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1 Introduction

Resolvent estimates and spectral properties of linear boundary value prob-

lems are essential for establishing the well-posedness and asymptotic stabil-

ity of solutions to time dependent nonlinear evolution equations. For exam-

ple, the stability of traveling waves in one space dimension is determined by

the spectral properties of second order differential operators

Pu = Auxx +Bux + Cu, A ∈ C
l,l, B,C ∈ C(R,Cl,l), (1.1)

see e.g. the monographs [8, 23] and the papers [10, 16]. Depending on the

properties of the matrix A the time dependent system

ut = Pu, x ∈ R, t ≥ 0 (1.2)

is of hyperbolic, parabolic or coupled hyperbolic-parabolic type. The spec-

trum of the operator P from (1.1) will depend on this type and on the

function spaces used. In general, it may contain continuous spectrum as

well as isolated eigenvalues. In order to determine isolated eigenvalues it

is essential to analyze the solvability and derive solution estimates for the

resolvent equation

(sI − P )u = f in R, (1.3)
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where the range of s-values should at least contain the positive half-plane.

There are several alternatives for solving this problem in real applications.

One alternative is to reduce the eigenvalue problem to finding the zeros

of the Evans function [16, 14, 4] and to approximate the Evans function

numerically (see [9] and the citations therein). Another alternative is to

truncate equation (1.3) to a large but compact finite interval J = [x−, x+]

and to impose appropriate boundary conditions

f = (sI − P )u in J = [x−, x+], (1.4a)

0 = Ru = RI
−u(x−) +RII

− ux(x−) +RI
+u(x+) +RII

+ ux(x+). (1.4b)

The purpose of this paper is to analyze, within a general framework, the

error introduced by this truncation and by the choice of the finite boundary

conditions. We will not consider the subsequent discretization of the bound-

ary value problem (1.4) by standard methods such as finite differences or

finite element methods.

Our general approach is as follows. We view the truncation to a finite in-

terval J as a projection from a space of functions on R, e.g. the Sobolev

space H2(R), to a space of functions on J . The truncated differential op-

erator will be connected with a two point boundary operator R as above

and the projection will be chosen such that homogeneous boundary condi-

tions are imposed. In this way the convergence of the truncated operators

to the original operator as J → R can be interpreted as the error obtained

by commuting a differential operator with the projection to a finite interval

(precise definitions and details are given in Section 2).

Viewing approximation problems in this way is also the underlying idea in

the theory of discrete approximations developed in the 1970s by F. Stummel

[17, 18, 19], R. D. Grigorieff [5, 6, 7], and G. Vainikko [21]. This theory has

found numerous applications to the analysis of finite element or finite dif-

ference approximations as well as perturbations of coefficients and bounded

domains in differential equations (Stummel [20]).

In our approach we first transform equation (1.2) to a first order system

Lz := zx −M(x, s)z = h in R. (1.5)

Our main result (Theorem 1 in Section 2) gives sufficient conditions on the
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boundary operators and on the asymptotic behavior of the matrices M(x, s)

such that regular convergence holds in the sense of discrete approximations

(see Vainikko [21]) and within the framework described above. We note

that regular convergence has important implications for the convergence of

linear and nonlinear eigenvalue problems (see for example [22]) as well as

existence, uniqueness and convergence of solutions to nonlinear problems.

As a particular instance we show in Section 3 the regular convergence of

a truncated version of a linear coupled hyperbolic-parabolic system of the

form

(

u

v

)

t

=

(

A 0

0 0

)(

u

v

)

xx

+B

(

u

v

)

x

+ C

(

u

v

)

=: P

(

u

v

)

. (1.6)

Under appropriate assumptions on the boundary operator that takes into

account the mixed nature of the problem we prove resolvent estimates that

are uniform in s-values in a compact set as well as in the size of the large

interval J .

More general applications, in particular convergence theorems for isolated

eigenvalues can be found in the Master’s Thesis [15]. We also note that the

approach in [15] is more general in the sense that all results hold for x+

and −x− sufficiently large, while in this paper, for the ease of readability,

we restrict to a nested sequence of growing intervals Jn = [xn
−, x

n
+]. Due to

its abstract nature, our result also applies to purely hyperbolic and purely

parabolic problems (see [15]). For example, the convergence results and

resolvent estimates from [2, sec. 3, 4] can be deduced from the regular

convergence result in this paper.

Finally, we show that the stability problem for pulses in the FitzHugh-

Nagumo equations of nerve signalling leads to a system of the form (1.6)

that can be included into our theory.

2 Boundary value problems and discrete approxi-

mations

In this section we consider the connection of the boundary value problem

on the whole real line and of its finite interval approximations in the setting
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of discrete approximations. We mainly follow the monograph [21] and first

recall some basic definitions. Since we are particularly interested in the

application to boundary value problems we will give the definitions in a

simplified form.

If (xn)n∈N is some sequence in a topological space we write xn → x (n ∈ N)

iff limn→∞ xn = x. Furthermore by N
′ ⊂ N, N

′′ ⊂ N, etc. we always de-

note unbounded subsets of N. Therefore (xn)n∈N′ denotes the corresponding

subsequence of (xn)n∈N and xn → x (n ∈ N
′) means the convergence of the

subsequence to x.

Let E and F denote separable Banach-spaces and let (Ei)i∈N and (Fi)i∈N

denote sequences of separable Banach-spaces. Let (pi)i∈N denote a sequence

of linear bounded operators pi ∈ L[E,Ei] with the property

‖pie‖Ei
→ ‖e‖E (i ∈ N) ∀e ∈ E. (2.7)

Similarly let (qi)i∈N be a sequence of linear bounded operators qi ∈ L[F,Fi]

which also satisfies the property (2.7).

We say that a sequence (ei)i∈N with ei ∈ Ei

• P-converges to e ∈ E iff ‖pie− ei‖Ei
→ 0 (i ∈ N), written as ei

P
−→

e (i ∈ N),

• is P-compact iff for every N
′ ⊂ N there is N

′′ ⊂ N
′ and e ∈ E with

ei
P
−→ e (i ∈ N

′′).

Similarly we define Q-convergence and Q-compactness.

