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0. INTRODUCTION

This manuscript considers classical Foxby equivalence for local, com-
mutative, noetherian rings (see [2]), and generalizes it to an equivalence
theory for derived categories over Differential Graded Algebras. It shows
that both classical Foxby equivalence, and the Morita theory for com-
plete modules and torsion modules developed by Dwyer and Greenlees
in [7] arise as special cases. It also shows that a new instance of our
theory which one can reasonably call “Matlis equivalence” gives a new
characterization of Gorenstein rings.

(0.1) Classical Foxby equivalence. The dualizing complex over a com-
mutative, local, noetherian ring R is a classical object in commutative
algebra and algebraic geometry. If D is such a complex, then the functor
RHompg(—, D) is a contravariant equivalence between suitable derived
categories. See [5, sec. A8| for the basics of this.

However, there is a less standard application of D, described by Avramov
and Foxby in [2]: Consider the adjoint pair of functors

L
_®RD

D(R) D(R). (0.1.1)

RHompg(D,—)

They induce quasi-inverse equivalences of full subcategories

L
—®rD

Ap Bp, (0.1.2)

RHompg(D,—)

where Ap and Bp are the so-called Auslander and Bass classes of R.
An important feature of Ap and Bp is that Ap contains all bounded
complexes of flat modules, while Bp contains all bounded complexes of
injective modules. This construction is known as Forby equivalence [5],
[6], [8], [17]. It generalizes Sharp’s results from [16] which are restricted
to the Cohen-Macaulay situation.
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Although it is not stated explicitly in [2], Ap and Bp are defined in

terms of unit and counit, 7 and €, of the adjoint pair (— é{)R D,RHomg(D, —)):
The complex X is in Ap if nx is an isomorphism, and the complex Y is

in Bp if ey is an isomorphism. ([2] adds some boundedness conditions to
this, but the theory works without them.)

This theory has important applications to the theory of Gorenstein
rings. E.g., see [5], [8], and [17]’s treatment of Gorenstein projective
dimension, and [2] and [9]’s treatment of local ring homomorphisms of
finite Gorenstein dimension. It has also been extended to semi-dualizing
complexes in [6].

(0.2) Dwyer and Greenlees’ Morita theory. This theory deals with
complete modules and torsion modules, and is described in the preprint
[7]. It generalizes Rickard’s Morita theory from [15]. The setup is
this: R is a ring, and A is a perfect complex of R-left-modules (i.e. a
bounded complex of finitely generated projective R-left-modules). Dwyer
and Greenlees construct the endomorphism Differential Graded Algebra,
& = Hompg(A, A), and note that A aquires an E-left-structure, hence be-
comes a Differential Graded R-left-E-left-module. (For a few words about
the theory of Differential Graded Algebras, and Differential Graded mod-
ules over them, see (0.4).) Then they consider the adjoint pair of functors

L
—®cA

D(£°PP) D(R), (0.2.1)

RHompg(A,—)

where E°PP is the opposite algebra of £, so D(E°PP) is the derived category
of Differential Graded £-right-modules. They now prove that the adjoint
pair induces quasi-inverse equivalences of full subcategories

L
-®eA

D(&£e°Pp) Asors, (0.2.2)

RHompg(A,—)

where Ay is a certain full subcategory of D(R) consisting of what Dwyer
and Greenlees call torsion complexes. (This is only the left half of the
diagram from [7, thm. 2.1], but the right half, which deals with complete
complexes, can be understood similarly.)

Just as above, the full subcategories in the second diagram can be
characterized by the unit and the counit of the adjunction being isomor-
phisms.

(0.3) This paper. Note the typograpical resemblance between diagrams
(0.1.1) and (0.2.1) and between diagrams (0.1.2) and (0.2.2). In both
L

instances one considers an adjoint pair of functors of the form (— ®
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M,RHom(M, —)), and in both instances one obtains induced equiva-
lences of full subcategories.

This observation led us to the main construction of this manuscript:
We let R and S be Differential Graded Algebras and let M be a Dif-
ferential Graded R-left-S-left-module, and consider the adjoint pair of
functors

L
_®RM

D(RPP) D(S). (0.3.1)

-
RHOms(M,f)

Defining full subcategories Ay, and By, in terms of unit and counit being
isomorphisms, these restrict to quasi-inverse equivalences of categories

L
—®rM

A Bas.

RHomg(M,—)

Our first main remark is that this construction can be specialized to both
classical Foxby equivalence (see (1.6)), and Dwyer and Greenlees’ theory
(see (1.7)).

But more is true: We can also prove general results about the size of
the classes Ay, and By, by using so-called evaluation morphisms from the
theory of Differential Graded modules (see section 3). Moreover, it turns
out that other instances of our construction than the ones considered
by Foxby and Dwyer and Greenlees are interesting for ring theory (see
(1.8)).

It is also a point that we systematically keep track of the two module
structures on M, thereby making the interplay between the derived cat-
egories of the two Differential Graded Algebras R and S clearer. This is
in the spirit of non-commutative homological ring theory, see e.g. [18].

In the forthcoming [10], we use our theory to introduce Gorenstein
Differential Graded Algebras.

The outline of the manuscript after the present introduction is as fol-
lows.

e Section 1 sets up the equivalence theory described above, and shows
how classical Foxby equivalence and Dwyer and Greenlees’ theory
are special cases (see (1.6) and (1.7)).

