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0. Introduction

These notes are an expanded version of a series of lectures given at the University of Bielefeld
in January and February of 2000. The primary objective of these talks was two-fold: to
provide a first introduction to the theories of Hopf algebras and algebraic groups on the one
hand, and to delineate the application of certain geometric techniques to their representation
theory on the other. Accordingly, the exposition emphasizes the discussion of illustrative
examples and plausibilty considerations highlighting the salient points of the theory. Proofs
have been included only when they serve this purpose, and they often only sketch the main
ideas rather than embarking on detailed discussions.

These notes are exclusively concerned with the “classical” theory of cocommutative Hopf
algebras, leaving the very active field of quantum groups out of the account. Our Hopf
algebras will also appear in a geometric guise, as affine algebraic group schemes. Since our
point of view veils the historical sources of the subject matter, let me briefly mention that the
axioms of our algebras first occurred in the work of the topologist Heinz Hopf [45], defining
what are now called graded Hopf algebras.

The first four sections provide a quick tour of Hopf algebras, their associated group
schemes, and restricted Lie algebras. Since the selection of the topics is primarily based on
what is relevant for the later sections, many interesting aspects have been left out of the
account. The reader who is interested in a more in depth introduction may consult [50, 55] for
the abstract theory of Hopf algebras, and [48, 81] for group schemes. Aside from establishing
the necessary terminology, we point out the division of the modular representation theory of
cocommutative Hopf algebras into the classical part concerning finite groups, and the theory
of infinitesimal group schemes. The main tools of the latter are geometric methods related
to the notions of cohomological support varieties, rank varieties, and schemes of tori.

In §5 we introduce the important notion of the complexity of a module. This number
measures the rate of growth of a minimal projective resolution. It can also be interpreted
as the dimension of a certain affine variety, the cohomological support variety of a module.
These varieties have been available for modules over group algebras of finite groups for quite
some time. The extension to arbitrary cocommutative Hopf algebras is based on recent work
by Friedlander-Suslin [40], who showed that the cohomology ring of a finite group scheme is
finitely generated.

Elementary abelian groups are an important tool in the representation theory of finite
groups. In §7 we present recent results by Suslin-Friedlander-Bendel [72, 73] to illustrate that
the Frobenius kernels of the additive group play an analogous role for infinitesimal group
schemes. In particular, they can be used to define rank varieties for modules. In default of
a suitable analogue of the Mackey decomposition theorem, our study of infinitesimal groups
of finite and tame representation types rests on a detailed study of these varieties.

The techniques involved in the representation theory of infinitesimal groups are often in-
ductive, that is, one reduces problems to the consideration of “small” groups whose structure
is well enough understood to be amenable to the methods from the abstract representation
theory of Artin algebras. The reduction process involves subgroups as well as quotients,
and §8 provides a quick introduction to the latter. For almost all of our purposes it suf-
fices to know that the Hopf algebras associated to quotients are in fact quotient algebras.



Accordingly, the notion of faithfully flat ring extensions, that is necessary for an in depth
understanding of quotients, has been omitted.

When studying representations of infinitesimal group schemes one has to deal with two
interrelated aspects concerning the structure of the underlying groups, and the Morita equiv-
alence classes of their Hopf algebras, respectively. Solvable groups, that are studied in §9,
will frequently play a prominent role in our analysis. In this context, one classical result,
the Lie-Kolchin theorem, epitomizes a recurring theme of the theory: Frobenius kernels of
smooth groups usually behave a lot better than arbitrary infinitesimal groups.

In §10 we employ rank varieties in conjunction with structural features of supersolvable
groups to characterize infinitesimal groups of finite representation type. In contrast to finite
groups, the Hopf algebras of these groups are Nakayama algebras. Moreover, finite repre-
sentation type can be detected on the second Frobenius kernel, and the structure of the
underlying groups is completely understood.

For Frobenius kernels of reductive groups, the combination of rank varieties with basic
results on nilpotent orbits yields the determination of the tame blocks. In fact, they are all
Morita equivalent to tame blocks of the first Frobenius kernel of SL(2). In particular, these
blocks are special biserial and of domestic representation type.

In sections 12 and 13 we introduce another geometric tool by considering varieties of
multiplicative subgroups. These are introduced to understand the structural impact of con-
ditions on rank varieties of restricted Lie algebras. For Lie algebras of smooth groups much
information is derived from the so-called root space decomposition associated to a maximal
torus. Since any two such tori are mapped onto each other by an automorphism, any maxi-
mal torus will do. By contrast, for arbitrary restricted Lie algebras the information encoded
in the root space decomposition is highly sensitive to the choice of the torus. Schemes of tori
(multiplicative groups of height < 1) are introduced to study all tori simultaneously and to
consider algebraic families of Lie algebras.

In section 14 we turn to arbitrary infinitesimal groups of tame representation type. Their
study entails the determination of restricted Lie algebras with two-dimensional rank varieties.
By combining rank varieties with schemes of tori we classify the semisimple infinitesimal
groups of tame representation type. Once again, all tame blocks are special biserial and of
domestic representation type.

In the concluding section we survey the current knowledge on the Auslander-Reiten
components of infinitesimal group schemes. These are not nearly as well understood as their
counterparts for finite groups. Since rank varieties are invariants of AR-components, they
can be employed to provide an analogue of Webb’s theorem for finite groups: The tree classes
of the AR-components are either finite or infinite Dynkin diagrams or Fuclidean diagrams.
Moreover, components with rank varieties of dimension > 3 are of type Z[A].

These notes were written while the author held a visiting professorship at the University
of Bielefeld. He would like to take this opportunity to express his gratitude for the hospitality
and the support he received from the Faculty of Mathematics. Finally, I would like to thank
lain Gordon and Gerhard Rohrle for reading an earlier version of the manuscript.



1. Definition and Basic Properties

Throughout these notes k will denote a field. The standard example for a Hopf algebra is
the group algebra k|G| of some abstract group G. Recall that the G-modules correspond to
the k[G]-modules. Accordingly, group algebras enjoy special features that ordinary algebras
do not have. If M and N are G-modules, then the spaces M ®; N and Homy (M, N) carry
the structure of a G-module by setting

gm@n):=gm@gn and (g¢)(m) = gp(g~'m)

for every g € G, m € M, n € N, ¢ € Homy(M, N), respectively.

Since these structures extend to k[G], we should try to understand them without reference
to G. Let’s first look at tensor products: the spaces M and N are k[G]-modules, so M ®; N
naturally carries the structure of a k|G| ®j, k[G]-module. Note that the map

GxG— EkG®LklG] ; (9,h)—g®h

induces an isomorphism k|G x G| = k[G] ®j, k[G]. Hence the diagonal map g — (g, g) gives
rise to an algebra homomorphism A : k[G] — k|G| ®, k[G]. By definition, the k[G|-module
structure on M ®;, N is the pull-back of the k|G| ®j k|G|-structure along A.

In order to understand the k[G]-structure of Homy(M, N), we observe that the map
g — g¢g~! induces an isomorphism 71 : k[G] — k[G]® from k[G] to its opposite algebra
k[G]°P. The space Homy(M, N) obtains the structure of a k[G] ® k[G]°P-module via

(@ @b)p)(m) := ap(bm).

Our G-structure corresponds to the pull-back of this structure along the algebra homomor-
phism (idkig) ® 1) o A.

The maps A and n have various properties that will be listed in the definition below. One
obvious relation is (A ®@idyq)) 0 A = (idkjg ® A) o A ensuring that the natural identification
(X @rY)®r Z =X ®; (Y ® Z) is an isomorphism of k[G]-modules.

Unless mentioned otherwise a k-algebra A is meant to be associative with an identity
element that acts on all (left) modules via the identity operator. We will occasionally write
m : A®, A — A for the multiplication map. Given a k-algebra A, a A-module M, and
k-linear maps ¢ : V. — A, ¢ : W — M originating in some k-spaces V, W, we denote by
o) 1 V @ W — M the linear map given by (¢®v)(v ® w) := ¢(v)(w).

Definition. Let H be a k-algebra, A : H — H®  H, ¢ : H — k,andn: H — H
k-linear maps. We say that (H, A, ¢) is a bialgebra if
(1) A and e are homomorphisms of k-algebras,
(2) (A®idy)oA = (idg ® A)o A  (co-associativity),
(3) (idy®e)o A =idy = (eQidy) oA (counit).
If, in addition, we have
(4) (n®idg) o A =1 = (idg®n) o A,
then (H, A, e,n) is referred to as a Hopf algebra.



Remarks. (i). If H = k|G| is the group algebra of a group G, then ¢ is the unique homo-
morphism such that e(g) =1 V g € G.
(ii). If one writes down the axioms for a k-algebra H as commutative diagrams involving
m and the canonical map k — H, then (2) and (3) follow by dualizing these diagrams.
(iii). When dealing with the comultiplication A it is convenient to use the so-called
Heyneman-Sweedler notation

A(R) = >_ha) @ he).
(h)
For instance, (3) and (4) read as

Y hwelhe) =h =7 e(hw)he
) )

and
>_n(h@)he) = e(h) = 3 han(he).
(h) (h)
respectively.
(iv). The maps € and 71 are called the counit and the antipode of the Hopf algebra H,
respectively. The antipode is a homomorphism H — H®. It is bijective whenever H is
finite-dimensional.

(v). The ideal H' := kere is customarily referred to as the augmentation ideal of the
Hopf algebra H.

An algebra homomorphism f : H — H’ between two bialgebras is a bialgebra homomor-
phismif (f® f)oA=A'ofande o f=c. If H and H' are Hopf algebras with antipodes 7
and 7', respectively, then a Hopf algebra homomorphism additionally satisfies ' o f = f on.

An element g # 0 of a Hopf algebra H is called group-like if A(g) = g ® g. The set
G(H) of group-like elements of H is a subgroup of the group of units of H, the inverse of
g € G(H) being given by n(g). Moreover, G(H) is linearly independent, so that G(H) is
finite whenever H has finite dimension.

We say that x € H is primitive provided A(z) = 2 ® 1 + 1 ®@ . The set Lie(H) of
primitive elements is a subspace, that is closed under the Lie bracket [z,y] := zy — yz.

Examples. (1). Let T be an indeterminate over k. We can endow k[T and its localization
k[T with the following Hopf algebra structures:

(a) A(T)=T@1+1T,e(T)=0,n(T)=-T.

(b) A(T)=T @, T, e(T) =1, n(T) =T
Note that the Hopf algebra k[T is the group algebra k[Z] of the group of integers.

(2). An ideal I of a bialgebra H is called a bi-ideal if A(I) C H @ [ + [ ®, H and
e(I) = (0). In that case H/I canonically obtains the structure of a bialgebra. If, in addition,
H is a Hopf algebra and n(I) = I, then I is called a Hopf ideal and H/I inherits the Hopf
algebra structure from H.

(3). Let n € N, and consider the bialgebra O(Mat,,) = k[X;;,1 < i,j < n] whose
comultiplication and counit are given by

A(XZ]) = ZXM X ng ) €(XZ) = 51']',

(=1



respectively. Note that det((X;;)) € G(O(Mat,)).
(4). Given g € k\ {0}, we consider the k-algebra O,(k?) := k(z,y)/(yz — qry). Then
O,(k?) has a bialgebra structure given by

Alz) =z@1+yez, Aly)=yQy, @) =0, ) =1
This bialgebra is often referred to as the quantum plane.

Let H be a bialgebra, A any k-algebra. Given linear maps ¢, ¥ : H — A, we define the
convolution ¢ * 1 : H — A of ¢ and v via

(p x)(h Zgo Y(he) VY heH.

Lemma 1.1 Let H be a Hopf algebra. Then the following statements hold:
(1) H* is a k-algebra with multiplication given by convolution.
(2) If H is finite-dimensional, then H* is a Hopf algebra with operations A*(f) =

S fay ® foy & flab) = X fiy(a) fy(b)  Va,be H, e*(f) = f(1), and n*(f) = fon.

Proof. We illustrate the existence of an identity element: Note that

(1)) = 32l () = 3= Fe(hoo ) = F(1) ¥ b€ H
(h)

Consequently, ¢ is the identity element of H*. O

Suppose that dim;, H < oo. The group-like elements of H* are the characters of H, i.e., the
group Alg, (H, k) of k-algebra homomorphisms H — k. The space Lie(H*) consists of the
derivations H — k, that is, of all linear maps v such that ¥ (ab) = ¥(a)e(b) + £(a)(b).

Example. Consider the Hopf algebra k[T with A(T) = T®@1+1T,¢(T) =0, n(T) = -T.
Suppose that char(k) = p > 0. Given n € N the binomial formula yields A(T?") = T?" @
1+1®TP". Accordingly, (T*") is a Hopf ideal, and O(a,n) := k[T]/(T?") has the structure
of a Hopf algebra. We put ¢ := T + (T*"), so that O(a,n) has basis {t' ; 0 <i < p* — 1}.
Let {d; ; 0 <i <p"™— 1} be the dual basis within H(a,n) = O(a,n)*. Then we have
saam = L () iri=m
(0% 0;)(¢") = { 0  otherwise.
Consequently, &; * §; = (“77)8;4;, where the last term is understood to be zero whenever

i+ &40,....,p" —1}. This readily yields 67 = 0 for 7 > 1, and it follows that the map
X; = 0, induces an isomorphism

K[ Xo, .., Xoot] (X2, ... X7 ) — H(aym)

of k-algebras. Thus, as an algebra, H(a,n) is isomorphic to the group algebra of the elemen-
tary abelian p-group (Z/(p))". However, the Hopf algebras H(a,») and k[(Z/(p))"] are not
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isomorphic: the dual of H(a,n) is local (its group scheme is infinitesimal), while the dual of
k[(Z/(p))"] is separable (its group scheme is étale).

Let M be a k-vector space. The linear map
M M@M—Me,M ; mn—nem
is called the flip.
Definition. A bialgebra H is called cocommutative if and only if 74 0 A = A.
Note that a bialgebra is cocommutative exactly when its dual algebra is commutative.

Examples. (1). The Hopf algebras k[G], k[T, k[T|r, and H(a,n) are cocommutative.
(2). The bialgebras O,(k*) and O(Mat,,) are not cocommutative.

We continue by recording an important property of a Hopf algebra. Recall that a finite-
dimensional k-algebra A is referred to as a Frobenius algebra if it admits a nondegenerate
bilinear form (, ) : A x A — k such that

(ab,c) = (a,bc) VY a,b,c e A.

Forms with the latter property are referred to as associative. The form (, ) is usually
not symmetric. Its departure from symmetry is measured by the Nakayama automorphism
i A — A that is given by

(b, u(a)) = (a,b)  Va,beA.

Our next results show that cocommutative Hopf algebras are Frobenius algebras with Naka-
yama automorphisms of finite order.

Given a Hopf algebra H, we put [ := {x € H ; zh = ¢(h)x V h € H}. The non-zero
elements of [}, are called right integrals of H.

Theorem 1.2 ([75, 54]) Let H be a finite-dimensional Hopf algebra.

(1) We have dimy, [;; = 1.

(2) If X € [ \{0}, then H x H — k ; (a,b) — A(ab) is a nondegenerate, associative
form. a

Owing to (1) there exists an algebra homomorphism ¢ : H — k such that ha = ((h)z for
every h € H and z € [;;. The function ( is called the modular function of H.

Given an algebra homomorphism (a character) ¢ : H — k, the map ¢ * idy is readily
seen to be an automorphism of the algebra H. If H is finite-dimensional, then ¢ and { xidy
have finite order.

Proposition 1.3 ([57, 36]) Let H be a finite-dimensional Hopf algebra with modular func-
tion . Then (¢ *idg) on 2 is a Nakayama automorphism of H. a



If H is cocommutative, then n? = idy, so that (xidy is a Nakayama automorphism. Integrals
and modular functions are usually hard to compute. In case H = k[G] is the group algebra
of a finite group G, the element > ., g is an integral, and € is the modular function. In
particular, group algebras are symmetric algebras (i.e., with a symmetric, nondegenerate
associative form). By contrast, the Hopf algebras associated to infinitesimal group schemes
are usually not symmetric.

In our prefatory remarks we emphasized the fact that tensor products of modules over a
Hopf algebra H are also H-modules. Let me indicate the utility of this concept by giving a
result that illustrates the way in which tensor products are exploited.

Lemma 1.4 Let H be a finite-dimensional Hopf algebra, P a projective H-module, M an
arbitrary H-module. Then P ®y M is projective and injective.

Proof. Recall that the functors Homg (P ®; M,-) and Homy (P, Homg(M,-)) are naturally
equivalent. Direct computation shows that this equivalence induces an equivalence

Homp (P ®y M, -) = Hompg (P, Homy (M, -)).

Consequently, the left-hand functor is, as the composite of two exact functors, exact. Thus,
P ® M is projective, and since H is a Frobenius algebra, P ®; M is also injective. O

Using (1.4) one obtains identities for Ext-groups such as
Exty (M, N) = Ext} (k, Homy (M, N)),

where the right-hand groups are the Hochschild cohomology groups of the augmented algebra
(H,e) with coefficients in the H-module Homy (M, N).

We conclude our general observations by quoting a Hopf algebra freeness theorem that was
first verified in [57] for cocommutative Hopf algebras.