Now let (Ai)i∈N with Ai ∈ L[Ei, Fi] be a sequence of bounded linear opera-

tors and let A ∈ L[E,F ]. We say that

• Ai PQ-converges to A (written Ai
PQ
−−→ A (i ∈ N)) iff ei

P
−→ e (i ∈ N)

implies Aiei
Q
−→ Ae (i ∈ N),

• Ai PQ-converges stably to A iff

1. Ai
PQ
−−→ A (i ∈ N) and

2. there is i0 ∈ N and C > 0 such that for all i ≥ i0 the inverse

A−1
i ∈ L[Fi, Ei] exists and satisfies

∥

∥A−1
i

∥

∥

Fi→Ei
≤ C, ∀i ≥ i0,
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• Ai PQ-converges regularly to A iff

1. Ai
PQ
−−→ A and

2. if (ei)i∈N, ei ∈ Ei, is a bounded sequence such that the sequence

(Aiei)i∈N is Q-compact then (ei)i∈N is P-compact.

Now we consider the special case of approximating boundary value problems

on the whole real line. Let (Ji)i∈N, Ji = [xi
−, x

i
+], be a sequence of compact

intervals with xi
− ≤ −1, xi

+ ≥ 1 and limi→∞ xi
± = ±∞. For i ∈ N consider

the separable complex Banach spaces

E = H1(R,Cl), Ei = H1(Ji,C
l),

and

F = L2(R,C
l), Fi = L2(Ji,C

l)×C
l,

with the usual L2 and H1-norms for E, F , and Ei i ∈ N. On Fi we use

the norm ‖(h, η)‖Fi
= ‖h‖L2(Ji)

+ |η|. Furthermore consider the families of

linear and continuous mappings P = (pi)i∈N and Q = (qi)i∈N defined by

pi :
E → Ei

z 7→ z|Ji

and qi :
F → Fi

h 7→ (h|Ji
, 0)

.

Assume the matrix-valued function M ∈ C(R,Cl,l) is asymptotically con-

stant with limx→±∞M(x) = M± and define the differential operator

L : E → F, z 7→ Lz := zx −M(·)z.

Similarly, on finite intervals consider the sequence of linear bounded opera-

tors

Li : Ei → Fi, z 7→ Liz :=

(

zx −M(·)z

Rz

)

where R : Ei → C
l is a two point boundary operator given by

R := R−z(x
i
−) +R+z(x

i
+)

with constant matrices R±.
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Theorem 1. Consider a linear differential operator L as above and assume

that the matrices M+ and M− are hyperbolic, i.e. there are no purely imag-

inary eigenvalues of M±. Let V II
− ∈ C

l,p be a basis of the stable subspace of

M− and let V I
+ ∈ C

l,q be a basis of the unstable subspace of M+ and assume

p+ q = l. Finally assume that the matrices R− and R+ satisfy

det
(

R−V
II
− R+V

I
+

)

6= 0. (2.8)

Then

Li
PQ
−−→ L regularly as i→∞.

Proof. For zi ∈ Ei holds

‖Lizi‖Fi
= ‖zi,x −M(·)zi‖L2(Ji)

+
∣

∣R−zi(x
i
−) +R+zi(x

i
+)
∣

∣

≤ const ‖zi‖Ei
(2.9)

by Sobolev’s inequality and the boundedness of M in L∞. Furthermore for

every z ∈ E holds

‖Lipiz − qiLz‖Fi

= ‖(z|Ji
)x −M(·)z|Ji

− (zx −M(·)z)|Ji
‖L2(Ji)

+
∣

∣R−z(x
i
−) +R+z(x

i
+)
∣

∣

−−−→
i→∞

0 (2.10)

since the first summand is zero and z(xi
−), z(xi

+) → 0 (i ∈ N) by Sobolev’s

embedding theorem.

It is well known that (2.9) and (2.10) imply Li
PQ
−−→ L (i ∈ N) [21, Satz

§2(8)].

It remains to prove the regularity of the convergence. Let (zi)i∈N, zi ∈ Ei,

be a bounded sequence such that (Lizi)i∈N is Q-compact. Let N
′ ⊂ N be a

subsequence. There is N
′′ ⊂ N

′ and h ∈ F with

Lizi =

(

zi,x −M(·)zi

Rzi

)

=:

(

hi

si

)

Q
−→ h (i ∈ N

′′)

by the Q-compactness, i.e.

‖hi − h|Ji
‖H1 + |si| → 0 as i→∞. (2.11)
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The hyperbolicity assumption for M+ and M− implies that the differential

operator z 7→ zx−M(·)z has exponential dichotomies on R+ and on R−. See

the Appendix for the definition and some general properties of exponential

dichotomies. We denote the data of the dichotomies on R+ and R− by

(K+, β+, π+) and (K−, β−, π−) respectively. Note that [12, Lemma 3.4]

shows that the projections are asymptotically constant, i.e.

lim
x→±∞

π±(x) = π̄± with R(I − π̄+) = R(V I
+) and R(π̄−) = R(V II

− ). (2.12)

Because of the exponential dichotomy it follows from Theorem 10 in the

Appendix that the element zi ∈ Ei can be written as

zi(x)=







S(x, 0)π+(0)zi(0) + S(x, xi
+)(I − π+(xi

+))zi(x
i
+) + ρi

+(x), x ≥ 0

S(x, 0)(I − π−(0))zi(0) + S(x, xi
−)π−(xi

−)zi(x
i
−) + ρi

−(x), x ≤ 0

(2.13)

where S(·, ·) is the solution operator for z 7→ zx −M(·)z and ρi
+, ρi

− are

given by

ρi
+(x) =

∫ xi
+

0
G+(x, y)hi(y)dy, x

i
+ ≥ x ≥ 0

ρi
−(x) =

∫ 0

xi
−

G−(x, y)hi(y)dy, x
i
− ≤ x ≤ 0.

Here G+ and G− denote the Green’s functions

G+(x, y) =







S(x, y)π+(y), 0 ≤ y ≤ x

S(x, y)(π+(y)− I), 0 ≤ x < y

and

G−(x, y) =







S(x, y)π−(y), y ≤ x ≤ 0

S(x, y)(π−(y)− I), x < y ≤ 0.

By Sobolev’s inequality the sequence (zi(0))i∈N′′ is bounded and there is a

subsequence N
′′′ ⊂ N

′′ and η ∈ C
l with

zi(0)→ η (i ∈ N
′′′).

