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Abstract

In this paper, we introduce a class of one-dimensional non-autonomous

dynamical systems that allows an explicit study of its orbits as well as of

the solutions of the associated variational equation. Furthermore, the solu-

tion operators also have explicit representations. In a special case, the model

function can be transformed into the non-autonomous Beverton-Holt equa-

tion. We use this function for analyzing various notions of non-autonomous

transcritical and pitchfork bifurcations that have been recently developed in

the literature.
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1 Introduction

The occurrence of a bifurcation in a parameter dependent dynamical system results
in changes of its structural behavior. For autonomous systems the mathematical
equivalent of such structural changes is quite clear and can be expressed in terms
of topological equivalence, cf. [7]. But for non-autonomous systems such gener-
ally accepted notion seems to be unavailable yet. It will be important to test the
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suggested notions on systems from real application, such as population models in
mathematical biology.

Consider a non-autonomous discrete time dynamical system depending on one
parameter

xn+1 = gn(xn, λ), xn ∈ Rk, λ ∈ R, n ∈ Z, (1)

where k ≥ 1 and (gn)n∈Z is a family of smooth maps with respect to both x and λ.
Let x̄ = 0 be a fixed point of gn(·, λ) for all λ and all n ∈ Z.

In case the fixed point x̄ undergoes a bifurcation at a critical parameter λ̄, the
behavior of this system changes structurally. In an autonomous version of (1), i.e.
gn = g for all n, bifurcation results are well understood, cf. [4, 7, 11], but results for
the non-autonomous case are currently being developed. For example, a survey of
non-autonomous bifurcation phenomena is given in [5, 9] and generalizations of the
autonomous transcritical and pitchfork bifurcation are proposed in [8] and [10].

In this paper we set up a scalar model function that can be used to study various
notions of non-autonomous bifurcations explicitly. This model function is based on
the construction in [3]. For every q ∈ N the scalar function is defined as

gn(x, λ) :=
λx

(

1 + bnq
λ

xq
)1/q

. (2)

It has the remarkable property that the solutions (xn)n∈N of (1) can be given ex-
plicitly. Furthermore, the solution of the associated variational equation as well as
the corresponding solution operator have an explicit form, too.

In case q = 1, this function can be transformed into the so-called Beverton-Holt
equation; a function that originates from population biology. It describes the density
of a population in a fluctuating environment, cf. [1, 6]. Using our approach, we find
an explicit representation of the solutions of the Beverton-Holt equation.

We show in Section 3 that in case q = 1, the fixed point x̄ = 0 of our model func-
tion undergoes a non-autonomous transcritical bifurcation at the critical parameter
λ̄ = 1. We perform the analysis for two related concepts of natural generalizations
of the transcritical bifurcation from the literature, cf. [8, 10]. In [8] a bifurcation1 is
characterized by the change from a pullback attracting fixed point, losing its stabil-
ity at a critical parameter λ̄, to a pullback stable complete trajectory. The author
of [10] determines a bifurcation by a qualitative change of the domain of attraction
of the fixed point x̄ from a trivial to a non-trivial object in the limit λ → λ̄. We
indicate that the model function in case q = 1 exhibits a transcritical bifurcation,
according to both definitions in [8, 10].

In Section 4, a similar analysis for the model function (2) in case q = 2 shows that
the fixed point x̄ = 0 undergoes at λ̄ = 1 a non-autonomous pitchfork bifurcation.

Finally, in Section 5, we introduce a second model function that has, in contrast
to (2), an n dependent linear part in its Taylor series. We show that this function
also exhibits a non-autonomous transcritical bifurcation.

1We restrict the presentation to the case in which a stable fixed point x̄ exists for λ < λ̄.
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2 A model function for polynomial rates in non-

autonomous dynamical systems

Let q ∈ N be a fixed natural number, and let (bn)n∈Z be a bi-infinite sequence such
that bn ∈ R+ for all n ∈ Z. Consider the non-autonomous discrete time dynamical
system

xn+1 = gn(xn, λ), n ∈ Z, (3)

depending on one parameter λ ∈ R+, where the family of maps gn is defined in (2).
Note that these functions have at 0 the Taylor series

gn(x, λ) = λx − bnxq+1 + O(x2q+1),

and additionally it holds in case q is even

gn(−x, λ) = −gn(x, λ). (4)

This class of functions is of particular interest, since we find an explicit repre-
sentation of the orbits of (3) as well as of the solution of the associated variational
equation

un+1 = Dxgn(xn, λ)un, n ∈ Z. (5)

Here

Dxgn(x, λ) =
λ

(

1 + bnq
λ

xq
)1+1/q

denotes the derivative of gn w.r.t. the variable x.

