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Abstract

In this paper we prove nonlinear stability results for the numerical approxi-
mation of relative equilibria of equivariant parabolic partial differential equations
in one space dimension. Relative equilibria are solutions which are equilibria in
an appropriately comoving frame and occur frequently in systems with under-
lying symmetry. By transforming the PDE into a corresponding PDAE via a
freezing ansatz [2] the relative equilibrium can be analyzed as a stationary solu-
tion of the PDAE. The main result is the fact that nonlinear stability properties
are inherited by the numerical approximation with finite differences on a finite
equidistant grid with appropriate boundary conditions. This is a generalization
of the results in [14] and is illustrated by numerical computations for the quintic
complex Ginzburg Landau equation.

Keywords General evolution equations, equivariance, stability, Lie groups, partial
differential algebraic equations, unbounded domains, finite differences, asymptotic sta-
bility

1 Introduction

The purpose of this paper is to analyze numerical methods for the approximation of
relative equilibria of parabolic systems in one space dimension

up = Aty + f(u, uy)

which are equivariant w.r.t. the action of a finite dimensional Lie group. Relative
equilibria are solutions of partial differential equations which are equilibria in an ap-
propriately comoving frame. A basic class is formed by traveling waves which are
solutions of the form wu(z,t) = v(z — At), where ¥ is the wave form and X the velocity.
Then v is a stationary solution in a frame which is translated with the velocity of the
wave, i.e.

0=Av" + f(0,0") + 0.
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Since in general X\ is unknown as well, we use the ansatz u(z,t) = v(x — y(t),t),
A(t) = ~/(t), which leads to the partial differential algebraic equation (PDAE)

Uy = AU.L.L + f('Uy'Ux) + >\U(E7
e (1)
= (0", v — D) Lo
where © is a given function with o — % € H? and (-,-) ;_ denotes the Ly-inner product.
Now (7, A) is a stationary solution of (1). The last equation is a phase condition which
compensates for the additional degree of freedom which has been introduced by adding
A as an time-dependent variable. In the general case a similar ansatz leads to a PDAE
where the algebraic conditions are related to extra solution components that determine
the transformation into the comoving frame. In this paper we analyze the nonlinear
stability of the stationary solution (@, A) of the DAE which one obtains after truncation
of the PDAE to a finite interval and discretization with finite differences. The existence
and approximation properties of (U, ) has been dealt with in [15]. Delicate analysis
for h — 0 and J — R reveals that stability is preserved for h small, J large enough and
appropriately chosen boundary conditions. To this end we prove a uniform stability
estimate of the form

[lo(t) — 77”71,11 + ||u(t) — ]| < const e ™, v >0,

where H||H}1 denotes the discrete analogue of the Sobolevnorm ||-[|,,.. Here resolvent
estimates C(;mprise the main technical challenge. This is an overall justification of the
freezing method in [2] and is in accordance with the numerical results in [14].

The paper is organized as follows: In Section 1.1 we give a short introduction to the
method of freezing relative equilibria [2, 14] and state conditions which ensure the
asymptotic stability with asymptotic phase of these solutions. In Section 2 we intro-
duce the finite difference approximation and state the main stability result Theorem
2.8 for the solution of the discretized equations. It is proven in Section 3 by using
resolvent estimates which are proven in Section 4. Finally we illustrate the theory by
numerical results for the cubic-quintic Ginzburg-Landau equation in Section 5 and we
show by a counterexample that some of our assumptions on the boundary operators
are sharp.

1.1 Equivariant evolution equations

In the following we extend the transformation into the comoving frame given in the
introduction for traveling waves to the abstract framework developed in [15] that covers
the approaches in [2, 3, 12, 14]. Although the main theorem in Section 2 is formulated
for the special case of a PDE in a way which independent of this general approach we
think it is instructive to see the derivation of the equations there.
Consider an evolutionary equation on a manifold M which is modelled over a Banach
space X

uy = F(u), u(0) =u’, (2)

where F' : N — TM is a vector field which maps a submanifold N modelled over a
dense subspace Y C X onto the tangent bundle TM of M. For our main stability



Stability of discretized relative equilibria 3

result (see Section 2) we will either have Banach spaces X = M, Y = N or affine
spaces M =0+ X, N =0+Y for some v : R — R™. In these cases the tangent spaces
always satisfy T,M = X, T,N =Y for all u € M,v € N.

We assume that (2) is equivariant w.r.t. a finite dimensional (possibly noncompact)
Lie group G which acts on M via

0:Gx M — M, (v,u) — a(y)u,
where
a(yy0v2) = a(y)a(y2), a(l) =1, 1 =unitelement in G,
which has a tangent action Ta in TM, i.e Ta(y) : ToM — Tyeyyo M.
Equivariance means that the following relation holds
a(v)(N) C N VyeQaG,
F(a(y)u) = a(y)F(u) Yu € N, v €G.

We assume that for any v € X the map
a(-)v: G — X, v a(y)v
is continuous and it is continuously differentiable for any v € N with derivative
da(y)v: TG — Ty M, A= [da(y)v] .

Here we use 1T,G to denote the tangent space of G' at . Note that in general we
can neither expect the action a to be differentiable nor the map v +— a(y)u to be
differentiable for any fixed u € M.

Using the ansatz u = a(7y(t))v and v;(t) = dLy ) (1)u, where p lies in the Lie algebra
T1G, and dL. denotes the derivative of the left translation L, : g — v o g, equation
(2) is transformed into (cf. [2],[11],[14])

vy = F(v) — [da(1)v]p. (3)

The following is a constructive definition of relative equilibria which is appropriate
from a numerical point of view [2].

Definition 1.1. A solution @ of (2) is called a relative equilibrium if it has the form
a(t) = a(y(t))v where 7 : [0,00) — G is a smooth curve satisfying 7(0) = 1 and v does
not depend on time.

Note that usually the whole group orbit O(v) = {a(v)v, v € G} is called a relative

equilibrium if it is invariant under the semi-flow [3],[8]. For our purpose it is more
convenient to select a special time orbit within this group orbit.

1.2 Parabolic equations

In the following we consider a special case of (2), namely an equivariant parabolic
PDE,

up = Augy + f(u, uy), r€e€R, t>0, u(z,t) € R™, (4)
where A € R™™ is a positive definite matrix. We make the following technical as-
sumption to f which includes nonlinearities of the form wuwu,.
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Hypothesis 1.2. Let f(u,u)(z) = f(u(z),u/(z)) and f € C'(R™ x R™ ,R™) be of the
form
flu,v) = filuv + fo(u), fi € CHR™,R™™), f» € C'(R™,R™)

where f1, fa, f1, f4 are globally Lipschitz.

We choose a function © : R — R™ such that Av” + f(0,9") € L2 and define M =
O+ Ly, N=10+H?2 Then F: 9+ H? — Ly in (2) reads

F(u) = Au" + f(u,u’).

We choose a basis {e!,...,eP} in the Lie algebra T4 G, where p is the dimension of G,
write g = Y7 pie' and define S*(v) = — da(1)ve’. Then (3) reads

vy = Avge + S(0) + f(v,0,) (5)

where we use the short notation S(v)u = Y5, S*(v)u;. In the rest of the paper we
assume that the operators S* are linear differential operators of order < 1 which can
be written as

S'(v)(x) = Spo(x) + Siv'(x), S5, € R™™.

In order to compensate for the additional p degrees of freedom which are obtained by
introducing the parameter p € RP, a phase condition of the form

0=(S(0),v—0), i=1,....p.

is added, where © # 0 is a given reference function with ¢ —v € H*. This leads together
with (5) to the PDAE

P
v = AvVgy + Z ui(Sév + vax) + flv,vg) ©)
i=1

0= (S'(0),v — D).
Let (v, i) € © + H? x RP be the stationary solution of (6) with

xggloo o(z) = 0. (7)

From the condition ¥ € ¥ + H? we obtain the condition S*(v) € Ly for i=1,...,p.
The concrete choice of © will be given in the following examples:
Ezample 1.3. Let © be a function with [|9(z) — v+ | < const e¥¢* where f(vi,0) = 0.
Consider the shift action of G =R, i.e. [a(y)u|(z) =u(x —y) on M =0+ L3 D N =
¥+ H?. Then we have [da(1)v]e! = —v, i.e. S§ =1, 5} =0 and (6) reads

vy = Avgy + Az + f(U,U;E),

0= <1A}I,U - @>£2.

The relative equilibria are traveling waves (x,t) = v(z — A\t) with stationary points
limy 100 0(x) = v.
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Example 1.4. Consider (4) for © = 0, i.e. for M = L5 and N = H?2. Let the Lie group
be G = S! x R with (p,7) =+ € G and (p,7) o (p,7) = (p+ p,7 + 7). Let the action
a:G x Ly — Ly be given for u: R — R? by

la()ul(@) = Rogu(e —7), R, = (550 -5me).

Then we have [da(1)v]e! = —uv,,[da(1)v]e* = —Rzv, i.e. S{ =1, S§ = Rz, 55 =
5% =0 and (6) reads with u, = 7, u, = p

v = Avpy + 170z + Rz v + f(v,02),

0= (0 ,v—1),, 0= (Rzv,v—10), .