Let

z(x) :=







S(x, 0)π+(0)η + ρ+(x), x > 0

S(x, 0)(I − π−(0))η + ρ−(x), x < 0
(2.14)
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where

ρ+(x) :=

∫ ∞

0
G+(x, y)h(y)dy, x ≥ 0

and

ρ−(x) :=

∫ 0

−∞
G−(x, y)h(y)dy, x ≤ 0.

Using the exponential dichotomy we obtain

∫ 0

xi
−

∣

∣S(x, 0)(I − π−(0))(zi(0)− η)
∣

∣

2
dx ≤

K2
−

2β−
|zi(0)− η|

2 → 0 (i ∈ N
′′′)

(2.15a)

as well as

∫ xi
+

0

∣

∣S(x, 0)π+(0)(zi(0)− η)
∣

∣

2
dx→ 0 (i ∈ N

′′′). (2.15b)

Furthermore using the exponential dichotomy and the definitions of ρi
−(x)

and ρ−(x) it follows with the Cauchy-Schwarz-inequality

∫ 0

xi
−

∣

∣ρi
−(x)− ρ−(x)

∣

∣

2
dx

≤2

∫ 0

xi
−

∫ 0

xi
−

K2
−e

−β−|x−y|dy

∫ 0

xi
−

e−β−|x−y|
∣

∣hi(y)− h(y)
∣

∣

2
dy dx

+ 2

∫ 0

xi
−

∣

∣

∣

∣

∣

∫ xi
−

−∞
K−e

−β−|x−y||h(y)|dy

∣

∣

∣

∣

∣

2

dx.

Using Fubini the first term can be bounded from above by

8K2
−

β2
−

∫ 0

xi
−

∣

∣hi(y)− h(y)
∣

∣

2
dy

which converges to zero by (2.11). The second summand converges to zero as

one sees by using the Cauchy-Schwarz-inequality and Fubini together with

h ∈ L2(R,C
l). Therefore one finds

∫ 0

xi
−

∣

∣ρi
−(x)− ρ−(x)

∣

∣

2
dx→ 0 (i ∈ N

′′′) (2.15c)

and by analogous arguments

∫ xi
+

0

∣

∣ρi
+(x)− ρ+(x)

∣

∣

2
dx→ 0 (i ∈ N

′′′). (2.15d)

8



Our next aim is to show

∫ 0

xi
−

∣

∣S(x, xi
−)π−(xi

−)zi(x
i
−)
∣

∣

2
dx→ 0 (i ∈ N

′′′) (2.15e)

and

∫ xi
+

0

∣

∣S(x, xi
+)(I − π+(xi

+))zi(x
i
+)
∣

∣

2
dx→ 0 (i ∈ N

′′′). (2.15f)

Because of

|S(x, xi
−)π−(xi

−)zi(x
i
−)|2 ≤ K2

−e
−2β−|x−xi

−
||π−(xi

−)zi(x
i
−)|2

and

|S(x, xi
+)(I − π+(xi

+))zi(x
i
+)|2 ≤ K2

+e
−2β+|x−xi

+
||π+(xi

+)zi(x
i
+)|2

it suffices to prove

|π−(xi
−)zi(x

i
−)| → 0 (i ∈ N

′′′) and |(I − π+(xi
+))zi(x

i
+)| → 0 (i ∈ N

′′′).

These will be shown by using the boundary conditions. By (2.13) we obtain

Rzi =R−π−(xi
−)zi(x

i
−) +R+(I − π+(xi

+))zi(x
i
+)

+R−S(xi
−, 0)(I − π−(0))zi(0) +R+S(xi

+, 0)π+(0)zi(0)

+R−

∫ 0

xi
−

G−(xi
−, y)hi(y)dy +R+

∫ xi
+

0
G+(xi

+, y)hi(y)dy.

(2.16)

From the boundedness of (zi(0))i∈N easily follows the convergence

R−S(xi
−, 0)(I − π−(0))zi(0) +R+S(xi

+, 0)π+(0)zi(0)→ 0(i ∈ N
′′′).

Next we prove

R−

∫ 0

xi
−

G−(xi
−, y)hi(y)dy → 0(i ∈ N

′′′)

and

R+

∫ xi
+

0
G+(xi

+, y)hi(y)dy → 0(i ∈ N
′′′).
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To see these choose h̃ ∈ C∞0 (R,Cl) with
∥

∥

∥
h− h̃

∥

∥

∥
≤ ε

2 . Then there is i0 ∈ N

with
∥

∥

∥
hi − h̃|Ji

∥

∥

∥

L2(Ji)
≤ ε for all i ∈ N

′′′ with i ≥ i0. It follows

∣

∣

∣

∣

∣

R−

∫ 0

xi
−

G−(xi
−, y)hi(y)dy

∣

∣

∣

∣

∣

2

≤ |R−|
2

(

∫ 0

xi
−

K−e
−β−|xi

−
−y||hi(y)|dy

)2

≤2|R−|
2

(

∫ 0

xi
−

K−e
−β−|xi

−
−y||h̃(y)− hi(y)|dy

)2

+ 2|R−|
2

(

∫ 0

xi
−

K−e
−β−|xi

−
−y||h̃(y)|dy

)2

.

The second term converges to zero as i→∞ since h̃ ∈ C∞0 and for the first

term one finds

(

∫ 0

xi
−

K−e
−β−|xi

−
−y||h̃(y)− hi(y)|dy

)2

≤
K2

−

2β−

∫ 0

xi
−

∣

∣h̃(y)− hi(y)
∣

∣

2
dy ≤

K2
−

2β−
ε ∀i ≥ i0, i ∈ N

′′′

where we used the Cauchy-Schwarz-inequality. Since ε > 0 was arbitrary

equations (2.16) and (2.11) imply

R−π−(xi
−)zi(x

i
−) +R+(I − π+(xi

+))zi(x
i
+)→ 0 (i ∈ N

′′′).

From the convergence of the projectors (2.12) combined with the determi-

nant condition (2.8) we obtain

π−(xi
−)zi(x

i
−)→ 0 (i ∈ N

′′′)

and

(I − π+(xi
+))zi(x

i
+)→ 0 (i ∈ N

′′′)

hence (2.15e) and (2.15f) hold.

Summarizing (2.15a)–(2.15f) shows

‖zi − z|Ji
‖L2(Ji)

→ 0 (i ∈ N
′′′). (2.17)

To finish the proof we still have to show z ∈ H1 and zi
P
−→ z (i ∈ N

′′′).