Definition 1 Let n ≥ m. The evolution operator of (3) is defined as

Ψ(n, m)(x, λ) := gn−1(·, λ) ◦ . . . ◦ gm(x, λ).

Furthermore, the solution operator of the variational equation (5) along a solution
(xn)n∈Z of (3) is given by

Φ(n, m)(λ) := Dxgn−1(xn−1, λ) · . . . · Dxgm(xm, λ).

First, we give explicit formulae for the evolution operator as well as for the orbit.

Proposition 2 The evolution operator of (3) has for n ≥ m, x > 0 the explicit
representation

Ψ(n, m)(x, λ) =
λn−mx

(

1 + qxq
∑n−1

i=m biλ(i−m)q−1
)1/q

. (6)

The orbit with starting point x1 = λ
γ1/q has for n ∈ N the explicit form

xn =
λn

(

γ + q
∑n−1

i=1 biλiq−1
)1/q

. (7)
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Proof: We prove (6) by induction. Let m ∈ N be fixed, then Ψ(m, m)(x, λ) = x.
Inductively, we get

gn(·, λ) ◦ Ψ(n, m)(x, λ)

= λΨ(n, m)(x, λ)

(

1 +
bnq

λ

(

Ψ(n, m)(x, λ)
)q
)−1/q

=
λn−m+1x

(

1 + qxq
∑n−1

i=m biλ(i−m)q−1
)1/q

(

1 +
bnq

λ

λ(n−m)qxq

1 + qxq
∑n−1

i=m biλ(i−m)q−1

)−1/q

= λn−m+1x

(

1 + qxq
n−1
∑

i=m

biλ
(i−m)q−1 + bnqxqλ(n−m)q−1

)−1/q

= λn−m+1x

(

1 + qxq

n
∑

i=m

biλ
(i−m)q−1

)−1/q

= Ψ(n + 1, m)(x, λ).

Applying this result, it follows for n ∈ N
xn = Ψ(n, 1)(x1, λ) = Ψ(n, 1)

(

λ

γ1/q
, λ

)

= λn−1 λ

γ1/q

(

1 + q
λq

γ

n−1
∑

i=1

biλ
(i−1)q−1

)−1/q

=
λn

(

γ + q
∑n−1

i=1 biλiq−1
)1/q

.

�

For even q, we immediately find a representation of xn for negative starting
points, by combining Proposition 2 and (4):

x1 = −
λ

γ1/q
⇒ xn = −

λn

(

γ + q
∑n−1

i=1 biλiq−1
)1/q

, n ∈ N.

Note that in case q is odd and x1 = λ
γ1/q < 0, the representations (6) and (7)

only hold true, as long as we do not approach the singularity, i.e.

qx
q
1

n−1
∑

i=1

biλ
(i−1)q−1 > −1

which is equivalent to

q

n−1
∑

i=1

biλ
iq−1 < −γ.

The inverse of the solution operator also has an explicit representation.
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Proposition 3 The evolution operator of (3) has for n < m the explicit represen-
tation

Ψ(n, m)(x, λ) =
x

(

λ(m−n)q − qxq
∑m−1

i=n biλ(i−n)q−1
)1/q

,

if n < m and x are chosen such that the denominator is positive.

The next proposition states corresponding results for the variational equation.

Proposition 4 Let xn be the orbit, defined in (7), then the solution of the varia-
tional equation (5) with starting point u1 = λ

γ1+1/q has the form

un =
λn

(

γ + q
∑n−1

i=1 biλiq−1
)1+1/q

, n ∈ N.

Furthermore, the solution operator is for n ≥ m ≥ 1 given by

Φ(n, m)(λ) =
λn−m

(

γ + q
∑m−1

i=1 biλ
iq−1
)1+1/q

(

γ + q
∑n−1

i=1 biλiq−1
)1+1/q

.

Proof: Similar to the proof of Proposition 2 the assertion follows by induction.
�

2.1 Connection between the Beverton-Holt equation and

the model function

We demonstrate that the model function can be transformed in case q = 1 into the
(non-autonomous) Beverton-Holt equation

fn(x, µ) :=
µKnx

Kn + (µ − 1)x
, n ∈ N, (8)

where (Kn)n∈N is a give sequence of positive numbers. This function arises in popu-
lation biology when studying population densities in a fluctuating environment, cf.
[1, 2, 6].