Theorem 1.5 ([56]) Let K be a Hopf subalgebra of the finite-dimensional Hopf algebra H .
Then H is a free left and right K-module. O

2. Group Schemes

In this section we will introduce the geometric interpretation of the theory of cocommutative
Hopf algebras. For a more thorough discussion we refer to [48] and [81]. Throughout, M} and
Ens will denote the categories of commutative k-algebras and sets, respectively. A functor
X : M — Ens is called a k-functor. The k-functors we will primarily be interested in are
the so-called affine schemes: given a commutative k-algebra A, we consider the k-functor

Specy(A) : M, — Ens ; R~ Alg, (A, R),
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where Alg; (A, R) is the set of k-algebra homomorphisms from A to R. An affine scheme is
called algebraic if A is a finitely generated k-algebra. Accordingly, a k-functor X is affine
algebraic if and only if there exist polynomials fi,..., fi, € k[X1,...X,] such that

X(R)=A{(r1,....m) €R"; filry,...,rn) =0, 1 <i<m},

for every commutative k-algebra R. The rational points X (k) of the affine algebraic schemes
are the affines varieties from classical algebraic geometry.

Group functors take values in the category Gr of groups. In order to see the connection
with Hopf algebras, we require the following basic result:

Theorem 2.1 (Yoneda’s Lemma) Let A, B be two commutative k-algebras. The assign-
ment ® — P 4(idy) is a bijection between the set of natural transformations Specy(A) —
Spec,(B) and Alg, (B, A). In other words, for every natural transformation ® : Spec,(A) —
Spec,(B) there exists a unique homomorphism ¢ : B — A of k-algebras such that Pr(\) =
Ao for every A € Alg,(A, R) and R € Mj,.

Proof. Each natural transformation ® : Spec,(A) — Spec,(B) is determined by ®4(ida) €
Spec,(B)(A): If A: A — R is a homomorphism of commutative k-algebras, then

Dp(\) = Bp(Noids) = Br(Specy (A)(N)(ida)) = Specy(B)(A)(@a(ida)) = Ao ®alids). D

Let @ : Spec,(A) — Spec,(B) be a natural transformation. The corresponding homo-
morphism B — A is often denoted ®* and referred to as the comorphism associated to
.

Let A and B be commutative k-algebras. Then there is a natural equivalence
Spec,(A) x Spec,(B) — Specy(A ®y B)
sending a pair (z,y) of algebra homomorphisms with values in R to the unique map

1@y : Ay B — R ; a®bw x(a)y(d).

Definition. Let G : M — Gr be a k-functor taking values in the category Gr of groups.
We say that G is a k-group functor if

(a) the multiplication (mg : G(R) x G(R) — G(R))gen, is a natural transformation,
and

(b) the inverse map (tg : G(R) — G(R))gren, is a natural transformation.
We say that G is an affine group scheme it the k-functor G is affine. If the representing
algebra A is finitely generated, then the affine group scheme is called algebraic. In that case
G is often referred to as an (affine) algebraic k-group.

Examples. (1). Consider the k-group functor GL,, : My — Gr

GL,(R) := {(r;) € Mat,(R) ; det((r;;)) is invertible}, R € M.

8



Observe that GL, = Spec,(O(Mat,)det(x;;)) is an affine algebraic group.
(2). Consider ay : M, — Gr; ag(R) := (R, +) for every R € Mj,.
(3). Consider py : My — Gr; ug(R) := (U(R),-) for every R € My. The k-group
functor ur = GL; is represented by the Hopf algebra k[T'r.
(4). Suppose that char(k) = p > 0. Given n € N, we consider the group a,n that is given
by
apn(R) :={r € ag(R) ; " = 0}.

Note that oy, and a,n are represented by the commutative Hopf algebras k[T] and k[T']/(T*"),
respectively. For aj the points of R are identified with the values of z(T'), where x €
Spec,(k[T])(R). The operation of ay is induced by the comultiplication of k[T:

2(T) +y(T) = (2&y)(T @ 1+10T) = ((z&y) o A)(T).
Inverses are given by the antipode:
—a(T) = a(=T) = (z o n)(T).

For every R € My, the group ay(R) = Spec,(k[T]/(T*"))(R) is contained in ax(R), and the
inclusion is induced by the surjective map k[T| — k[T]/(T?"). This is an example of a
closed subgroup of an algebraic group.

The group GL, is an example of a reduced group scheme. Recall the bialgebra O(Mat,,).
This algebra represents the monoid functor Mat,, that associates to every commutative k-
algebra R the multiplicative monoid Mat,,(R) of (n x n)-matrices with coefficients in R.
Since this algebra is reduced (i.e., with zero being the only nilpotent element), its localization
O(Maty,)det(x,;) has the same property The algebraic groups represented by reduced Hopf
algebras, the so-called reduced group schemes may be analyzed by studying their rational
points. By contrast, a,- (k) = {0}, so the rational points don’t provide any information here.

Suppose that (A, A, e,n) is a commutative Hopf algebra. Given R € M, we define a multi-
plication on Spec,(A)(R) via convolution:

(zxy)(a) =Y z(a)y(aw))- (1)

(a)

(Observe that we need the commutativity of R to ensure that z *y is a homomorphism of k-
algebras.) Then (Spec,(A)(R), *) is a group with identity element € and inverse 27! = xon.
These operations endow Spec;(A) with the structure of an affine group scheme.

The following result shows that all affine group schemes arise in this fashion.

Proposition 2.2 Let A be a commutative k-algebra such that Spec,(A) is a group scheme.
Then A has the structure of a Hopf algebra such that the group structure on Specy(A) is

given by (1).



Proof. Tet m be the multiplication on G := Specy(A). Then m : G x G — G is a
natural transformation. We combine this transformation with the natural equivalence = :
Spec,(A ®, A) — G x G. By the Yoneda Lemma, there exists an algebra homomorphism
A:A— A®; A such that

(movy)(x) =x0A V x € Spec,(A @k A)(R), R € M.
Let g, h € G(R). Then g®h is the pre-image of (g, h) under 7. We thus have

(g h)(a) = ((g®h) o A)( Zgaa (a@) = (g% h)(a).

The Yoneda Lemma also provides an algebra homomorphism 1 : A — A such that g7! =
gon for every element g € G(R). The Hopf algebra axioms are now readily seen to correspond
to the group axioms. O

Remark. Since (g7')~! = g for every g € G(R), we conclude that the antipode n of a
commutative Hopf algebra satisfies n* = id. In view of (1.1) the antipode of a finite-
dimensional cocommutative Hopf algebra satisfies the same identity. By the same token, an
algebra homomorphism ¢ : H — H' between two cocommutative Hopf algebras satisfying
Ao p=(p®¢)oA is a homomorphism of Hopf algebras.

Let ¢ : G — H be a natural transformation between two group functors. We say that ¢ is
a homomorphism of k-group functors if for every R € M), the map ¢r : G(R) — H(R) is a
group homomorphism. The Yoneda Lemma then shows that the homomorphisms between
affine group schemes correspond to the Hopf algebra homomorphisms. More precisely, we
have:

Proposition 2.3 The categories of affine group schemes and commutative Hopf algebras
are anti-equivalent.

Proof. We only have to understand how to retrieve A from Spec,(A). For any scheme X we
define O(X) to be the set of natural transformations X — Spec, (k[T]). This set naturally

has the structure of a k-algebra. In case X = Spec;(A), the Yoneda Lemma provides an
identification O(X') = Spec, (k[T])(A) = A. O

Definition. Let X be a k-functor. Then the k-algebra O(X) of all natural transformations
X — Spec, (k[T]) is called the function algebra of X.

Given a homomorphism ¢ : G — H of affine group schemes, we consider the functor ker ¢
that is defined by ker ¢ (R) := ker pg for every R € M. Let ¢* : O(H) — O(G) be the
Hopf algebra homomorphism corresponding to ¢, and let I := O(G)p*(O(H)T) be the ideal
generated by the image of the augmentation ideal O(H)" of O(H). Then z € ker  (R) if
and only if z(I) = (0). In other words, the functor ker ¢ is represented by the Hopf algebra

OG)/1.
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Suppose that k is algebraically closed, and let A be a finitely generated, commutative k-
algebra. Every finite-dimensional semisimple subalgebra S C A gives rise to a finite subset
of mutually orthogonal idempotents of A. Since A is noetherian, it follows that A possesses
a unique maximal finite-dimensional semisimple subalgebra m(A). Moreover, if A is a Hopf
algebra, then my(A) is a Hopf subalgebra of A.

Now let G = Spec;,(A) be an affine algebraic k-group. We put my(G) := Specy(mo(A))
and consider the homomorphism 7 : G — 7y(G) that is given by restriction. The subgroup
G := ker 7 is called the connected component of G.

Definition. An affine group scheme G := Spec;(A) is connected if A possesses exactly one
idempotent.

Note that G° is a connected, affine algebraic group scheme. An arbitrary affine algebraic
group G = Spec,(A) is connected if and only if the prime ideal spectrum of A is connected.

3. Distribution Algebras

In this section we will interpret cocommutative Hopf algebras as the algebras of measures on
the finite algebraic k-groups. For simplicity we will assume throughout that k is algebraically
closed.

Definition. An affine group scheme G is said to be finite if its function algebra O(G) is
finite-dimensional. Given such a scheme G, we call H(G) := O(G)* the algebra of measures
on G. The number ord(G) := dimy O(G) is referred to as the order of the finite algebraic
group G.

Observe that H(G) is a finite-dimensional cocommutative Hopf algebra. Our previous results
now show that the category of finite-dimensional cocommutative Hopf algebras is equivalent
to the category of finite group schemes. Indeed, if H is such a Hopf algebra, then Gy =
Spec,(H*) is a finite group scheme such that H = H(Gpy).

Algebras of measures can be viewed as “group algebras” of finite group schemes: Given
a k-vector space V., we consider the k-functor V, : My — Ens ; V,(R) ==V @, R. In
particular, we can consider H(G),, and note that H(G) ®; R has the structure of a Hopf
algebra over R with comultiplication

AR H®yR— H®, H®, R=(H®, R)Qr (HRLR) ; h@r— Y hay®h@g Q.
(h)

There is an embedding g : G — H(G),, which interprets an element g : O(G) — R
G(R) as a homomorphism O(G) ®; R — R of R-algebras. Since Hompz(O(G) ®; R, R)
Homy(O(G), R) = H(G) ® R this amounts to identifying G(R) with G(H(G) ®; R). Given
any morphism f : G — V, there exists a unique k-linear map f : H(G) — V such that

- m

~

fr=(f®idg)o (g)r V R e M,.
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The interested reader may consult [78] for more details.

Definition. Let G be a k-group, V a k-vector space. We say that V is a G-module if
there exists a natural transformation G x V, — V, such that for every R € M, the map
G(R) x (V @, R) — V ®; R is an action of the group G(R) on V ®; R by R-linear

transformations.

Suppose that G is a finite algebraic group. The universal property of H(G) entails that
the notions of G-module and H(G)-module coincide: every G-module possesses a unique
H(G)-module structure and vice versa.

Examples. (1). Let char(k) = p > 0 and consider the group a,». We have observed before
that H(apn) = k[Xo, ..., Xno1]/(XE, ..., XP_,) as an algebra . Recall that the generator X;
corresponds to the functional &,:, where {dy,...,d,n_1} is the basis dual to {1,¢,..., " —1}
of the function algebra k[T]/(T?"). Direct computation shows that

AWG)=3"6,®6—; 5 e(&)=10di0 ; 1) =(=1)'6;.
7=0

Thus, Lie(H (ayn)) = kd1 = kX, while G(H(ayn)) = {do}. In particular, H(a,n) is gener-
ated by Lie(H (ayn)) if and only if n = 1.
(2). Given n > 0 we consider the finite group scheme p,, : M, — Gr,

pn(R) ={reR; r =1}

Note that u, = Spec,(k[T|/(T™"—1)). If t := T+ (T™— 1), then we have A(t) = t®t, e(t) =
1, n(t) =t"*. Given g,h € H(p,) we have

(g h)(t") = g(t)A(t").

whence H(p,) = k™ is semisimple. If {do, ..., d,_1} is the basis dual to {1,¢,...,t""'}, then
the ¢; are the primitive idempotents of H(u,). We also have

n—1

A(6;) = Z 0; ®@6i—; 5 €(6i) =dio 3 n(di) = 0_i,

=0
where the subscripts are considered elements of Z/(n). Here we have Lie(H (u,)) = (0) for
p fn, and dimy, Lie(H (p,)) = 1, otherwise.

So far, the characteristic of the underlying base field k& has not played a major role. The
following fundamental result shows how the classical characteristic zero theory differs from
the modular theory. It says that algebraic groups in characteristic zero are reduced and
hence are completely determined by their rational points.

Theorem 3.1 (Cartier) Suppose that char(k) = 0. Then every commutative Hopf algebra
A over k is reduced. O

12



Corollary 3.2 If H is a finite-dimensional, cocommutative Hopf algebra such that H* is
reduced, then there exists a finite group G such that H = k|G|. In particular, all finite-
dimensional cocommutative Hopf algebras of characteristic zero are semisimple.

Proof. By assumption A := H* is a finite-dimensional reduced algebra and thus a product
of copies of k. We let G := Alg, (A, k) be the character group of A, endowed with the convo-
lution product. Then ord(G) = dimy A, and G C H is linearly independent. Consequently,
the canonical map k[G] — H is an isomorphism of Hopf algebras.

If char(k) = 0, then Cartier’s Theorem implies that H = k[G]. Owing to Maschke’s
Theorem the latter algebra is semisimple. O

Since we will be mainly interested in questions related to the representation type of an
algebra, (3.2) shows that we will ultimately be studying Hopf algebras that are defined over
fields of positive characteristic.

Suppose that char(k) = p > 0, and consider the group p,,, where n = p*¢ with p not dividing
0. The map r +— (r?",r%) is an isomorphism p, = u, X p,s. Note that the first factor is

represented by k[T]/(T*—1) = k', while the second has local function algebra k[T]/(T?* —1).
We shall now see that finite algebraic groups behave like this in general.

Let H be a finite-dimensional Hopf algebra with counit . As an algebra, H decomposes
into its blocks H = By® B, ®---@® B,,. Here By is the block to which the trivial H-module k,
with H acting via ¢, belongs. In other words, By is determined by the property (By) # (0).
This block is usually referred to as the principal block By(H) of H. It is not true in general
that the principal block of a Hopf algebra is a Hopf subalgebra. In fact, if H is commutative,
then By(H) is a Hopf subalgebra if and only if By(H) = H (Byo(H) is local with unique
idempotent eg. Thus, A(ey) = ey ® ey, and ey is invertible, whence eg = 1).

Definitions. Let G be an affine group scheme. A subfunctor H C G is called a (closed) sub-
group if there exists a Hopf ideal I C O(G) such that H(R) = V(I)(R) :={g € G(R); g(I) =
(0)} for every commutative k-algebra R.

A homomorphism G — G’ of affine group schemes is called a closed embedding if the
associated map O(G") — O(G) of k-algebras is surjective.

Let A/ C G be a subgroup. We say that N is a normal subgroup of G if N(R) is normal
in G(R) for every R € M.

Note that the comorphism ¢* : O(G) — O(G) ® O(G) of the conjugation ¢ : G x G —
G 5 (g9,h) — ghg™'is given by c*(a) = X (,) a@)n(a@s)) ® a). Hence N'= V(I) is normal if
and only if ¢*(I) C O(G) @ I.

Theorem 3.3 Let G = Specy,(A) be a finite algebraic group. Then G is a semidirect product

G = G°%Greq, where G° is normal and Greq = 70(G). As a k-functor, the connected component
GY is represented by the principal block By(A).

13



Proof. We decompose A = @7, B; into its blocks, and denote the primitive idempotents by
{eg,...,en} with By := By(A) = Aey. Since each block B; = Ae; is local and of the form
B; = ke; @ rad(B;), the subalgebra S := > ke; is the largest semisimple subalgebra of A,
and we have A = S @ rad(A).

Since rad(A) is the set of nilpotent elements of A, it is a Hopf ideal. Consider the closed
subgroup Greq := V(rad(A)) of G.

Note that {e;®e; ; 0 <1, j < n} is the set of orthogonal primitive idempotents of A®y, A.
Since A(e;) is an idempotent of A ®; A, we have A(e;) € S ®; S. Consequently, S is a Hopf
subalgebra of A, and the composition Ao ¢ of the canonial projection A — A/rad(A) with
the inclusion ¢ : S — A is an isomorphism S = A/rad(A) of Hopf algebras. Accordingly,
the corresponding isomorphism Spec; (Ao ¢) : Grea — mo(G) factors as

Specy (A P
gred p—k(> ) g — 71-O(g)a

so that G = G° x G,eq. By definition, G° = ker 7 is normal in G. Since G° = V(AST) and
AST = @7, B;, we see that the representing algebra A/AST is isomorphic to By(A). O

The foregoing result can also be interpreted at the level of Hopf algebras. Recall from
(3.2) that, given a reduced finite algebraic group G, we have H(G) = k|G|, where G =
Alg, (0(G), k) = G(k) is the finite group of rational points of G. Now let G = G% x G,.q be
an arbitrary finite algebraic group. Since the connected component G° is represented by a
local algebra, we have

g<k) - go(k) X gred(k) = gred(k)-
It follows that

H(G) = H(G")#H (Grea) = H(G")#k[G (k)] = H(G)[G(k)]

is the smash product of H(G®) with the group algebra of the rational points of G. The
right-hand term interprets the smash product as a skew group algebra. When studying
the representations of a cocommutative Hopf algebra one thus has to understand three
disciplines, all of which require different methods and yield different results:

(a) The modular representation theory of finite groups. By now, this field is rather
well-understood.

(b) The representation theory of the infinitesimal group G°, which will be the focal point
of these lectures.

(¢) The fusion of (a) and (b). Here one has to study the Frobenius extension H(G) :
H(G"), and results are only known in special cases (cf. [29, 30, 67]).

It has turned out that the methods figuring prominently in (a), such as the Mackey decom-
position theorem, usually break down for infinitesimal group schemes. This has ultimately
led to the approach via the geometric methods to be outlined below.