For this define w := M(·)z + h ∈ L2(R,C
l) and let φ ∈ C∞0 (R,Cl) be
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arbitrary. Then there is i0 ∈ N with Ji ⊃ supp(φ) ∀i ≥ i0. Using the

definition of w and the equality zi,x = M(·)zi + hi one can estimate for all

i ≥ i0

∣

∣(w,φ)L2(R) + (z, φ′)L2(R)

∣

∣

≤
∣

∣(w|Ji
, φ)L2(Ji) − (zi,x, φ)L2(Ji)

∣

∣+
∣

∣(z|Ji
− zi, φ

′)L2(Ji)

∣

∣

≤ const ‖φ‖H1

(

‖z|Ji
− zi‖L2(Ji)

+ ‖h|Ji
− hi‖L2(Ji)

)

.

Since we know ‖h|Ji
− hi‖L2(Ji)

→ 0 (i ∈ N
′′′) from equation (2.11) and

furthermore ‖z|Ji
− zi‖L2(Ji)

→ 0 (i ∈ N
′′′) by (2.17) it follows that zx = w

holds in the distributional sense and thus z ∈ H1(R).

Finally

‖z|Ji
− zi‖

2
H1 = ‖z|Ji

− zi‖
2
L2

+ ‖zx|Ji
− zi,x‖

2
L2

≤ ‖z|Ji
− zi‖

2
L2

+ ‖(Mz + h)|Ji
− (Mzi + hi)‖

2
L2
→ 0 (i ∈ N

′′′)

where we used the definition of w = zx again.

3 Application to coupled hyperbolic-parabolic sys-

tems

Consider the coupled hyperbolic-parabolic system

(

u

v

)

t

=

(

A 0

0 0

)(

u

v

)

xx

+

(

B11 B12

B21 B22

)(

u

v

)

x

+

(

C11 C12

C21 C22

)(

u

v

)

=: P

(

u

v

)

(3.18)

with u(t, x) ∈ C
n, v(t, x) ∈ C

m, and assume that the coefficients A, Bij , and

Cij satisfy the following assumptions.

(PA) A ∈ C
n,n, A+A∗ ≥ αI > 0 ,

(CA) Bij , Cij are continuous and asymptotically constant matrix-valued

functions

lim
x→+∞

Bij(x) = lim
x→−∞

Bij(x) =: Bij,∞,

lim
x→+∞

Cij(x) = lim
x→−∞

Cij(x) =: Cij,∞,
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(HA) B22 = diag(b1, . . . , bm), |bi(x)| ≥ γ > 0 ∀i, x ∈ R.

(SA) s ∈ σ

(

−ω2

(

A 0

0 0

)

+ iω

(

B11,∞ B12,∞

B21,∞ B22,∞

)

+

(

C11,∞ C12,∞

C21,∞ C22,∞

))

implies Res < −δ < 0.

Remark. One can show that the convergence results below generalize to

the case where the limits x → −∞ and x → +∞ in condition (CA) are

different. However, this requires a considerably longer proof and we refer to

[15] for the details.

The operator P is defined by the right hand side of (3.18)

P : H2(R,Cn)×H1(R,Cm)→ L2(R,C
n)× L2(R,C

m).

In the following we restrict the infinite interval to a compact interval J =

[x−, x+] and impose certain boundary conditions. We consider the operator

P |J : H2(J,Cn)×H1(J,Cm)→ L2(J,C
n)× L2(J,C

m)

which is defined in the same way as P , together with a boundary operator

R : H2(J,Cn)×H1(J,Cm)→ C
2n+m

defined as follows

R

(

u

v

)

=
(

RI
− RII

− RIII
−

)









u(x−)

ux(x−)

v(x−)









+
(

RI
+ RII

+ RIII
+

)









u(x+)

ux(x+)

v(x+)









.

The resolvent equation for P reads

(sI − P )

(

u

v

)

=

(

f

g

)

in L2(R,C
n+m) (3.19)

with f ∈ L2(R,C
n), g ∈ L2(R,C

m), u ∈ H2(R,Cn), and v ∈ H1(R,Cm).

The finite interval analog on J = [x−, x+] is given by

(

sI − P |J

R

)(

u

v

)

=









f

g

η









in L2(J,C
n+m)× C

2n+m, (3.20)
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where u ∈ H2(J,Cn), v ∈ H1(J,Cm), f ∈ L2(J,C
n), g ∈ L2(J,C

m) and

η ∈ C
2n+m.

Both systems (3.19) and (3.20) will be transformed by using the variables

(u, v)T  z := (u,Aux, v)
T . (3.21)

For the all line problem (3.19) this transformation leads to the first equation

L(·, s)z := zx −M(·, s)z = h, (3.22)

which holds in the space H1(R,Cn)×L2(R,C
n)×L2(R,C

n). For the finite

interval problem (3.20) we obtain

LJ(s)z :=

(

L|J(·, s)

R1

)

z =

(

zx −M(·, s)z

R1z

)

=

(

h

η

)

(3.23)

as an equality in H1(J,Cn)× L2(J,C
n)× L2(J,C

m)× C
2n+m.

The matrix-valued function M(·, s) in (3.22) and in (3.23) is given by

M(·, s) =








0 A−1 0

B12B
−1
22 C21+ sI−C11 −B11A

−1+B12B
−1
22 B21A

−1 −C12−B12B
−1
22 (sI − C22)

−B−1
22 C21 −B−1

22 B21A
−1 B−1

22 (sI − C22)









and the function h reads

h =









0

−f +B12B
−1
22 g

−B−1
22 g









∈ H1(R,Cn)× L2(R,C
n)× L2(R,C

m)

for the all line problem (3.22). The same definition for the finite interval

problem (3.23) leads to h ∈ H1(J,Cn)× L2(J,C
n)× L2(J,C

m).

Finally the boundary operator R1 is given by

R1z =
(

RI
− RII

− A
−1 RIII

−

)

z(x−) +
(

RI
+ RII

+ A
−1 RIII

+

)

z(x+).

By assumption (CA) the limits M∞(s) := limx→±∞M(x, s) exist. The

following lemma is easily verified.