In case q = 1, our model function has the form

gn(x, λ) :=
λx

1 + bn

λ
x

(9)

and by Proposition 2 the iterates with starting point x1 = λ
γ

have the explicit
representation

xn =
λn

γ +
∑n−1

i=1 biλi−1
, n ∈ N. (10)
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Indeed, by choosing

bn =
(µ − 1)µ

Kn
and λ = µ,

the model function (9) is transformed into the Beverton-Holt equation (8). Using
this approach, we find from (10) the following explicit solution of yn+1 = fn(yn, µ)
with starting point y1 = µ

γ
:

yn =
µn

γ +
∑n−1

i=1
(µ−1)

Ki
µi

, n ∈ N.

Since γ can be chosen freely, each orbit of the Beverton-Holt equation is of this form.

3 The non-autonomous transcritical bifurcation

In this section, we show that in case q = 1 the model function (9) undergoes a non-
autonomous transcritical bifurcation. Here we study two slightly different concepts
for the transcritical bifurcation, developed in [8] for scalar ODEs and in [10] for
maps.

First we define a non-autonomous transcritical bifurcation for maps, following
the ideas of [8]. For this purpose we introduce the notion of pullback attraction.

Definition 5 A trajectory (yn)n∈Z is called pullback attracting within its domain
of attraction D, if

lim
n→−∞

dist(Ψ(m, n)K, ym) = 0

for each m ∈ Z and every compact set K ⊂ D.
Here dist(A, B) = supa∈A infb∈B d(a, b) denotes the Hausdorff semi-distance.

The trajectory (yn)n∈Z is called locally pullback attracting within D, if for
every m ∈ Z there exists a δ(m) > 0 such that if K(·) ⊂ D is compact and

lim
n→−∞

dist(K(n), yn) < δ(m)

then
lim

n→−∞
dist(Ψ(m, n)K(n), ym) = 0

holds.

Next, we state the definition of a non-autonomous discrete time transcritical
bifurcation, analogously to the definition for ODEs, introduced in [8].

Definition 6 The system xn+1 = fn(xn, λ) undergoes a local transcritical bi-

furcation at x̄ = 0, λ = λ̄, if there exist λ− < λ̄ < λ+ and an ε > 0 such that:
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• For λ ∈ (λ−, λ̄), x̄ = 0 is pullback attracting within [0, ε) and locally pullback
attracting within (−ε, 0]. Furthermore, there exists an asymptotically unstable
trajectory x̄n(λ) within (−ε, 0] such that

x̄n(λ) → 0 as λ ր λ̄.

• For λ = λ̄, the fixed point x̄ = 0 is asymptotically unstable but still pullback
attracting within [0, ε).

• For λ ∈ (λ̄, λ+), x̄ = 0 is asymptotically unstable, and there exists a pullback
attracting trajectory x̄n(λ) within (0, ε) satisfying

x̄n(λ) → 0 as λ ց λ̄.

The following theorem states a bifurcation result for our model function.

Theorem 7 Assume that the sequence (bn)n∈Z is bounded from below and from
above:

0 < b− ≤ bn ≤ b+ for all n ∈ Z. (11)

Then the model function (2) exhibits in case q = 1 a non-autonomous transcritical
bifurcation at the parameter λ̄ = 1.

Proof: Let λ < λ̄ := 1 and m ∈ Z be fixed. It holds

lim
n→−∞

Ψ(m, n)(x, λ) = lim
n→−∞

λm−nx

1 + x
∑m−1

i=n biλi−n−1

= lim
n→−∞

λm−nx

1 + x
∑m−1−n

i=0 bi+nλi−1

= 0 for

{

x ≥ 0,
x < 0 such that − 1

x
> b+

∑∞
i=0 λi−1.