The relative equilibria are rotating and traveling waves tu(x,t) = R_g, 0(z — firt).
Note that, if v is a front, i.e. ¥ # ¥4, then ¥ and Rz v are not in Lo. In this case,
considering a rotating front, the condition S?(v) = Rzv € L5 is not satisfied and the
stability result of this paper cannot be applied.

We are interested in the asymptotic stability of (7, i) which is defined as follows.
Definition 1.5 (Asymptotic stability). The stationary solution (7, fi) of (6) is asymp-
totically stable, if Ve > 0, 3§ > 0 such that for all solutions (v,u) of (6) with
[114(0) = &l + [lv(-,0) = 2| <0

<e Vt>0

— 0 fort — oo.

) = all + o (- 2) = o]l {

Remark 1.6. Note that by the freezing ansatz the well known notion of asymptotic
stability with asymptotic phase for @ is converted into asymptotic stability for (v, i1).

The stability of the PDAE solution (9, i) is determined by the spectrum of the lin-
earization A : H? — L5 of the r.h.s. of (5) w.r.t. v at (v, i) which is given by

Av = Av" + Bv' + Cv, where (8)

p p
B(x) = Daf (0(2),7'(2)) + > _ iSi, Clx) = Dif(0(x),v' () + Y f1iS.
i=1 i=1
Assumption (7) implies with the properties of A that lim, 4. #'(x) = 0. Thus A
converges for x — o0 to constant coefficient operators

Apv = Av" + Biv' 4+ Cyo, By = lj.tm B(x),Cy = lim C(x).

Our standing assumption in this paper is the following: The operator A defined in (8)
satisfies the usual conditions which guarantee asymptotic stability with asymptotic
phase for @ [7, 17]:
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Hypothesis 1.7 (eigenvalue condition).
The functions S*(v) € L2, i = 1,...,p are linearly independent and span the null space
of A: H? — Lo, ie.

N(A) = span{S*(v),...,SP(v)}.

The eigenvalue zero is semi-simple and there exists 5 > 0 such that there are no other
isolated eigenvalues s of finite multiplicity with Re s > —(.

Hypothesis 1.8 (spectral condition).
There exist ¢ > 0, 8 > 0, such that for s with Re s > —f the solutions \ of the
quadratic eigenvalue problems

det(\?A+ABy +Cy —sI) =0
satisfy: |Re A| > 0.
Example 1.9. For Example 1.4 the operator A reads
Av = A" + (pr I + Dy f (0,0"))0" + (o Rz + D1 f(0,7))v

and its null space is spanned by 7’ and Rzv.

Note, that for the excluded case of a rotating front, the continuous spectrum of A
touches the imaginary axis. Therefore even in the continuous case the usual stability
theory which relies on a spectral gap cannot be applied.

2 Numerical approximation

2.1 DAE formulation
In order to compute numerical approximations of (o, i) we define a discrete interval
J=[n_nyl={nezZ: n_. <n<ng, where ny € ZU{to0} }
and a corresponding equidistant grid with grid size h > 0
Jp={xn: xn =nh, n € J}.

We denote the Banach space of sequences in R”" which are indexed by J provided with
the supremum norm ||z|| = sup,,c; ||z by ¢ (R™) and write .J, — R if h — 0 and
simultaneously h - min{—n_,n;} — oo, i.e. £ny grows faster than h decreases, so
that [hn_,hny] — R.

If necessary, we embed each u € £/ (R™) in £ (R™) by setting u,, = 0 forn € Z \ J
without further notice. If no confusion is possible we drop the argument R and write
just £7. and /... Let the standard finite difference operators on the extended grid

j}LZ{xn: T, = nh, nef:[n_—l,n++1]}

be given by dy : Ego — 0L 6y gn-me o5 fn-tned 07 where

—_

(8000 = (01 = Vu 1)y (54000 = ~ (1 = 0)s (-0 = = (0 — V1),

2h h

S
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Then for sequences u,v € ¢Z (R™), J = [n_,n,] we define the inner product and
discrete Sobolev norms by

N4
<u7U>Jh, = Z huzvm HU’HLQW = <u7u>,],,,7
n=n_
g = lulle,, + Isule, o Nl = Ny + 1650 _ull, .

Discretizing (6) and adding linear boundary conditions
Bv=P_v,_ +Q_(600)n_ + Pyvn, + Q4 (60V)n,, Pi,Q+ € R2mm
leads to the differential algebraic equation (DAE)
vl = A(016_0)n + S () + (v, 0vs), neJ, t>0 (9a)
0= Bv—n, (9b)

0:<Si(ﬁ‘Jh),v—ﬁ|Jh>Jh, i=1,...,p, (9c)
where 5% (v) = Siv,, + Si(dov)n € R™ and S, (v)u = 3P, 4182 (v). This system is a
DAE of differentiation index 2 [6].

We assume that the boundary conditions are partitioned into a Dirichlet and Neumann
part, i.e. the matrices (Py,Q4) € R?™2™ have the following structure

(P Q — P:{:V Qﬁ PN N [Rk‘,m PD [R2m7k’m
e, Q1) = PP 0 ) r, Q1 € , Y€

and the matrix (Q_Q+) is of rank r € [0,2m]. This induces the following splitting
of the boundary conditions (9b) into one part that does depend on the external vari-
ables v, _1,v,, y1 and one part that depends on the values at the inner grid points

Un_y...,Up, only:
BYo = PNu, 4+ QN6gvn_ + PNun, +QN6gvn, =, (10a)
BDU|Jh =PPv, +PPv,, =P, (10b)

Note that initial values v°, u® are called consistent if they solve the algebraic constraints
(9b),(9¢) as well as the equations

0=BP(A6,.6_v+ Sw)u+ f(v,6v)), 1)
0= (5(0), A616_v + S()p+ f(v,600)) 5,

which are obtained by differentiating (10b),(9¢) w.r.t. time ¢t and inserting (9a).
Define 7 : £ (R™) — ¢ (R™) as the restriction operator onto J by

T (Un_—1ye ey Uny 1) = (Un_se ey Uny ).
Then (9) can be written in the form
(7v)' = fain(v,A), v(0) =0, A(0) = A"
0= fag(v, ),
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where faig : €2 (R™) x RP — £ (R™), faig : £ (R™) x RP — R2mHL,
The proper notion of a solution of (12) is the following

Definition 2.1. A function (v, A) : [0,7) — ego(uem) x RP is called a solution of (12)
in (0,7), 7 € RU{o0} if

L. fag(v(-), () : [0,7) — €2 is continuous
2. (v,A):[0,7) — Ego([Rm) x RP is continuous

3. (mv)/(t) exists, (mv)'(t) = fag(v(t), \(t)) € L (R™) for t € (0,7),
and (v(0), A(0)) = (v°, \Y)

4. fag((t), A(t)) = 0Vt € [0, 7).

2.2 Main result

The main result of this paper is the following discrete stability theorem for the sta-
tionary solution (7, i) of (9a). The existence of such a solution for large enough J and
small h has been proven in Theorem 2.6 in [15] together with the convergence estimate

181, = Bl + 17— il < const (2 + e ohmin{onome) (13)

Before we can state the stability result Theorem 2.8 we have to collect the necessary
hypotheses on the boundary conditions and the phase condition.

We assume that 0 : R — R™ is a given template function and define the following class
Eo(I,R™P) of functions:

Definition 2.2. We define a function g : I — R™?, I C R to be in &,(I,R™?) if
there exists K > 0 such that for all x € I:

lg(x)|| < Ke @l and |¢'(z)| < Ke™ 9.

Hypothesis 2.3 (phase condition).
Assume that S(0) € £,(R,R"™P) and the p x p matrix

is nonsingular.

The following determinant condition is needed for resolvent estimates in a compact
region for the continuous operator restricted to finite intervals [1]. Tt allows to control
the growing terms for z — 400 of the solution to the resolvent equation. Since for
bounded |s| we rely on the solution of the corresponding problem for the continous
system we have to employ the same condition here.
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Definition 2.4. Define

Y5 (s) ) ( Yi(s) ))
D(s)=det | (P- Q- s J P wr
(5) <( @ )<Y;(s)2‘_(s) (Pr Q4) Yi(s)XY (s)
where Y*(s),Y}"(s) € R™™ and ¥° (s), X' (s) € R™™ solve the quadratic eigenvalue
problems

AYS? + BLYY + (Cy —s)Y =0

with Re 0(3%.(s)) < 0 and Re o(3%(s)) > 0.

Hypothesis 2.5 (boundary conditions). The boundary condition (9b) is satisfied at
the stationary points vy, i.e. n = P_v_ 4+ P74 and there exist 5,C > 0 such that
D(s) #0 if|s| <C and Re s > —0.

In order to obtain resolvent estimates for large |s| we have to employ a truly discrete
condition, which ensures that a certain z dependent matrix is uniformly invertible for
z in a special region of C.

If 6 > 0 is chosen such that |argu| < 5 —& Vu € o(A™!) then there exists C > 0
such that the following matrix function is well defined

AZ) W(IHQA”)%A*%, larg(z)| < % Jrg
z) = 1 1
m(%[—l— AA_:L)f‘A_E7 |Z| 2 C

(14)

Then we can formulate the following hypothesis.

Hypothesis 2.6. Assume that there exists C' > 0 such that the matrices
z PD P+D

have uniformly bounded inverses for

0
zeC: arg(z)ﬁ%—l—g or |z|>C.
This hypothesis is used in Section 4 to prove resolvent estimates which are needed in
Section 3. The uniformity conditions in Hypotheses 2.5 and 2.6 seem rather technical
and in fact hard to check, but the following remark shows that Hypotheses 2.5 and

2.6 are strongly related to another condition which stems from the continous problem
that can be checked easily.

