.

Since a is an irreducible subvariety of b,, there exists a unique
nilpotent orbit O, such that O, N a is dense in a. In the last column
of Table 7.2 we present the label of O, following the labeling of the
nilpotent classes according to E.B. Dynkin [27], see also [24].

Using the description of P, furnished in the third column in Tables
7.1 and 7.2, the height d, = d(p) of the grading afforded by P, is
readily determined. Note that d, is always odd and for m = [d4/2] + 1
we have a = €,.,, 8(7). According to Theorem 7.3, the orbit O, is

always spherical. If the label of O, is sA; + [Ay, then the sum s+ [
is the number ¢ from Theorem 7.1(iii). It is also possible to determine
the labeling of the weighted Dynkin diagram defining Q.

By Theorem 7.8, the number of maximal abelian ideals equals the
number of long simple roots of g. This numerical coincidence suggests
that there should exist a canonical one-to-one correspondence between
these two sets. We show that this correspondence can be obtained in
an axiomatic way. It is presented in column 6 of Tables 7.1 and 7.2.
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|G| Iy |~ |dima|d.| o | O

Es 01/06 o1/o¢ | 16 1 |o1/06 2A,

01210 oy | 11 3 09 3A;

11110, 01221 01,05 | 13 3 03 3A,

01111, 12210 03,06 | 13 3 o5 3A;

11111, 01211, 11210 | 071, 04, O 12 ) oy 3A;

E, o7 o7 | 27 |1 o7 [BA;]"
122100 og| 17 | 3| oy [BA;]

012210 o5 20 | 3| oo [BA,)

001111, 123210 09,07 | 22 3 O 4A,

012221, 122110 03,06 18 |5 03 [BA1]

012111, 123210 04,07 | 20 ) 05 4A,

012211, 122210, 122111 | 03, 05, 07 19 7 04 4A,

Eq 0122221 or| 29 |3 oy 3A;

1232100 og | 36 3 o1 4A,

1233210 o5 | 34 5 09 4A,

11%2221, 2342;3210 01,07 30 5 o7 4A;

1222221, 1343210 o3, 07| 31 7 O 4A,

1233321, 1232210 09,0¢ | 34 7 O3 4A,

1232221, 1243210 oy,07 | 32 9 o5 4 A4

1233221, 1282221, 1238210 | O3, 05, 07 33 |11 | o4 4A,
F 1220 ool 8 3| o |A+ A
1221,0122 |  o9,04| 9 | 5| oo |A+ A4

Go 21 o1 3 3 o A

TABLE 7.2. The maximal abelian ideals for exceptional g

Let A := A(g) be the Dynkin diagram of g. We identify the nodes
of A with the simple roots II of g and write A? for the Dynkin diagram
which is obtained from A by removing o € II together with the edges
linked to it. By m9(A?) we denote the set of connected components of
A7 and by A7 = |J,A? for ¢ € my(A?) the decomposition of A7 into
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its components. We write U7 for the root system corresponding to A?
and o7 for the highest (long) root in W7 for each c¢. Observe that if we
consider the standard grading of g corresponding to o € II, then, using
the previous notation, we have W(0) = L. 07.

Let II, denote the set of long simple roots and A,,.. the set of all
maximal abelian ideals in b. Associated with any a € A, We have
the following data: the set of generators I'y C W™ and the height d,
of the grading determined by P, = Ng(a). The following observation
giving a more precise form for the equality #II, = #A,,.. is indicative
for our construction. Recall the decomposition of o as the sum of
simple roots ¢ = Y n,0 from above. The number of times a fixed
integer occurs as the value for d,, as a varies over A,,.., equals the
number of times it occurs as the expression 2n, — 1, as o runs through
IT,. Therefore, it is just to require that the sought after bijection

¢ : HE — Amawa 0= Zb(U) =.dg,

does satisfy the condition d,, = 2n, — 1 for each o € I1,.

Ideally, starting with a long simple root, an explicit a prior: proce-
dure should yield the corresponding maximal abelian ideal. Indeed, we
are able to state such a construction when n, < 2. It is worth noting
that this is sufficient to cover all classical instances.

The case when n, = 1 is straightforward. Here the simple root o
(which is always long) determines a grading g = g(—1) @ g(0) @ g(1),
and we merely set a, = g(1). It is easily seen that g(1) is a maximal
abelian ideal. Notice that in this case a, is the nilpotent radical of the
parabolic subalgebra corresponding to o and I'y, = {c}.