Thus, x̄ = 0 is for λ < 1 a locally pullback stable fixed point.
Furthermore, choosing for λ < 1 the starting point x1 = λ

γ
, where γ = −

∑∞
i=1 biλ

i−1,
we find by Proposition 2 the trajectory

x̄−
n (λ) =

λn

−
∑∞

i=1 biλi−1 +
∑n−1

i=1 biλi−1
= −

1
∑∞

i=0 bi+nλi−1
. (12)

This trajectory is unstable, since for ε > 0 and x1 = λ
γ−ε

we get the trajectory

xn =
λn

−ε −
∑∞

i=1 biλi−1 +
∑n−1

i=1 biλi−1
=

1

− ε
λn −

∑∞
i=0 bi+nλi−1

which converges towards 0 as n → ∞. Note that x̄−
n (λ) → 0 as λ ր 1.
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For λ = 1, the fixed point x̄ = 0 is only in [0, ε) pullback stable (with a polynomial
rate of convergence). Let m ∈ Z be fixed and x > 0, then

lim
n→−∞

Ψ(m, n)(x, 1) = lim
n→−∞

x

1 + x
∑m−1

i=n bi

=
1

1
x

+
∑m−1

i=−∞ bi

= 0.

For λ > 1 the fixed point x̄ is asymptotically unstable. But there exists a second
trajectory

x̄+
n (λ) :=

λn

∑0
i=−∞ biλi−1 +

∑n−1
i=1 biλi−1

=
λn

∑n−1
i=−∞ biλi−1

=
1

∑−1
i=−∞ bi+nλi−1

, (13)

which is pullback stable, because for fixed m ∈ Z and x > 0, we get

lim
n→−∞

Ψ(m, n)(x, λ) = lim
n→−∞

λm−n

1 + x
∑m−1

i=n biλi−n−1

= lim
n→−∞

λm

λn

x
+
∑m−1

i=n biλi−1
= x̄+

m(λ).

Additionally, x̄+
n (λ) → 0 as λ ց 1.

Therefore, the fixed point 0 undergoes, according to Definition 6, a transcritical
bifurcation at the parameter λ̄ = 1.

Note that due to Proposition 3, the explicit representations of x̄±
n (λ), introduced

in (12) and (13), hold for all n ∈ Z.
�

For an illustration of the stable and unstable trajectories, see Figure 1.

The author of [10] introduces an alternative characterization of the transcritical
bifurcation. He detects bifurcations by a qualitative change of the domain of attrac-
tion from a trivial to a non-trivial object in the limit λ → λ̄. The all-time attraction
radius of a trajectory (x̄n(λ))n∈Z is defined as

Aλ
x̄ := sup

{

η > 0 : lim
n→∞

sup
m∈Z |Ψ(m + n, m)(y, λ) − x̄m+n(λ)| = 0∀y ∈ Bη(x̄m(λ))

}

,

with the interval Bη(x) = (x − η, x + η). Similarly, the all-time repulsive radius is

Rλ
x̄ := sup

{

η > 0 : lim
n→∞

sup
m∈Z |Ψ(m − n, m)(y, λ) − x̄m−n(λ)| = 0∀y ∈ Bη(x̄m(λ))

}

.

The change of the attraction-radii is a necessary condition for the occurrence of
a non-autonomous bifurcation:

Proposition 8 Assume the sequence (bn)n∈Z to be bounded, cf. (11). Then we get
for the all-time attraction and the all-time repulsive radius of the model function in
case q = 1

lim
λրλ̄

Aλ
0 = 0 and lim

λցλ̄
Rλ

0 = 0.
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x̄n(λ)

λ

n

Figure 1: Pullback attracting trajectories (in red) and asymptotically un-
stable trajectories (in yellow) of the model function (9), plotted over λ

and n. The sequence (bn)n∈Z ∈ [1
2
, 3

2
]Z is chosen randomly.

Proof: For our model function, the zero-solution is all-time attractive for λ ∈
(λ−, λ̄) and all-time repulsive for λ ∈ (λ̄, λ+).

For λ < 1, we obtain using Proposition 2 for m ∈ Z and n > 0

Ψ(m + n, m)(y, λ) =
λm+n−m

1 + y
∑n+m−1

i=m biλi−m−1
=

λn

1 + y
∑n−1

i=0 bi+mλi−1
. (14)

This expression converges towards 0 as n → ∞ as long as y lies above the unstable
trajectory x̄−

m(λ), i.e.

y > x̄−
m(λ) = −

1
∑∞

i=0 bi+mλi−1
for all m ∈ Z.

Note that this condition guarantees that the denominator in (14) is positive. Thus

Aλ
0 = inf

m∈Z 1
∑∞

i=0 bi+mλi−1
.

Obviously, Aλ
0 → 0 as λ ր 1.