Remark 2.7. The following statements are equivalent

1. T, has a uniformly bounded inverse for all |argz| < Z + £ and for |z| > C.
] NA—% _QNA—% QNA—l _QNA—l
2. The matrices Iy = (Q + ) and Ty = ( - +
pP pP PP pP
are nonsingular and I, is nonsingular for |arg z| < T + %, z # 0.
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The nonsingularity of T’y corresponds to the corresponding condition (see Theorem
2.1 in [1]) which is necessary for resolvent estimates for large |s| for the continuous
operator which is restricted to a finite interval. The nonsingularity of I, will also be
used in Section 3 to reduce the DAE to a corresponding ODE the stability of which
can then be discussed.

Moreover, one can show that det(T'g) # 0 implies D(s) # 0 for all large s (see the
corresponding remark in Section 5 of [1]).

For the boundary conditions which are used in the numerical computations such as
Neumann, Dirichlet and periodic boundary conditions, Hypothesis 2.6 is always satis-
fied.

Note that Hypothesis 2.5 is crucial as the following example shows: For a traveling
wave solution o of scalar equation

which moves with velocity A we consider boundary conditions, which are a homotopy
between Neumann and Dirichlet conditions, i.e.

i) e ()= () - (2): e

Then condition 2.5 reads

a+ (1—a)i(s) 0
det ( 0 o+ (1— oz)l/ff_(s)) 70,

where v denotes the stable and unstable spatial eigenvalue respectively, i.e. the
roots of the characteristic equation

V2 v+ f(vs) — s =0.

Thus Hypothesis 2.5 is violated for a € (0, 1) with

a \2 Ao ;o
s(a) = U4).
(@) = (25) + 55 + 102
In this case the value s(«) is a spurious eigenvalue which is created by the boundary
conditions. If it is positive then it affects stability. We will illustrate this effect in
Section 5.

Now we can state the main result of this paper.

Theorem 2.8. Assume that Hypotheses 2.8,2.5,2.6 hold.

Then there exist hg > 0,T > 0 such that for h < hy, Fhny > T the stationary solution
(0, 1) € L2 (R™) x RP of (9a) is asymptotically stable.

More precisely, there exist v, p, hg, T > 0 such that for h < hg, Fhny > T the following
statements hold if =T < cv/h for some ¢ > 0, where o denotes the constant in
Hypothesis 2.3:
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For each consistent initial value (v°, u°) € Zgo([Rm) x RP (i.e. (9b), (9¢), (11) are
satisfied) with ||v° — 6”71}7 < p, there exists a unique solution (v, p) of (9) with initial
condition (v(0), 1(0)) = (v°, u°) which obeys for some v > 0 the estimate

[0(t) = Dllyg + [l(t) — fill < comst e™". (16)

Remark 2.9. Combining estimate (16) with (13) we obtain for A > hg,£ny > T and
a sufficiently large 79 > 0:

o(t) = ollygs + l1a(t) — il < const (7" + 2 4 e~ minl=nnedy yi >,

Note that similar estimates hold for [|-||  (see [14], [15]).

Remark 2.10. We will show later in Lemma 3.3 that if one prescribes the initial value
v? on the grid J and if the so called essential conditions (9c),(10b) are satisfied, then
the external points v0 U?H 41 of v° and the initial parameter p° can be chosen in
such a way, that (v°, u°) solves (9b), (9¢), (11).

Theorem 2.8 will be proven at the end of the next section, in the beginning of which
we give a short outline of the main steps of the proof.

It mainly relies on resolvent estimates for the linearized operator, which (after reduc-
tion to an ODE) can be used to prove stability estimates. Moreover, we make use of
the fact that the linearized operator in the continuous case is sectorial and there is a
gap between the essential spectrum and the zero eigenvalues. This gap is used here
to derive resolvent estimates for the discretized system in a similar way as has been
carried out for the continuous system in [14], [1]. The main tool are exponential di-
chotomies combined with linearization at the asymptotic states. We expect that part
of this analysis can still be used for special patterns in higher dimensions.

3 Stability of the nonlinear system

System (9) has the special structure of an initial boundary value problem with an ad-
ditional constraint. Therefore we will reduce the algebraic constraints directly and try
to follow the spirit of the semigroup approach which has been used to prove asymptotic
stability with asymptotic phase for relative equilibria of the continuous system [7].
To this end in Section 3.1 we transform (9) into a semilinear equation with stationary
solution zero and prove a stability result for this system in Section 3.4. This is achieved
by reducing the DAE to a corresponding ODE in Section 3.2 and proving exponential
estimates for the solution operator of the corresponding linear equation in Section
3.3. These estimates can be concluded from an integral representation using resolvent
estimates which will be shown in Section 4.
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3.1 The semilinear equation

Let (4, \) be the stationary solution of (9) and insert w = v — @, p = A — X into (9) to
obtain

w!, = (Aw)y, 4+ Sn (D) + pn(w,p), neJ (17a)
0= Bw (17b)
0= (5(9),w),,, (17c)

and @ £, X R? — 0L, ¢, (v, 1) = @, (v) + S (v) g, with
‘Dn(v) = f('[)n + Un, don + 60'071) - f({}na 501771) - le({)nv 50571)'071, - D2f(r5na 501777,)60”'@-

Using the notations ¥ = S(¢), ® = S(0) stability of (7,) is now equivalent to the
stability of zero as a solution of (17) which we rewrite using the operator = and (10)
as follows:

' = Av + u + (v, 1), (18a)
0 =By, (18b)
0= BPro, (18c¢)
0= (¥, mv) ;. (18d)
For the semilinear equation (18) the consistency conditions (11) read
Do
0=B"(Av+ D+ (v, 1)), 19)

0= (T, Av+Qpu+ (v, 1)), .
For (v,p) € 2, x R we use the notation
B (0, 1)) = {(uA) € 1, x R+ o —ullpps + 10— M| < 6}
and define the space of consistent initial conditions by
01 = {(v,p) € 2 x R : (v, ) satisfies (18b)—(18d), (19)}.
The main assumptions on ¢ are summarized in the following hypothesis.

Hypothesis 3.1. Assume that ¢ : Ego x RP — ¢/ satisfies ¢(0,0) = 0 and that there

exist pg, ho, T > 0 such that for h < hg, £nih > T for all (v, u), (u, \) € Bzi’lz (0), with
p < po, the uniform estimates

(v, 1) = @(u, Mz, , < const (v —ullyn +max(|lvflyg, [[ully )l = Al (20)
e, )z, < const p([|vllzy + [lll) (21)

hold, with constants which are independent of J and h.
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The main result of this section is the following stability theorem for the zero solution
of the DAE (18).

Theorem 3.2. Let A satisfy Hypotheses 1.7,1.8 and let ¢ satisfy Hypothesis 3.1.
Assume further that ¥ = S’(f)), where U satisfies Hypothesis 2.3 and that the boundary
conditions satisfy Hypotheses 2.5,2.6.

Then there exist hg > 0, T > 0, such that for h < hg, Fhny > T the stationary

solution 0 € ¢2. x R of (17) is asymptotically stable.

More precisely, there exist p,ho, T > 0 such that for h < hg, Thny > T with e T <
cvV'h for some ¢ > 0,where a denotes the constant in Hypothesis 2.3, the following
statements hold.

For each initial value (v°, u°) € £ with ””0”71; + |u°|| < p there exists a unique

solution (v, ) of (17). This solution obeys for some v > 0 the estimate
lo(®)l + ()] < const e vt > 0. (22)
We first show that Theorem 3.2 implies the stability result Theorem 2.8.

Proof of Theorem 2.8
For (v, u) = &(v) + S(v)u, we prove that Hypothesis 3.1 is satisfied.
Hypothesis 1.2 implies that f1, f5 are globally bounded and

le(u7w):f{(u)(wf)""fé(u)? DQf(u7w):f1(u)7
for u,w, d,, 0, € R™

[1D1f (u+ bu, w + 6w) — D1 f (u, )| < const ([[6u]] + [[0wl]),
[D2.f (1 + 0u, w + bw) — Daf (u, w)|| < const [|d,]].