It also in (1.8) considers the situation where R = S is just a com-
mutative, local, noetherian ring, and where M is E(k), the injective
hull of the residue class field k. It is proved that this theory can rec-
ognize Gorenstein rings by the conditions k£ € Ag) and k£ € Bg).
As proved by Foxby, the same statement is valid for the Auslander
and Bass classes of classical Foxby equivalence where M is the du-
alizing complex D, see [5, (3.1.12) and (3.2.10)]. However, E(k) is
a simpler and more canonical object than D (which does not even
exist over all rings).
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e Section 2 proves theorem (2.2) on the existence of “small” K-projective
resolutions, which improves and clarifies a result from [1]. The re-
sult is necessary in section 3 for our results on the size of Auslander
and Bass classes, and in the forthcoming [10] on Gorenstein Dif-
ferential Graded Algebras. It states that over a nice Differential
Graded Algebra, any sufficiently “small” Differential Graded mod-
ule has a “small” K-projective resolution. The point of this result
is that [1, sec. 1, thms. 1 and 2] shows, among other things, that
when the Differential Graded module A has a “small” K-projective
resolution, then the evaluation morphisms

RHom(4, B) & F ~%» RHom(A, B ® F)
and
A & RHom(B, I) -5 RHom(RHom(A, B), I)

are isomorphisms.

e Section 3 proceeds with the abstract theory, and proves results on
the size of the classes Ay and Bj,. The idea is to rewrite unit and
counit of the adjoint pair (0.3.1) in terms of the above mentioned
evaluation morphisms (see lemma (3.3)). This implies that Ay,
and Bj; can be characterized by the evaluation morphisms being
isomorphisms (see theorem (3.4)).

We then apply the results from section 2 and [1, sec. 1, thms. 1
and 2] to get conditions under which the evaluation morphisms are
isomorphisms. This leads to corollaries (3.5) and (3.9) which state
that

— If M is “very nice” over S, respectively over R, then A, is all
of D(R°PP), respectively By, is all of D(S),

— If M is “nice” over S, respectively over R, then A, contains
F(R°PP), respectively By contains Z(S). Here F(R°PP) and
Z(S) are classes which generalize the classes of bounded com-
plexes of flats and bounded complexes of injectives known from
classical ring theory.

When specializing our theory to classical Foxby equivalence, the
second result specializes to the classical result that the Auslander
class contains the bounded complexes of flats, while the Bass class
contains the bounded complexes of injectives (see (3.10)). And when
specializing our theory to the part of Dwyer and Greenlees’ theory
sketched above, the first result specializes to their result from [7,
(2.9)] that A, is all of D(R°PP) (see (3.6), and note that our notation
differs from Dwyer and Greenlees’, so our D(R°PP) is their mod-£).

(0.4) Notation. We shall use the theory of Differential Graded Algebras
(abbreviated DGAs) and Differential Graded modules (abbreviated DG-
modules) throughout, and use [3] and [11] for standard references.
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Differential Graded Algebras (DGAs). To us, a DGA is a graded
algebra R over the fixed commutative ground ring k, equipped with a
differential @ of degree —1 satisfying 0% = 0 and

o(rr') = d(r)r' + (=1)"ra(r")

where |r| denotes the degree of a homogeneous element r. By R we
denote the graded k-algebra obtained by forgetting R’s differential.

For the rest of this section, let R and S be DGAs.

Differential Graded modules (DG-modules). A DG-R-left-module M
is a graded R-left-module equipped with a differential 0 of degree —1
satisfying (0M)? = 0, which is compatible with scalar multiplication by
R-elements,

oM (rm) = a(r)m + (=1)I"lr0M (m).

To emphasize the left-action of R, we often denote such an M by pM.
Similarly, a DG-R-right-module could be denoted Ngi. Note that a
DG-R-right-module is “the same thing” as a DG-R°PP-left-module, where
R°PP is the opposite algebra of R, which has the product ry - 7o =
(—1)mllrelpgp
If R and S are DGAs, then a DG-R-left-S-left-module M is a graded
R-left-S-left-module satisfying the compatibility condition

r(sm) = (—1)|r“5|s(7‘m),

equipped with a differential of degree —1 satisfying (0")? = 0, which
is compatible with scalar multiplication by R- and S-elements. To em-
phasize the actions of R and S, we often denote such an M by rsM.
Similarly, a DG-R-left-S-right-module could be denoted g/Ng, and a DG-
R-right-S-right-module could be denoted Pg s.

If M is a DG-R-module, then M* denotes the graded Rf-module ob-
tained by forgetting M’s differential.

Homology modules. A DG-module M can be viewed as a complex
of k-modules and as such has a cycle module ZM, a boundary module
BM, and a homology module HM = ZM /BM which are a priori graded
k-modules. If z is a cycle in the complex M, then the homology class of z
is denoted cls z. Further, the multiplication on R induces a multiplication
on HR, which becomes a graded k-algebra, and if M is a DG-R-module,
then the scalar multiplication of R on M induces a scalar multiplication
of HR on HM, which becomes a graded HR-module.

Shifts. If X is a graded R‘-left-module, then the n’th shift of X is
denoted by S"X. As a graded k-module, it is defined by (§"X); = X;_,,.
If z is in X;, then 8"z denotes x viewed as an element in (8" X);,. The
shift S” X is made into a graded Rf-left-module by r-S"z = (—1)""'S"(rz).

If M is a DG-R-left-module, then the shift S*(M?*) of the graded mod-
ule M* can be equipped with the differential 95" (8"m) = (—1)"S™(8m),
and becomes a DG-R-left-module which we denote S" M.
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A similar procedure is used for shifting graded R"-right-modules and
DG- R-right-modules.

Morphisms. A morphism of DG-modules is a degree preserving mod-
ule homomorphism M — N which is compatible with the differentials.
It induces a morphism of homology modules HM — HN, and if this is
an isomorphism, then we call the original morphism a quasi-isomorphism,
and denote it by M — N. A genuine isomorphism is of course also a
quasi-isomorphism.

A morphism M -5 N has a mapping cone, C, defined as a graded
module by

C" = S' (MY @ N*,
and turned into a DG-module by the differential
0°(8'm,n) = (8" (=0 m), 0" n + pum).

Note that the multiplication by algebra elements on C' is twisted by a
sign in the M -variable.

Categories and functors of DG-modules. There is a category of DG-R-
left-modules and morphisms. From it, one obtains the homotopy category
K(R) by identifying homotopic morphisms (see [11, sec. 2]), and from
this one obtains the derived category D(R) by inverting the classes of
the quasi-isomorphisms (see [11, sec. 4]). Both the homotopy category
and the derived category are triangulated, with the triangulation coming
from the mapping cone construction (see [11]). Similar constructions can
be made for DG-modules with structures over more than one DGA. We
use “=” to denote categorical isomorphisms.