Lemma 2. For every s, κ ∈ C the following conditions are equivalent

13



1. s ∈ σ

(

κ2

(

A 0

0 0

)

+ κ

(

B11,∞ B12,∞

B21,∞ B22,∞

)

+

(

C11,∞ C12,∞

C21,∞ C22,∞

))

and

2. det (κI −M∞(s)) = 0.

An important consequence of this result is the next corollary.

Corollary 3. For every s ∈ {Res > −δ} the matrices M∞(s) are hyperbolic

and the operators

L(·, s) :H2(R,Cn)×H1(R,Cn)×H1(R,Cm)→H1(R,Cn)×L2(R,C
n)×L2(R,C

m)

are Fredholm of index zero.

Proof. The first part immediately follows from Lemma 2 together with the

spectral assumption (SA).

The second part follows from Lemma 11 and its Corollary 12 in the appendix.

An important connection between the original operator and the first order

operator is that their Fredholm properties coincide. We formulate this in

the next lemma, again with the proof given in the appendix.

Lemma 4. The operator

sI − P : H2(R,Cn)×H1(R,Cm)→ L2(R,C
n)× L2(R,C

m)

is Fredholm if and only if the operator

L(·, s) : H2(R,Cn)×H1(R,Cn)×H1(R,Cm)→ H1(R,Cn)×L2(R,C
n)×L2(R,C

m)

is Fredholm. Furthermore the Fredholm-indices coincide.

Let V−(s) ∈ C
2n+m,p denote a basis of the stable subspace of M∞(s) and let

V+(s) ∈ C
2n+m,q denote a basis of the unstable subspace of M∞(s). Because

of the assumption (CA) it is p+q = 2n+m. Define the determinant function

D(s) := det
[ (

RI
− RII

− A
−1 RIII

−

)

V−(s),
(

RI
+ RII

+ A
−1 RIII

+

)

V+(s)
]

.

(3.24)

The condition D(s) 6= 0 will give a sufficient criterion for appropriate arti-

ficial boundary conditions when we truncate to finite intervals.
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3.1 Regular convergence for hyperbolic-parabolic problems

Let E, Ei, F , and Fi be as in Section 2 with l = 2n + m. Furthermore

consider the spaces

Ẽ = H2(R,Cn)×H1(R,Cm),

Ẽi = H2(Ji,C
n)×H1(Ji,C

m), i ∈ N,

F̃ = L2(R,C
n)× L2(R,C

m),

F̃i = L2(Ji,C
n)× L2(Ji,C

m)× C
2n+m, i ∈ N,

and the mappings

p̃i : Ẽ → Ẽi, (u, v)T 7→ (u|Ji
, v|Ji

)T , i ∈ N,

q̃i : F̃ → F̃i, (f, g)T 7→ (f |Ji
, g|Ji

, 0)T , i ∈ N.

The families of mappings P̃ = (p̃i)i∈N and Q̃ = (q̃i)i∈N are continuous and

bounded and satisfy (2.7).

Finally we consider the bounded linear operators

Ai(s) :=

(

sI − P |Ji

R

)

: Ẽi → F̃i (3.25)

and

A(s) := (sI − P ) : Ẽ → F̃ . (3.26)

Our main result is the following theorem.

Theorem 5. Let s ∈ {Res > −δ} and assume D(s) 6= 0 with D(s) defined

in (3.24). Then the sequence of bounded linear operators (Ai(s))i∈N P̃Q̃-

converges regularly to the operator A(s) := (sI − P ) : Ẽ → F̃ .

Proof. First we show the P̃Q̃-convergence. Let i ∈ N and (u, v)T ∈ Ẽi be

arbitrary. Then because of Sobolev’s inequality and the boundedness of R

holds

∥

∥

∥

∥

∥

Ai(s)

(

u

v

)∥

∥

∥

∥

∥

F̃i

≤

∥

∥

∥

∥

∥

(sI − P |Ji
)

(

u

v

)∥

∥

∥

∥

∥

L2

+

∣

∣

∣

∣

∣

R

(

u

v

)∣

∣

∣

∣

∣

≤ C0

∥

∥

∥

∥

∥

(

u

v

)∥

∥

∥

∥

∥

H2(Ji)×H1(Ji)

with a constant C0 independent of i ∈ N.
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Now let (u, v)T ∈ E be arbitrary. From the Sobolev-embedding-Theorem

we obtain
∥

∥

∥

∥

∥

q̃iA(s)

(

u

v

)

−Ai(s)p̃i

(

u

v

)∥

∥

∥

∥

∥

F̃i

≤

∣

∣

∣

∣

∣

R

(

u|Ji

v|Ji

)∣

∣

∣

∣

∣

→ 0 (i ∈ N)

so that by [21, §2 Satz(8)] the P̃Q̃-convergence follows.

Using the transformation (3.21) we rewrite the second order equation

(sI − P )

(

u

v

)

=

(

f

g

)

in F̃

as the first order system

L(·, s)









u

Aux

v









=









0

−f +B12B
−1
22 g

−B−1
22 g









in F

and its finite interval approximation

(

sI − P |Ji

R

)(

ui

vi

)

=









fi

gi

ηi









in F̃i

as

LJi
(·, s)









ui

Aui,x

vi









=















0

−fi +B12B
−1
22 gi

−B−1
22 gi

ηi















in Fi.

Define the mappings

ιE : Ẽ → E, (u, v)T 7→ (u, Aux, v)
T ,

ιEi
: Ẽi → Ei, (ui, vi)

T 7→ (ui, Aui,x, vi)
T ,

ιF : F̃ → F, (f, g)T 7→ (0, −f +B12B
−1
22 g, −B

−1
22 g)

T ,

ιFi
: F̃i → Fi, (fi, gi, ηi)

T 7→ (0, −fi +B12B
−1
22 gi, −B

−1
22 gi, ηi)

T .

The whole setting of spaces and mappings is shown schematically in Figure

1.
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Ẽ
A(s)

//

p̃i

��

ιE
""DD

DD
DD

DD
DD

F̃

ιF
}}zz

zz
zz

zz
zz

q̃i

��

E
L(·,s)

//

pi

��

F

qi

��
Ei

LJi
(s)

// Fi

Ẽi

ιEi

=={{{{{{{{{{

Ai(s)
// F̃i

ιFi

aaCCCCCCCCCC

Figure 1: The setting of spaces and mappings. Note that the diagram is usually

not commutative.