Thus we obtain for v,u € B}»>(0)

lon (v) = On (W)l = [|f (On + vy d0Tn + Sovn) — f(Dn + Un, doTn + dotn)
- le(@nv 50'Dn)(vn - un) - D2f(1~)nv 50611)(507}71 - 50“n)”
< const ([[vn — un || + [[vn — un[1dovnll + [[unlll|do(v — w)nll)

This implies for all (v, 1), (u, ) € Bzi’ll (0) using Hypothesis 3.1 and the Sobolev imbed-
ding |Jv|| , < const ||vHH}L

lo(v) = @)lIZ,, = Zhllwn ) = on(w)]®

n=n_—
n4 ny4 ny4
2 2 2 2 2
< const (3 hllon = uall” + [ooelZ S Allvn = unll® + ullZ, S Aot = wall’)
n=mn— n=mn— n=mn—

2 2 2 2 2 2
< const ([lo —ull2, , + v —ullZy ol + lulls llo —ull3y ) < const v —ul,
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Furthermore, (23) leads for |v||, . < p to

||1I)n(v)|| S ”f(an + Uns 501771 + 6O'Un) - f(f)ny 507771)
- le(f)n, 5Oﬁn)vn - D2f(6na (sO'ﬁn)(sOvn”

1
< / 1[DLf (52 + ton, S0 + t00) — Di f (B, S0)Jom | dt
0

1
+ / H[‘DQf(ﬁn + tvnv 50671 + t(SO'Un) - DQf(ﬁna 50'[}71)]501%“ dt
0

1

1
< const / £(l[om ) + 150wl o]l dt + / vl 1Goval] dt
0 0
< const ([[val] + 0wl llvnll
This implies for ||v||H}L <p

N4

~ 2 2
1o ()llz,, < const > Alllvall + 160va )2 |lval

n=mn_

ny
< const ||v||ioh Z (lonll + 160val])?

n=n—

< const ||v||§_(}11\|v||3{’11 < const p2HU||3_£}11.
These estimates show together with

118 () = AS@)ll, , < const ([ollyg 11— All + llo = ullgy A
< const p([[o— ullyy + [l — M)

and ¢(0,0) = 0 that Hypothesis 3.1 holds. Finally, (v°, %) satisfies (17b), (17c) and
(19) if and only if (u®, \?) satisfies (9b),(9¢c) and (11). O

3.2 Reduction to an ODE

In the following we will use equations (18b), (19) to reduce system (18) to an ODE in
the subspace
éers = {u € égo([Rm) : BDU = 07 <\P, U>Jh = O}

where the essential algebraic conditions (18c),(18d) are satisfied.
We will show in Lemma 3.4, that there exists § > 0 such that for each u° € ¢/ with

€ess

|[u®|| < 6, there exists a unique extension (v°, u°) € £ which satisfies T0° = °.

The following lemma states conditions under which a consistent (v, u) € £, x RP can
be uniquely determined from a given u € £/ with 7v = u. Here only the limiting case
|z| — oo of Hypothesis 2.6 is needed.

The proofs of the following two lemmas and the corollary are given in the appendix.
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Lemma 3.3. For each u € (2 and each r € (L there exists a unique extension

(v, ) € e{o x RP such that v = u, (18b) and

0=BPAv+du+r),

- (24)
0=(V,Av+Qu+r),
hold. The map (u,r) — (v, ) is linear in u and r. Moreover with the notation
v = Myu+ R,r, p=Mu+ R,
where M,, R, : ¢ — Ego, M, R, : ¢, — RP, we obtain the estimate
[Rorllye + | Ryur|| < const [|r], - (25)

The following Lemma guarantees the solvability of the equations (18b), (19) which

define a transformation ¢/ > u — (v, p) € e{o x RP.

Lemma 3.4. Let the assumptions of Theorem (3.2) hold.

Then there exist ¢, hg, T > 0 such that for all h < ho, £hn4 > T with e T > eVl the
following statements hold. h

For each u € Ul there exists a unique extension (2, x RP 3 (v,p) = (T, (u), T),(u))

such that mv = u, T,,(0) = 0,7,,(0) = 0 and (18b), (19) hold.
Moreover, we have the following estimates.

1T (u1) = To(u)llz, , + 1T (ur) = Tu(uz)|| < const [Juy — usl1 (26a)
1Tz, + ITu(u)]| < const [lull5; . (26b)
s h

We will use the above transformations 75, T}, to reduce the DAE (18) to an equivalent
ODE in ¢/

ess

u' = Apu+ @(u), u(0)=u’ (27)
where . R
AP : Egss - ggss7 u = (AMU + (PMH)U
and

P(u) = AT, (u) = Myu) + (T, (u) — Myu) + (T, (u), T (w)). (28)
The properties of ¢ are an immediate consequence of Lemma 3.5:

Corollary 3.5. The nonlinearity ¢ satisfies
16(w) — @(0), , < const [Ju— vl
and for each o > 0 there exists p > 0 such that

16y, < olluly. if lullg < p.
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Remark 3.6. Note that if ¢ : £Z. x R? — ¢ does not depend on (v, ,u) ie. p(v,p) =
r € ¢, then the transformation ¢ — ¢ is just a projection ¢ = Ilr € ¢/, where

Ir = (AR, + ®R,, + I)r. (29)
The following Lemma shows the equivalence of (27) and (18).

Lemma 3.7. Assume the same as in Theorem 3.2. Then there exist hg,T > 0 such
that for h < hg, £n1h > T we have the following equivalence.

For each p > 0 there exists a § > 0 such that if u € C([0,7), ¢l B5 (O)) is
solution of (27) on (0,7) with u(0) = u® then (v(t),u(t)) = (To(u(t)), T, (u(t))) €
C([O,t),fgo x RP) is a solution of (18) on (0,7) with v(0) = T,(u°), u(0) = T},(u®) and

[0 s + I1(0)] < p.
Conwversely, there exists p > 0 such that if (v(t), u(t)) € C([0,¢
of (18) on (0,7) with (v(0),u(0)) = (v°, u°) € €2 and ||jv(t)
u = 7o is a solution of (27) with Hu(t)||H}L < p.

), Ei x RP) is a solution
Ilw +lp@) < p, then

Proof. Let (v(t), u(t)) a solution of (18) for consistent initial values (v°, u%) € €, on
(0, 7). Then differentiating (18¢c), (18d) w.r.t. time we obtain by (18a) that (v(t), u(t))
solves (19) for ¢t € (0,7). For u = mv we can insert v = T,,(u), p = T}, (u) into (18a) to
obtain

u =mv' = Av+ Du+ (v, 1)
= /N\Tq,(u) + (I)Tu(u) + ‘P(Tv (u)’ Tu(u)) = ]\Pu + @(u)

Conversely, if u solves the reduced ODE (27) then Lemma 3.4 implies that v(t) =

T, (u(t)), u(t) = T, (u(t)) is a solution of (18) in BL*(0) € £ x RP for some p > 0 in
the sense of in the sense of Definition 2.1. O

Note that it is sufficient to consider (27) in ¢Z.. Thus we have reduced the bordered
system (18) to an ODE (27) in ¢/

Jss Which is then solved as usual via the “variation of
constants” formula

u(t) = Zp(t)u’ —|—/ Yp(t—s) ¢(u(s)) ds. (30)

0

Here the operator X p(t) is defined via the Dunford integral

Yp(t) = L ?{ est(sI — Ap)~tds
r

211

and T is a closed curve which encloses the spectrum of Ap.

3.3 Estimates of the solution operator

In order to obtain stability estimates for (27) estimates on X p(t) are required which
are proven using resolvent estimates in different regions of C. These are given in the
following lemma which will be proved in Section 4.
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h
Q% Qb

O’(Ap

B
%

N

Figure 1: Path of integration

Lemma 3.8. There exist a > 0, ¢ € (§,7), C > 0 such that s € p(A) if |s| >

Ch™2 or |arg(s+a)| < ¢, s # —a. Furthermore, for all r € (1, the resolvent

uw=(sI — Ap)~lr € ¢/ with T the projection defined in (29), can be estimated by
ull,, < const

o HTHg“’ ||UHH} < const (31)

1
—_— —|r .
|S+ /|S—~—a|H ||L‘,21h

Lemma 3.9. Let A satisfy Hypotheses 1.7, 1.8 and assume that Hypothesis 2.3 holds.
Then there exist K, ho,T > 0 such that for all h < hg and £nyh > T the solution
operator Xp(t) can be estimated by

ISp@rlc,, < Kelrlle,,. ISPy < Ke

1
t
%||TH£M~

Proof. We introduce the following notation for a function g : ' — [0,00), where
I'={~(¢) :€€0,]} is a closed curve

1
$ 920l = [ s de
Note that we can take a path I' around the eigenvalues of Ap where Re s < 0Vs €T

(see Figure 1). We denote the resolvent by G(s) = (sI — Ap)~" and obtain for r € £7
with (31) for ¢ > 0 the following:

1 R 1 .
Hzp(t)rnﬁz,h = ‘ Tmée tG(S)T ds . = QWié e tG(S)T ds ;
2.h —a o
1

ie—atf
2 T

< Ke_“t||r||£2yh’.

— j{ e~ G(s — a)r ds
r

211

1 —at t
S IeG - orl, Jis
2,h

IN

e)\
t

||G(é —a)r| |d\| < const e ||| f @|d)\|
t Lo - Lan f1|A|
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Here we have used the fact that we can move the curve I' to the left up to I' — «
for a < [ small enough without changing the integral. Along the rays this is the
standard estimate for sectorial operators (see [9],[7]). Along the arc v(§) = Re'®, € €
[Z + 0,2 — 6] we obtain

3w _
/ 2 R‘etRei&
5+o

In a similar way we obtain

37
’ 2 ey 1 T
HG(Re’f)rHEM d¢ < H’“”LM /*+6 RetRc<)s(£)E d¢ < §||r||£27h’_

2

IZp(1) rllyy < Ko

1
t
%”THLZ’,,

3.4 Local existence, uniqueness and stability

In this section we prove the solvability of the integral equation (30) together with some
estimates. Note that the existence of a solution of (27) follows from standard ODE
theory.