Definition. A finite group scheme G is infinitesimal if its function algebra O(G) is local. In
that case H(G) is also called the distribution algebra of G.
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Note that an affine algebraic k-group G is infinitesimal if and only if G(k) = {1}. By Cartier’s
theorem any infinitesimal group of characteristic zero is trivial.
For the remainder of this section we assume that char(k) =p > 0.

Examples. (1). The groups a,» and p,n» are infinitesimal for every n > 0.
(2). Consider the closed subgroup of GL(2) given by

n n

GL(Q)n(R):{<CCL 2) EGLR)(R): a” =1=d" , " =0=c"}

for every commutative k-algebra R. The group GL(2), is readily seen to be the kernel of
the homomorphism

pn n
F* GL(2) — GL(2) ; (‘CL Z>H<“n Z;).

Cp

Accordingly,
O(GL(2)n) = O(GL(2))/({XTy — 1. X35, — 1, X]5, X5, }),

so that GL(2), is finite. Since GL(2), (k) = {1} the group scheme GL(2),, is infinitesimal.

The preceding example shows how one can generate infinitesimal groups from reduced groups.
The relevant notion in this context is that of the Frobenius homomorphism. Suppose that
char(k) = p > 0. If V is a k-vector space, we denote by V") the k-vector space with
underlying abelian group V' and action given by

a-v:=a""v YackvelV.

Given an affine k-group G, we let G#") := Spec, (O(G)®™)) be the affine group scheme defined
by the twisted function algebra of G.

Definition. Let G be an affine algebraic group scheme over the algebraically closed field &
of characteristic p > 0. The homomorphism F': G — gw satisfying

Fr:G(R) — GP(R) ; Fr\)(z)=Xx)? YAXeG(R), zecOG), Re M,

is called the Frobenius homomorphism of G. The kernel G, of its iterate F™ : G — g is
referred to as the n-th Frobenius kernel of G.

Remarks. (1). Note that Fr(A) is indeed a k-linear map:
Fr(M\)(a-z) = Marz)? = aFr(\)(z)

for every x € O(G) and a € k.
(2). We have F™ = Spec,(¢y,), where

on: OO — O(G) ; s
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It follows that O(G,) = O(G)/O(G)en(O(G)T) = O(G)/O(G){zP" ; x € O(G)'}. Conse-
quently, G, is an infinitesimal k-group whenever G is algebraic.

(3). Certain problems on representations of algebraic groups can already be decided
on sufficiently large Frobenius kernels. For instance, two finite-dimensional G-modules are
isomorphic if and only if their restrictions to a suitable G,, enjoy this property.

Examples. (1). The group a,n» is the n-th Frobenius kernel of ay.
(2). Forn > 1, let

n 2

AM(R)::{@ Z)eGL(Q)(R);apnzlzdp LV =0=¢} , Re M,

Then Ajp,; C GL(2), is an infinitesimal subgroup of GL(2) containing GL(2); which is not a
Frobenius kernel of GL(2).

Proposition 3.4 Let G be a finite algebraic k-group. Then G is infinitesimal if and only if
G =G, for somen > 0.

Proof. Suppose that G is infinitesimal, and put I := O(G)'. By assumption, the ideal I is
nilpotent, so there exists an n > 0 such that 27" = 0 for every « € I. By our remark above,
this implies that G, = V(O(G){2?" ; x € [})=V((0))=¢G. O

Definition. Let G be an infinitesimal k-group. Then ht(G) := min{n € Ny ; G = G, } is
called the height of G.

The algebras of measures of an infinitesimal group scheme are a special case of a more
general construction that applies to arbitrary affine group schemes. We briefly indicate the
definition; a thorough account can be found in Jantzen’s book [48, 1.§7]. Let G = Spec;(A)
be an affine group scheme. Then

Dist(G) := {h € A* ; h((A")™) = (0) for some n € N}

is a subalgebra of A*. If G is algebraic, then the definition of the comultiplication for finite-
dimensional A still works, and Dist(G) has the structure of a Hopf algebra. This Hopf algebra
is called the distribution algebra of G. If G is a finite algebraic group, then Dist(G) C H(G)
with equality holding if and only if G is infinitesimal.

Definition. Let G be an affine algebraic k-group. Then Lie(G) := Lie(Dist(G)) is called the
Lie algebra of G.

Let # € Lie(G). Then we have z(ab) = z(a)e(b) + e(a)xz(b) for a,b € O(G), so that
z((0(G)")?) = (0). Consequently, the natural map Dist(G,) — Dist(G) induces an iso-
morphism Lie(G,) = Lie(G).

Let G be an affine algebraic k-group. Since e, = V(O(G')) is a normal subgroup, the
comorphism ¢* : O(G) — O(G) ® O(G) of the conjugation action satisfies c*(O(G)") C
O(G) @ O(G)". Hence we have an action

O(G)" @ Dist(G) — Dist(G) ; (¢ ¥)(a) = ((p¥) o c” ZSD amyn(ae))¥(ae)
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for every a € O(G). Direct computation shows that ¢ -1 = 3y ) * ¥ x n*(p)) for
@, ¥ € Dist(G). Thus, our action specializes to the (left) adjoint representation of the Hopf
algebra Dist(G). One verifies that

w1 € Lie(G) V¢ eO(G)", ¥ e Lie(G).

In particular, the group G(k) acts on Lie(G) via the adjoint representation:

g-p=gxvxg ' Vgegk), ¢ e Lieg).
Finally, we have ¢ - = pxb — v x o VY p, 1 € Lie(G) for all n > 1.

4. Restricted Lie Algebras

Given a Hopf algebra H, we have defined the associated Lie algebra Lie(H) via
Lie(H) ={z e H; Alz) =21+ 1®z}.

In general, Lie(H) is closed under the commutator product [z,y| := zy — yx of H, that
is, Lie(H) is a Lie subalgebra of the Lie algebra (H,[,]). If char(k) = p > 0 we also have
a? € Lie(H) for every x € Lie(H). Lie algebras with the latter property are called restricted
Lie algebras.

Throughout this section we assume that k is an algebraically closed field with char(k) =
p > 0. The abstract notion of a restricted Lie algebra arose first in work by N. Jacobson
concerning a Galois theory for purely inseparable field extensions of exponent 1.

Given a Lie algebra L, the left multiplication effected by the element = € L is customarily
denoted adz : L — L; y — [z,y]. If (L,[,]) is a Lie algebra over k, and R is a commutative
k-algebra, then L ®; R obtains the structure of a Lie algebra over R via [z ® r,y ® s] :=
[z,y]@rs forall z,y € L, r,s € R.

Definition. A restricted Lie algebra (L, [p]) is a pair consisting of a Lie algebra L and a
map [p] : L — L such that
(1) adalP! = (ad2)» VazelL,
(2) (az)Pl=arall Vack zelL,
(3) (x4 y)P =zl 4 Pl 4 71 5, (2, y), where the s; are given by the identity
(ad(z@T+ye1))P Y eol) = isi(z,y) @ T
in L ®; k[T]
A map [p| : L — L satisfying (1)-(3) is called a p-map.

Given an associative k-algebra A, its commutator algebra (A~,[,]) with product [z,y] =
xy — yx is restricted with respect to the ordinary p-power operator x +— aP.

If (L, [p]) is a restricted Lie algebra, a subalgebra K C L (an ideal I C L) is called a p-
subalgebra (a p-ideal) if 2P € K V2 € K (2P € I ¥ 2 € I). The notions of homomorphisms
and factor algebras of restricted Lie algebras are defined in the canonical fashion.

Suppose that L is an abelian Lie algebra, i.e., [z,y] = 0 for z, y € L. Then the p-maps
on L are just the p-semilinear maps. These are determined by their values on a basis. The
following result shows that this holds for arbitrary p-maps.
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Theorem 4.1 Let L be a Lie algebra with basis (€;)1<i<n. Suppose there exist x; € L (1 <
i < n) such that
(ade)! =adz; 1<i<n.

Then there ezists a unique p-map [p| : L — L such that egp] =x; 1<i<n. O

The foregoing result enables us to construct simple examples.

Examples. (1). We consider the (2n+1)-dimensional Heisenberg algebra H, with basis
{z1,..., 20, Y1, -, Yn, 2}. The Lie product is given by

(i, Y] = 0i52 [z, 23] = 0= [y, y5] 5 [z, Ha] = (0).

We endow H,, with the following p-maps:
(a) 2 =0 =y 5 2 =0,
(b) e =0=yl; =z

(2). Let L = kt @ kx, [t,z] = x. Then L possesses exactly one p-map namely the one
satisfying
thl=1¢

; zlPl = 0.
Let L be a Lie algebra with universal enveloping algebra (U(L),¢). By definition ¢ : L —
U(L)~ is a homomorphism of Lie algebras satisfying the following universal property: for
any associative k-algebra A and any homomorphism f : L — A~ of Lie algebras there
exists a unique homomorphism ¢ : U(L) — A of associative algebras such that ¢ ot = f.

It will be convenient to employ multi-index notation. Let A be an k-algebra, a :=
(ay,...,ap) € A*, and i = (iy,...,4¢) € Nj. Then we put

Given (-tuples r = (rq,...,70) ; s =(S1,...,8¢) € Nf; we define
r<s:&r; <s; 1 <3</

We also put 7:=(p—1,...,p—1).
The following result is usually referred to as the PBW-Theorem:

Theorem 4.2 (Poincaré-Birkhoff-Witt) Let L be a Lie algebra with basis {z1,...,x,}.
Then {u(z)™ ; n € N§} is a basis of U(L) over k. O

In particular, ¢ : L — U(L) is an embedding, and we will henceforth consider L a subalgebra
of U(L)~. Since x — z®1+1®x is a homomorphism L. — (U(L)®,U(L))~ of Lie algebras,
there is a unique extension A : U(L) — U(L) ® U(L) of associative k-algebras. By the
same token, there exist unique homomorphisms 7 : U(L) — U(L)® and ¢ : U(L) — k
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such that n(z) = —x and e(x) = 0 for every x € L. Consequently, U(L) is a Hopf algebra
that is generated by L.

Many features from the theory of finite-dimensional Hopf algebras lose their validity
for U(L). For instance, the global dimension of U(L) coincides with dim L. By contrast,
Frobenius algebras never have finite non-zero global dimension. Moreover, U(L) is free of
zero divisors. In view of (1.2) this shows that k- 1 is the only finite-dimensional Hopf
subalgebra of U(L). Thus, while Dist(G) = U(Lie(G)) in case char(k) = 0 (cf. [14, 11.§6]),
it will follow from (4.4) below that these algebras are not isomorphic over fields of positive
characteristic.

If (L,[p]) is a restricted Lie algebra with basis {z1,...,z¢}, we define z; := a¥ — 2 e
U(L). Then one can modify the PBW-Theorem to show that {2’27 ; 0 <i <7, j € N} is
a basis of U(L) over k.

Definition. Let (L, [p]) be a restricted Lie algebra with universal enveloping algebra U(L).
Let I C U(L) be the two-sided ideal generated by {z” — z"! ; z € L}. Then

u(L):=U(L)/I
is called the restricted enveloping algebra of L.

Now suppose that {z1,...,2,} C L is a basis, and consider the natural map ¢ : L — u(L).
The modified PBW-Theorem readily yields

Corollary 4.3 The set {¢(x)" ; 0 < r < 71} is a basis of u(L) over k. In particular, v is
injective, and dimy u(L) = pdiok L 0

Accordingly, we will henceforth consider L a subalgebra of w(L)~. Since [ is generated by
primitive elements, [ is a Hopf ideal, and wu(L) inherits the Hopf algebra structure from
U(L). As u(L) is generated by primitive elements, it is a cocommutative Hopf algebra. Note
that u(L) has the following universal property: for any k-algebra A and any homomorphism
f: L — A~ of restricted Lie algebras, there exists a unique homomorphism ¢ : u(L) — A
of associative k-algebras such that ¢|p = f.

Example. For restricted enveloping algebras integrals, modular functions, and Nakayama
automorphisms can be written down explicitly. Let (L, [p]) be a restricted Lie algebra with

basis {e1, ..., e,}, and corresponding basis {€¢”" ; 0 < r < 7} of u(L). We consider the linear
form
Ciu(l) —k ; > ae —a,.
0<r<rt
Since each e; is primitive, we have A(e") = Xo<,<,(5)e® ® 7%, where () := [[7-,(%}). For

¢ € u(L)* we thus have
(Cx@)(e) = > ()C(e)p(e™) = drrp(1) = e(9)(€N).

0<s<r

Hence ( is a right integral. It was shown in [28] that {(ze") = ((e"(z—tr(ad z)1) for every x €
L. Consequently, the unique automorphism p : u(L) — u(L) satisfying p(z) = z—tr(ad z)1
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for every x € L is a Nakayama automorphism of u(L). In view of (1.2) z — —tr(ad z)1 gives
rise to the modular function of u(L).

In contrast to group algebras of finite groups, restricted enveloping algebras are usually
not symmetric. In fact, they are symmetric precisely when tr(adz) = 0 for every = € L, a
fact that was first observed by Schue [69].

Let G be a reduced affine algebraic k-group. Then G acts on H(G,) via the adjoint
representation Ad, and a combination of [48, (1.9.7)] and [48, p.135] shows that the character
g+ det(Ad(g)) ! defines a modular function of H(G,).

We will return to the structure of restricted Lie algebras in §13 when we study schemes of
tori. Presently, we are interested in the interpretation of Lie algebras as infinitesimal groups
of height < 1.

Theorem 4.4 Let G be an infinitesimal k-group.
(1) There is an embedding u(Lie(G)) — H(G) of Hopf algebras.
(2) The group G has height <1 if and only if u(Lie(G)) = H(G).

Proof. Let L := Lie(G). The universal property of u(L) guarantees the existence of an algebra
homomorphism ¢ : u(L) — H(G) such that (|, = id. Thus, ((® () o A)|r = (Ao )|z,
egoC =c¢p,and (ngo()|r = (Conr)|r, so that ¢ is in fact a homomorphism of Hopf algebras.

Let {z1,...,2,} be a basis of L over k. By (4.3) {27 ; 0 < r < 7} is a basis of
u(L) over k. Let {d, ; 0 < r < 7} be the dual basis of the commutative Hopf algebra
O(L) := u(L)*. Direct computation shows that d, * s = ("*)d,,s. If €; denotes the n-tuple
with i-th entry 1 and all other entries zero, then the map X; — d, induces an isomorphism

kX1, .., X,]/ (XY, ..., XP) 2 O(L) of k-algebras. Moreover O(L)" = (X1,...,X,,).

Recall that L is the space of derivations O(G) — k. This space is isomorphic to
O(G)T/(O(G)")?. Application of this argument to O(L) shows that dimy Lie(u(L)) = n, so
that L = Lie(u(L)).

(1). Consider the transpose map (' : O(G) — O(L). Since (|, = idy, we see that ('
induces an isomorphism O(G)"/(O(G)")? = O(L)'/(O(L)1)%. Consequently,

O(L) = ¢'(0(G)) + (O(L)')? = ¢(0(9)) + rad(O(L))?,

so that ¢t is surjective. Accordingly, ¢ is injective.

(2). Suppose that G is infinitesimal of height < 1. Then z¥ = 0 for every z € O(G)T.
Since dimy, L = n, the local algebra O(G) is generated by n elements of O(G)T. Thus, the
resulting surjective homomorphism k[X1,..., X,] — O(G) factors through the truncated
polynomial ring k[X1,..., X, ]/(X7,..., XP). Hence dim; O(G) < p", and the injection ( is
surjective. O

Remark. Thanks to (4.4) the functors G — Lie(G) and L — Spec, (u(L)*) induce equivalences
between the categories of infinitesimal groups of height < 1 and restricted Lie algebras,
respectively.

Proposition 4.5 The distribution algebra of an infinitesimal k-group has dimension a power
of p.
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Proof. Let A be a local, commutative Hopf algebra. We show that A has dimension a power
of p. We proceed inductively, and consider the Hopf subalgebra B := {a? ; a € A}. If
B = k1, then G := Spec;(A) is an infinitesimal group of height < 1 with function algebra
A. Hence our assertion follows from a consecutive application of (4.3) and (4.4).

Alternatively, (1.5) implies that A is free over B. Moreover, rkg(A4) = dim;, A/ABT.
Since A/ABT is also a local Hopf algebra, the inductive hypothesis ensures that dim;, B and
rkp(A) are p-powers. O

5. Complexity and Representation Type

Throughout this section we will be working with a finite-dimensional self-injective algebra A,
defined over an arbitrary field k. The notion of the complexity of a module, first introduced
by Alperin for group algebras of finite groups [2], has proven to be an effective tool in
representation theory. Its main feature is that it makes methods from homological algebra
amenable to applications.

Let (ai)i>o0 be a sequence of natural numbers. We call

v((a;)i>0) := min{s € NU {oo} ; IX > 0 such that a, < An°*t Vn>1}

the rate of growth of the sequence (a;)i>o. If V := (V;)i>0 is a sequence of finite-dimensional
k-vector spaces, then we write y(V) := y((dimy V;)i>0).

Definition. Let M a finite-dimensional A-module, P := (P;,0;);>0 a minimal projective
resolution of M. Then cy(M) := v(P) is called the complexity of M.

Remarks. (1). Since any two minimal projective resolutions are isomorphic, the complexity
of a module is well-defined.

(2). Projective modules obviously have complexity zero. Conversely, if cy(M) = 0,
and P := (P;, 0;);>0 is a minimal projective resolution of M, then there is n > 1 such that
P, = (0). Thus, M is, as a module of finite projective dimension over a self-injective algebra,
projective.