The case n, = 2 is the subject of the following theorem.

THEOREM 7.9. Let o € 11, such that n, = 2. Let g = @.__, ¢(4)
be the corresponding Z-grading. Let e, be a highest weight vector in
the g(0) module g(1). Then we have

(i) a5 := [e,, 8(0)] @ g(2) is an abelian ideal in b;
(ii) Fa, = {7 — 07 [ c € (A7)} in particular, 1o, = ##mo(A7);
(iii) a, is mazimal and d,, = 3.

PROOF. (i) Notice that o and  are the lowest and highest weight in
the g(0)—module g(1), respectively. It follows that « is W (0)—conjugate
to o and therefore ~ is long.

It is easily seen that a, is an ideal of b in b,. Set V = [e,, g(0)].
Clearly, a, is abelian if and only if [V, V]| = {0}; that is, if uy, ps €
U(V), then puy + po is not a root. By the definition of V', we have



7.2. MAXIMAL ABELIAN IDEALS 73

w; =y — B; for some G; € ¥(0)" U{0}, i = 1,2. We distinguish various
possibilities for 8; and (.

(a) ﬁl 7& 0, ﬁQ =0:
Since v is long and v # 1, we have (v, v) > (v, 81). Therefore, (v,v —
B1) > 0 and hence v+ (y — (1) € V.

(b) B # 0, B2 # 0
Since 7 is long, the condition v — ; € ¥ means that (v, 3;) > 0 and
then (v, ;) = %(7,7), 1 = 1,2. Therefore, we have

(*) (v =B, B2) = %(%7) — (B1, B2) > 0, since By # Bs, and

() (v = Br,y = Ba2) = (B1, Ba).
(b1) At least one of (1 and (s, say (s, is long.

Then y—f, is long as well. Since y—3; € ¥(1) and B2 € ¥(0)*, we have
v — By # (B2 and hence (v — By, B2) < (B2, B2) = (7,7)- It then follows
from the equality in (x) that (51, 32) > —%( ,7v) and, consequently,
(B1,B2) > 0. Now using (), we obtain (y — 1) + (v — B2) € ¥, since
v — B is long.

(bg) Both 3y and (3, are short.

Then [(81, B2)| < 3(B81,61) < 3(7,7) and (x) shows that (y — 5y, 82) >
0. Therefore, v — By — B2 is a root in W(1). Since 7 is long and
(v, 8:) = %(’y, 7v) for i = 1,2, we conclude that (v — 8; — fBa,7v) = 0 and
therefore, (y — 51 — B2) + 7 € V.

(ii) Using the notation of part (i), we have ¥(a,) = ¥(V) U ¥(2).
First we show that none of the generators in I'y, lies in W(2). For
this end, it suffices to show that the lowest weight § in W(2), is not a
generator. (Recall that g(2) is an irreducible g(0)—module and therefore
d is uniquely determined in W(2).) Since § — o is a root (in ¥(1)), it is
enough to show that it lies in W(V'). Because 7 is the highest weight
in ¥(1), we see that v + o is a root, and hence (v,0) < 0. Since ¥(3)
is empty, v+ d is not a root. Thus, (y,0) > 0 and then (y,0 — o) > 0.
This implies that v — (6 — o) is a root lying in ¥(0)*. By the very
construction of V', this means § — o € W(V), as desired.

Now we consider the elements of W(V'). Let w, be the longest
element in W (0). Then wy(g?7) = —oZ for each ¢ € (A7) and wy(o) =
7. Since o7 is the highest root in W7 (but not in W), we have g7 +o0 € V.
Hence wy (07 +0) = v— o7 is also a root. According to the construction
of part (i), the corresponding root space lies in a,. Moreover, since
{07}, are clearly the maximal possible elements of ¥(0)* that can
be subtracted from =, i.e., that {y — 07}, are the elements of W(V)
of minimal height, we obtain {y — 07}, C I'y,. On the other hand,
suppose ¥ — p € ¥(V), where p € ¥(0)* \ {07}.. Then p € W7 for
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some ¢ € (A7) and hence g7 — u is a sum of positive roots from W
and so is (y — p) — (v — 07) = 07 — p. Therefore, v — p & T, .

(iii) Using the information in Tables 7.1 and 7.2 this is readily
verified. O

REMARK. Utilizing Proposition 7.9, we can describe the map v in
all classical cases.