If RMs is a DG- R-left-S-right-module and g Ny is a DG-R-left-T-right-
module, then Hompg; (M*, N*) has a canonical differential turning it into
a DG-S-left-T-right-module denoted Hompg (M, N). Viewing this as a
complex, its cycles are precisely the morphisms of DG-R-left-modules,
and its boundaries are exactly the null homotopic morphisms of DG-R-
left-modules.

And if gMpg is a DG-S-left- R-right-module and g Ny is a DG-R-left-T-
right-module, then M? ® g N® has a canonical differential turning it into
a DG-S-left-T-right-module denoted M ®g N.

The functors Homg(—, —) and — ®g — are inherited to the homotopy
categories, and can be used to define derived functors RHompg(—, —)

L
and — ®r — on derived categories. They can be computed by using
appropriate K-projective, K-injective, and K-flat resolutions, see [3] and
[11, sec. 6].

1. GENERALIZED FOXBY EQUIVALENCE

This section describes the most general version of our theory. It starts
with a very general equivalence in theorem (1.1), and then immediately
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proceeds to look at DGAs. In (1.5), Foxby equivalence is given in the
version with DGAs described in the introduction.

In (1.6) it is shown that our theory contains classical Foxby equivalence
known from [2] and [6], and in (1.7) it is shown that our theory contains
the Dwyer and Greenless theory from [7].

In (1.8) to (1.10), we consider a new instance of our theory, where
the dualizing complex from classical Foxby equivalence is replaced with
E(k), the injective hull of the residue class field k. This theory turns out
to be able to detect Gorensteinness in the same way as classical Foxby
equivalence, namely by & being in the Auslander and Bass classes (see
[5, (3.1.12) and (3.2.10)]).

(1.1) Theorem. Consider categories C,D and an adjoint pair of functors

(F,Q),
C D.
G
Denote unit and counit of the adjunction by n and €. Define full subcat-
egories of C and D,
A ={A € C|ny is an isomorphism},
B ={B € D | e¢p is an isomorphism}.

Then the functors F' and G restrict to a pair of quasi-inverse equivalences
of categories,

F
A B.
G
Proof. This is an easy exercise in adjoint functors. a

(1.2) Definition (Auslander and Bass classes). In the situation of
theorem (1.1), we call A the Auslander class, and B the Bass class. These
names are due to [2].

(1.3) Setup. In the rest of this section, R and S are DGAs, and g M
is a DG-R-left-S-left-module.

(1.4) Remark (Tensor and Hom over a DGA). From [3, sec. 4.4] we
know that there is an adjoint pair of functors

K (ROPP) K(S).

Homg(M,—)
The unit n of the adjunction is given by
idK(Ropp)(L) LHOIHS(M,L®R M), nL(E) = (m;_)£®m)’
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and the counit € is given by
Homg(M,N) ®g M = idks)(N), en(u®m) = p(m).
Since all modules have K-projective and K-injective resolutions by [3,

thms. 7.1.1 and 8.1.1], we can get — é{)R M from — ®p M by using a K-
projective resolution in the first variable, and we can get RHomg (M, —)
from Homg(M, —) by using a K-injective resolution in the second vari-
able. The adjointness described above is inherited by the derived functors
in a straightforward way.

(1.5) Foxby equivalence. Consider the adjoint pair of functors,

L
—QrM

D(RoPP) D(S).

-

RHOms(M,f)

Theorem (1.1) now says: Denoting unit and counit of the adjunction by
1 and ¢, there are Auslander and Bass classes,

Ay = {L € D(R°PP) | 5, is an isomorphism},
By = {N € D(S) | e is an isomorphism},

L
and the functors — ® g M and RHomg (M, —) restrict to a pair of quasi-
inverse equivalences of categories,

L
7®RM

A Bas.

-~
RHomg(M,—)

(1.6) Classical Foxby equivalence. Classical Foxby equivalence in the
setup of [2, sec. 3] is a special case of the above: Let R be a commutative
noetherian ring, viewed as a DGA concentrated in degree zero, and let S
equal R. Let M be a dualizing complex over R, that is, M is a bounded
complex of injective modules with finitely generated homology, so that
the canonical morphism R — RHompg(M, M), given by r +— (m — rm),
is a quasi-isomorphism. Clearly, M is a DG-R-left-S-left-module.
So (1.1) applies, and our adjoint pair

L
—QrM

D(R) D(R)

B

RHompg(M,—)

is simply the pair of functors from the classical Foxby equivalence theo-
rem, [2, thm. (3.2)], and our Auslander and Bass classes,

Ay ={L € D(R) | ny, is an isomorphism},
By = {N € D(R) | ey is an isomorphism},
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are simply the Auslander and Bass classes of [2, def. (3.1)], except that we
have avoided the (unnecessary) boundedness conditions in [2]. Further-
more, our equivalence result, (1.5), essentially specializes to [2]’s equiva-
lence theorem, [2, thm. (3.2)].

Moreover, we show in section (3.10) how our general theory of eval-
uation morphisms can be used to prove that A,; contains all bounded
complexes of flat modules, and that By, contains all bounded complexes
of injective modules, as already proved in [2].

Finally, the above way of viewing classical Foxby equivalence also ap-
plies to the more general Foxby equivalence theory with semi-dualizing
complexes constructed in [6, sec. 4].

(1.7) Dwyer and Greenlees’ theory. Dwyer and Greenless’ theory from
[7] is a special case of the above: Let S be any ring, viewed as a DGA
concentrated in degree zero, and let M be a perfect complex of S-left-
modules, that is, a bounded complex of finitely generated projective S-
left-modules. Set R equal to Homg (M, M). It is not difficult to check
that this is a DGA, that M aquires the structure of DG-R-left-module,
and that this structure is compatible with M’s S-structure, so that M is
in fact a DG-R-left-S-left-module, g s M.

So (1.5) applies, and our quasi-inverse equivalences between the Aus-
lander and Bass classes,

L
_®RM

AM BM7

RHomg(M,—)

is identical to the right half of the following diagram from Dwyer and
Greenlees’ Morita theorem, [7, thm. 2.1]:

E T

A Ators

comp _ mod-& )
E

([7] denotes our R by &, and our D(R°PP) by mod-E).
This can be seen trough the following steps:

e Observe that our functors — (%) r M and RHomg(M, —) are the same
as [7]’s functors T and E.

e Prove that the Bass class By equals Aos. This is done in [7, thm.
2.1].

e Prove that the Auslander class A, equals mod-€ in [7]’s notation,
which is D(R°PP) in our notation. This is also done in [7, thm. 2.1];
we show in section (3.6) how it follows from our general theory of
evaluation morphisms.