By our last observation, semisimple algebras are characterized by the property that all their
modules have complexity zero. In this section we want to provide similar characterizations
for algebras of finite- and tame representation type. We begin with an interpretation of the
complexity in terms of extension groups. We let S denote a complete set of representatives
for the isomorphism classes of the simple A-modules. The projective cover of the simple
A-module S will be denoted P(S5).

The following result, due to Alperin-Evens [3], relates the complexity of a module to the
growth of certain Ext-groups.

Proposition 5.1 Let M be a finite-dimensional A-module. Then
ea(M) = max y((Exti (M, 5))n>o).
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Proof. Given a minimal projective resolution (P,),>o of M, we decompose each P, into its
indecomposable constituents and write P,, = @pcg {nrP(T'). Basic properties of Ext yield

dimy Ext} (M, S) = Z 7 dimy, Homy (P(T), S) = £, s dimg Homy (S, S).

TeS
Consequently,
ea(M) = max ((fn,s)nz0) = max Y((Ext3(M, 5))nxo),
as desired. O

In the sequel we let mod(A) denote the category of finite-dimensional A-modules. Let M €
mod(A). Given a minimal projective resolution (P;,0;);>0 of M, the syzygies QR (M) :=
ker 9, 1 (n > 1) are uniquely determined up to isomorphism. Hence Q, := Q} is a well-
defined operator on the isoclasses of A-modules. This operator is customarily referred to as
the Heller operator or loop space operator. Note that 2, induces a functor on the stable
module category mod(A). By definition, we have Q7 o Q% = Q" for m,n > 0.

Dually, we can construct for n > 1 operators Q3" by setting Q3" (M) := coker 9",
where (E;, 0");>0 is a minimal injective resolution of M.

Given M € mod(A), the theorem of Krull-Remak-Schmidt implies a decomposition

M = Mp @ (proj),

in which the first summand is the sum of all non-projective indecomposable constituents of
M. In the following we shall consider the category mod(A)p consisting of those A-modules M
for which M = Mp. Since A is self-injective, each element of mod(A)p is characterized by the
property that it admits no non-zero projective submodules. Note that Q% (M) € mod(A)p
forallm € Z\ {0}, M € mod(A).

Lemma 5.2 Let M, N € mod(A)p. Then the following statements hold :
(1) QA(M @ N) = Qp(M) @ Qu(N).
(2) (M @ N) = 031 (M) @ 51 (V),
(3) M is indecomposable if and only if Qx(M) is indecomposable.
(4) M is indecomposable if and only if Q3 (M) is indecomposable.

Proof. (3). Suppose M to be indecomposable, and write Qx (M) = X®Y. Since Q3! (Qx(M))
= M, (2) yields

M = 0y (X) @ Q3 (Y),
so that we may assume without loss of generality that Q,'(X) = (0). As a result, X =
Xp 22 Q\(2,1(X)) = (0), proving that Q4 (M) is indecomposable. O

Definition. A finite-dimensional A-module M is said to be periodic if there exists n > 0
such that Q% (M) & (proj) = M.
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Example. Let A = H(a,) = k[X]/(X?). Since
(0) — kP! — k[X]/(XP) = k[X]/(XP) = k — (0)
are the initial terms of a minimal projective resolution, we have Q% (k) = k.

Note that every periodic module M has complexity cx(M) < 1. Indeed, periodicity implies
the existence of a minimal projective resolution (P;,0;);>o satisfying Py, = P; for some
r > 0. Hence the dimensions of the P, are bounded and c)(M) < 1.

Definition. The algebra A is representation-finite or of finite representation type if it admits
only finitely many isoclasses of finite-dimensional indecomposable modules.

Theorem 5.3 ([42]) If A has finite representation type, then every finite-dimensional A-
module is periodic.

Proof. Let X be the set of isomorphism types of the non-projective indecomposable A-
modules. Owing to (5.2) Q| is bijective. Since X is finite, there exists n > 1 such that
% =idy. Our result is now a direct consequence of (5.2) and the theorem of Krull-Remak-
Schmidt. O

The converse of Heller’s Theorem does not hold in general. For instance, the group algebra
of the quaternion group over a field of characteristic 2 is known to possess only periodic
modules. However, since every local algebra of finite representation type is a truncated
polynomial ring k[X]/(X™), this algebra does not have finite representation type (in fact,
it is tame). In §10 we shall see that distribution algebras of infinitesimal groups satisfy the
converse of Heller’s Theorem.

By Heller’s theorem the complexity of any module of a representation-finite algebra is
bounded by 1. Our next result, which is due to Rickard, provides a similar criterion for tame
algebras. Its proof is considerably harder as it employs deep results by Crawley-Boevey [13]
concerning the structure of the Auslander-Reiten quiver of tame algebras.

Definition. A k-algebra A is said to be tame if it is not representation-finite, and if for each
d > 0 there exist (A, k[X])-bimodules M, ..., M, that are finitely generated and free over
k[X], so that all but finitely many d-dimensional indecomposable A-modules are isomorphic
to M; ®gx) ka for some ¢ € {1,...,n(d)} and X € Alg,(k[X], k).

Theorem 5.4 ([68]) Suppose that A is tame. Then ca(M) < 2 for every M € mod(A).
O

We continue by collecting a few basic properties of the complexity of modules.

Proposition 5.5 Let A be self-injective, M € mod(A).
(1) If Sy,..., S, are the composition factors of M, then cyx(M) < maxj<i<, ca(S;).
(2) IfT C A is a self-injective subalgebra such that A is a projective left I'-module, then
er(M) < ex(M),
(3) If A is a Hopf algebra, then cn(M) < cp(k).
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Proof. (2). Let P := (P;);>0 be a minimal projective resolution of the A-module M. By
assumption, the functor Homp(P;,-) = Homy(P;, Homr(A,-)) is exact. Hence each P; is a
projective I'-module, and cp(M) < v(P) = cp(M).

(3). Let P := (P;);>0 be a minimal projective resolution of the trivial A-module k.
Thanks to (1.4) the complex P ®; M = (P, ®, M);>¢ is a projective resolution of M. Hence
CA(M) < ’Y(P R M) = CA(]{?). O

Example. Consider the Hopf algebra H(o,2) = k[X,Y]/(X?,Y?). Let P = (P;);>0 be a
minimal projective resolution of the trivial k[X]/(X?)-module k, i.e., P, = k[X]/(XP) for
every i > 0. Setting Q; := Z;ZO P; ®, P,_; we obtain that the complex Q := (Q;)i>0 is a
minimal projective resolution of the H(ay2)-module k ®; k = k. Since dimy Q; = (7 + 1)p?,
we have cy(a ,)(k) = 2. One can iterate this process to see that cp(a,. (k) = r-

By (5.5(3)) we thus have cpa,)(M) < 2 for every M € mod(H(qy2)). However,
H(oye) = E[X,Y]/(XP,YP) is wild unless p = 2. Consequently, the converse of Rickard’s
Theorem does not obtain.

Remark. By combining (1.5) with (5.4) and (5.5), we see that Hopf subalgebras of tame or
representation-finite Hopf algebras come close to being tame or representation-finite. In fact,
by special properties of extensions of group algebras, the representation type is inherited by
subgroups of finite groups (cf. [9, Prop.2]). It is considerably harder to establish similar
results for infinitesimal group schemes.

6. Support Varieties

In this section we will provide a geometric interpretation for the complexity of modules of
a finite algebraic k-group G. As before we will be working over an algebraically closed field
k of characteristic p > 0. Given a module M of a commutative ring R, we recall that the
support Supp(M) := {P € Max(R) ; Mp # (0)} of M is the set of those maximal ideals
P C R for which the localization of M at P is not trivial. If R is noetherian, and M is
finitely generated then Supp(M) = Z(Anng(M)) := {P € Max(R) ; Anng(M) C P} is the
zero locus of the annihilator of M. Thus, if R is an affine k-algebra, then Supp(M) is an
affine variety.
Let G be a finite algebraic group. If M is a H(G)-module, we denote by

the n-th cohomology group of G with coefficients in M. Note that these are just the
Hochschild cohomology groups of the augmented algebra (H(G), €).

These cohomology groups were first studied by Hochschild [44] in the context of re-
stricted Lie algebras. He related them to the Chevalley-Eilenberg cohomology and provided
interpretations for H' and H?. Further early results can be found in [60].

Given three H(G)-modules XY, Z we recall the Yoneda product
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This product endows Ext; ) (X, X) 1= @,,50 Extg) (X, X) with the structure of a Z-graded
k-algebra. Moreover, the spaces Extyg) (Y, X) and Extyg)(X,Y) are graded left and right
Ext}{(g) (X, X)-modules, respectively. In particular, H*(G, M) is a graded right module over
the cohomology ring H*(G, k). This ring is known to be graded commutative, i.e., we have

yr = (_1)deg(w)deg(y)xy
for any two homogeneous elements =,y € H*(G, k). Consequently, the subring

Hev(g: k) = EBHQi(ga k)

1>0

is a commutative, Z-graded k-algebra (see [10, §6] for details).

The following result by Friedlander and Suslin, which generalizes earlier work by Venkov
[77] and Evens [20] for finite groups, and Friedlander-Parshall [39] for infinitesimal groups
of height < 1, is fundamental for everything that follows.

Theorem 6.1 ([40]) Let G be a finite algebraic k-group, M a finite-dimensional H(G)-
module. Then the following statements hold:

(1) H®(G,k) is a finitely generated k-algebra.

(2) H*(G,M) is a finitely generated H* (G, k)-module. O

In some cases, the even cohomology ring can be computed explicitly. If G is smooth, semisim-
ple and simply connected and p exceeds the Coxeter number of G, then H® (Gy, k) = O(N),
where N := {x € Lie(G) ; /" = 0 for some n € N} is the nullcone of Lie(G) (see [38]).

Let M be a finite-dimensional H(G)-module, (P;, 0;);>¢ a projective resolution of the trivial
module. Since (P; ®y M, 0; ® idys);>o is a projective resolution of M, we obtain a homomor-
phism

Oy HY(G. k) — Bxtyyg) (M, M) ;5 [f] — [f@ida]

of graded k-algebras. According to (6.1) this map endows the Yoneda algebra with the
structure of a finitely generated H®(G, k)-module. We define the cohomological support
variety of M via

Vg(M) := Z(ker ®,) C Maxspec(H® (G, k)).

Since ker @, is a homogeneous ideal, the affine variety Vg (M) is conical.

Lemma 6.2 Let G' C G be a subgroup, M € mod(H(G)).
(1) dimVg(M) = cpg)(M).

Proof. (1). Thanks to (6.1) the Yoneda algebra Exty g (M, M) is a finitely generated
H®(G, k)-module. Consequently, we have

dim V(M) = dim H*(G, k)/ ker @y = y(H (G, k)/ ker ®pr) = y(Extyyg) (M, M)).
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In view of (5.1) the latter number is bounded by cg(g)(M). To verify the reverse inequality, we
let S be a simple H(G)-module. Thanks to (6.1), the space Exty g (M, S) = H*(G, M* @4 S)
is a finitely generated HY(G, k)-module. Consequently, it is also a finitely generated right
Ext gy (M, M)-module. Accordingly, we have

Y(Exty ) (M, S)) < v(Extl g (M, M)),

so that another application of (5.1) yields cyg) (M) = v(Exti g (M, M)), as desired.
(2). This follows directly from (1), (5.5) and (1.5). O

As an immediate application, we record the following basic criteria for blocks of finite and
tame representation types.

Theorem 6.3 Let B C H(G) be a block, M € mod(B
(1) If B is representation-finite, then dimVg(M)
(2) If B is tame, then dimVg(M) <2. O

)-
<1

Example. Suppose that p > 3. From the Kiinneth formula one obtains an isomorphism
H*(apm, k) = k[Xq,... X, @ A(Y1,...Y,), where the X; and Y; have degrees 2 and 1,
respectively (cf. [10, (7.6)]). Consequently, k[X7,...,X,] is a Noether normalization of
H(ayn, k) and dimV, ,, (k) = n. Note that this agrees with our earlier observations.

7. Rank Varieties

Early work by Quillen [64, 65| showed that the support variety of the trivial module of a finite
group G may be described as the union of the corresponding supports for the elementary
abelian subgroups of GG. This result was later extended to arbitrary modules by Avrunin
and Scott [5].

For elementary abelian groups a second notion is available, that of the so-called rank
varieties. These were introduced by Jon Carlson [11, 12]. They can roughly be described
as follows: Given an elementary abelian group F, one considers a subspace V' C k[E] with
dimy V' = 1k(FE) whose nonzero elements have the following property:

2P = 0, and k[z] is a local algebra of dimension p such that k[E][x is free.
We may then define
Ve(M) :={x €V ; M|y is not free} U {0}.

Avrunin and Scott [5] showed that V(M) 2 Vg(M), and they thus obtained an intrinsic
characterization of the cohomological support variety.

In the mid 80’s Friedlander-Parshall [39] introduced support varieties for infinitesimal
groups of height < 1. For the trivial module Jantzen [47] gave an intrinsic characterization
in terms of a subvariety of the associated Lie algebra. These rank varieties also occurred in
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Voigt’s work [80]. The description of support varieties of arbitrary modules in terms of rank
varieties was given by Friedlander and Parshall in [37]. Recently, Suslin, Friedlander and
Bendel [72, 73] have employed “higher nullcones” (cf. [41]) to generalize these concepts and
results to infinitesimal groups of arbitrary height.

Recall our identification of the distribution algebra of a,» = Spec,(k[T]/(1T*")). Setting
t := T+ (T""), we consider the basis {dq, ...,dn_1} C H(a,n) that is dual to {¢°,... t?" "1}
The assignment X; +— 0, then defines an isomorphism k[Xo, ..., X,—1]/(X,.... X} _1).
Hence, as an algebra, H(a,») looks like the group algebra of the elementary abelian group
(Z/(p))". For the definition of the rank variety we have to consider elementary abelian
subgroups of a given infinitesimal group G. We do this by considering homomorphisms
ay» — G. (For finite groups this would amount to considering all rank varieties of elemen-
tary abelian subgroups of rank < n). Let 0 < ¢ < n—1. The embedding Qe — e is induced
by the projection map k[t] — k[t] /(). Accordingly, H(oye) = k[bo, ..., 0,—1]. We con-
sider the subalgebra that does not meet the Hopf ideal H (ayn)H (apn—1)" = (01,...,0pm—1 1)
and put

Ay = k[opn] = k(X1 /(X5 0)

Now let G be an affine algebraic group, M a G-module. Given a homomorphism ¢ : apn —
g, i.e., a homomorphism ¢ : H(a,») — H(G,) of Hopf algebras, the module M obtains,
via pull-back, the structure of an H(ayn)-module. Suppose that ¢ # 0. From the subgroup
structure of a,» we obtain ker ¢ C a,n-1, so that the kernel of the corresponding homomor-
phism ¢ : H(ayn) — H(G,) is contained in (91, ...,d,m-1_1). Consequently, (1.5) implies
that H(G,) is free over A,. We have thus emulated the set-up of Carlson’s rank varieties.

Definition. Let G be an affine algebraic group, M a finite-dimensional G-module. Forn > 1
we put .
Vo, (M) :={¢ € Hom(ayn,G) ; M|a4, is not free}.

Examples. (1). For n = 1, we have A; = H(a,). Recall that H(a,) = k[z] = k[X]/(XP),
where kz = Lie(q,). If G is any algebraic group, then the homomorphisms o, — G
correspond to the points of = € Lie(G) satisfying 27 = 0. It follows that

Vo, (M) := {z € Lie(G) ; 2? = 0 and M|k is not free} U {0}.

(2). Consider the group ay,2. We have seen before that Lie(cy2) = kxz, where 27 = 0.

Consequently, lA)(ap2)1(k) = Lie(ay,2) has dimension 1.

For n > 2 we consider V(QPZ)n(k) = Hom(oyn, a,2). By the Yoneda Lemma, the latter
space corresponds to Hompape (K[T]/(T7°), k[Z]/(Z7")). A homomorphism ¢ : k[T]/(T%") —
k[Z]/(ZP") is determined by the image ¢(¢) of the primitive element ¢ := 1"+ (T7%). We put
z = 7+ (ZP") and note that @} kz*" is the space of primitive elements of k[Z]/(Z"").
Since p(t)” = 0. we have @(t) = Aoz~ 4+ A\,_12”". Consequently, Viaya)a (k) = k x k
has dimension 2 for n > 2.

From the last example, we see that the rank variety f/(ap2)n(k) has dimension dimV, , (k) as
soon as n equals the height of the infinitesimal group ay2. The following important result
shows that this is not accidental:
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Theorem 7.1 ([73]) Suppose that G is an infinitesimal group of height n. Then
dim Vg, (M) = dim Vg (M)
for every M € mod(H(G)). O

In general rank varieties are hard to compute. In special cases, however, we have more
information:

Examples. (1). Let G = GL(n). We have
Ve, (8) = {(21, ., 20) € Mata (k)" 5 a7 =0 = [z,,2] 1<0,5,0 <),

where [x,y] = 2y — yx denotes the commutator product.

(2). Let G = SL(2). Then Vg, (k) is the variety of nilpotent (2 x 2)-matrices, so that
dim Vg, (k) = 2.

The variety f)g2(k7) corresponds to the set of pairs of commuting nilpotent matrices, and
dim Vg, (k) = 3.

Consequently, the representation theory quickly gets complicated for higher Frobenius
kernels. By (7.1) and (6.3) we see that SL(2), is wild. It turns out that the group SL(2); is
tame (see [35]).

(3). Consider the Borel subgroup B C SL(2) of upper triangular matrices. The first
Frobenius kernel B; affords a character

A:Br — (g Z)Hap_l.