Let (ui, vi)
T
i∈N

be a bounded sequence with (ui, vi)
T ∈ Ẽi such that the

sequence

(

Ai(s)

(

ui

vi

))

i∈N

is Q̃-compact. Then also the sequence









LJi
(s)









ui

Aui,x

vi

















i∈N

=

(

(ιFi
◦ Ai(s))

(

ui

vi

))

i∈N

is Q-compact, since ιFi

Q̃Q
−−→ ιF .

Let N
′ ⊂ N be arbitrary. By Theorem 1 we know

LJi
(·, s)

PQ
−−→ L(·, s) regularly

so that there is a subsequence N
′′ ⊂ N

′ and (u,w, v) ∈ E with









ui

Aui,x

vi









P
−→









u

w

v









(i ∈ N
′′). (3.27)

Furthermore by the Q̃-compactness of

(

Ai(s)

(

ui

vi

))

i∈N

there is N
′′′ ⊂ N

′′

and (f, g)T ∈ F̃ with

Ai(s)

(

ui

vi

)

Q
−→

(

f

F

)

(i ∈ N
′′′).
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By construction we thus obtain

L(·, s)









u

w

v









Q
←− Li(·, s)









ui

Aui,x

vi









Q
−→









0

−f +B12B
−1
22 g

−B−1
22 g









(i ∈ N
′′′)

which by uniqueness of the Q-limit (see [21]) implies

L(·, s)









u

w

v









=









0

−f +B12B
−1
22 g

−B−1
22 g









.

Using the differential equation we find w = Aux ∈ H
1(R,Cn) and therefore

u ∈ H2(R,Cn), v ∈ H1(R,Cm), and the equality

(sI − P )

(

u

v

)

=

(

f

g

)

holds. Now the definition of the P-convergence in (3.27) yields

‖ui − u|Ji
‖H1(Ji,Cn) + ‖ui,x − u|Ji

‖
H1(Ji,Cn) + ‖vi − v|Ji

‖H1(Ji,Cm)

≤ K

∥

∥

∥

∥

∥

∥

∥

∥









ui

Aui,x

vi









−









u|Ji

Aux|Ji

v|Ji









∥

∥

∥

∥

∥

∥

∥

∥

Ei

→ 0 (i ∈ N
′′′)

and this finally shows

(

ui

vi

)

P̃
−→

(

u

v

)

(i ∈ N
′′′).

Since N
′ was arbitrary the compactness of the sequence (ui, vi)i∈N follows

which proves the regularity of the convergence.

Theorem 5 above is a far reaching result. We only show one consequence of

the theorem, further applications can be found in [15]. For example, using

an abstract result from [22] it is shown that eigenvalues and eigenvectors are

well approximated in finite intervals and that exponential estimates hold.

For the linear operator P we denote by ρ(P ) the resolvent-set of the operator.
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Theorem 6. Let Ω ⊂ {Res > −δ} ∩ ρ(P ) be a compact set and assume

D(s) 6= 0 ∀s ∈ Ω.

Let (Ji)i∈N be a sequence of compact intervals as before. Then there is an

index i0 ∈ N and a constant K0 > 0 such that for all s ∈ Ω and all i ≥ i0

equation (3.20) has a unique solution (u, v)T ∈ H2(Ji,C
n)×H1(Ji,C

m) for

all f ∈ L2(Ji,C
n), g ∈ L2(Ji,C

m), η ∈ C
2n+m.

Moreover the solution can be estimated by

‖u‖H2(Ji) + ‖v‖H1(Ji) + |u|Γ + |ux|Γ + |v|Γ

≤ K0

(

‖f‖L2(Ji) + ‖g‖L2(Ji) + |η|
)

, (3.28)

where |u|Γ is the norm of u on the boundary of the interval defined by |u|2Γ =

|u(x−)|2 + |u(x+)|2.

Proof. Let s0 ∈ Ω be arbitrary. Then the operator A(s0) is invertible and

therefore N (A(s0)) = {0}. The Fredholm-alternative for boundary value

problems implies that for all i ∈ N the operators Ai(s0) are Fredholm of

index 0.

By Theorem 5 we have

Ai(s0)
P̃Q̃
−−→ A(s0) regularly (i ∈ N)

so that [21, §2 Satz 60] is applicable and shows that the sequence of operators

(Ai(s0))i∈N converges regularly and stably to A(s0).

Hence there is i0 = i0(s0) ∈ N and K0 = K0(s0) > 0 such that for all i ≥ i0

the inverses Ai(s0)
−1 ∈ L[Fi, Ei] exist and are bounded by

∥

∥Ai(s0)
−1
∥

∥

L[Fi,Ei]
≤ K0.

Let ε0 = ε0(s0) := 1
2K0

, then for all s ∈ Kε0
(s0) = {s ∈ C : |s − s0| < ε0}

and all i ≥ i0 holds

‖Ai(s)−Ai(s0)‖L[Ei,Fi]
≤ |s− s0| < ε0 =

1

2K0
. (3.29)

By Lemma 8 the inverses Ai(s)
−1 ∈ L[Fi, Ei] exist for all i ≥ i0 and all

s ∈ Kε0
(s0) and satisfy

∥

∥Ai(s)
−1
∥

∥

L[Fi,Ei]
≤ 2K0.
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Since s0 ∈ Ω was arbitrary one finds for every s ∈ Ω an open neighborhood

of s in which similar estimates hold. Choosing a finite subcovering of this

covering shows our assertion.

4 The FitzHugh-Nagumo System

In this section we show that the abstract theory applies to the FitzHugh-

Nagumo System. The FitzHugh-Nagumo System arises in the modelling of

electric pulses in nerve cells. It reads
(

u

v

)

t

=

(

uxx + u− 1
3u

3 − v

Φ(u+ a− bv)

)

(4.30)

with positive parameters a, b, and Φ.

We consider the parameter-values a = 0.7, b = 0.8, Φ = 0.08 which are

a quite common choice in the literature (e.g. [11]). It is known that

for these parameter-values the system has a stable and an unstable trav-

eling wave solution, see for example Bates and Jones [1]. The traveling

wave solutions are homoclinic connecting orbits of the stationary point

(u∞, v∞)T ≈ (−1.1994,−0.6243)T and have a nonzero speed. The lineariza-

tion about a traveling wave solution u
v = ( ū

v̄ (x− ct)) with speed c 6= 0

reads
(

u

v

)

t

= P̃

(

u

v

)

=

(

1 0

0 0

)(

u

v

)

xx

+

(

c 0

0 c

)(

u

v

)

x

+

(

1− ū2 −1

Φ −Φb

)(

u

v

)

.