Finally, replacing M by Homg(M, S), our theory can be specialized to
the other half of [7, thm. 2.1].
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(1.8) The Auslander and Bass classes for E(k). Let R be a commu-
tative, local, noetherian ring, with maximal ideal m and residue class field
k = R/m, and let E(k) denote the injective hull of k. We want to con-
sider our theory in the case where S = R and M = E(k). In this setup
it turns out that the corresponding Auslander and Bass classes contain
k precisely when R is Gorenstein.

Recall that the same statement is true for the Auslander and Bass
classes of classical Foxby equivalence where M is the dualizing complex
D (see [5, (3.1.12) and (3.2.10)]). However, not all commutative, local,
noetherian rings admit a dualizing complex.

Note that, since the duality theory involving the functor RHompg(—, E(k))
is just classical Matlis duality, it seems reasonable that one should call the
theory treated in this and the next two paragraphs “Matlis equivalence”.

(1.9) Lemma. Let R be as in (1.8). Then the following statements are
equivalent:

1. R is Gorenstein.
2. RHompg(E(k), k) & S~ for some d.

3. k ®p E(k) = S for some d.

If the equivalent statements hold, then d = dim R.

Proof. Let —¥ = RHompg(—, E(k)) denote the Matlis duality functor.

It is not difficult to see that eac}/l\of the numbered statements is equiv-
alent to the same statement for R, the completion of R in the m-adic
topology. Hence, we can suppose that R is complete. For this, one uses
that the artinian R-module E(k) can be viewed as an R-module, which
satisfies the isomorphisms of R-modules E(k) @ R Es(k) =2 E(k), see
[4, ex. 3.2.14].

We first show that (1) is equivalent to (2): There are isomorphisms

RHompg(E(k), k) = RHomg(k",E(k)") = RHomg/(k, R),
(1.9.1)

which are hyperhomological generalizations of formulae from classical
Matlis duality (see [14, thm. 18.6]). But R is Gorenstein precisely if
RHomp(k, R) is isomorphic to S~¢k for some d, by the hyperhomological
version of [14, thm. 18.1]. So the result follows.
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To conclude the proof, we show that (2) is equivalent to (3). Consider
the following chain of isomorphisms,

RHomp(E(k), k) = RHompg(E(k), k")

= RHomg(E(k), RHompg(k, E(k)))
& RHomp(k O E(k), E(k))

L \%
= (k®r E(K))",
where “(a)” is again by Matlis duality, and “(b)

b

is by adjointness. This

L
shows that (3) implies (2). Since £ ®g E(k) has artinian homology, it
also shows by Matlis duality that

RHomg(E(k), k)’ = k ®p E(k), (1.9.2)

and this shows that (2) implies (3).

Finally, in case the numbered conditions hold so R is Gorenstein, we
know RHompg(k, R) = S~4m Bk again by the hyperhomological version
of [14, thm. 18.1]. Hence (1.9.1) proves RHomg(E(k), k) & S~ dim Rf,

L .
and (1.9.2) proves k ®g E(k) & S4™ k. So we conclude d = dim R. O

(1.10) Theorem (Gorenstein sensitivity). Let R be asin (1.8). Then
the following statements are equivalent:

1. R is Gorenstein.
2. k e AE(k:)-
3. k € Bgy).

L .
Proof. (1) = (2). When R is Gorenstein, we have k ®p E(k) = S4im Rf
by lemma (1.9)(3). Hence

L .
RHomp(E(k), k @ E(k)) = RHompg(E(k), S4™ #k) = k,
where the second “=” uses lemma (1.9)(2).

L
To see k € Ag) we must see that the unit of the adjoint pair (— ®r
E(k), RHompg(E(k), —)) evaluated on k is an isomorphism, that is, that

k ™ RHomg(E(k), k G%R E(k)) is an isomorphism. This is the same as
seeing that Hrzy is an isomorphism. But by the above computation, both
source and target of 7, have homology given by £ in degree 0, and 0 in
all other degrees, so since k is a simple module, it suffices to see that
Hyny, is non-zero.

To compute 7, we replace E(k) by a free resolution F. Thus, 7 is
the chain map ¥ — Hompg(F,k Qg F) given by z — (f — 2z ® f). In
particular we have 1, — (f — 1x ® f), so all we need to see is that the
cycle (f — 1; ® f) in the complex Hompg(F, k ®g F) is non-zero, that is,
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not a boundary. But the boundaries in a Hom complex are exactly the
null homotopic chain maps, so we must check that f +— 1, ® f is not null
homotopic.

But if it were null homotopic, then it would remain so upon tensoring
with k. That is, kQrF — kQrk®gF given by y® f — y®1;® f would
be null homotopic. But using k¥ ®g k = k, this map can be identified
with the identity on k£ @z F', hence cannot be null homotopic because
kpF =k (ELQR E(k) has non-vanishing homology by lemma (1.9)(3).

(1) = (3). This is seen by a computation similar to the one above.

(2) = (1). If k € Agg then k —» RHomp(E(k), k ®x E(k)). And
it is easy to see that R’s maximal ideal m annihilates the modules in a

L
suitable representative of k @ E(k), so

L
k ®r B(k) = D S%k. (1.10.1)
icl
Combining this gives RHompg (E(k), @,.; S%k) = k. Suppose that @, , S%k

contained more than one summand, say S k®S?2k® (P, » S*k). Then
we would have

tel’

RHompg (E(k),5P1k)®RHomg (E(k),5%2k)®RHomg (E(k),D; ;» SPik)2k.
(1 . 10.2)

However, using E(k) ®p R & Ez(k) = E(k) again, it is not difficult to
see

RHomg(E(k), k) = RHomz(Ez(k), k),

and by Matlis duality, this is again RHom (%, ﬁ) which is non-zero. As
k is an indecomposable object in D(R), this gives a contradiction with
equation (1.10.2), and thus there can only be one summand in (1.10.1),

L
so k ®r E(k) = S%k. By (1.9)(3), R is Gorenstein.