Applying Proposition 3 for n > 0, m ∈ Z and λ > 1, we get

Ψ(m − n, m)(y, λ) =
y

λm−m+n − y
∑m−1

i=m−n biλi−m+n−1
=

λ−ny

1 − y
∑−1

i=−n bi+mλi−1
.

If y lies below the stable trajectory x̄+
m(λ), i.e.

y < x̄+
m(λ) =

1
∑−1

i=−∞ bi+mλi−1
for all m ∈ Z,
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Ψ(m − n, m)(y, λ) converges towards 0 as n → ∞. It follows

Rλ
0 = inf

m∈Z 1
∑−1

i=−∞ bi+mλi−1

and Rλ
0 → 0 as λ ց 1.

�

Furthermore, [10, Theorem 5.1] states technical estimates on the linear, quadratic
and high-order terms of (9) to determine the specific nature of the bifurcation. These
estimates can be verified for our model function (9) and guarantee the occurrence
of a non-autonomous transcritical bifurcation.

4 The non-autonomous pitchfork bifurcation

The next bifurcation to consider is the non-autonomous pitchfork bifurcation. We
show that our model function exhibits this bifurcation in case q = 2.

Analogously to the definition for ODEs introduced in [8], we define this bifurca-
tion for discrete time systems.

Definition 9 The system xn+1 = fn(xn, λ) undergoes a local pitchfork bifurca-

tion at x̄ = 0, λ = λ̄, if there exist λ− < λ̄ < λ+ and an ε > 0 such that:

• For all λ ∈ (λ−, λ̄] the fixed point x̄ = 0 is pullback attracting within (−ε, ε).

• For λ ∈ (λ̄, λ+), the fixed point x̄ = 0 is asymptotically unstable. Furthermore,
there exist two bounded trajectories x̄+

n (λ) and x̄−
n (λ) that are pullback attract-

ing in (0, ε) and (−ε, 0), respectively. These trajectories converge uniformly
on finite intervals of Z:

x̄±
n (λ) → 0 as λ ց λ̄.

In case q = 2, the model function is defined as

gn(x, λ) =
λx

√

1 + 2bn

λ
x2

(15)

and its Taylor series at 0 is given by

gn(x, λ) = λx − bnx3 +
3b2

n

2λ
x5 + O(x7). (16)

The iterates xn with starting point x1 = λ√
γ
, γ > 0 have by Proposition 2 the form

xn =
λn

√

γ + 2
∑n−1

i=1 biλ2i−1

, n ∈ N.

We obtain the following bifurcation result for the model function (15).
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Theorem 10 Assume the sequence (bn)n∈Z to be bounded, cf. (11). Then the model
function (15) exhibits a non-autonomous pitchfork bifurcation at the parameter λ̄ =
1.

Proof: Obviously, x̄ = 0 is a fixed point of gn(·, λ) for all λ.
For λ ≤ 1, the fixed point x̄ is pullback attracting, since we get for fixed m ∈ Z

lim
n→−∞

Ψ(m, n)(x, λ) = lim
n→−∞

λm−nx
√

1 + 2x2
∑m−1

i=n biλ(i−n)2−1

= lim
n→−∞

λmx
√

λ2n + 2x2
∑m−1

i=n biλ2i−1

= 0.

For λ > 1 the fixed point x̄ is asymptotically unstable, but two new pullback
attracting trajectories

x̄±
n (λ) := ±

λn

√

2
∑n−1

i=−∞ biλ2i−1

= ±
1

√

2
∑−1

i=−∞ bi+nλ2i−1

, n ∈ Z
are born at the critical parameter λ̄. It holds for fixed n ∈ Z

lim
m→−∞

Ψ(n, m)x = lim
m→−∞

λn−mx
√

1 + 2x2
∑n−1

i=m biλ(i−m)2−1

=
sign(x)

√

2
∑−1

i=−∞ bi+nλ2i−1

= x̄sign(x)
n (λ).

Note that due to our assumption (11), limλց1 x̄±
n (λ) = 0 uniformly on bounded

intervals of Z.
Thus, by Definition 9 our model function exhibits in case q = 2 a non-autonomous

pitchfork bifurcation.
�

An illustration of the stable and unstable trajectories is shown in Figure 2.

In the language of [10] the model function undergoes a bifurcation, since for the
all-time repulsion radius we get

lim
λցλ̄

Rλ
0 = 0.