(4.31)

It is easy to check that the assumptions (PA), (CA), and (HA) are sat-

isfied. To see that also (SA) is satisfied is more involved and we give a

sufficient condition which is much easier to check.

Consider a general operator P of the form (3.18) which satisfies the assump-

tions (PA), (CA), and (HA). Define

B∞ :=
(

B11,∞ B12,∞

B21,∞ B22,∞

)

and C∞ :=
(

C11,∞ C12,∞

C21,∞ C22,∞

)

and consider the following condition.

(SC) There is a Hermitian positive definite matrix H ∈ C
n+m,n+m of the

form H =
(

H1 0
0 H2

)

such that
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• H1A+A∗H1 > 0,

• H2 is a diagonal matrix,

• HB∞ = B∗
∞H,

• HC∞ + C∗
∞H < −2δH for some δ > 0.

Lemma 7. The condition (SC) implies the spectral assumption (SA).

Proof. Let µ, ν ∈ C
n+m. By (SC) it holds

− µ∗

(

H1A+A∗H1 0

0 0

)

µ− µ∗(HB∞ −B
∗
∞H)ν + ν∗(HC∞ + C∗

∞H)ν

≤ −2δν∗Hν. (4.32)

Now let ω ∈ R and assume that the symbol P̂ (iω) has the eigenvector ν

with eigenvalue s ∈ C, i.e.

P̂ (iω)ν = sν and let µ = iων.

Then we have

2Re(s)ν∗Hν = sν∗Hν + (sν∗Hν)∗

= ν∗HP̂ (iΩ)ν + (ν∗HP̂ (iΩ)ν)∗

= −ω2ν∗H
(

A 0
0 0

)

ν + iων∗HB∞ν + ν∗HC∞ν

+
(

−ω2ν∗H
(

A 0
0 0

)

ν
)∗

+ (iων∗HB∞ν)
∗ + (ν∗HC∞ν)

∗

= −µ∗
(

H1A+A∗H1 0
0 0

)

µ− µ∗(HB∞ −B
∗
∞H)ν + ν∗(HC∞ + C∗

∞H)ν

≤ −2δν∗Hν

and thus Re(s) < −δ. Hence the spectral assumption (SA) is proven.

With the help of the sufficient condition (SC) it is now easy to show that

the FitzHugh-Nagumo system satisfies the assumptions from Section 3.

Let H =
(

1 0
0 1

Φ

)

∈ C
2,2. With this matrix we verify (SC)

• 1A+A∗1 = 2 > 0,

• HB∞ =

(

c 0

0 c
Φ

)

= B∗
∞H,

• HC∞ + C∗
∞H =

(

2− 2u2
∞ 0

0 −2b

)

< −2δH for some δ > 0.
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5 Appendix

In this appendix we state some basic results used throughout the text. We

begin with a well known perturbation result.

Lemma 8. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Assume that

A : X → Y is a linear homeomorphism.

Then for every bounded linear operator B : X → Y with

‖B‖X→Y <
1

‖A−1‖Y →X

the operator A+B : X → Y is a linear homeomorphism and

∥

∥(A+B)−1
∥

∥

Y →X
≤
∥

∥A−1
∥

∥

Y →X

1

1− ‖A−1‖Y →X ‖B‖X→Y

.

Exponential Dichotomies

Throughout this section we consider an ordinary differential operator of the

form

Lz = zx −M(x)z, x ∈ J, (5.33)

where M ∈ C(J,Cl,l) is a continuous matrix-valued function on the closed

interval J = [x−, x+], x− < x+ ∈ R ∪ {−∞,+∞}. We denote by S(·, ·)

the solution-operator for L. First we give the definition of an exponential

dichotomy (see for example [3, 12, 2, 16]).

Definition 9. The operator L has an exponential dichotomy on the interval

J if there are positive constants K, β, and for every x ∈ J there is a

projection π(x) : C
l → C

l such that

S(x, y)π(y) = π(x)S(x, y) ∀x, y ∈ J,

|S(x, y)π(y)| ≤ Ke−β(x−y) ∀x ≥ y ∈ J,

|S(x, y)(I − π(y))| ≤ Ke−β(y−x) ∀x < y ∈ J.

We call (K,β, π) the data of the dichotomy.

The data of the dichotomy are not unique in general. The benefit of ex-

ponential dichotomies lies in semi-infinite or infinite interval problems. If

J contains an interval of the form [x0,∞), the ranges of the projectors are
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unique and if it contains an interval of the form (−∞, x0], the kernels of the

projectors are unique. In particular, if the operator L has an exponential

dichotomy on the whole real line, the projectors are uniquely determined.

For results in this direction see Coppel [3] and Palmer [12].

Next we recall a result about the solvability and solution estimates for

boundary value problems in the presence of an exponential dichotomy.

Theorem 10 ([2, Theorem A.1]). Assume the operator L has an expo-

nential dichotomy on J with data (K,β, π).

Define the Green’s function G with respect to π for all x, y ∈ J by

G(x, y) =







S(x, y)π(y), y ≤ x,

S(x, y)(π(y) − I), x < y.
(5.34)

Then for every h ∈ L2(J,C
l), γ− ∈ R(π(x−)), γ+ ∈ R(I − π(x+)) there is

a unique solution z ∈ H1(J,Cl) of the boundary value problem

Lz = h, in L2(J),

(I − π(x+))z(x+) = γ+,

π(x−)z(x−) = γ−.