Lemma 3.10. Assume the same as in Lemma 3.7. There exists hg, T > 0 such that
for h < hg, £hny > T the following statements hold:

For each p > 0 there exist § > 0 such that for each u® € £l  with ||[u°|, <o
there exists 7(h, T) > 0 such that a unique solution of (27) exists on (0,7(h,T)) and

[u(t) ey < p Jor ¢ € 0,71 T)).

Proof. For each fixed h, J = [n_,n,] we use the fact that there exist Cy(h, J), Ca(h, J)
with
Ci(h, Dllull < lullg,, < Calh, J)|ull-

By Lemma 3.4 there exists p > 0 such that for ||u||H}17 < p the map ¢ is Lipschitz.

Thus we can apply the standard Picard-Lindeldf theorem in R™+~"-*! to obtain the
existence of a solution of (27) for [0,7(h,J)). We can further achieve that |ul <
Cy(h, J)"'pin [0,7(h,T)) such that [lull,, = < p for all ¢ € [0,7(h,T)). O

The stability of zero as a solution of the reduced system (27) is the usual Lyapunov
type estimate. We repeat it here, since we are interested not only in the stability of
the solution of a single DAE but we aim at a uniform stability estimate for a whole
family of solutions of DAEs corresponding to discretizations with different h and T'.

Lemma 3.11. Assume the same as in Theorem 3.2.
Then there exist p,hg, T > 0 such that for any h < hg, £nth > T and any consistent

initial condition u® € €1 with HUOHH; < p the following holds: There exists a unique

solution u of (27) which can be estimated by
lu(t)llzg < const eV, v>0, vt > 0. (32)

where all constants are independent of h,T.
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Proof. We choose v € (0,«) and ¢ > 0 so small that
50 g—(a—v)s

o Vs

Using Corollary 3.5 we choose § > 0 such that ¢ : £ (R™) — ¢

ess ess

Ko ds <

DN | =

(R™) satisfies

1e(Wllz,, < allullyy  for fullyy <.

Then for each h,J we find by Lemma 3.10 some p > 0 such that for v° € ¢/ with

€ss

||u0||H}1 < p a solution u of (27) exists on (0,7(h,J)) with ||u(t)HH}1 < ¢ fort e
[0,7(h,J). With (30) and the estimates in Lemma 3.9 we obtain

lu@®llgy < 1EPOllg + / IZp(t = $)B(u(s)) gy ds

t
1
— 0 —a(t—s)||,5
< Ke t”u H’}-(}l1 +KA me ¢ )”(p(u(s))HLQh ds

5 © .3

Since the ODE (27) is autonomous, this leads to 7(h,J) = oo using the usual ar-
guments. From this the existence of u in (0,00) follows with Hu(t)HH}L < § for all

t € [0,00) and small enough h and large enough T'. It remains to prove the exponen-
tial estimate. Define n(t) = supse[O’t]{e”S||u(s)||H’1l} then

t
1
||U(t)||H’1L€Vt SKe(Vfa)tHuO”H’ll_’_KJ/O \/ﬁefa(tfs)eut”u(s)”?{i ds

76(117&)“75)6”8 HU(S) ||H}L ds

t
0
o =

1

Taking the supremum on both sides gives n(t) < 4K||u0|\H}1 < ¢ for t > 0 and we
obtain (32). O

Now the stability Theorem 3.2 follows easily.
Proof of Theorem 3.2

For each § > 0 there exists p > 0 such that for any (v°, %) € £, with HUOHH;L + |l <
p we have u® = 700 € ¢ and ||u0HH}1 < 6. By Lemma 3.11 we obtain a solution u of

(27) on (0,00) which satisfies (32). Then Lemma 3.7 implies that

o(t) = To(u(®),  p(t) = Tu(u(t))

solves (18) with v(0) = T, (u®) = 0%, u(0) = T,,(u®) = u°. Moreover, it follows from
(26b),(32) that (v, ) can be estimated by (22). O
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4 Resolvent estimates

We prove resolvent estimates in the regions Qc, Q%, Q% (cf. Figure 2) for the dis-
cretized system.

Qh
Qc: |s|<C, Res>—4 o “

NIEZ

C T2
ho.
QC : |8| € (Oa ﬁ]) |arg(s)| < 5 + 55 -

Z|S|>ﬁ

Figure 2: Regions for resolvent estimates

To this end we transform the resolvent equation for the projected operator A p back into
a bordered equation. This is accomplished by reintroducing the algebraic variables. A
direct application of Lemma 3.3 leads to the following equivalence.

Lemma 4.1. Let r € (L, then u € ¢/ solves

(sI — Ap)u = TIr (33)

and
v=Mu+ Ryr, p=Mu+R,r

if and only if the pair (v, u) € ¢2, is a solution of the bordered system

(s — Ao —du=r (34a)
Bv=0 (34b)
(W, 7mv), =0. (34c)

The main result of this section are the following estimates

Theorem 4.2. There exist hg,T > 0 such that for each h < hg, ny > T there
exists for each s € Qo UQL U QR and each r € ¢L a solution u of (33) which can be
estimated by

lullg,, < const |7, . s€Qo

2 2 2 2
s lullz,, + Islllullzy < const |7z, . s€QtUQL

with a constant which does not depend on h and T .
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This implies immediately Lemma 3.8 which has been used in the previous section.
For s in a compact set, a similar method as in the proof of the approximation Theorem
2.6 in [15] can be used. For s € Q¢ a solution of (34) can be constructed directly by
using the continuous system. For large |s| a different approach is necessary, since the
discrete resolvent equation (35) cannot be related to corresponding continuous systems
uniformly in s. In that case the solutions for the resolvent equation are constructed
directly by a similar method as in [1].

4.1 Compact subsets

Lemma 4.3. Let the same assumptions as in the previous lemma hold. Then for
each C' > 0 there exist hg, T > 0 such that for each h < hg, £ny > T the following
holds. For s € Q¢ and r € {J the resolvent equation (34) has a unique solution

(v, ) € Ego X RP which satisfies the following uniform estimate in s
[0ll32 + llpll < const [|rlz, , -

The proof is along the same lines as the proof for the existence of the eigenvalue zero
for the discretized equations in [15] and can be found in [14], so we omit it here.

4.2 |s| large
The main result of this subsection is a resolvent estimate for the solution w of
(A = sDw =, (35a)
Bw = n. (35b)

Using a solution of (35) the existence of which will be proven in Lemma 4.5 we can
construct a solution of (34).

Lemma 4.4. For s € QL UQM there exists a solution (v, 1) € fgo X RP of (34) which
satisfies
[0ll31 + llpll < comst [|7f|, , -

The main work of this section is the proof of the following lemmas:

Lemma 4.5. Consider the resolvent equation (35) with diagonalizable A > 0 and
assume that Hypothesis 2.6 holds.

Then C' can be chosen such that there exist hg, T > 0 such that for h < hy and
+hng > T and s € QF UQL the following holds. The resolvent equation (35a) with
boundary conditions (35b) possesses for each r € £2(C™) and each n = (n™,nP)T €

CF x €2 4 unique solution w € ¢7,(C™). Furthermore, w can be estimated by

2 2 2 2 2 9 2
|s*[lwllz, ,, + Islllwlz < const (|7, , + Islln™ (1" +Is*12”17), se Qe

2 2 2 2 2 2 2
s llmwllz, , +Isllmwl < const (I7llz, , + Isllln™II” + [P In”17),  se Qk
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Before we continue with the proofs of Lemmas 4.4 and 4.5 we show that Theorem 4.2
follows directly from the preceding estimates.
Proof of Theorem 4.2
Using mv = u we obtain from Lemma 4.3 and Lemma 4.4 with Lemma 4.1 the asserted
estimates. O
Proof of Lemma 4.4
For s € QL UQ we can solve equation (34a),(34b) using Lemma 4.5 by taking ®u to
the right hand side. We denote its solution operator with G and obtain by inserting
v =G(r+ Pu) into (34c)

p=—(V, g¢>71 (¥, gr)
which leads to v = QGr where the projector Q is defined by

Quw = w—Gd (¥, GO) (¥, w).

In order to estimate 1 and Q we need a bound of ||(¥,G®) '||. Use ® = GA® — 5GP =
Ge — sG® and multiply with ¥ from the left. Then (¥, Ge) — (¥, d) = s(¥, GP) and
llell — 0 as Jp, — R imply the invertibility of (¥, G®) for £n > T, h < hg as well as

||<\II,Q(I>>71|| < const ‘8H|<‘~I/7<D>H71 < const |s].
This implies with the estimates in Lemma 4.5 for G

||Qw|\£21h < const ||wH£M and ||Qw||Hi < const ||wHHi

Thus we obtain again with Lemma 4.5

[lv]l < const iH7“|| and [lv|l,2 < const L||7“H
Lon — ‘8‘ Lan H; = \/m Lon”
O
Before we start with a series of Lemmas which are needed for the proof of Lemma
4.5, we give a short outline: We use exponential dichotomies for the discrete and the
continuous system, for references see [10], [4] in a similar way as in [18], [1]. Equation
(35) is transformed to first order via the scaled transformation z, = (w,, %(Lwn).

The transformed system is approximated by constant coefficient operators ﬁ(s, p)zn =
Zn41 — M(s,p)zn, for small h and large p. The matrices M(s,p) are hyperbolic for
s € QL UQ" . which implies that L(s,p) has exponential dichotomies on Z. In order
to obtain estimates for the solution of the corresponding boundary value problem for
large ph we need to take into account the structure of the right hand side of the
transformed system.