In the following theorem we axiomatize the properties of this map-
ping. Whenever p is fundamental (this refers to all simple Lie algebras
except for those of type A, and C,) there is a unique simple root o*
such that (o,0%) # 0, see [11]. Observe that ¢* is always long.

THEOREM 7.10. There is a unique bijection ¢ : 1, — Aoz
(a, := (o)) satisfying the following conditions:
do, = 2n, — 1.
Ifn, =1, then Ty, = {c}.
If ny, = 2, then a, is defined as in Proposition 7.9.
#1o, = #mo(A7) provided g is not of type A,.
Suppose o is fundamental. Then for any sequence (o*, a,f3,...)
of simple roots, adjacent in A (and mutually distinct), we have
dima,~ < dima, < dimag < ....

Uk W=

PRrROOF. The proof consists of a case by case argument. One only
needs to exploit the second and fifth columns in Tables 7.1 and 7.2.
The resulting correspondence is presented in Figures 7.1 and 7.2 where
we label each node ¢ € II, with dim a, . [

Observe that conditions 4 and 5 of Theorem 7.10 follow from the
first three for B,, D,, Eg, and F}. In fact, condition 5 is required only
to construct ¢ for E7 and Eg.

In the diagrams in Figures 7.1 and 7.2 the marked node indicates
the one corresponding to the simple root o*. Because there is a unique
long simple root in C,. and G5, these cases are omitted.

REMARKS. We close this chapter by referring to some recent work
of B. Kostant [43, 44|, extending earlier results from [42], where the
family of all abelian ideals a of the Borel subalgebra b of a simple
complex Lie algebra g plays an important role. Motivated by Mal’cev’s
work [50], Kostant constructs inequivalent irreducible G—submodules
in the exterior algebra Ag of g, one for each abelian ideal a of b in
[42], where LieG = g. In his recent summary [43], Kostant gives an
account of D. Peterson’s theorem that the number of abelian ideals
in b equals 2", where 7 = rankg. See also [56, §3|, where we give a
natural bijection between the set of all abelian ideals of b and the set
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FiGURE 7.2. The function ¢ — dim a, for exceptional g
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of standard parabolic subgroups of GG in case G is of type A, or C..
This bijection is afforded by the canonical map a — P, which assigns
to each abelian ideal a of b its normalizer P,. This in particular implies
Peterson’s theorem in these instances. However, observe that this map
fails to be a bijection in all other instances, cf. [56, §3].



CHAPTER 8

Appendix: Some Examples of Hasse Diagrams

In this section we present several examples of Hasse diagrams of
the Bruhat-Chevalley order of the action of P on p, in general linear
groups in some finite cases studied above, see [19]. Each individual
poset was computed by the method outlined in 5.1.6.

In each of the figures below the vertices indicate the orbits, the
labels give their dimensions, and the edges represent the minimal de-
generations in the sense of Remark 5.21.

The Hasse diagrams associated to the closure posets of the actions
of the Borel subgroup B on b, in the finite instances were determined
first by V.V. Kashin [41], see Theorem 4.2. We present these in our
first three examples; the underlying groups are GL3(k), GL4(k), and
GLs(k); there are 5, 16, and 61 orbits, respectively (Figures 8.1 - 8.3).
In Figure 8.4 we show the poset of the action of the parabolic subgroup
P(d) in GLjp(k) on p,(d), where d = (1,2,3,4). There are 151 orbits.

In Figures 8.5 and 8.6 we demonstrate an instance of the phenom-
enon described in Remark 5.9. There we consider two associated,
but non-conjugate parabolic subgroups P(d) in GLs(k). While for
d = (2,1,2), the poset is rank unimodal, its counterpart for the per-
muted tuple d = (2,2, 1) is not even ranked. This example illustrates
that, although the number of orbits in both cases is the same, see
Corollary 5.7, the corresponding posets are rather different.

7
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3
2
0

FIGURE 8.1. The poset of the B-orbits on b, in GL3(k)

FIGURE 8.2. The poset of the B-orbits on b, in GLy(k)
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FIGURE 8.3. The poset of the B-orbits on b, in GLs(k)
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FIGURE 8.5. The Bruhat-Chevalley poset of the P(d)
orbits on p,(d) in GLs(k), where d = (2,1, 2)

-8

F1GURE 8.6. The Bruhat-Chevalley poset of the P(d)-
orbits on p,(d) in GL5(k), where d = (2,2,1)
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