In the case x− = −∞ the boundary condition for z(x−) is hidden in the

space and there is no explicit boundary condition. The same is true for the

case x+ = +∞. The solution can be written in the form z = zsp + zh, where

zsp and zh are given by

zsp(x) =

∫

J

G(x, y)h(y)dy, and zh(x) = S(x, x−)γ− + S(x, x+)γ+. (5.35)

We also need a result about the Fredholm properties of ordinary differential

operators on the whole real line. On bounded intervals Fredholm properties

are easy to verify by integration, but on unbounded domains it is more

involved. A general result about the connection of exponential dichotomies

and Fredholm properties of differential operators was proven by K. J. Palmer

in [12] and [13]. We will make explicit use of the result [12, Lemma 4.2] which

is presented for bounded and continuously differentiable functions there. But

the proof given in [12] directly carries over to the spaces L2 and H1 and we

only state the result in the following lemma.
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Lemma 11. Let M ∈ C(R,Cl,l) be a bounded matrix-valued function so that

the differential operator

L(·) :
H1(R,Cl) → L2(R,C

l)

z 7→ zx −M(·)z

has an exponential dichotomy on R+ and on R− with projectors π±(·). Then

L is Fredholm and f ∈ R(L) if and only if

∫ ∞

−∞
u∗(t)f(t)dt = 0

for all solutions u ∈ H1(R,Cl) of the adjoint equation

Lad(·)u = ux +M(·)∗u = 0.

Furthermore the Fredholm index of L is dimR(π+(0))+dimR(I−π−(0))−l.

We always denoted by ’∗’ the transposed conjugated matrix or vector.

Corollary 12. Let M =

(

0 A

B C

)

be an l × l matrix-valued function with

the same properties as in Lemma 11 and assume that A ∈ C
r,l−r is constant.

Then the ordinary differential operator

L̃ : H2(R,Cr)×H1(R,Cl−r)→ H1(R,Cr)× L2(R,C
l−r), z 7→ zx −M(·)z,

is a Fredholm operator of the same Fredholm index as

L : H1(R,Cl)→ L2(R,C
l), z 7→ zx −M(·)z.

Proof. Let (u, v)T ∈ N (L) ⊂ H1(R,Cl). By the structure of M we obtain

(u, v)T ∈ N (L̃) and so N (L̃) = N (L). By Lemma 11 (f, g) ∈ R(L) if and

only if
∫ ∞

−∞
〈ψ,

(

f

g

)

〉dx = 0 ∀ψ ∈ N (Lad),

where Lad : H1(R,Cl)→ L2(R,C
l) is the same operator as in Lemma 11.

Obviously R(L̃) ⊂ R(L). Let (f, g) ∈ H1(R,Cr)× L2(R,C
l−r) with

∫ ∞

−∞
〈ψ,

(

f

g

)

〉dx = 0 ∀ψ ∈ N (Lad).
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Thus there is (z1, z2)
T ∈ H1(R,Cl) with

(

f

g

)

=

(

z1,x −Az2

z2,x −Bz1 − Cz2

)

in L2(R,C
l),

but this equality implies z1,x ∈ H
1(R,Cr) and so z1 ∈ H

2(R,Cr). Therefore

(f, g)T ∈ R(L̃) and it follows that

(

f

g

)

∈ H1(R,Cr) × L2(R,C
l−r) is an

element of R(L̃)

if and only if
∫ ∞

−∞
〈ψ,

(

f

g

)

〉dx = 0 ∀ψ ∈ N (Lad).

From this equivalence we find

dim(H1(R,Cr)× L2(R,C
l−r))/R(L̃) = dimN (Lad) = dimL2(R,C

l)/R(L).

Proof of Lemma 4

First we show dimN (sI − P ) = dimN (L(·, s)).

Let (u, v)T ∈ N (sI − P ), then (u,Aux, v)
T ∈ N (L(·, s)) and it follows

dimN (sI − P ) ≤ dimN (L(·, s)).

Now let (z1, z2, z3)
T ∈ N (L(·, s)). By the definition of L(·, s) it holds z1,x =

A−1z2 and therefore z2 = Az1,x. One easily finds (z1, z3)
T ∈ N (sI − P ).

Let (zi
1, z

i
2, z

i
3)

T , i = 1, . . . , l, be linearly independent elements in N (L(·, s)).

Let α = (α1, . . . , αl) ∈ C
l with

∑

i

αi

(

zi
1

zi
3

)

= 0.

Then by linearity
∑

i αi(z
i
1, Az

i
1,x, z

i
3)

T = 0, but since the differential equa-

tion shows Azi
1,x = zi

2, we conclude α = 0 from the linear independence.

Hence we find

dimN (sI − P ) ≥ dimN (L(·, s)).
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Second we show codimR(sI − P ) = codimR(L(·, s)).

Since (0,−f +B12B
−1
22 g,−B

−1
22 g)

T ∈ R(L(·, s)) implies (f, g)T ∈ R(sI − P )

we obtain

codimR(sI − P ) ≤ codimR(L(·, s)).

Now let (f i, gi, hi), i = 1, . . . , l, be a cobasis ofR(L(·, s)). Then the elements

(

−Af i
x − g

i −B11f
i −B12h

i

B21f
i −B22h

i

)

∈ L2(R,C
n)× L2(R,C

m)

are linearly independent elements of [L2(R,C
n)× L2(R,C

m)]/R(sI − P ):

Let α = (α1, . . . , αl) ∈ C
l and assume there is

(

u

v

)

∈ H2(R,Cn)×H1(R,Cm)

with

(sI − P )

(

u

v

)

=
∑

αi

(

−Af i
x − g

i −B11f
i −B12h

i

B21f
i −B22h

i

)

. (5.36)

Consider









u

Aux −A
∑

αif
i

v









which is an element of the product space

H2(R,Cn)×H1(R,Cn)×H1(R,Cm). Then

L(s)









u

Aux −A
∑

αif
i

v









=









ux

Auxx −A
∑

αif
i
x

vx









−M(·, s)









u

Aux −A
∑

αif
i

v









=









∑

αif
i

Auxx +B11ux −B11
∑

αif
i −A

∑

αif
i
x + C11u+ C12v − sIu

vx +B−1
22

(

C21u+B21(ux −
∑

αif
i) + (C22 − sI)v

)









+









0

−B12B
−1
22

(

C21u+B21(ux −
∑

αif
i) + (C22 − sI)v

)

0








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=









∑

αif
i

Auxx +B11ux +B12vx + C11u+ C12v − sIu
∑

αih
i









+









0

−B11
∑

αif
i −A

∑

αif
i
x −B12

∑

αih
i

0









=
∑

αi









f i

gi

hi









∈ R(L(·, s)),

where we used the differential equation (5.36). Since the elements form a

cobasis of R(L(·, s)) it follows α = 0. This shows

codimR(sI − P ) ≥ codimR(L(·, s)).
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