In order to simplify the presentation we restrict ourselves to diagonalizable A. Using
a pretransform with a matrix U that diagonalizes A and using the fact that Hypoth-
esis 2.6 is invariant under this transformation we assume w.l.o.g. that A € C™™ is
diagonal. Transformation to first order via z, = (wy, %(Lwn), n=n_,...,ne+1,
for some p > 0 leads to the equation

Nn(p)znt1 — Kn(8,p)zn =7Tn, neJ=[n_,ni] (36a)
Rip)z =1 (36D)
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where

(I —hpl - I 0 +_ 4. h

n

R(p)z = B_(p)zn_ + B_zn_41+ By (p)zn, + Bizn, 41
and
. 0 ipy 1Q¥ . 0 iV (N
Ty = (zrn>, B:I:(p): (ppzé: 20:‘:)’ B:I:: (0 20i>, 0= <an>

For h small enough we can invert N, (p) to obtain the explicit formulation of (36a)

(L(s,p)2)n = % <h§1> E:{flrn, ne.J (37)

where R
(L(57 p)z)n = Zn+1 — Mn(87 p)Zn,

2 t—1 . e
I+h2Er N(sI—C,) hpE} En> (38)

M, = N,(p) 1K,(s,p) = o v
(s,p) (p) (s,p) ( bEE (s - ) BB

In order to obtain solutions of (37), (36b) we will use the following constant coefficient
difference equation, given by

[ = E hol T n
(L(s,p)2)n = ; ( T ) ne MEJ (39)
where R )
(L(s,p)2)n = 2nt1 — M(s, p)zn, (40)
~ . N h -1
(s.p) = Np) Ktssp) = 14 (V40 () (1)
and

5= (5 ). ko= (s 4)-

As we will show later, L(s, \/[s]) is a small perturbation of L(s, y/[s]) for |s| large. In
the following we define p = /|s| and set s = p?e?". Then we obtain

. h e2i9A71 I
its.p) =1+ ("4 7). (42)

We will prove that the matrices M(s, p) are hyperbolic for s € QP and s € Q. Then

L(s, p) possesses an exponential dichotomy on 7, which will be used to construct a
solution of (39), (36b).
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Lemma 4.6. Consider

M =1+ &N(k), where N(k) = (Hg é)
with k > 0, and S € C™™ a nonsingular diagonal matriz. Then there exist 6,C > 0
such that the following holds: If either (k < C and arg(o(S)) <m—46) or k > C then
M is a hyperbolic matriz with m stable eigenvalues v, ; and m unstable eigenvalues
Vi, @ =1,...,m. Moreover, there exist a,a > 0, € € (0,C] such that fori=1,...,m,
the following estimates hold:

ak?® > |Vl > ak?, % <|vsql < % fork>C
K K
1
[Vuil > 1+ a, lvsqi| < 1Ta for k € [e,C], arg(a(S)) <7 —0
a
[Vuil > 1+ axk, lvs.q| < for k € (0,¢), arg(o(S)) <7 — 0.

1+ ak

Proof. Let 1 € C be an eigenvalue of S with eigenvector u. Then A is an eigenvalue
of N (k) with eigenvector v if and only if X is a solution of

N = Xep—p=0 (43)

NS~y . .
and v = v . The solutions of (43) are given by

BE(14 /1425, if K > C. (4

K2

\ {é(“ﬂi K2p2 4+ 4p), if K >0, |argu| <7 —94,
:t:

Note that both definitions coincide on the common domain of definition, and that

\ \ K22 + 4p, if K >0, |argu| <7 =4,
o g+, if k> C

implies an lower estimate
A+ — A_| > const max(k,1). (45)

The eigenvalues v4 of M are given by v4 = 1+kAs. From A_Ay = —p A_+ Ay = Ky
and (43) we obtain 1+ kA_ = (1 + kA;)~ . We consider v4 for  in three different
regions:

1. Large ~:
Use the expansion v/1+ z =1+ £ + O(z?) to obtain

uk? 4 5.

1
ak?

This implies |v, ;| > ax?, as well as |vg ;| < fore>C,i=1,...,m.
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2. Small k, |argpu| <7 —9
For small k and | arg 4| < 7 — ¢ we have the expansion

K2p

2
K
SE a1+ SE = 14wy + O(2).

1+K,A+:1+ 2

From |arg | < m—4§ we obtain Re /iz > 0 and hence |v, ;| > 1+ak, |v, | < ﬁ
for some o > 0 and « € (0, ¢).

3. k in the compact set x € [¢,C], |argu| <7 — ¢
Let k > 0, |argp| < m — 4. In particular Re > 0. Then Re \/k2u? +4pu >0
by definition. Hence Re Ay = Re “%* + Re /k?u? 4 4p > Re 5 > cx for some
¢ > 0. Therefore Re (1 + xA;) > 1+ cx? and |1 + kAy| > 1. Since k varies in a
compact interval the Lemma is proved.

O

By application of the previous Lemma with S = e* A~! and s = ph we obtain that
the constant coefficient operators L(s,p) possess an exponential dichotomy on Z if
s € QL UQM as the following corollary shows.

Corollary 4.7. Assume that A € C"™™ is diagonal and positive definite. Then there
exist Cye, 0 > 0 such that the operators ﬁ(s,p) possess exponential dichotomies on Z
if s = p*e?® € Qb U QM. The dichotomy data are (K, 3, P), where K is independent
of p and h, and for some o > 0

C
g=l(a(ph)?) forp> <,
e C )
ﬁ Il( +a) fOTPE[h7 ]7 |€|—4+3’
€ ™ 1)
= 7 < - 9
f=m(l+aph) forpelC ] |6]<+3

and the projector P s given by

(AS . Au)ilAS 7(A€ - Au)71
P = (—AU(AS — Au)*lAS As(As B Au)l) . (46)

Here Ay and A, are defined by
As - diag()\f,i)izl,m,ma Au = diag(A+,i)i:1,...,m
where Ay ; are defined for each i =1,...,m by (44) with p = p; € o(A™1).

Proof. Denote the eigenvalues of A~ by re~2*®, then the eigenvalues of e*? A~! are
given by re?(®=%) and for |0] < T + g and [2¢| < T — 0 we obtain 2|0 — ¢| < 7 — g.
Application of Lemma 4.6 with S = e*? A~! implies that the matrix M(s, p) given by
42 is hyperbolic for |0| < T+ g. Furthermore, the m stable eigenvalues v, ; = 1+hpAs;
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—1

and the m unstable eigenvalues v, ; = v ;, 7 = 1,..., m can be estimated using Lemma
4.6 by
2 o C
|Vu,i| > a(ph)”, Vsl < ) for p > -
Vs > 1+ ve.i| < for p € [~ C] (47)
Vuji| Z a, Veil| S 77—, or - —
’ ’ 1+ a P
1 €
w,il 21 h, si| < ————, i C, —|.
|V7|— +O(p |V7 ].+Oéph OTPE[ h]

The matrices M (s, p) can be transformed to diagonal form via TD = M (s, p)T with

D 0
D(O D_1>’ Ds=1+kAs, D,=1+kA,

S

r=(0 ) = (T L ) ) w

Note the relations

AuAy = AA, = —S, Ay +A,=kS, D,=D;L,

1 (49)
AuDy = —A,, Ay = —(D, —1I).
K

From this the existence of an exponential dichotomy on Z for the constant coefficient
operators L(s, p) follows by Remark 2.5 in [10] with data (K, 3, P) where § = —Inwvs,
vs € (max;=1,._m |Vs;|,1) and P is defined in (46). O

Using the exponential dichotomy we can construct directly a solution of (39) in the
usual way [10].

Lemma 4.8. For s € Q]é U QL exist ho, T > 0 such that for h < hg,£nih > T

and for each v € £ (C™) there exists a unique solution Z € KZO(C ™) of the boundary
value problem

. h2I
(L(s,p)2)n = (hI) Tn, NEJ
P
Pz, =p_ € R(P)
(I - P)2n, = py € R(I - P)
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where P is the dichotomy projector defined in (46). The solution has the form

N h2I
5 = Zhom + Z,(r), meJ, Zpoy1=MZ,, + (hl> Tn., where (50)
P

2™ = 3(% n—)p— +8(n,ny)ps, S(nym) = M(s,p)" ™™ and (51)

HM+

S(n,m+1)(I — P) (hp1> ). (52)

In order to obtain the necessary estimates of Z, especially for the case hp > C, we
have to take into account the special structure of the right hand side. Therefore we
diagonalize equation (50) using the transformation 7" given in (48). For w, = T 1z
equation (39) reads

h
Wn41 — (%9 DOI) wy, = ;T_l <h§1> Tn, n€E€J=[n_,ngl.

S

In order to be able to distinguish estimates in the different components we introduce

the following vector norm notation. For z = (u,v) € R™ x R™, ||2] .. = (Zu> means
v
lull = nu, |[v|| = ny and [|2]|,o. < <z“) means the componentwise estimates ||u|| < ¢,
U

and ||v| < ¢,. With this notation we obtain the following estimates for S.

Lemma 4.9. Let |o(D;)| < vs < 1. Then the following holds for some ¢ > 0.