L o
(3) = (1). If k € By then RHompg(E(k), k) ®r E(k) — k. Again it
is easy to see that m annihilates the modules in a suitable representative
of RHompg(E(k), k). Thus

RHompg(E(k), k) = €D S”k.

iel
L L

Combining this gives (D, ; S%k) ®r E(k) = @,.,(S%k ®r E(k)) = k.

Again, using that k£ is an indecomposable object in D(R), the only

L
possibility is that there is only one summand, so k & S% k ®x E(k). By
(1.9)(3), R is Gorenstein. O
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2. SMALL K-PROJECTIVE RESOLUTIONS

This section proves a result, theorem (2.2), on the existence of “small”
K-projective resolutions. It is an improvement and clarification of [1,
sec. 1, prop. 1] ! (we weaken the assumption that the DGA in question is
positively graded), and is necessary in section 3 for our results on the size
of Auslander and Bass classes, and in the forthcoming [10] on Gorenstein
DGAs.

Consider a DGA, R, satisfying

[ HZRZOfOI‘Z<0

e HyR is left-noetherian.

e H,R is finitely generated as a left-module over HyR for all 7 € Z.

We prove in theorem (2.2) that any DG-R-left-module M with right-
bounded HM and with each H;M finitely generated over HyR has a
semi-free resolution P — M such that
Pl = @Si(Rh)%’
i>U
with Yi € No.
The point of this result is that [1, sec. 1, thms. 1 and 2] shows that

when such a resolution exists for a DG-module A, then the evaluation
morphisms

L L
RHom(A,B) ® F s RHom(A, B ® F)
and
L
A ® RHom(B, I) - RHom(RHom(A4, B), I)

are isomorphisms under some boundedness restrictions on B, on the K-
flat resolution of F', and on the K-injective resolution of I.

(2.1) Lemma. Let R be a DGA with H_.1R = 0, let L — M be a
morphism of DG-R-left-modules, and let n be in N.

We can then construct a commutative diagram of morphisms of DG-
R-left-modules,

STRY) 2> 2T

| A
M
so that
1. H,a is injective, and if H,« is surjective then H, & is bijective.
2. S"RM 21 T —sisa mapping cone triangle, in particular,
A Is injective.
1Since submitting the present version of the manuscript, we were made aware by H.-

B. Foxby that a proof of theorem (2.2) is to appear in [3]. Hence the proof appearing
below of theorem (2.2) will not be included in the final version of the manuscript.
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3. Z/ L is isomorphic to S*t*RY) | and is in particular free on a basis
of cycles.

in the following way: Pick any data 'Y and {my},cy satisfying:

o Y C Z,L is so that clsY generates Ker H, c.
o {my}yey Is a system in M, so that 3 m, = ay for each y € Y.

(such data can always be picked), and

e Define S"R®Y) 25 [, by e, — y, where e, is the generator of the
y’th copy of S"R.

e Define I =5 I as the mapping cone of A. That is,
Lf = (S'S"RM)'@Lf, 918" rye,,0) = (84 ~0(ry)ey, F e+ ),

and \ is Just the inclusion of L into L.
e Define L %5 M by

a(St Z ryey, l) = Z(—l)‘”"?“ymy + ol

Proof.  To see that the commutative diagram exists, let us first check
that @ : L — M is a morphism of DG-R-left-modules. It is easy to
check that « is R-linear, if one remembers the sign convention for shifts.
So we need to see that o commutes with the differentials in question. We
start by considering the expression

GO (ST rye, ) = A(STY . ~0(r,)e,, 0"+ ryy)
=> (=1)Pl(=a(r,))my + (0L + > ryy)
= Z 1)™lo(r, my+aaLﬁ+Zryay
Next we need to calculate
Ma(ST ryey, 0) =0V (D (-1)"vlrymy, + o)
1)™IoM (r,my,) + 0Mak
""“(a(ry)my + (—1)""”'7‘ oM(m,)) + oM ar
mI(ry)my + 0Mal +> 1, 0™ (my).

MP”ﬂM

(-
(—1)
(=1)
And since {my} ey is a system in M, ; such that 0¥m, = ay for all
y € Y, we conclude that o commutes with the differentials, so a is a
morphism of DG-R-left-modules.

It is clear that a) = a.

(1) Since L is the mapping cone of S” RY) 2, L, we have the following
distinguished triangle,

S"RYV) &, T —s,
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producing a long exact homology sequence fitting into the following com-
mutative diagram of HyR-left-modules.

KerH, o

|

H,S"R(Y) —“=> H, L 0.7 —H, ,S"RM).

Hpa _
H,a

H,M

Note that by construction, H,A surjects onto Ker H,c. And H,_; S"R(Y) =
H_,RY) = 0. Thus the above diagram is in fact

KerH, a
]
nA ~
H,S"R®) —“%~H,L H,L 0.
Hnal
H,&
H, M

A small diagram chase shows that H,«a is injective, and that H,« is
bijective when H, « is surjective.
(2) By construction, A is the mapping cone of A, so by construction,

S'RY) 2L M T isa mapping cone triangle.
(3) L is the mapping cone of S"R(™) 2, L. This makes it easy to
compute L/L which is just S®R(") with the usual differential. O

(2.2) Theorem. Let R be a DGA satisfying the following conditions:

e H,R=0 fori <0,
e HyR is left-noetherian.
e H;R is finitely generated as a left-module over HyR for all i € 7.

Suppose M is a DG-R-left-module with the following properties

e H,; M is finitely generated over HyR for all i € Z.
e There exists a u € Z such that H;M = 0 for all i < u.

Then there exists a semi-free DG-R-left-module P and a quasi-isomor-
phism P —» M where

Pl = @Si(Rh)%,
>U
and v; € Ny.