Recall that A corresponds to a group-like element of O(B,) = H(B;)*. Hence we can view
A as a character H(B;) — k. The corresponding one-dimensional H (B;)-module with
action given by h - o := A(h)a will be denoted k). One can show that the induced module
St == H(G1) ®u(s,) k» is projective. This module is called the Steinberg module. However,
the canonical map

1 b
p:a, — By o b|—><0 1)

defines a non-trivial element of f/B] (ky). Consequently, k) is not projective and thus not
a direct summand of (H(G1) ®u(s,) kx)|mes,)- The Mackey decomposition theorem ensures
that this phenomenon does not occur in the respresentation theory of finite groups.

Theorem 7.2 Let G be an infinitesimal group.

(1) If(0) — N — X — M — (0) is an exact sequence of finite-dimensional
H(G)-modules, then Vg, (X) C Vg, (M) U Vg, (N).

(2) If the sequence splits, then l?gn (X) = Vg, (M) U Vg, (N).

(3) Vou (M @ N) = Ve, (M) 1 Ve, (N) for M, N € mod(H(G)).

Proof. We only verify (1) and (2). The proof of (3) is more involved. Let ¢ be an element
of f)gn (X). Ifp & f)gn(M ), then M is a projective A,-module, and the given sequence splits
over A,. Consequently, N is not a projective A,-module, proving ¢ € f)gn (N). Since direct
summands of projective modules are projective, we also have (2). O

28



8. Quotients

Let G be an affine algebraic k-group, N/ C G a normal subgroup. We would like to define
a quotient G/N. The naive approach, setting G/N(R) := G(R)/N(R) does not work, as
this k-functor is not necessarily representable (see the example below). What we need is a
categorical quotient, i.e., a map 7 : G — G/N with kernel N that satisfies the following
universal property:

If o : G — G’ is any group homomorphism of affine group schemes such that N' C ker ¢,
then there exists a unique homomorphism ¢ : G/IN — G such that ¥ o ™ = .

Let us see what this condition amounts to: Let 7 : O(G/N) — O(G) be the associated
Hopf algebra homomorphism. Setting / := ker 7* we consider the subgroup H := V() C
G/N as well as the canonical embedding ¢ : H — G/N. By construction, there is a
homomorphism v* : O(H) — O(G) of Hopf algebras such that 7* o * = 7*. By the
universal property, the corresponding homomorphism v : G — H induces a unique map
w:G/N — H with w o1 = 7. Accordingly, we have 7 = 1o~y = (tow) o7, and unicity
implies ¢ ow = idg/n. Thus w* o t* = idog/nr), so that I = ker* = (0). We therefore make
the following definition:

Definition. A homomorphism 7 : G — H between to affine k-groups is a quotient map it
the corresponding Hopf algebra map O(H) — O(G) is injective.

It is by no means clear that for any normal subgroup N’ C G a quotient map with kernel N/
exists. It turns out that the algebra (Q(Q)N of invariants gives rise to the quotient group.
Thus, if G is algebraic, then the question as to whether G/N inherits this property is related
to Hilbert’s fourteenth problem. Of course, for finite algebraic groups we don’t need to worry
about such issues.

Theorem 8.1 Let G be an affine k-group, N C G a normal subgroup. Then there exists a
quotient map m : G — H with kernel N'. If G is algebraic, so is H. O

Remarks. (1). By the universal property, the pair (H, ) is unique up to isomorphism. One
thus writes G/N = H and calls G/N the factor group of G by N.

(2). Note that the quotient map 7 : G — G/N is usually not surjective at each point.
Suppose it is, then there exists A € G(O(G/N)) such that w(\) = ido(g/n). Accordingly, the
comorphism 7* : O(G/N) — O(G) is split injective.

Example. Consider the group a2 with function algebra O(a,z) = k[T]/(T?"). We write
t:=T+ (TPZ) and observe that the primitive element t¥ generates a Hopf ideal 1. Thus, the
corresponding normal subgroup N := V(I) is isomorphic to «,. Consider the group scheme

X:M,— Gr ; R— G(R)/N(R).

Then 7 := (g : G(R) — X(R))gren, is a homomorphism of k-group functors. If X =
Spec, (O(X)) is representable, then 7* : O(X) — O(G) is split injective, and there exists
an ideal J C O(G) such that

OG) =0(X)a J.
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Since O(G) is free over O(X), we have dimy O(X) = p. Consequently, zF = 0 for every
z € O(X)!, so that O(X)! C @5 kti. The condition A(O(X)) C O(X) @), O(X) then
implies O(&X') = k[t?]. Thus, a? € (9( ) for every x € O(G), and the p-power map is trivial
on J. Since O(G)' = (9(2(')Jr @ J, we obtain 27 =0 V 2 € O(G)T, a contradiction.

We will employ quotients mainly in inductive arguments. To that end we have to identify
the algebra of measures of a quotient. In this context, the following notion is convenient:
Let G be a finite algebraic k-group. If 7 denotes the antipode of H(G), then the action
given by
h-xz:= Zh(l)xn(h@)) V hx€ H(g)
(h)
is called the (left) adjoint representation of H(G).

Proposition 8.2 Let G be a finite algebraic k-group, N C G a normal subgroup. Then
H(G)H(N)T is a Hopf ideal, and H(G/N) = H(G)/H(G)H(N)T.

Proof. Consider the natural map G x N'— N ; (g,n) — gng . By the universal property
there exists a unique linear map H(G x N') — H(N) extending the above action. Direct
computation, using H(GxN) = H(G) @, H(N'), shows that this map is given by the adjoint
representation. Accordingly,

h-xe HN) VYheH(G), xe€ HN).
Given z € HN)" and h € H(G), we therefore have

wh = Z y)zh) =Y hayn(he)the = Zhu) -x) € HG)HWN),
B

Thus, H(G)H(N)' is a two-sided ideal, and it readily follows that it is also a Hopf ideal.

Let m: G — G/N and ¢ : N' < G be the quotient map and the canonical embedding,
respectively. Since 7* : O(G/N) — O(G) is injective, the induced map 7 : H(G) —
H(G/N) is surjective. By the same token, i : H(N) — H(G) is injective. Since mo 1 =1,
we have 7 o i = . Consequently, H(G)H(N)" C ker #.

Consider the cocommutative Hopf algebra H = H(G)/H(G)H(N)" as well as H :=
Specy(H*). There results a factorization # = ¢ o 4, with a surjective homomorphism 4 :
H(G) — H of Hopf algebras. Note that 4 corresponds to a homomorphism v : G — H.
Since 4 o ¢ = &, we have vy o+ = 1, whence N’ C ker v. The universal property now provides
a homomorphism w : G/N — H such that w o 7 = 7. Consequently,

(@ol)oy=woi=7%,

so that the surjectivity of 7 yields w o é = idg. As a result, é is injective, so that kerm =
ker((o4) =kery = H(G)HN)!. O
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9. Hopf Algebras of Solvable Groups

In this section we are going to collect a few properties of distribution algebras of infinitesimal
solvable group schemes and their representations. We retain our general conventions and
assume that k is an algebraically closed field of characteristic p > 0.

Definitions. An affine group scheme G is said to be abelian if G(R) is abelian for every
R € M. We say that G is solvable if there exists a sequence e, = G C Gpj C Gpg C
-++ C Gpp) = G of closed subgroups such that Gj;_y) is normal in G and Gy;)/Gj;_q) is abelian
1< <n.

Lemma 9.1 An infinitesimal group scheme G is solvable if and only if its first Frobenius
kernel Gy is solvable.

Proof. We use induction on the height ht(G) of G. If r := ht(G) > 1, then G,_; is solvable.
Consider the quotient map 7 : G — G/G,_;. By the universal property, there exists an
embedding v : G/G,_1 — G® ™" such that yom =F" 1 Let Fy : G/Gr_1 — (G/G,_1)® be
the Frobenius homomorphism, v : (G/G,_1)® < G®") the map induced by v. Then we
have

YPoRor=Foyor=FoF =0

Consequently, F} o = 0, and since 7 is a quotient map this entails F; = 0. Accordingly,
G/G, 1 is a closed subgroup of GP") of height < 1. As (G®), is solvable, we see that
G/G._1 is solvable. Tt follows that G is solvable. O

Remark. According to (4.4) the distribution algebra H(G) of an infinitesimal group of height
< 1 is isomorphic to the restricted enveloping algebra u(Lie(G)) of its Lie algebra. Since
Lie(G) = Lie(G1) we can interpret (9.1) by saying that an infinitesimal group is solvable if
and only if its Lie algebra enjoys this property.

To illustrate some subtle points of the theory, we continue by quoting a classical result, the so-
called Lie-Kolchin Theorem. Given n > 1, we consider the closed subgroup Upp(n) C GL(n)
of upper triangular matrices. Recall that an affine algebraic group G is connected provided
the identity element is the only idempotent of its function algebra O(G).

Theorem 9.2 (Lie-Kolchin) Let G be a connected, reduced (=smooth), solvable, affine
algebraic k-group. Then there exists a closed embedding G — Upp(n) for some n > 1. O

Accordingly, the Frobenius kernels of the smooth solvable algebraic groups can be put into
triangular form. This is equivalent to saying that all simple modules of the distribution
algebra are one-dimensional, that is, this algebra is basic. Unfortunately, the representation
theory of arbitrary solvable infinitesimal groups is considerably more complicated.

We say that a finite algebraic group G is trigonalizable if its algebra of measures H(G) is
basic.
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Example. Let X be an indeterminate, and consider the following operators of the k-vector
space V := k[X]/(XP):

O:a' — iz ' prat— 2 idy,

where z := X + (XP?). Since [0, u] = idy the vector space L := k0 @ ku @ kidy is closed
under the Lie bracket operation. It is in fact the three-dimensional Heisenberg algebra with
p-map given by the ordinary p-power of linear transformations, i.e., 9 = 0 = p?, id}, = idy.
One can show that V is a simple module for L. Moreover, the Lie algebra L is solvable
(even nilpotent). Accordingly, the group G := Spec;(u(L)*) is a solvable group, that is not
trigonalizable.

Definition. An affine algebraic group M is said to be diagonalizable or multiplicative if
there exists an abelian group C such that O(M) = k[C] is the group algebra of C'.

Remarks. (1). The name “diagonalizable” derives from the fact, that such groups may be
embedded into some group diag(n) of diagonal (n x n)-matrices. Since group algebras are
cocomutative, every multiplicative group M is abelian.

(2). Let M be multiplicative and infinitesimal. Then k[C] is local, so that C' is an abelian
p-group. Consequently, C' = [[‘_, Z/(p™), and M =2 [T¢_; pupmi.

(3). Suppose that M is a finite multiplicative group. Then C' is the set of group-like
elements of H(M)*, i.e., C = Homy,(H (M), k) is the character group of M. Let h € H(M)
be a nilpotent element. Then A(h) = 0 for every A € C. Thus A(h) = 0 for every A € O(M),
and h = 0. Consequently, the commutative distribution algebra H(M) is semisimple. We
will see later, that the multiplicative infinitesimal groups are the only infinitesimal groups
with semisimple distribution algebra. Thus, in contrast to finite groups, the structure of
linearly reductive infinitesimal groups is completely understood.

(4). Multiplicative group schemes are rigid. If a connected group acts on such a group via
automorphisms, then the action is trivial (see [81, (7.7)] for details). This implies that every
infinitesimal group G possesses a unique maximal normal multiplicative subgroup M(G).
This group is called the multiplicative center of G.

Definition. Let G be an infinitesimal group.

(1) The group G is supersolvable if there exists a chain e, = Gy C G C -+ C Gy =G
of normal subgroups of G such that Gj;/Gi1) = o or p, for every i € {1,...,n}.

(2) The group G is unipotent if H(G) is local.

(3) The group G is nilpotent if the factor group G/ M (G) is unipotent.

The unipotent groups are precisely those that can be embedded into a group of strictly upper
triangular matrices (i.e, upper triangular matrices with 1’s on the main diagonal). Super-
solvable and nilpotent infinitesimal groups may be characterized in terms of the principal
blocks of their distribution algebras:

Theorem 9.3 ([78]) Let G be an infinitesimal group.

(1) G is nilpotent if and only if By(G) is local.
(2) G is supersolvable if and only if By(G) is basic. O
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Theorem 9.3 implies that distribution algebras with basic principal block satisfy a useful
linkage relation. Given simple modules S, T of an arbitrary block B C H(G), Schur’s Lemma
ensures that M(G) operates on both modules via the same character. Consequently, M(G)
operates trivially on Homy (S, T"), so that the latter becomes a module for the trigonalizable
group G/M(G). There thus exists a character A : H(G) — k and a one-dimensional
submodule k) C Homg(S,7"). Any generator ¢ of this submodule is an isomorphism S =
T @y, kxop. In particular, all simple B-modules have the same dimension.

Proposition 9.4 Let G be a supersolvable, infinitesimal k-group.

(1) If G is trigonalizable, then H(G) possesses dimy H(M(G)) blocks, each of which is
isomorphic to H(G/M(G)).

(2) The canonical projection induces an isomorphism By(G) = H(G/M(G)).

Proof. (1). Since H(G) is trigonalizable, the group G decomposes into a semidirect product
Gg=UXxM,

where M D M(G) is multiplicative, and U is a unipotent normal subgroup of G (cf. [14,
(IV.§2(3.5))]). The function algebra O(M) of the multiplicative group M is isomorphic to
the group algebra k[G(O(M))]. In the sequel we will occasionally identify G(O(M)) with
the image of G(O(G)) under the canonical restriction map.

In view of the above decomposition, every simple H (G)-module is isomorphic to k, for a
suitably chosen v € G(O(M)) =: T.

We let H(M) operate on H(U) via the adjoint representation, and decompose

H(“)Z%H(U)q,

into its weight spaces. Thus, R C I', and we let ¥ C I' be the subgroup generated by R.
Given v € I, the module P(v) := H(G) ®m(m) k- is projective. The isomorphism

H(G) = HU)#H(M)

induces an isomorphism H(G) = H(U)®y H(M) of (H(U), H(M))-bimodules. In particular,
P(Y)|aw) = H(U), so that P(v) is indecomposable. By the same token, we have

P am) = P HU)y @k ks

Pew

Let B, C H(G) be the block containing k.. By the above isomorphism, k. belongs to B, if
and only if ¢ € U x 1.

Consider M’ := Spec,(k[['/¥]) € M. Since M(G) lies in the center of G, we have
M(G) € M. On the other hand, M’ centralizes H(U), and thus belongs to the center of
G. This implies M’ C M(G). Tt follows that dimy H(M(G)) = [T : ¥|. Consequently, H(G)
possesses dimy H(M(G)) blocks, and

ord(T")
[: v

dimy B, = € dimy, P(¢ xv) = dimy, H(U )ord(¥) = dimy, H(U) |
Ypew

= dimy, H(G/M(G)).
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It remains to show that B, = H(G/M(G)). We first verify (2).

(2). Since G is supersolvable, the factor group G’ := G/M(G) is trigonalizable with
M(G') = ey (ctf. [29]). According to what was shown in (1) the algebra H(G') is connected.
It follows that the restriction 7 : By(G) — H(G') of the canonical projection maps the
primitive central idempotent of By(G) onto the identity. Consequently, 7 is surjective. Since
the ideal H(G)H(M(G))! is generated by central idempotents not belonging to By(G), the
map 7 is also injective, and our assertion follows.

Returning to (1) we observe that the identity o (y*idgg)) = v implies (y*idgg))(B,) =
By(G). Accordingly, (2) yields B, = By(G) = H(G/M(G)). O

Theorem 9.5 ([30, 79]) Suppose that p > 3. Let G be a solvable, infinitesimal group, S a
simple H(G)-module.

(1) There exists a subgroup K C G containing M(G), and a character \ : H(K) — k
such that S = H(G) ®@mk) k-

(2) If K is supersolvable, and M C K is a maximal multiplicative subgroup, then we
have P(S)|rgcy = H(K) @m(m) kaow for a suitable automorphism v € Auty(H (K)). O

Let G be supersolvable. In view of (4.5) and (1.5), the foregoing result shows that the
dimensions of the simple modules and their principal indecomposables are powers of p.
We illustrate the above result by providing two consequences:

Corollary 9.6 Let G be a nilpotent infinitesimal group of characteristic p > 3.
(1) Ewery block B C H(G) is primary.
(2) H(G) does not admit any tame blocks.

Proof. (1). Let S be a simple B-module. By (9.5) there exists a subgroup K C G containing
M(G) such that S = H(G) ®@p) kr. Since K is nilpotent, M(G) is the unique maximal
multiplicative subgroup of I, and (2) of (9.5) now yields P(S)|uc) = H(K) @um(g) kx- By
the proof of (9.4) this module is indecomposable with &, being the only composition factor.
Accordingly, each composition factor 7" of P(.S) contains a copy of k), and there thus exists
a surjection S — T'. This implies S = T', as desired.

(2). By (1) each block of H(G) is Morita equivalent to a local algebra. One can now com-
bine information on the Ext-groups of certain modules (cf. [23]) with Ringel’s classification
of tame, local algebras (cf. [16]) to obtain (2). O

Corollary 9.7 Let G be an infinitesimal group. If p > 3, then H(G) does not admit any
tame local blocks.

Proof. Let B C H(G) be a local block. Then there exists an algebra homomorphism A :
H(G) — k that sends the primitive central idempotent of B to 1. As in the proof of (9.4)
we have (X *idpg))(B) = By(G). Hence By(G) is local, and (9.3) implies that G is nilpotent.
In view of (9.6), the block B is not tame. O

Remark. All of the above fails at even characteristic. For instance, the restricted enveloping
algebra u(H) of the three-dimensional Heisenberg algebra H := kx @ ky @ kz, 213 = yl@ =
2[?l = 0 is isomorphic to the group algebra k[D,] of the dihedral group of order 8. The latter
is known to be tame.
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10. Infinitesimal Groups of Finite Module Type

In this section we shall investigate two basic, interrelated problems concerning an infinitesi-
mal group G whose distribution algebra H(G) has finite representation type:

(a) What can be said about the structure of G?