HS(n, m+1)P <h§I>

< ; Vs Vn—m—l n>m
~ max(ph, 1) pih(l —vs)) * T

c 1
< 771‘—’I’L7 <
mmmn<ha—M)% nem

vec

HS(n,m +1)(I-P) <h§1>

vec

and
V&

1800 n e < (17, )27
180Tl < (140, ))
vee pih(]‘ - I/S)
where T = (T_, T) with T defined by (48).

Proof. With

S(n,m) =TD""T7, P=TET™, E'= <é 8) o
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we obtain using Dg = I + hpAg

5 hol\ (D=1 0\ ,.._1 (hpl
s ()7

and similarly
~ hpI o 71 m—n —1
S(n,m+1)(I —P) ( I)(l}h(DsI)>DS (As — Au)
This implies the estimates (53). Similarly with (45)
S(n,n_)T_ = —Ds D=1 and  S(n,ny )Ty = -1 D"
y—) L — = Lh(D —I) y )44 = Lh(DS_]) s
P P
lead to (54). O

The special solution Z(r) from (52) is estimated in the following Lemma.

Lemma 4.10. For s € Qg NQ" exist hg, T > 0 such that for h < hg,£n+h > T for
each € 12 (C™) the solution 2(r) € £ (C*™) given by (52) can be estimated by

) 1
12(r)llz,, < const ?”THLM' 0
Moreover, we obtain
- h2 + h + 1
8120, (1) o < const (277 ) ol 7
» T o2

Proof. Using the estimates (53) we obtain for 2(r) = (4, 0) with v, <1

n 1
. ch S 14 v
[ Sm Z vy | <Cu17 [l m €, (58)
Pl m=n_

for some ¢, > 0. The estimate

1
e +Vs§ C
1_Vs p2

which follows from (47) with some generic constant ¢ > 0 implies

R c
[dn]l < ;IITHW

Vn € J.

Using the second coordinate of (53) we obtain

n+1

~ n—m—1 m—mn
Jonl < ﬁgﬁﬁzv nw+zunw)2ww (60)
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The Ly}, estimate is similar to the estimate in Lemma 3.6 in [15]. From (58) we find

ny—1 ny—1

fanl? <2 (5 v ld) < Y0 v Y e 2
m=n_ m=—0o0 m=n_
1+v g 9 cc g 9
S - - U — —
< 3 el < S 3T
Sm:n, p m=n_

which implies by summation over all n € J with (59)

ny ny ny-—1
~ 112 _
lillz,, = > hlanl” < *Cu > 2 vl
n=n_— n=n_ m=n_
ny — 1
< e Py S vt
n=n_
—1 n 1
ch 1+, < 9 . c 9
< gei—y 2 Il < (5 Y el = (—2) IrmllZ, -
P S m=n_ m=n_
Similarly, (60) implies with ¢, = (p? max(ph,1))~!
~ n—1 ny—1
Joul? < ec2@ = uP[( X v enl) + (Z el ]
T m=n_
ny—1
ced-up[ 3 vt 5 el + Zu:” "3 el ?]
m—foo m=n_
n+ 1
<ec(1—v,)?| 1_Vs Z i P +7 Z U7 ]
m=n_
ny — 1
<e(1—w,) [Z Tl X el
m=n_
which leads to
ny ny—1
~ 112 ~ 2
I, = 3 ol <= 30 [ 5 vl + 3 ]
n=n_— n=n_ m=n_
ny—1 ny m
<cd(l=v)h > rall| 3o v e 3D ]
m=n_ n=m-+1 m=n_
ny— 1

<cc h Z ||7“m|| 4H ||£2h
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Finally the estimate (57) follows from the definition of M in (42)

. (1+ (pB)) i, || + ph]|0n >
Mz, (r < const p s ’
H n+( )Hvec — < thun+H + an+H

R4+t 5
<comst |y £y ) 7l
p T

O

Inserting the ansatz (50) for Z into the boundary conditions (36b) we obtain the
following lemma.

Lemma 4.11. Assume Hypothesis 2.6. Then for s € Q}(} U Ql exist ho, T > 0 such
that the following holds. If h < ho and £hny > T then for each v € 7 (C™) there

exists a unique solution Z € gln— e+ (C2™) of (39) which satisfies the boundary
conditions (36b), i.e.

Rz == (7). (61)

Morevoer, Z can be estimated as follows
- 1 1
HdbzhSCMEtSﬂnNH+HnDH+;5WﬂQﬁ% forseQp,  (62)

~ 1 1
12, héam%(ﬁMNH+WPH+;ﬂVMaJ7 fors € QL. (63)

R
Proof. Inserting the ansatz (50) into the boundary condition (61) one obtains

B_(p)(p- +8(n—,ny)py) + B(S(n—+1,n_)p- +S(n_+1,ny)p4)
+ B (p)(S(ny,n)p— + pi) + BL M(S(ny,n_)p- + py)

=i (B 04 Bt a0 4 B2, 04 B2, 04 () ) 7]

This equation has to be solved for p_ and p,. We can write p+= = T &y, &L € C™
where T = (T_ T4). After rearranging terms we obtain from the previous equation

Ry(§-,&4) + AR, (§-,&4) = 1) — Fy(r), (64)
where
Ry(¢,61) =B ()T +B-S(n_+1,n )T + By(p)Ts&y + By MT &y
AR, (§-,&4) = (B-(p)S(n—,ny) + B-S(n_ +1,n4)) T4y
+(By(p) + By M)S(ny,n )T-&
Fy(r) = B-(p)2n_(r) + B-2p_41(r) + By(p)2n, ()

o h21
-%B+M1%+vy+(hl)n”]
P



Stability of discretized relative equilibria 31

With (55) and the relations M = TDT~', T-'T_ = (}), T-'T, = (%), TD =
-1

(A_% A_DDS*1 and Ay (I + Ds) = Ay — A wich is implied by (49) these terms can be

calculated as follows:

SPY QN 0 3QY I
Rec=(rpn 70 )T (g 1))
1pN 1N 1N
(e ) (3 55 o (f) e -8 ().

B:_<yw—§@WM—AJ y$+;@HM—AQ>
PD PD .
- +

where

From (44) we get with z = 2phe®, §(0,z) = 2¢ (1 + |z|*)2 and the definition of A(z)
in (14)

Ay A, = J (PReP)A 4[)%&94_%’1 if ph >0, 0] <5+ 4,
u s phe%@Afl(l 4 (p;lL)Q 6721914)5, if ph > C
=4(0,2)A(2).

With these notations the matrix B reads B = SBs where

s (5(96z)1r —Iz(jn ) (65)

and
3. — s PN FQYAR) P - QYA(2) '
PP PP

From Hypothesis 2.6 and the definition of Q’é and Q. we obtain that

&:@%@—@$ﬂ

has a uniformly bounded inverse. From c¢; max(1,|z|) < [6(6,2)| < comax(1,|z]) we

find
1 .
— < cmln(l,

500.2)] <ec. (66)

or) <

Therefore the difference || B — B, || can be estimated by

1B, = By <
p

2 c
——(IPN ||+ ||IPN|) < -
s IPZ I+ 1P < 2

which tends to zero as p — oo. Choosing C in the definition of Q% large enough, we
obtain ||B71|| <e.
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For the error term AR, we get
AR,(6-, &) = (B_(p)S(n_,ny) + B_S(n_ + 1,n)) Ty &y

©(Ba(p) + BabDS(nyn )Tt = AB (§;> ,

where

(ny—n—) (ny—n—)
ag=g( 0. 0P N .
Dt 0 D" 0

Here S denotes the scaling matrix defined in (65). Furthermore v{"™+ ") Vanishes

ny —n_ — oo and

[1Bs]| < e +AGR)) <e

v
pld(8, 2)]

32

as

implies that AB, = S~!AB vanishes as ny —n_ — oo. The right hand side of (64)

can be rewritten as follows:

1pN 1N 1N 1pN 1NN
B0 = (5 20 ) a0+ (§ 28 s+ (55 20 ) a0

2
(0 #9) orzor+ (5]) re)
P

(2PN 4+ 5QN (0n_ + 00 41) + 5Q (0 + Brn )+ 5PN g,
PPq, + PPa,,

where we used the notation M2n+ (r) = (Yu, )T Using (58), (60), (57) we obtain

b
o () lee < e {71 7 ) I7lloc-

p

Then the scaled version of F,(r) can be estimated by

LT 0
50.2)1r Ia
H ( 0 I2m—r> p(r)

Equation (64) is equivalent to

1 N 1
_ A —I, 0
(B, + AB,) (;) - ( ”5§79b) > + <5<e,0> Izmr> Fy(r),

1.,1 h 1 c
Sc(min(l,— —+ - —i——) o < STl -
)G+ 2+ )l < S

thus we can estimate the solution ({_,&) of (64) using (66) by

16— &)l < C(%HTINH + 0"l + plngrlloo) (67)
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The solution zPom = (yhom phom) defined in (51) can be estimated using (54) as
follows. The estimates

S(n,n_)p_

Ve

= [S(n,n )T €|l 0 < ( 1 (1”5_ VS)) Lz |

S(nv n+)p+

. 1 .
18t hee < (11, ) 2ol
C P S

ve

imply for all n € J
™[ < e(wd =" e |l + e+l < e(llg Il + €+ 1) (68)

and for n € J = [n_ 4+ 1,ny]

1

lon®™ || < C%(Vﬁ””‘l\\ff\\ + i TIE) < ellle=l + 164D (69)