Proof.  Shifting if necessary we may assume H;M = 0 for 7 < 0. We
then construct the claimed DG-R-left-module by induction.
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a=D

We start by setting P("1) = 0 and by letting P(1) Y M be the zero
map.

a(

Suppose now that P~ and P™~1) " M have been defined, and
that all H; P("=") are finitely generated over HyR. Let X,, C Z, M be a
finite set such that cls X, generates H, M over HyR. There is a canonical
map

B . S"RED) 5 M,
sending the generator e, to x for x € X,,, and hence a map
(a(n—l), ﬁ(n)) . P10 @ §" R 5 M

and H,(a™Y, 8™) is a surjection, since already H,3™ is a surjection.
Moreover, all H;(P™ 1 @ S"R*»)) are clearly finitely generated over
HoR.

We now use lemma (2.1) on the map (oY, () noting that the set
Y can be chosen finite, because it generates a submodule of the finitely
generated module H,(P"~YV@S™ RX)) over the left-noetherian ring Hy R.
This results in

(n=1)
SnR Yy) _>Pn 1) SnR (Xn) )‘ (P(n—l) EBS"R(X"))N

(n—1) g(n)
(a1 5 )l /mN

M

By the lemma, H,((a(® ", 3™)~) is bijective. Moreover, A*~1) is in-
jective, and
(P @ SPRXn))~
P(n-1) ® St RX
is S"™' R(") and is free on a basis of cycles. Finally, all H;(P™~") @
S"R))™ are finitely generated over HyR, as follows from the long exact

sequence associated to the mapping cone triangle used in lemma (2.1) to
define (P("1) @ S* R~
Defining

p® (p(n—l) D SHR(Xn))N’

o™ = (oY, gy~
the above facts translate to: H,a(™ is bijective; the map P"1 @
Sn R X7

|

P™ is injective and
Pn)
P=1) @ S R(Xx)

is S"' R and is free on a basis of cycles; and each H;P™ is finitely
generated over HyR.
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Iterating the above construction yields the commutative diagram

(1)

pi-1 E pien) g 80 o) &2 po) P plo) g g1 A

(al=1),5))
1) al®
na

(a(O),ﬁ(l)) e (221)

M

I

where the ¢’s are inclusions of direct summands. We let P be the union
(i.e. the colimit) of the DG-modules in the diagram’s first row, and let
P %5 M be the morphism induced by the morphisms in the diagram.
We claim that this is the desired resolution.

P is semi-free: The first row in diagram (2.2.1) provides a filtration
of P. The quotients are of the form

Plr=1) g 5 RO
P(n—l)

>~ S"R)

and
P®)
P(=1) g §» R(Xn)

(the second isomorphism was proved above), and these are free on bases
of cycles, so P is semi-free.

o s a quasi-isomorphism: To prove that H,« is an isomorphism,
consider step m in the construction that gave P and «. At this step, we
proved that H, o™ was an isomorphism. We propose to show that in
fact, H,a("*9 is an isomorphism for each i > 0; this will clearly force H, o
to be an isomorphism, since « is induced by the system (@, oD, ...

So consider our construction at step n + i: Going from P to
P®+i+1) inyolves the maps

~ Sn—|—1 R(Y")

P(nti) % pti) o gntitl p(Xntitt) %’\(nﬂ) Ppntitl)

(a(n+i) ,ﬁ(n+i+1))

am+i)

M.

We will show that when H,o("* is an isomorphism, then the same is
true for H,a(™ "+ For this, it is sufficient to see that H,, applied to the
above diagram’s horizontal arrows gives isomorphisms.

For the first arrow, this is clear, for it is just the inclusion of a direct
summand, and H, S"H REn+iv) = H_; | REn+i+1) = (.
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For the second arrow, observe that it is constructed using lemma (2.1),
hence sits in a mapping cone triangle

St Ratin) __y plni) gy gntitt pXnsivn) A5 potitn)

As both H,S"+#1RYu+iv1) = H_; | RYa+i+1) and H,_; S*Hi+I RYati+1) =
H_,_oRY»++1) are zero, it follows that H,A(»*" is an isomorphism as
desired.

P4 has the desired form: If we take i of diagram (2.2.1), then all the
injections become split:

The injection

) A pm) g gl RXat)
is already split, and by the lemma, applying f gives a split injection with
(P(n) oy 5n+1R(Xn+1))h
(P)E

o gntl (Rh)(Xn+1)_

The injection
P @ §n+ REnsn) A% pns)

comes from lemma (2.1) where it was constructed as the mapping cone of
S ROnt1) y p() @ St R(+1) 50 applying  gives a split injection
(M) with
(P+D)
(P(") o Sn+1R(Xn+1))h
So the diagram obtained from diagram (2.2.1) by taking § builds P*
by simply adding S"R*»)’s and S"*'R(¥»)’s; so

P = (@ S"(RH)E)) @ (@ SMH(RH) (),

n>0 n>0

> SnH2(RE) (i),

As all X,,’s and Y,’s are finite, this shows our claim on P!. O

3. SIZE OF AUSLANDER AND BASS CLASSES

We resume working under setup (1.3).
This section recalls some facts about the evaluation morphisms w and
6 from [1], and in lemma (3.3) rewrites unit and counit of the adjoint pair

(— éR M,RHomg(M,—)) in terms of w and . This is used in theorem
(3.4) which under certain conditions characterizes the Auslander class by
w being an isomorphism, and the Bass class by # being an isomorphism.
This leads to corollaries (3.5) and (3.9) which under appropriate condi-
tions state that the Auslander and Bass class contain many DG-modules.

Finally, this is applied in sections (3.6) and (3.10) to recover previously
known results about the size of the Auslander and Bass classes in the case
of Dwyer and Greenlees’ theory (described in (1.7)) and classical Foxby
equivalence (described in (1.6)).
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(3.1) Remark. In [1, sec. 1] two so-called evaluation morphisms are
given: If

7FR, v,sA, rsB
are DG-modules with structures as indicated, then there is a natural
morphism of DG-T-left-U-right-modules

7Fr ®r Homg(y,sA, rsB) s Homg(y,sA, 7Fr ®r r,sB)
given by
(W(f ®@a))(a) = f ® afa).
Moreover, if F' can be resolved by a DG-T-left- R-right-module which
is K-flat over R, and A can be resolved by a DG-S-left-U-left-module

which is K-projective over S, then w induces a natural morphism of
derived functors,

L w L
rFr ®r RHomg(ysA, rsB) — RHomg(y,sA,7Fr ®r r,sB)-

Note that it is not necessary that F' and A have structures over 7" and
U. That is, omitting 7" or U or both, there would still be morphisms
given by the same prescriptions.