(b) What structure do the blocks of H(G) have?
Note that both problems are understood for finite groups. According to Higman’s theorem
[43] a finite group G has a representation-finite group algebra if and only if its p-Sylow
subgroups are cyclic. Thus, there is not much information on the structure of G. One has
detailed information on the structure of the representation-finite blocks of group algebras
(cf. [6]).

We begin with the analogue of Maschke’s Theorem. The main reason for presenting
its proof is to illustrate the impact of certain conditions imposed on rank varieties on the
structure of the underlying groups.

Theorem 10.1 Let G be an infinitesimal group. The following statements are equivalent:
(1) The principal block By(G) is semisimple.
(2) Vi, (k) = {0},
(3) G is diagonalizable.

Proof. (1) = (2). Suppose that By(G) is semisimple. Then k is a projective H(G)-module,
and the conical variety Vg, (k) has dimension zero. Hence {x € Lie(G) ; 27 = 0} = {0}, as
desired.

(2) = (3). We proceed by induction on the order of G. The assumption implies that for
every x € Lie(G), the left multiplication

adz : Lie(G) — Lie(G) ; y— [z,9]

is diagonalizable. Let a # 0 be an eigenvalue for ad z. Then there exists y € Lie(G)\{0} such
that [z,y] = ay. Accordingly, the subspace V := kx @ ky is invariant under ad y, and ad y|y
is non-trivial and nilpotent, a contradiction. We conclude that 0 is the only eigenvalue of
ad z, whence ad x = 0. Consequently, the Lie algebra Lie(G) is abelian. In particular, the p-
map [p| : Lie(G) — Lie(G) is semilinear, and bijective. Let {z1,...,z,} be a basis of Lie(G).
Then {x[lp " xlP1"} is also a basis of Lie(G), and a two-fold application of (4.3) ensures
that u(Lie(G)) has no nilpotent elements. Thanks to (4.4) the algebra H(G;) = u(Lie(G)) is
reduced, and (3.2) implies that G, is diagonalizable.

The embedding G/G; — G® induces an embedding Lie(G/Gy) — Lie(g(p)). It follows
that the rank variety of G/G; is also trivial. By inductive hypothesis the factor group G/G;
is diagonalizable.

Let S be a simple H(G)-module. According to Schur’s Lemma the central subalgebra
H(G1) of H(G) operates on S via a character. Consequently, H (G, ) acts trivially on Endg(S5),
and the latter space has the structure of an H(G/G;)-module. Since G/G; is multiplicative,
Endg(S) is a semisimple H(G)-module, and there results a decomposition

Endk(S) = @ Endk(S))\,
AeC
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where C' C Alg, (H(G), k), and Endg(S)y = {¢ € Endg(S) ; h-p = Ah)p ¥V he H(G)}.
One readily verifies that ¢ 09 € Endg(S)xey ¥V ¢ € Endy(5)a, ¢ € Endi(S),.

Let ¢ be an element of End,(5),. Since ¢(hs) = ((Aon) * idug))(h)p(s) for h € H(G)
and s € S, we see that ker ¢ is a submodule of S. Accordingly, every non-zero element of
Endy(S), is invertible.

Direct computation shows that tr(h - ¢) = e(h)tr(p) for ¢ € Endg(S) and h € H(G).
This implies that tr(Endg(S),) = (0) whenever \ # e.

Let ¢ € Endg(S), \ {0} for some A # . Owing to (1.5) and (4.5) the character A has
order p* for some n > 1, whence ¢*" € End(S).. By Schur’s Lemma the latter space
coincides with kidg, so that there exists o € k such that ¢*" = aidg. Since @ is invertible,
we have a # 0. From the identity

tr(aids) = tr(p?") = tr(p)?" =0,

we conclude that tr(Endy(5)) = tr(Endg(S).) = (0), a contradiction. As a result, Endy(5) =
End(S). is one-dimensional, so that dimy S = 1.

Since the functor Hompgg(k, -) = Hompg/g,)(k,-) o Hompgg,)(k,-) is exact, k is a pro-
jective H(G)-module. In view of (1.4) this entails that every H(G)-module is projective.
Consequently, H(G) is semisimple. Now we decompose O(G) = H(G)* into its simple, one-
dimensional H(G)-constituents and obtain

0(G) = D O(G)x,
AeD
where D C G(O(G)) and O(G)A ={z € O(G) ; h-x =X h)x VY h e H(G)} is the A\-weight
space of O(G). Direct computation shows that O(G), = k(A on). Hence the Hopf algebra
O(G) is generated by group-like elements, and G is diagonalizable.
(3) = (1). This was noted earlier. O

According to (10.1), semisimplicity may be detected by studying the support variety of
the first Frobenius kernel. The group a,2 shows that the analogous test does not work
for representation-finite groups. Nevertheless the structure of groups with rank varieties of
dimension < 1 is not arbitrary. More precisely, we have

Proposition 10.2 ([29]) Let G be an infinitesimal group. If dim f)gl(k) < 1, then G is
supersolvable. O

The main problem is that we do not have an anologue of (9.1) for supersolvable groups. Hence
one needs a rather detailed analysis for groups of height < 1. This can be accomplished either
by homological methods (cf. [21]), or via schemes of tori. An example illustrating the latter
approach can be found in §13.

Proposition 10.2 allows us to bring our knowledge of solvable groups to bear: If the
principal block By(G) is representation-finite, then a consecutive application of (6.3), (7.1),
and (10.2) yields the supersolvability of G. By general theory, the factor group G/M(G) of
such a group is trigonalizable, and thus decomposes into a semidirect product

g=2Ux M,
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with a normal unipotent subgroup U and a multiplicative subgroup M. One can show
that By(G) = By(G/M(G)). Moreover, the latter algebra is representation-finite if and only
if H(U) enjoys this property. However, H(U) is local of dimension a p-power. Thus, this
algebra is of finite representation type if and only if it is isomorphic to a truncated polynomial
ring k[X]/(X?"). In particular, H(U) is a Nakayama algebra, and I is commutative.

The commutative unipotent groups that give rise to Nakayama algebras are the so-called
V-uniserial groups. Here the prefix “V7” refers to the Verschicbung Vi : UP) — U, a
homomorphism that is the dual of the Frobenius homomorphism of the Cartier dual D(U)
of U. In the above we have sketched the implication (1) = (2) of the following result.

Theorem 10.3 ([29, 33]) Let G be an infinitesimal k-group. Then the following statements
are equivalent:

(1) Bo(G) has finite representation type.

(2) G/M(G) =U X ppn is a semidirect product with a V-uniserial normal subgroup U.
(3) H(G) is a Nakayama algebra.

(4) dim Vg, (k) < 1.

(5) H(G2) is a Nakayama algebra. O

In particular, finite representation type may be detected on the second Frobenius kernel of
an infinitesimal group.

Remarks. (i). Special cases of (10.3) can be found in [62, 34, 21].

(ii). The equivalence (1) < (4) readily shows that subgroups of representation-finite
groups are representation-finite. For finite groups this fact follows directly from Mackey’s
theorem.

(iii). Let G be a finite group. The example of the quaternion group shows that the
analogue of (1) < (4) fails in this context. Moreover, representation-finite groups are not
necessarily Nakayama algebras. Since the defect group of the principal block of k[G] is a
Sylow-p-subgroup, k[G] is representation-finite whenever By(G) has this property.

We now turn to the block structure of H(G). According to (10.3) each block B of a
representation-finite infinitesimal group G is a self-injective Nakayama algebra. In general,
indecomposable Nakayama algebras are determined by their Kupisch series, that is, by the
number of simple modules, and the lengths of their projective covers (cf. [53]).

Given a finite-dimensional k-algebra A, we let Sy be the set of isoclasses of the simple
A-modules. The automorphism group Auty(A) operates on Sy by twisting: For a A-module
M and an automorphism ¢ € Autg(A) we denote by M® the A-module with underlying
k-space M and action given by

a-m:=¢ a)m VYac€A me M.
Thus, the algebraic group Autg(A) operates on Sy with its connected component acting
trivially.

Let G be an infinitesimal group. Consider the subgroup C, C Auty(H(G)) that is gener-
ated by a Nakayama automorphism of v of the Frobenius algebra H(G). The general theory
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of Frobenius algebras shows that two Nakayama automorphisms of H(G) differ only by an
inner automorphism [59]. Consequently, the operation of C, on Sy ) does not depend on
the choice of v. Moreover, any Nakayama automorphism restricts to an automorphism of
each block B of H(G), so that C, also acts on Sg.

For positive integers a, b € N we consider the algebra A(a,b) :== k[A,_1]/I, given by the
quiver A,_; := Z/(a) with arrows z; ;= i — i + 1 and relations defined by the ideal I,
generated by all paths of length b.

Theorem 10.4 ([30]) Let G be an infinitesimal group of finite representation type, B C
H(G) a block. Then the following statements hold:

(1) Sg=0C,-[S] VI[S] e Ss.

(2) The block B has dimension a p-power and is either primary or basic.

(3) There exist s,{ € Ny such that B is Morita equivalent to A(p*, p*). O

Remarks. (1). The parameters s, ¢ of (3) can be described as orders of certain subgroups of
G (see [30] for the details).

(2). Part (1) of (10.4) does not hold for finite groups. For p = 3 the group algebra of
the symmetric group S3 on 3 letters has finite representation type. Its Sylow-3-subgroup is
normal and not central, so that the inertial index of the principal block By(S3) of the group
algebra k[Ss] is 2. According to [6, (6.5.4)], By(Ss) is a symmetric Nakayama algebra with 2
simple modules.

(3). Thanks to [78, (I1.2.6)] the blocks of the group algebras of supersolvable infinitesimal
groups are full matrix rings over their basic algebras. Parts (2) and (3) therefore imply that
a block B € H(G) is either isomorphic to Mat,, (k[X]/(X?")) or to A(p®, p").

(4). Let G be an infinitesimal group of height < 1. According to [39] the cohomology
ring H®(G, k) is generated in degree 2. This implies that all representation-finite blocks
of H(G) are Nakayama algebras (cf. [21]). Since this also holds for distribution algebras
of supersolvable infinitesimal groups (cf. [26]), this conceivably is a feature of arbitrary
infinitesimal group schemes.

11. Frobenius Kernels of Smooth Group Schemes

Throughout this section, we fix a reduced (=smooth) affine group scheme G. We will illus-
trate how rank varieties and nilpotent orbits can be employed to classify the representation-
finite and tame blocks of the Frobenius kernels of reductive groups. We begin by looking at
an important example.

Example. Let G := SL(2); be the first Frobenius kernel of SL(2). According to (4.4) the
algebra H(G) is isomorphic to u(sf(2)), the restricted enveloping algebra of the Lie algebra
of (2 x 2)-matrices of trace zero.

The block structure of u(sf(2)) was determined by Pollack [63]. For p > 3, the algebra
u(sl(2)) possesses exactly 1%1 blocks. There is one simple block, corresponding to the p-
dimensional Steinberg module, and ¢ := p%l blocks By, ..., By,—1 with B; having two simple
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modules of dimensions ¢ + 1 and p —i — 1. Pollack also proved that u(s¢(2)) has infinite
representation type, which of course also follows from the fact that f)gl(k:) has dimension 2
(see §7).
About 25 years later, Fischer [35] determined the basic algebra of each non-simple block.
It is given by the quiver
T

—_ >

n

—_—_—

T2

-—

Yo

-~

and relations z1ys = Y172, Y21 = Toy1, T1x2 =0, y1yo =0, x9x1 =0, Yoy = 0. In
particular, all non-simple blocks are Morita equivalent. In addition, each of these blocks is
special biserial and of domestic representation type.

By work of Pfautsch [61] every tame block of H(SL(2),) is Morita equivalent to a tame
block of H(SL(2);) = u(sf(2)).

Definition. An algebraic group G is said to be reductive if it contains no nontrivial unipotent
normal subgroups.

The classical groups GL(n), SL(n), SO(n), and Sp(2n) are smooth reductive groups. For
the remainder of this section we assume that p > 5.

Theorem 11.1 ([25]) Let G be a smooth, connected, reductive group, B C H(G,) a block.
(1) If B is representation-finite, then B is simple.
(2) If B is tame, then B is Morita equivalent to a tame block of H(SL(2)1).

Proof. Since G, is a normal subgroup of G, the subalgebra H(G,) C Dist(G) is stable under
the adjoint operation of Dist(G). Consequently, G(k) C Dist(G) operates on H(G,) via
the adjoint representation Ad : G(k) — Autg(H(G,)). Let S be a simple B-module. For
g € G(k) we put S := SAd9)  Direct computation shows that

Vg, (S9) = g- Vg, (S) Vgegk),

where g - ¢ == Ad(g) o ¢ for g € G(k), and ¢ € Vg (k). Since S is simple and G(k) is
connected, we have S = S@ V g € G(k), so that Vg, (S) is invariant under the adjoint
action.

We first show that dim )A}gr (S) # 1. Otherwise, each irreducible component of the conical
variety Vg, (S) is a G(k)-stable line, and G, contains a normal subgroup isomorphic to a,e
for some s € {1,...,r}. Consequently, Lie(G) contains a line kz # (0) with z?! = 0 that is
invariant under the adjoint representation. This contradicts the fact that G is reductive.

(1). If B has finite representation type, then Vo, (S) has dimension < 1 (cf. (6.3), (7.1)).
By what we have just seen, this implies dim Vg, (S) = 0. Consequently, S is projective, and
B is simple.
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(2). By (6.3), (7.1) and our observation above there exists a simple B-module S such
that d1m Vg (S) = 2. Since Vg, (S) is conical, Borel’s Fixed Point Theorem provides a point
[z9] € Proj (f)g (S)) whose stabilizer is a parabolic subgroup P C G. Thus, dim G(k)/P(k) <
1, and if G(k) = P(k) then the above reasoning yields a contradiction. Alternatively, one
can show that there exist closed normal subgroups H, K C G such that

(a) G ="H-K, and Lie(G) = Lie(H) & Lie(K),

(b) K = SL(2) or £ = PSL(2), and H C P.
Since SL(2), = PSL(2), for every r > 1, we obtain an isomorphism

G, 22 SL(2), x H,.

Consequently, there are blocks By C H(SL(2),) and By C H(H,) such that B = B; Q4 Bs.
By the same token, S = S; ®; Sy, where S; is a simple B;-module. By general properties of
varieties, we obtain

Vo, (S) = )A/SL(z)T(Sl) X Vi, (Sa).

If dim Vs (), (S1) = 0, then Vg, (S) = VHT(SQ) and G(k) stabilizes the point [z], a contra-
diction. Thus, dim VSL(Q (S1) = 2, and dim VHT(SQ) = 0. Consequently, S is projective and
B, is a matrix ring over k. There results an isomorphism B = Mat,,(B;). In particular, B is
Morita equivalent to a tame block of H(SL(2),). We may now apply Pfautsch’s result [61]
to obtain the assertion. a

If B = By(G,) is the principal block, and S = k is the trivial module, then the group H, is
multiplicative. Since dim Vgr2), (k) = 3, it follows that r = 1. Consequently, we obtain

Corollary 11.2 Let G be a smooth, connected, reductive group. Then By(G,) is tame if
and only if r = 1, and there exists a multiplicative infinitesimal group M such that G, =

SL(2); x M. O

12. Algebraic Families of Vector Spaces

In this section we collect a few basic results on algebraic families of modules that we require
for the application of schemes of tori. Throughout, we let A be a finitely generated integral
domain over k with associated scheme X := Spec,(A). Given a finite-dimensional k-vector
space V', we consider the free A-module V ®; A. For an A-submodule P C V ®; A, and x €
X (k) we denote by P(z) := (idy @ z)(P) C V the subspace of V' obtained by specialization
along z. If P is a direct summand of the A-module V' ®; A, then P(xz) = P ®4 k,, where
k, denotes the one-dimensional A-module afforded by x. We will be studying the algebraic
family (P(x))zex ) of subspaces of V.

Proposition 12.1 Let Y C V be a conical variety, and suppose that P C V ®y A is an
A-direct summand. Then the function X (k) — Ny ; x — dim P(z) NY is upper semicon-
tinuous.

40



Proof. Consider the variety X(k) x Proj(Y') as well as the subset
Z = {(x,[y]) € X(k) x Proj(Y) ; 3 p € P such that (id, @ z)(p) = y}.

One proceeds by showing that Z is a closed subset of X(k) x Proj(Y).

Taking this for granted, we consider the restriction 7w : Z — X' (k) of the projection onto
the first factor. Then we have 7=1(z) & Proj(P(z) NY') for every # € X (k). Thanks to [15,
§14] the set

X(k)g:={x € X(k); dimProj(P(z)NY) > d}

is closed for any d > 0. Since dim Proj(P(z) NY) = dim P(z) NY — 1, we see that x +—
dim P(z) NY is upper semicontinuous. O

Corollary 12.2 Let Y C V be conical, P C V ®; A an A-direct summand. If d :=
min{dim P(z) NY ; x € X(k)}, then there exists a dense open subset U C X (k) such
that dim P(x) NY =d for every x € U. O

Corollary 12.3 Suppose that P CV @y A is an A-direct summand.
(1) The function X (k) — Ny ; = — dimy P(x) is constant on X (k).
(2) If P #(0), then P(x) # (0) for every x € X (k).