Furthermore, one can verify the conditions, given in [10, Theorem 6.1] on the linear,
cubic and remaining part of (16), to assure that this function undergoes a pitchfork
bifurcation.
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x̄n(λ)

λ

n

Figure 2: Pullback attracting trajectories (in red) and asymptotically un-
stable trajectories (in yellow) of the model function (15), plotted over λ

and n. The sequence (bn)n∈Z ∈ [1
2
, 3

2
]Z is chosen randomly.

5 A model function with a non-autonomous linear

part

In this section we introduce a second model function

hn(x) :=
bnx

1 + bnx
, (17)

which at 0 has the Taylor expansion

hn(x) = bnx − b2
nx2 + b3

nx3 + O(x4).

Here the sequence (bn)n∈N is given such that bn > 0 for all n ∈ N. In contrast to
the model function, introduced in Section 2, also the linear part of hn depends on
the sequence (bn)n∈N. Nevertheless, it is possible to state explicit formulae for the
orbit and the solution operator, analogously to Proposition 2 and 4.

For a special parameter-dependent choice of (bn)n∈Z, we show at the end of
this section that the model function (17) also exhibits a transcritical bifurcation,
according to Definition 6.

We first derive explicit expressions for the orbit

xn+1 = hn(xn), n ∈ Z (18)

and for the corresponding evolution operator, cf. Definition 1. Similar to Proposition
2, one can prove the following proposition inductively.
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Proposition 11 The evolution operator of (18) has for n ≥ m the explicit repre-
sentation

Ψ(n, m)(x) =
x
∏n−1

i=m bi

1 + x
∑n−1

i=m

∏i
j=m bj

,

where n ≥ m and x have to be chosen, such that the denominator is positive. The
orbit with starting point x1 = 1

γ
has for n ∈ N the explicit form

xn =

∏n−1
i=1 bi

γ +
∑n−1

i=1

∏i
j=1 bj

. (19)

Next, we introduce the explicit form for the solution of the variational equation

un+1 = Dh(xn)un =
bn

(1 + bnxn)2
un, n ∈ N (20)

and for its solution operator Φ.

Proposition 12 Let xn be the orbit, defined in (19), then the solution of the vari-
ational equation (20) with starting point u1 = 1

γ2 has the form

un =

∏n−1
i=1 bi

(

γ +
∑n−1

i=1

∏i
j=1 bj

)2 , n ∈ N.

Furthermore, the solution operator is for n ≥ m ≥ 1 given by

Φ(n, m) =

∏n−1
ℓ=m bℓ

(

γ +
∑m−1

i=1

∏i
j=1 bj

)2

(

γ +
∑n−1

i=1

∏i
j=1 bj

)2 .

For the forthcoming bifurcation analysis, we assume that the sequence (bn(λ))n∈Z
depends on the parameter λ in the following sense. For each λ ∈ [0, 2], assume
bn(λ) > 0 for all n ∈ Z and

lim
n→∞

m+n
∏

i=m

bi(λ)

λ
= 1 (21)

holds uniformly for all m ∈ Z.

Theorem 13 Assume (21). Then the system

xn+1 = hn(xn, λ), n ∈ Z,

where hn is defined as

hn(x, λ) =
bn(λ)x

1 + bn(λ)x

exhibits a non-autonomous transcritical bifurcation at the parameter λ̄ = 1.

13



Proof: Obviously, x̄ = 0 is a fixed point of hn(·, λ). This fixed point is locally
pullback attracting for λ < 1 and asymptotically unstable for λ ≥ 1.

Furthermore, for λ < 1

x̄−
n (λ) := −

1
∑∞

i=0

∏i
j=0 bj+n(λ)

, n ∈ Z
defines an unstable trajectory. Note that x̄−

n (λ) → 0 as λ ր 1.
For λ > 1

x̄+
n (λ) :=

1
∑n−1

i=−∞
∏n−1

j=i+1
1

bj(λ)

, n ∈ Z
is a pullback attracting trajectory and x̄+

n (λ) → 0 as λ ց 1. Thus, according to
Definition 6, the system

xn+1 = hn(xn, λ)

undergoes a transcritical bifurcation at the parameter λ̄ = 1.
�
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furcation phenomena in non-autonomous differential equations. Nonlinearity,
15(3):887–903, 2002.

[10] M. Rasmussen. Towards a bifurcation theory for nonautonomous difference
equations. To appear in Journal of Difference Equations and Applications,
2005.

[11] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos,
volume 2 of Texts in Applied Mathematics. Springer-Verlag, New York, second
edition, 2003.

15