And if

R,TA7 R,SB7 SIU
are DG-modules with structures as indicated, then there is a natural
morphism of DG-T-left-U-right-modules
Homg(r,sB, sIv) ®r rrA N Homg(Homg(r 1A, rsB), slv)
given by
(0(8 ® a))(a) = (=1)""* Ba(a).

And if A can be resolved by a DG-R-left-T-left-module which is K-

projective over R, and I can be resolved by a DG-S-left-U-right-module

which is K-injective over S, then # induces a natural morphism of derived
functors,

L 9
RHOIns(R’SB, SIU) ®R R,TA — R,HOHIS(RHOHIR(R’TA, R,SB)a S'IU)-
Note that again, 7" or U or both could be omitted in both morphisms.
(3.2) Remark. If we allow ourselves to be sloppy for a moment, then re-

mark (3.1) can be applied to the Auslander class A, as follows. Suppose
that RHomg (M, M) is isomorphic to R. To check whether L € D(R°PP)

L
is in Ay, we must check whether RHomg (M, L ®g M) gives us L back.
But we have

L L
RHomg(M, L ®g M) = L ®z RHomg(M, M)

L
=2 LQgrR
=~ L.
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So RHomg (M, L <§> r M) gives L back precisely if w is an isomorphism.
There is a dual remark for By, and 6.

Of course, this is very imprecise. To actually check whether L is in
Ajys amounts to checking whether the specific map 7y, is an isomorphism,
and to actually check whether NV is in By, amounts to checking whether
the specific map ey is an isomorphism. However, we shall see in lemma,
(3.3) and theorem (3.4) that this is really what the above computations
do.

(3.3) Lemma. 1. Suppose that M can be resolved by a DG-R-left-S-
left-module which is K-projective over S. Let p denote the canonical
morphism in the derived category of DG-R-left-R-right-modules,

R#RHOHI‘S'(M,M), ].RI—)ldM

For any DG-R-right-module, L, there is a commutative diagram,

L
@ L 1L®rp

L
L——r1g,R L ® RHomg(M, M)
nL lw

L
RHomgs(M, L @ M),

where @ is the canonical isomorphism, and where 7y, is the unit of

the adjoint pair (— <§I§>R M,RHomg(M, —)), evaluated on L.

2. Suppose that M can be resolved by a DG-R-left-S-left-module which
is K-projective over R. Let o denote the canonical morphism in the
derived category of DG-S-left-S-right-modules,

S —Zs RHomp (M, M), 1g+——idy.

For any DG-S-left-module, N, there is a commutative diagram,

L
RHomg(M,N) ®p M

0l x

RHomg(RHompg (M, M), N) RHomg(S, N)

N,

RHOmR(O',lN) 12

where ¢ is the canonical isomorphism, and where €y is the counit
L
of the adjoint pair (— @z M,RHomg(M, —)), evaluated on N.

Proof. The proofs of (1) and (2) are similar, so we only show (1).
Replace L by a K-flat resolution (this is always possible, since L

only has R-right-structure), and replace M by a DG- R-left-S-left-module

which is K-projective over S. This enables us to write Homg and ®g

L
rather than RHomg and ®g.
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Now let £ be in L, and consider the lemma’s composition of morphisms
evaluated on /:

(wo(lL®p)op)(l) = (wo (1L ®p))({@1r) = w(l®idy) = (m — £@m).
This is indeed 7, (¢), as one sees in remark (1.4). O
(3.4) Theorem. 1. Suppose that M can be resolved by a DG-R-left-

S-left-module which is K-projective over S, and that the canoni-

cal morphism in the derived category of DG-R-left- R-right-modules
R %5 RHomg (M, M) is a quasi-isomorphism. Then M’s Auslander

class is
L w
L ® RHomg(M, M) —

L
RHomg(M, L ®g M)
is an isomorphism

Ay = { L € D(R)

2. Suppose that M can be resolved by a DG-R-left-S-left-module which
is K-projective over R, and that the canonical morphism in the de-
rived category of DG-S-left-S-right-modules S —~ RHomg (M, M)
is a quasi-isomorphism. Then M’s Bass class is

RHomg (M, N) éR M2
BM = N € D(S) RHomS(RHomR(M, M)’N)

is an isomorphism

Proof.  Again, the proofs of (1) and (2) are similar, so we only show (1).
Since M can be resolved by a DG-R-left-S-left-module which is K-
projective over S, we are in the situation of lemma (3.3)(1). The lemma’s

composition w o (1, (%)R p) o ¢ is the unit of the adjoint pair (— <§]§>R
M,RHomg (M, —)), evaluated at L. Hence L is in Ay, precisely if the
composition is an isomorphism.

But since R -+ RHomg(M, M) is a quasi-isomorphism, both maps ¢

L
and 1, ®pg p are isomorphisms. Hence 7, is an isomorphism precisely
when w is. O

(3.5) Corollary. 1. Make the same assumptions as in theorem (3.4)(1):
M can be resolved by a DG-R-left-S-left-module which is K-projective
over S, and R £+ RHomg (M, M) is a quasi-isomorphism. Suppose
moreover that when we forget the R-structure on M, we can resolve
M by a DG-S-left-module, A, so that (sA)" is a direct summand in
a finite coproduct of shifts of S°.

Then M’s Auslander class Ay is all of D(RPP).
2. Make the same assumptions as in theorem (3.4)(2): M can be re-
solved by a DG-R-left-S-left-module which is K-projective over R,
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and S %+ RHompg(M, M) is a quasi-isomorphism. Suppose more-
over that when we forget the S-structure on M, we can resolve M
by a DG-R-left-module, A, so that (rA)* is a direct summand in a
finite coproduct of shifts of R.

Then M’s Bass class By is all of D(S).

Proof. Again the proofs of (1) and (2) are similar, so we only show (1).
We can use theorem (3.4)(1) to get Az So to prove the corollary, we
must see that

L w L
L @ g RHomg(M, M) — RHomg(M,L ®g M)

is an isomorphism for any L.