Proof. (1). By assumption there exists an A-submodule Q C V ®; A such that V ®; A =
P& Q. Consequently, V = P(z)® Q(x) for every x € X (k). Let dp := min{dimy P(z) ; x €
X(k)} and dg = min{dim; Q(z) ; = € X(k)}. Since X (k) is irreducible, (12.2) yields
dp+dg = dimy V. Consequently, dp < dimy, P(z) = dimy V —dimy Q(z) < dimy V —dg = dp
for an arbitrary x € X (k).

(2). Suppose there is o € X (k) such that P(xg) = (0). According to (1) we then have
P(z) = (0) for every z € X (k). Let {vq1,...,v,} be a basis of V. Given p € P we write
p=>r, v ® a; Since

0=(idy @z)(p) => z(a;)v; =0 VzeX(k)
i=1
we see that the zero locus Z(I) of the ideal I := ({ay,...,a,}) C A is all of X'(k). Hilbert’s
Nullstellensatz now yields I = (0), whence p = 0. Consequently, P = (0), a contradiction.
O

Given an A-direct summand P C V ®; A, and a subset U C X(k), we put Iy(P) :=
ﬂazEU P(ilf)

Definition. Let V be a finite dimensional vector space, F a finite set of irreducible subva-
rieties of V. A family (WW;);es of subspaces of V is said to be F-regular if every subspace W;
contains an element of F.

Lemma 12.4 Let F be a finite set of irreducible subvarieties of the finite-dimensional vector
space V. If P CV ® A is an A-submodule such that

(a) P is an A-direct summand of V ® A, and

(b) there exists a dense subset U C X (k) such that (P(x)).ev is F-reqular,
then the subspace Ix;y(P) CV is F-regular.
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Proof. We write F = {Y1,...,Y,}. In view of (a) there exists an A-submodule Q C V ®; A
such that V @y A = P @ Q. Note that this implies V = P(z) @ Q(z) for every z € X (k).
We consider an element y € V ®; k-1 and write y = p+ g with p € P and ¢ € Q.
Then y € P(z) if and only if (idy ® z)(q) = 0. By choosing a basis {vi,...,v,} of V
and writing ¢ = Y, v; ® a;, we see that the latter condition is equivalent to z(a;) = 0
for 1 < ¢ < m. Consequently, the set Z[y] := {z € X(k) ; y € P(x)} is closed, and
Zj={x € X(k) ; Y; C P(2)} = Nyey, Z[y] has the same property. Condition (b) implies
X(k) = U C Uj_, Z;. Since A is an integral domain, the variety X'(k) is irreducible, and
there exists jo € {1,...,n} such that Z;, = X'(k). It follows that Y}, C Ixu)(P). O

Let G be an affine algebraic k-group, V' a G-module. We assume that G acts on A via algebra
homomorphisms. Consider the G-module V ®; A with the diagonal operation

9-[(v®k7) @R (a @ s)] = g(v @k 1) Or g(a @y s)
forge G(R), r,se RyveV, ac A

Lemma 12.5 Let P C V ®; A be a G-stable A-submodule that is also an A-direct summand
of Ve A. If U C X (k) is dense, then Iy(P) CV is a G-submodule.

Proof. Let O(G) be the function algebra of G. Since V=V @4 k - 1 is G-invariant and k is
a field, V is an O(G)-subcomodule of V' ®; A. By the same token, VNP CV ®; A is, as a
subcomodule of V' ®, A, also G-invariant. We will conclude the proof by showing that

VNP =I,(P).

Observing the obvious inclusion VNP C Iy (P), we proceed by showing that I;;(P) C VNP.
By assumption there exists an A-module @) such that V ®, A = P @ Q. Recall that this
implies V = P(z) & Q(x) for every x € X (k).

Now let v be an element of I;(P), and write v = p+ ¢ with p € P and ¢ € Q. It
follows that v = (idy ® z)(p) + (idy @ x)(q¢) V x € X (k). As v belongs to Iy (P), the
element ¢ vanishes after specialization along x € U. Letting (v;)jes be a basis of V, we
write ¢ = >-;c;v; ® a;. By the above, the ideal S :=>>;c; Aa; C A is annihilated by every
x € U. Thus, U is contained in the zero locus Z(S) of S. Since U is a dense subset of X' (k),
it follows from Hilbert’s Nullstellensatz that S = (0). Consequently, ¢ = 0 and v belongs to
VnP. O

13. Schemes of Tori

We have seen how the determination of the representation type of infinitesimal groups leads to
conditions on rank varieties. This leaves us with the problem of interpreting the ramifications
of these conditions for the structure of the underlying groups. For Frobenius kernels of
smooth groups our knowledge of nilpotent orbits suffices to reduce the problem to the study
of SLi(2), a group whose representation theory is well enough understood to provide us with
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complete answers. Schemes of tori and their associated algebraic families of Lie algebras
help us deal with this problem for arbitrary infinitesimal groups.

Recall that k is an algebraically closed field of characteristic p > 0. Throughout this
section we will only consider finite-dimensional restricted Lie algebras. Such a Lie algebra
(T, [p]) is called a torus if and only of Vp := {t € T"; t?! = 0} = {0}. Tori are necessarily
abelian and linearly reductive: every w(7")-module is completely reducible.

If L = Lie(G) is the Lie algebra of a smooth group, then much of the structure of L can
be detected via the so-called root space decomposition. One picks a maximal torus T° C L
and decomposes L into its eigenspaces relative to T

L=C(T)e @ L. ; RcT\{0}.

aER

Here Cp(T) :={x € L ; [t,x] =0 VYt € T} is the centralizer of T in L, and L, := {z €
L; [t,z] =a(t)r YVt e T} #(0)is the root space for the root a € R. Since G is smooth, any
two maximal tori are conjugate under the adjoint representation, so it doesn’t really matter
which maximal torus we take. The following example shows that this is no longer true for
arbitrary restricted Lie algebras.

Example. For p > 5 we consider the Witt algebra W (1) := Dery(k[X]/(X?)) of the deriva-
tions of the truncated polynomial ring k[X]/(X?). Since the p-th power of a derivation is
again a derivation, (W(1),p) is a restricted Lie algebra. Let 0 be the derivation induced by
A and set z := X + (X?) as well as ¢; := 710 for =1 <i <p—2. Then {e_1,...,e, o} is
a basis of W (1), and we have

leie;] = (—i)eiw; 5 € =060,

where the product is understood to be zero whenever i+ j does not lie within {—1,...,p—2}.
It follows that 7" := key is a maximal torus of W(1).

Now we define f; := (z+1)"0 for —1 < i < p—2. Then f§ = fo and [f;, fi] = (J—1) firj-
In particular, 7" := k fy is another maximal torus of W (1). However, now the subscripts have
to be interpreted mod(p), e.g., [f1, fy—2] = —3f=1. Thus, while the root space decomposition
relative to T induces a Z-grading, we have a grading with respect to the group Z/(p) in the
latter case. The Z-grading is better to work with because we can for instance read off that
ad e; is a nilpotent transformation.

These observations already indicate that 7" and 7" are really different. In fact, they
cannot be mapped onto each other by any automorphism of W (1). Direct computation
shows that W (1)) := "2 ke, is the unique p-subalgebra of codimension 1 (here we need
p > 5). Hence it is fixed by any automorphism ¢ € Aut,(W (1)), and ¢(T) C W(1)@. In
particular, p(7T") # T".

The foregoing example illustrates our predicament. We have to choose a maximal torus

without knowing which choice is good for our purposes. Schemes of tori obviate this difficulty
by simultaneously studying all tori of a certain isomorphism type.
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Let (L, [p]) be a restricted Lie algebra over k, R a commutative k-algebra. Recall that
L ®;, R obtains the structure of a restricted Lie algebra over R via

rzRry®Rs =xyers ; (@ernPl=xPVer Varyel rseR

Now let (7',L) be a pair of restricted Lie algebras over k. We consider the k-functor
71 © My — Ens that associates to each commutative k-algebra R the set 77(R) of those
homomorphisms ¢ : T"®r R — L ®; R of restricted Lie algebras over R that are split
injective. Observe that the set 77 (k) of rational points is just the set of embeddings 7" < L.

Theorem 13.1 ([31]) Let T be a torus.
(1) 7. is a smooth, affine, algebraic scheme.
(2) If X C Ty is an irreducible component, then

dim X = dimy L — dim; C(p(T)) V¢ € X (k). O

One main point of (1) is that the connected components of 7, coincide with the irreducible
components. Thus, if T C L is a torus with the embedding 7" < L corresponding to a
rational point xy € 77 (k), then there exists exactly one irreducible component X C 77, such
that ¢ € XT(I{Z)

If T is not a torus, then 7; may not even be reduced:

Example. Let T := kt, tP! = 0 be the one-dimensional strongly abelian Lie algebra, and
consider the abelian p-unipotent Lie algebra L := ka & kal?), aP” = 0. Then the natural
transformation v : Spec, (k[X,Y]/(X?)) — 71, sending h € Spec,(k[X,Y]/(XP?))(R) to
the homomorphism 1z (h) € T7(R) that is given by ¥x(h)(t) := a @ h(X) + a?! @ h(Y), is
an isomorphism. Accordingly, 77, is not reduced, and thus not smooth.

We illustrate our result by relating it to the conjugacy of tori. Let G be an affine algebraic
group, Ad : G(k) — Auty(Lie(G)) its adjoint representation. Then G(k) operates on the
affine variety 77 (k) via

g-o:=Ad(g)op VgegG(k), pcTL(k).

Proposition 13.2 Let L = Lie(G) be the Lie algebra of a smooth, connected, affine algebraic
group, T a torus. Then the connected components of Ty, are the G(k)-orbits of Tp(k).

Proof. Let X C 7, be a connected component, ¢ € X(k) a rational point. Since the orbit
G(k) - is connected, and X (k) is a connected component of 77(k), we have g-¢ € X (k) for
every g € G(k). Note that the stabilizer Stabg)(¢) is given by

Stabg() (¢) = {9 € G(k) ; Ad(g)(p(t)) = p(t) VteT}
Thus, Lie(Stabg)(¢)) C Cr(e(T)), and (13.1) yields

dimG(k) - ¢ = dim G(k) — dim Stabgx(¢) > dim L — dimy, Cr(p(T)) = dim X' (k).
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Hence every orbit of X(k) lies dense in X(k). Consequently, every orbit is closed, and
X(k) = G(k) ¢, O

Remarks. (1). Let T <% I, be the canonical embedding. Under the assumptions of (13.2) the
morphism g — Ad(g) o zo induces a bijective G(k)-equivariant map G(k)/Stabgky(zo) —
Xr (k) of homogeneous spaces. Owing to [31, (1.4)] its differential T7(G(k)/Stabg) (o)) —
T.,(Xr) is given by the bijection

L/Ci(T) — Dery(T, L) ; [z] — adz|r.

Consequently, we have an isomorphism G(k)/Cgu)(T) = Xp(k). Here Cguy(T) = {g €
G(k); Ad(g)(t) =t YVt e T} is the centralizer of T in G(k).

(2). f T, T" C L are maximal tori, then Borel's fixed point theorem implies that 7" and
T" are conjugate under the adjoint action. Consequently, 7;, = G(k)/Cgu(T) is connected
whenever 7" C L is a maximal torus.

Let (L, [p]) be a restricted Lie algebra, 7" C L a maximal torus with embedding 7" — L
corresponding to a rational point zq € 71,(k). Thanks to (13.1) the irreducible component
X is representable: there exists a finitely generated integral domain A such that Xp &
Specy(A). We consider the restricted Lie algebra L := L®y A. Under the above identification
idy € Specy(A)(A) corresponds to an embedding j : T — L of restricted k-Lie algebras
such that the A-submodule Aj(T) C L is a direct summand of L. Since Xy 2 Spec,(A), any
element ¢ : T'— L ®;, R of Xp(R) is obtained via specialization: if ¢ € Xp(R) corresponds
to x € Spec,(A)(R), then we have

@Z(idL®SC)Oj.

For that reason we call j : T'— L the universal embedding.
Note that j endows L with the structure of an infinite-dimensional «(7)-module. Since
u(T') is commutative and semisimple, there results a weight space decomposition

L=ivo @ L.

of L relative to T'. Here & C 7"\ {0} is the set of weights, and for a € ® U {0} the weight
space L, = {v € L ; [j(t),v] = a(t)v YVt € T} # (0) is an A-direct summand of L. Given
an arbitrary element = € Xp(k), we have
L= Lo(z) ® @ La(z),
acd

where Lo (z) = {v € L ; [(id, ® 2)(j(t)),v] = a(t)v YVt e T} for a € dU {0}. In other
words, if ¢ := (id;, ® x) o j is the embedding corresponding to € Xy (k), then L, (z) is the
root space with root a o ! relative to the torus o(T') C L. In particular, specialization
along x( yields the root space decomposition

L=C,(T)d P La

acd
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of L relative to 7. Thanks to (12.3) this also shows that ® is a finite set.

A nilpotent, self-normalizing p-subalgebra of L is called a Cartan subalgebra. According
to general theory, the centralizer Cr(7T) of the torus 7" is a Cartan subalgebra of L if and
only if 7" is a maximal torus (cf. [71, Chapter IIJ).

Recall that the rank variety of the trivial module of a restricted Lie algebra (L, [p]) is
given by

Vo ={zelL;z? =0}

If G is an infinitesimal group such that By(G) is tame, then dim fJLie(g) = dim Vg, (k) < 2.
We will occasionally refer to dim V; as the ay-rank of the restricted Lie algebra L.
Returning to our general set-up, we let P C L be an A-direct summand of L. Thanks to
(12.2) there exists a non-empty open subset Up C Xr(k), and a natural number cp(L,T) €
Ny such that
dim P(z) NV, = cp(L,T) ¥V a e Up.

The number cp(L, T) is the generic a,-rank of the algebraic family (P(x)),ecx, ) of subspaces
of L. Given a subset ¥ C T*, the A-submodule LY := Docw L, is a direct summand of
L, and we write ¢y (L, T) := c;o (L, T). Let GF(p) be the Galois field with p elements. For
a € dU {0} we put (a) := GF(p)a and define co(L,T') := c(a)(L,T). Note that c,(L,T) is
the generic a,-rank associated to the p-subalgebra L@ = @f:—ol L;,, of L.

We illustrate the utility of the generic a,-rank by giving the following subsidiary result:

Lemma 13.3 Let T' C L be a torus.
(1) ¢o(L,T) =0 if and only if Cr(T) =T. )
(2) If T is a torus of mazximal dimension, and co(L,T) = 1, then Ly is abelian.

Proof. (1). Suppose that co(L,T) = 0. Let x € Uy, and put ¢ := (idy ® ) o j. Then
Vio(x) = {0} and Lo(z) = Cr(p(T)) is a torus. Since Cp(p(T)) is self-normalizing, it is a
Cartan subalgebra of L. Thus, (Aj(T))(xz) = ¢(T) is a maximal torus of L, and we conclude
that (A5(T))(x) = Lo(x) for every z € Uy. Since Aj(T) and Ly are A-direct summands of
L, (12.3) yields

dimy, C1(T) = dimy, Lo(zo) = dimy, Lo(z) = dimy, (A (T))(z) = dimy (A5 (T))(zo) = dimy, T,

so that T'= C(T).

Conversely, assume that T = C7(T). Then we have dimy(A5(T))(xo) = dimy Lo(20). As
Aj(T) and Ly are A-direct summands of L, (12.3) implies (Aj(T))(z) = Lo(x) for every
x € Xp(k). This shows that ¢o(L,T) = 0.

(2). By assumption we have dim 1>E0(m) = 1 for every x € Uj. Since T" has maximal
dimension, (Aj(T))(z) is a maximal torus of L, and Lo(x) is nilpotent (cf. [71, Chapter II]).
It now follows from the classification of representation-finite restricted Lie algebras (cf. [21])
that Lo(z) is abelian ¥ z € U,. Hilbert’s Nullstellensatz then yields the assertion. O

Let (L,[p]) be a restricted Lie algebra. We denote by AUT (L) the automorphism scheme
of L. For every commutative k-algebra R, AUT (L)(R) is the set of automorphisms of the
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restricted R-Lie algebra L ®; R. The connected component of AUT (L) will be denoted Gr..
A subspace I C L is Gr-invariant if g(I @ R) = I ® R for every R € My and g € G(R).

The natural operation of G; on L induces an action of G; on 7;: For g € Gr(R) and
v € Tr(R) we have g- ¢ := go .

Lemma 13.4 The following statements hold:
(1) Every irreducible component X C Ty, is Gr-invariant.
(2) Let U C T*. Then Ly, (L") is G-invariant.

Proof. Part (2) hinges on the fact that the induced diagonal action of Gz, on L fixes j(T)
pointwise. Consequently, LW is Gr-invariant, and we may now apply (12.5) to see that
Lypy (L) is Gr-invariant. O

In the above situation, [ XT(k>([~1(‘I’)) is an ideal of the Lie algebra L. We illustrate the use of
these techniques by considering a special case:

Example. Let (L, [p]) be a restricted Lie algebra with the following properties:
(a) dimV, =1, and
(b) L possesses a self-centralizing torus, and
(¢) L admits no nonzero toral ideals.
By (b) there exists a torus 7' C L such that C(T) = T. Let Xp C 7, be the irreducible

component containing the embedding T’ & L, and consider the weight space decomposition
I—ive L.

relative to 7.