Now, to see whether w is an isomorphism, there is no need to remember
the R-structure on the M’s appearing in the first variable of the RHom’s.
Hence we can use the DG-S-left-module gA which is a resolution of gM
to compute the two RHom’s. But when gA has the special form required
in the corollary, w is an isomorphism by [1, sec. 1, thm. 2]. (Note that
[1] actually requires A% itself to be a finite coproduct of shifts of S%, but
gives a proof which also applies to direct summands.)

So any L is in Aj,. |

(3.6) Dwyer and Greenlees’ theory (continued from section (1.7)).
Consider again section (1.7). It actually starts with a complex M which
is perfect over S, hence corollary (3.5)(1)’s conditions on existence of res-
olutions hold. And the corollary’s condition that R -~ RHomg(M, M)
is a quasi-isomorphism is automatic, since we have in effect defined R to
be RHomg (M, M).

So corollary (3.5)(1) says that Ay, is all of D(RPP), as claimed already
in example (1.7). (Recall that [7] denotes our D(R°PP by mod-£.)

(3.7) Definition. If @ is a DGA, then we define two classes of DG-Q-
left-modules by

_ L is quasi-isomorphic to a
FQ) = {L € D@ ‘ K-flat left-bounded DG-module }
and

_ N is quasi-isomorphic to a
1(Q) = {N €D(@) ‘ K-injective right-bounded DG-module }

(3.8) Definition. Let @ be a DGA. We say that a DG-Q-left-module A
is locally finite if H; A is finitely generated as an HyQ-left-module for each
1.

(3.9) Corollary. 1. Make the same assumptions as in theorem (3.4)(1):
M can be resolved by a DG-R-left-S-left-module which is K -projective
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over S, and R %> RHomg (M, M) is a quasi-isomorphism. Suppose
moreover the following:
e R and S are non-negatively graded.
e HyS is left-noetherian, and S is locally finite as a DG-S-left-
module.
e HM is bounded, and M is locally finite as a DG-S-left-module
(here we have forgotten about M’s R-structure).
Then

F(R™) C Aus.

2. Make the same assumptions as in theorem (3.4)(2): M can be re-
solved by a DG-R-left-S-left-module which is K-projective over R,
and S %+ RHompg(M, M) is a quasi-isomorphism. Suppose more-
over the following:

e R and S are non-negatively graded.
e HyR is left-noetherian, and R is locally finite as a DG-R-left-
module.
e HM is bounded, and M is locally finite as a DG-R-left-module
(here we have forgotten about M’s S-structure).
Then

I(S) C Bay.

Proof. Again, the proofs of (1) and (2) are similar, so we only show (1).
We can use theorem (3.4) to get Ajs. So to prove the corollary’s claim,
we must see that

L L
L ®x RHomg(M, M) - RHoms(M, L ®x M)

is an isomorphism when L is in F(R°PP).

Now, to see whether w is an isomorphism, there is no need to re-
member the R-structure on the M’s appearing in the first variable of
the RHom’s. Hence we can replace these M’s by any quasi-isomorphic
DG-S-left-module, sP. We have made the assumptions that S is non-
negatively graded and locally finite, that H(S is left-noetherian, that HM
is bounded, so in particular right-bounded, and that M is locally finite.
Hence theorem (2.2) says that we can choose an gP which is semi-free
and in particular K-projective, and has

(sP)" = @y’(gh)w
>i
for certain finite numbers 7 and -;.
We can also replace the M’s appearing in the second variable of the
RHom’s by any quasi-isomorphic DG-R-left-S-left-module z ¢B. And B
can be chosen left-bounded: Since both R and S are concentrated on one

side of degree 0 (namely, they are both non-negatively graded), it makes
sense to truncate DG-R-left-S-left-modules, and since HM is bounded,
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and so in particular left-bounded, we can truncate M to the left to get a
left-bounded B.

Finally, when Lg is in F(R°PP), we can replace Lg by a quasi-isomorphic
K-flat left-bounded DG-R-right-module, Fp.

So what we need to see is in fact that

L L
F ® RHomg(P, B) —+ RHomg(P, F ®x B)

is an isomorphism. But P is K-projective and F' is K-flat, so this is
really

F ®g Homg(P, B) =~ Homg(P, F ®x B).

And P, B, and F being as they are, this is known to be an isomorphism
from [1, sec. 1, thm. 2. 0

(3.10) Classical Foxby equivalence (continued from section (1.6)).
Consider again section (1.6). The conditions of corollary (3.9)(1) hold:
Since R is a commutative local noetherian ring and S equals R, we can
resolve M by a DG-R-left-S-left-module which is K-projective over S
simply by resolving it by a K-projective resolution of M as an R-complex.
And we have that R — RHomg(M, M) is a quasi-isomorphism by as-
sumption on M. Finally, the three itemized requirements in the corollary
are immediate by the assumptions on R, S, and M.

So corollary (3.9)(1) says that A, contains F(R) (note R°°P = R).
In particular, Aj,; contains all bounded complexes of flat modules, as
claimed in section (1.6).

Likewise, corollary (3.9)(2) says that By, contains Z(R). In particular,
By contains all bounded complexes of injective modules, as claimed in
section (1.6).

(3.11) Remark. Suppose that, of the data required in corollary (3.9)(1),
only S and M are given. Replacing M with a K-projective resolution and
constructing the endomorphism DGA, £ = Homg (M, M), the module M
becomes a DG-&-left-S-left-module.

Now, we can generally not hope to use corollary (3.9)(1) with R =&,
for this algebra is almost never non-negatively graded. However, it is a
point that we can sometimes let R be a truncation of £: If £ only has
homology in non-negative degrees, then we can let R be the truncation to
non-negative degrees of £. This truncation embeds into £, so M becomes
a DG-R-left-S-left-module. The canonical map R — RHomg(M, M) is
now just the embedding R — £, so is a quasi-isomorphism.

Note by [12, prop. I11.4.2] that the quasi-isomorphism R — £ induces
an equivalence of derived categories of DG-right-modules, D(RPP) —»
D(&°PP).
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