Since dim \A)L = 1 and T is self-centralizing we have dimy, L, = dimy, L,(z¢) = 1 for every
a € ®. In view of (a) and (b) the set ® is not empty. Let a be an element of ®. According
to (12.3) we have dimy Ly (z) = 1 for every z € Xp(k). Let P* := L™, where ¥ := {0, a}.
By (12.2) P*(z) is a p-subalgebra of L such that dim P*(z) NV, = 1 for every z € Xy (k).
In other words, the algebraic family (P*(x))zcx,x) is regular with respect to the irreducible
components of V;. Thanks to (12.4) and (13.4) the space I* :— Ty ey (P®) is a p-ideal such
that dim Ve = 1. We decompose I* = I @ [, into its weight spaces relative to T', and use
(¢) to obtain that 1 < dimy I* < 2. If dimy I* = 1 for every a € ®, then L, = [* is a
p-ideal for each a. Since dim Vr = 1 this implies that . =T &® L, is the two-dimensional,
non-abelian Lie algebra. If dim; [ = 2 for some oy € ®, then [ := [0 is complete, that is,
centerless with all derivations being inner. There results a decomposition

L=1&C(I)
of L into p-ideals. From 1 = dim 1>L = dim )A)[+dim IAJCL (ry we conclude dim ]A)OL( 1 = 0. Hence

Cr(I) is a torus, and (c¢) implies C(I) = {0}. Consequently, L = I is the two-dimensional
non-abelian Lie algebra in this case as well.
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14. Infinitesimal Groups of Tame Module Type

In this section we are going to apply schemes of tori and rank varieties to the study of
infinitesimal groups whose principal blocks have tame representation type. Our results,
which are culled from [32], hold for groups that are defined over an algebraically closed field
k of characteristic p > 3.

Theorem 14.1 Let G be an infinitesimal, solvable group. Then By(G) is not tame.

Proof. One considers a counterexample of minimal order ord(G) = dimy H(G). Since p > 3
Theorem 9.5 shows that G is supersolvable with trivial multiplicative center. Hence G =
U x M is the semidirect product of a unipotent normal subgroup U, and a multiplicative
group M. Tt follows that U contains a normal subgroup N = a, of G. Since By(G/N') has
finite representation type, (10.3) ensures that the group U /N is V-uniserial. This actually
implies the commutativity of . By the same token, we have Vi (U®) = e;. We may
now appeal to the classification of groups with this property [14], to obtain an isomorphism
U =TT apri. Since ey (k) = 2 we see that Y27 r; = 2, whence U = a2 or U = oy X .
Thanks to (9.4) H(G) = By(G) in either case.

For the given groups one proceeds by determining the Gabriel quiver and the relations
of H(G). In one case mody gy contains the module category of the following bound quiver,
in which the relations are marked by dotted lines, as a full subcategory

By results of [76] this module category is wild. Consequently, H(G) is wild, a contradiction.
O

The arguments of (9.7) together with (9.3) now yield:

Corollary 14.2 Let G be an infinitesimal group.
(1) The distribution algebra H(G) does not possess any tame, basic blocks.
(2) If G is trigonalizable, then H(G) has no tame blocks. O

In §11 we have classified the tame blocks of the Frobenius kernels of the smooth reductive
groups. By combining (14.2) with the Lie-Kolchin Theorem (9.2) we readily obtain:
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Corollary 14.3 Let G be a smooth, solvable k-group, r € N. Then H(G,) does not possess
any tame blocks. O

Given an arbitrary infinitesimal group G, we let R(G) and U(G) denote the largest solvable
normal subgroup and the largest unipotent normal subgroup of G, respectively.

Theorem 14.4 Suppose that By(G) is tame.
(1) R(G) is nilpotent.
(2) R(G)/R(G): is multiplicative, and U(G) has height < 1. O

Let G be an infinitesimal group such that By(G) is tame. Since By(G/R(G)) is a direct
summand of the image of By(G) under the canonical projection H(G) — H(G/R(G)), it
has finite or tame representation type. In the former case (10.2) entails the solvability of
G/R(G). Hence G is solvable, and (14.1) gives a contradiction. We are thus led to the study
of semisimple infinitesimal groups of tame representation type.

The unique largest toral ideal of a restricted Lie algebra (L, [p]), the so-called toral radical
of L, will be denoted T'(L). Note that T'(L) is contained in the center C'(L) of L. If I C L
is a p-ideal, then 7'(I) C T'(L).

Definition. A restricted Lie algebra (L, [p]) is called characteristic semisimple if it does not
possess any non-zero solvable Gy-invariant ideals.

Theorem 14.5 Let (L,[p]) be a characteristic semisimple Lie algebra of cy,-rank 2. Then
L= s0(2).

Proof. Let T" C L be a torus of maximal dimension. We consider the component Xp =
Spec,(A), the corresponding Lie algebra L := L ® A as well as the weight space decompo-
sition induced by the universal embedding j : T" — L:

L="Lyo @ L.

Since L is characteristic semisimple, the Cartan subalgebra H = C(T") does not contain any
non-zero Gp-invariant p-ideals of L. Thus, (12.4) and (13.4) yield 0 < ¢o(L,T) < 1. Assume
that Co(L, T) =1.

There exists ag € © such that  C GF(p)ay.
The assumption ¢o(L,T) = 1, implies the existence of a weight oy € ® such that c,, (L, T) =
2. Owing to (12.4) the p-ideal Q(®®) = Ty, (1) (L)) has a,-rank 2. Since T(Q(*0)) C T(L) =
(0), we have ker ap|ng@e = (0), so that dim, TN Q) < 1.

If Q) NT = (0), then Q) is a p-nilpotent Gr-invariant p-ideal of L. This, however,
contradicts the characteristic semisimplicity of L.

Thus, Q) N T is one-dimensional, and Cr(Q“)) N Q) ¢ C(Q*)) Q(()ao) C His a
Gr-invariant p-ideal of L. This implies C7(Q(“0)) N Q@) = (0), so that

2 = dim )>Q(a0)®CL(Q(a0)) = dim )A}Q(ao) + dim ]/)CL(Q(O(())> =2 + dim ]/)CL(Q(Q())).
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Hence C(Q®)) is a toral p-ideal and Cp(Q)) = (0). Since Lz C Cp(Q)) for all
B € ®\ GF(p)ag, we obtain & C GF(p)ap.
Similar arguments then actually show that

o = {CY(), —Oéo} and dlmk Lao =1= dlmk L,ao.

One then verifies H = 7', and this contradicts our assumption ¢y(L,7") =1 (cf. (13.3)).
Thus, ¢o(L,T) = 0, and in that case we have a full classification of the possible algebras
(cf. [31]). As L is semisimple, we obtain L = s((2). O

Now let G be a semisimple infinitesimal group with Lie algebra L = Lie(G). The group
G operates on L via the adjoint representation such that L does not possess any solvable
G-invariant ideals. It follows that L is characteristic semisimple. Thus, if By(G) is tame,
then (14.5) implies that L = sf(2). Consequently, we have a homomorphism Ad : § —
AUT (s0(2)). This ultimately yields an embedding G < SL(2) so that G; = SL(2);. We thus
have to study closed subgroups of SL(2) whose first Frobenius kernel coincides with SL(2);.

Our groups have one more property: we know that By(G/G;) is tame or representation-
finite. The Frobenius homomorphism induces an embedding G/G; — SL(2). If the principal
block of the factor group is tame, then its Lie algebra is a subalgebra of s¢(2) of a,-rank 2.
Consequently, it coincides with s/(2), and SL(2); C G. However, we have seen in §7 that
3 = cr(sr(2)) (k) < cu)(k), a contradiction. Hence By(G/G1) has finite representation type,
and (10.3) determines the structure of G/G;. The subgroups G of SL(2) with

(a) g1 = SL(2)1, and

(b) By(G/G) is representation-finite
belong to the following list: For a natural number n > 1 we let A, and Qp, be the closed
subgroups of SL(2) that are given by

Ap(R) == {( CCL 2 > €ESLI2)(R); & =1=d", b =0=c"}

and

Qu(R) = {< Z Z ) €SL2)(R); @ =1=4d", i =0=c'}

for every commutative k-algebra R, respectively. Note that Qp, is the n-th Frobenius kernel
of the product SL(2),T of the first Frobenius kernel of SL(2) with the standard torus T C
SL(2) of diagonal matrices.

To see which groups are tame we are again forced to write down the quiver and some of
the relations of H(G) for G = Ap,), Qp,- The main reason for the feasability of this project
is the following: Let M be a simple or principal indecomposable H(SL(2);)-module. By
work of Curtis (cf. [48]) and Jeyakumar [49] these modules have an SL(2)-structure. Since
the restriction S|y(g,) of a simple H(G)-module S is simple, this enables us to determine
all simple H(G)-modules and their projective covers. Thanks to Humphreys’ work [46] the
Loewy series of the principal indecomposables can also be determined. This provides enough
information to see that H(.Ap,) is actually wild. We thus arrive at the following result:
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Theorem 14.6 Let G be a semisimple infinitesimal group of characteristic p > 3. Then the
following statements are equivalent:

(1) By(G) is tame.

(2) There exists n > 1 such that G = Qy,.
(3) H(G) is special biserial.
(4) H(G) is tame. O
The verification of (2) = (3) entails the determination of the Gabriel quiver and the relations
of a non-simple block B C H(Qy,). The Gabriel quiver @ of B has vertex set V = Z/(p"™*) x
Z/(2) and arrows

a(ld)(zhj)_)(l—i_l:]"’_l) ) 6(1,J) (27])_>(7’_1~]+1)
From the Loewy structure of the principal indecomposables we obtain the following relations
a(ir1,5+1) © QG ) = 0= Bu-141) © Bag) 5 Blit1,j+1) © Qi) = Qi—1,5+1) © B j)-

For infinitesimal groups of height < 1, that is, for restricted Lie algebras, we have better
control over the nilpotent radical of the group. Here one obtains:

Theorem 14.7 Let G be an infinitesimal group of height < 1 such that By(G) is tame. Then
its Lie algebra L satisfies L/C(L) = sl(2). O

Since the center C'(L) has aj,-rank < 1, its structure is completely understood. The Gabriel
quiver of By(G) is that of By(SL(2);) with possibly other relations.

15. The Stable Auslander-Reiten Quiver

By the results of the preceding sections we now have a fairly good understanding of dis-
tribution algebras of finite and tame representation type. In our discussion one important
invariant of the Morita equivalence class of a self-injective algebra A has been left out of the
account: its stable Auslander-Reiten quiver I's(A). By definition, I's(A) is a directed graph
with set of vertices given by the isoclasses [M] of the non-projective indecomposable modules
of mod(A). The arrows roughly correspond to the irreducible maps. The quiver comes fitted
with a certain quiver automorphism 7, the so-called Auslander-Reiten translation. For a
self-injective algebra this is just the composite of the square of the Heller operator with the
Nakayama functor. Thus, if A is a Frobenius algebra with Nakayama automorphism g, then
we have

T([M]) = [Q} (MW))],

where M® denotes the space M with action twisted by p~!. For this and other basic facts
on AR-theory we refer the reader to [4, 6].

For A = k[G], the group algebra of a finite group G, the study of I's(A) was initiated by
Reiten [66] some 23 years ago. She showed that finite AR-components of k[G] always have
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tree class A,. A few years later, Webb [82] provided a list of the possible tree classes for the
infinite AR-components: these are either infinite Dynkin diagrams or Euclidean diagrams.
Okuyama [58] proved that Euclidean tree classes only occur at characteristic 2, in fact only
Ay, appears [7]. In 1995 Erdmann completed the classification of the AR-quiver of k[G] by
showing that components belonging to wild blocks have tree class A, (cf. [17]).

The AR-theory of the distribution algebras of infinitesimal group schemes is not nearly as
well understood. In fact, the only class of such groups where we have a complete classification
are the unipotent infinitesimal groups. This was shown in [18] in case the underlying groups
have height < 1, yet the methods also work in the general case [26]. In default of a theory
of vertices and sources, we again employ rank varieties to obtain control of the AR-quiver.

Throughout, we will be working over an algebraically closed field k. Given an infinitesimal
k-group G, we let I's(G) denote the stable Auslander-Reiten quiver of H(G).

Lemma 15.1 Let © C T4(G) be a component. Then we have Vg, (M) = Vg, (N) for
[M], [N]e©®. O

In other words, rank varieties are invariants of the AR-components of H(G), so that we can
speak of the variety Vg, (©) of the component © C I's(G). Let [M] € ©. Since © does not
contain any projective modules, we have Vg (©) # {0}. Given ¢ € Vg,.(0) \ {0}, we thus
have

(0) # Exctl, (k, M),

where A, = k[X]/(X?) C H(a,r) is the algebra occurring in the definition of rank varieties.
Thus, we can define subadditive functions and obtain the following analogue of Webb’s result
for finite groups.

Theorem 15.2 ([26]) Let © C I'y(G) be a component. The tree class of © is either

(a) a finite Dynkin diagram A,, D,, Es, Er, Eg,
(b) an infinite Dynkin diagram Ay AZ, Do,
(¢) a Fuclidean diagram A, D, Es, E;, Eg. O

For infinitesimal groups of height < 1 one has more information (cf. [18, 21]). Since the
representation-finite blocks of their distribution algebras are Nakayama algebras [21], A
is the only finite Dynkin diagram that actually occurs. If p > 3 and G is supersolvable,
this result continues to hold. Moreover, the stable AR-quivers does not possess components
of Euclidean tree class in that case (cf. [26]). For arbitrary groups, rank varieties give the
following information:

Theorem 15.3 ([26]) Let G be an infinitesimal k-group of height r, © C T's(G) a compo-
nent.
(1) dim Vg (©) =1 if and only if © is either finite or an infinite tube.

A

(2) Ifdim Vg, (©) > 3, then © = Z[A]. O

The preceding result can be used to shorten the list of (15.2) for Frobenius kernels of smooth
reductive groups.
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Example. Let G = SI.(2), B C H(SL(2);) a non-simple block. Recall from §11 that B has
two simple modules. One can show that the AR-quiver I's(B) consists of 2 components of
type Z[A;s] and infinitely many components of type Z[A]/(7) (cf. [22] for the details).

Theorem 15.4 ([26]) Let G be a smooth reductive group of characteristic p > 5. A compo-
nent © C Ty(G,) belongs to one of the following types: Z[Ay), Z[Ax]/(1), Z[AZ], Z][Dy],
or Z[Alg] .

Proof. In view of (15.2) our task mainly is to rule out finite Dynkin diagrams and to
determine the possible diagrams of Euclidean tree class. With regard to the former, a
theorem by Auslander states that finite Dynkin diagrams correspond to non-simple blocks
of finite representation type. We have seen in (11.1) that distribution algebras of Frobenius
kernels of smooth reductive groups do not admit such blocks.

If © has Euclidean tree class, then we have dim f)gr (©) = 2. By general theory, ©
is attached to a principal indecomposable module. Accordingly, the component Qg (©)
contains a simple module S with a two-dimensional rank variety. The arguments of (11.1)
now imply the existence of a subgroup H C G, a simple SL(2),-module L()), and a projective
‘H,-module P such that

(a) G, =SL(2), X H,, and

(b) S =L\ ® P.

The structure of the simple and projective modules of Frobenius kernels of smooth groups
is given by Steinberg’s (twisted) tensor product theorem (see [48]). One can use this result
to see that the projective cover P(X) of L(A) has a semisimple heart with two isomorphic
constituents. This implies that © = Z[A;,]. O

We continue by extending our example concerning SL(2);. In the previous section (see (14.6))
we observed that the blocks of the distribution algebra H(Qj,) are special biserial. Thanks
to work by Erdmann-Skowroniski [19] the AR-theory of such algebras is well understood. To
formulate our final result, we recall the definition of a special class of tame algebras:

Definition. An algebra A is called domestic if it does not have finite representation type,
and if there exist (A, k[X])-bimodules @, ..., @, such that

(a) @ is a finitely generated free right k[X]-module, and

(b) for each natural number d > 0, all but a finite number of isoclasses of indecomposable
A-modules of dimension d are of the form [Q; ®x] V] for some indecomposable k[X]-module
V.

Theorem 15.5 ([32]) Let n > 2. The stable Auslander-Reiten quiver T's(Qp) is the dis-
joint union of p-1 components of type Z[Aym—1_1], and infinitely many components of type

)

Z[Ax]/(T). Moreover, the algebra H(Qyy,) is of domestic representation type. O

The components Z[Agpnq,l] have tree class AY. Accordingly, the Auslander-Reiten theory
of distribution algebras differs from that for finite groups, where components of tree class A%
only occur for p = 2 and when the defect group of the relevant block is dihedral or semidi-
hedral (see [17]). Moreover, by work of Skowroniski [70] such a group algebra is domestic if
and only if its Sylow-2-subgroups are Klein four groups.
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Since most algebras are wild, a full classification of the indecomposable modules is usually
not possible. Aside from classifying the AR-components, one is thus also interested in
determining the position of certain classes of indecomposable modules within the Auslander-
Reiten quiver. We say that an indecomposable module M lies at an end if its isoclass [M]
has exactly one successor and exactly one predecessor in the stable Auslander-Reiten quiver.
By general theory, this amounts to saying that the middle term of the almost split sequence
terminating in M has exactly one non-projective indecomposable summand.

For the group algebra of a finite group G there are a number of results concerning
the position of simple modules within I's(G). If such a module S belongs to a wild block
B C k[G], then it is located at an end of a component of tree class A, if either G is p-solvable
[51], or if G is of Lie type [52], or if G is the symmetric or alternating group [8]. An example
showing that simple modules of wild blocks may have two predecessors can be found in [52].

Let G be an infinitesimal k-group of characteristic p > 3. If G is supersolvable, then
a component of type Z[A] contains at most one simple vertex, which lies at an end [26].
Thus, simple modules of complexity > 3 will have this property. If G has height < 1 this
result holds for arbitrary G (cf. [24]). In particular, a simple module of the first Frobenius
kernel of a smooth, reductive group of characterstic p > 5 lies at an end if and only if it
belongs to a wild block. The baby Verma modules of such groups are also located at ends
[27].
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