From (47) and Lemma 4.6 we obtain

1—vs

hom
<
b < e

(vl +vis 7 e ]l) < e(max(L, ph)llg-|| + [I€+ ). (70)
The estimates (68) and (56) lead for Z,, = (4, 0y) defined in (50) for all n € J to
- m . 1
]l < Nup®™ |+ 1121l < (=1l + €411 + ?”r”oo)
< eI+ 1)+ 5 l7].0)
p p
and for n € Jp, = [n_— + 1,n4] to
~ om 5 1
1Tl < Mlon™ | + 1120 < cClle=1| + N+l + ?HTHOO)
< eIl + Pl + 5l
T p?
Finally pih(ys_l — 1) < emax(1, ph) implies with (70)
~ hom s 1 N D 1
[On_ Il < lon?™ 1 + [[2]l o < CmaX(LPh)(;llTl I+ 1™l + ﬁllTHoo)
and using

or ,hom
| vzber

(i (ot
s el( Y et (S Y )

with ny —n_ > 1 we end up with

M2 < e(lle- Il + Nigw ). (71)
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By (47) we obtain for p € (C, ¢] the estimate Tz < caswellas g < hfor ph > C.
This leads to L

n4

om |2 n—m_ n n)
[z, < e Y e |” + Z W2 )
n=n_ n=n_ (72)
<

h
Seqo V2(||§—||2 + €4 17) < el + 164 11%)-

In the restricted interval Jj, = [n_ + 1,n4] we obtain in the same way

-+
v \f:fnll Z ACRLOM TS T S RO e )P,
n=n_+1 n=n_+1
(73)
<c(lle=1” + llex1?)

and with Lemma 4.6 we arrive at

hom |2 1
(o P SCh(mHﬁ & +1 2||§+H %) (74)
< c(max(1, (ph)?)]|&— I +||§+|| ?).
Using (56),(57), (72),(74) and (67) we obtain (62) with ph < C
2z, , < HZ||L2 L 12y + VRO ™| + (M2, )

h 1
C(;2\\7“” +max(1, ph) |- || + [l€4 | + (1 + r pj)\lrllcz,h)

1, b1

< C(;H?? I+l 1+ EHTHL‘,Z;L)'
In the same way (56),(72),(73) and (67) lead to (63). O
Remark 4.12. The restriction to J, in (63) is necessary, since from (57),(70) and (71)

we obtain for s € Q" only

i 1 1
IZll,, < cmax(1, (ph)z)(;||0N|| + 0"l + ;IITIIL:M)-

From the above estimates the invertibility of (37),(36b) follows from a regular pertur-
bation argument.

Lemma 4.13. Let A € R™™ be diagonalizable and positive definite and assume Hy-
pothesis 2.6. Then there exist C, hg, T > 0, such that for s € Q’CK UQr and h < hy,
+nih > T the following holds. For each v € ¢ (C™), there exists a unique solution

S fgéf’mrﬂ] (C™) of (37), (36b) which can be estimated by

1 1
2]l 2, ,, < const (;ll??NII + 1?1 + ?H”HQ,;L% for s € Q¢ (75)

T

1 1
< const (;||77N|| + 07 + llrle,,.),  fors € . (76)
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Proof. Write (37) as

. h2] _ N
Znt1 — M(s,p)zn = (hl> Ef R (M, (s,p) — M(s,p))zn, ne.J
p

and define the space
5= {0 ety < e
h2I
fn: (hI)T"“ ne [n—7n++1]7 TEE([;Z_JHA—”((EM)}
P

equipped with the norm

o 1, N D 1 . LN N k D 2m—k
H(Tﬂ?)||g2,h=;\\77 |+ [In H+?||T\|g2,h, 0= an Y €RY T ER :

: E([Q*’n*+1

Then Lemma 4.11 implies that the operators Ap } . S which are given by

Ap = <L1§:0§)> where L(s, p), R(p) are defined in (40), (36b), are nonsingular for

s € Qb U QL with a uniform bound for the inverse for s € Q. Using (38), (41) we
obtain for z, = (uy,v,)

(EF'E7 — D)ol

n n

1 5.0) = 8o, )20 = ()[BT = A7) = Gt

>

Combinining this with the error estimate

1

1
FL

-1 1
(Ex By —D)vall < c(h+ T ;)Ilznl\

n

(s(BY " = A7) = CuJun + (5

implies for p > C

75 ) G)

Taking h small and p large and using HE,f_1 || < ¢ we find that the system (37), (36b)
has a unique solution for s € Qg which can be estimated by (75). In a similar way we
obtain the existence of a unique solution of (37),(36b) for s € Q% which satisfies the

*

1
< (bt D,
Lan p

estimate (76). O
Proof of 4.5

Lemma 4.5 follows directly from Lemma 4.13 using ||6_w||,, =~ = [[d0+wl|,,  which
implies Y 7

2 1 2 2 2
lwllz, , + 0+ wl, , < const (Jullz,, +1vllz, ,)-
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5 Numerical examples

5.1 Cubic quintic Ginzburg Landau equation
We choose the cubic quintic Ginzburg Landau equation [13, 16, 5]

Uy = gy + 0u+ g(u), g(u) = Blul’u + y|u[*u, 6§ €R, a,3,7€C. (77)
as a numerical example.

1r

0.8f

0.6

0.4r

0.2

0

-0.2f

10 20 0 40
Figure 3: QCGL, pulse and front

This equation shows a variety of coherent structures, like stable pulse solutions, fronts,
sources, sinks. Moreover, there are parameter regimes where the behavior is intrin-
sically chaotic. For certain parameter values, this equation possesses stable rotating
pulses and unstable pulses, as well as rotating and traveling fronts. Depending on the
choice of initial conditions a different type of solution is selected. The real version of
(77) which we use for numerical computations has the equivariance properties given
in Example 1.4.

Figure 4: QCGL, rotating vs. frozen pulse

For the parameter set a =1, 6 = —0.1, 8 = 3+1, v = —2.75+ 4, which has been used
in [13], we found numerically a stable pulse with rotational velocity p, ~ —1.30 as well
as a rotating front. Here we used a grid size h = 0.1 and Dirichlet boundary conditions
for the pulse and Neumann boundary conditions for the front on the interval [—40, 40].
These solutions are depicted on Figure 3.
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The time evolution of the real part of the stable pulse is compared for the frozen and
the rotating system in Figure 4 on the interval J = [—40, 40] with grid size h = 0.1 and
Neumann boundary conditions. After a transient phase until ¢ & 15, the rotating pulse

Figure 5: QCGL, rotating vs. frozen front

rotates with a fixed rotational velocity fi,. In contrast, the frozen pulse is stabilized.
The comparison of the rotating and traveling with the frozen front in Figure 5 shows
a similar situation. The frozen wave stabilizes quickly, whereas the non-frozen front
continues to rotate and travels out of the computational domain at ¢t ~ 60. As is shown

T S e AR S SR S S

+ fr
— Hp

PSR

1 A e

"

+

)

0 10 20 %D 40 50 60 0 10 20 %0 40 50 60

Figure 6: QCGL, time evolution of p,,, pt. for pulse (left) and front (right)

in Figure 6 the parameter y, converges to a fixed velocity ji, whereas the translational
speed i, stays at zero for the pulse and in case of the front the parameters p, and
i, converge to the same translational and rotational velocity that are observed in the
non-frozen system. The rate of this convergence is displayed in Figure 7, where the
time evolution of the difference to the stationary solution of (9) is shown. The error
|t — w4 (t)] for « € {7, p} in the parameters p,, i, is displayed as well as the error in
the profile of the wave ||@ — u(t)|| .-

Note that Theorem 2.8 is not applicable to the rotating front. In this case Rz is
not in Ly (cf. Example 1.4). Nevertheless, the numerical computations displayed in
Figure 7 suggest it to be true even in that case.
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0 50 100 1%0 200 250 300 0 20 40 60 80 120 120 140 160 180

Figure 7: QCGL, time evolution of errors for pulse (left) and front (right)

5.2 A counterexample for the Nagumo equation

We illustrate the necessity of the boundary condition 2.5 at the scalar Nagumo equation

Up = Uy +u(l —u)(u—13), u(z,t) €R, z€R, t>0. (78)

An explicit traveling wave solution which connects the stationary points u_ = 0,
uy = 1 is given by

o(e) = (L+ev8)™", A= (79)

For a = 0.25 we have s(«) > 0 for approximately a > 0.26. In Figure 8 the time-
evolution of the solution (v, u) of the frozen PDAE is compared for values below and
above this critical value of £. One can see clearly the effect of the instability created by
the spurious unstable eigenvalue. This is not an effect of the freezing and the occurs
in the same way for the non-frozen PDE.

30

’ %
) s 10 20
0 20 10
30 «

-0.26

-0.28

-0.32

W

-0.34

-0.36

-0.381

Figure 8: Nagumo, time evolution of u and p for a = 0.2 (left) vs. o = 0.3 (right)
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6 Appendix

Lemma 6.1 (Summation by parts). With the notation

s
<’U,7 U>7'7s - h’ Z 'LLTI;IU”, ||U||ié = <'Z,L, u>7'7s
n=r
we have
<u’ 6+’U>r,s = _<(57’U17 v>7‘+1,s+1 + uilvs“’l - uTHvT' (80)

Proof of Lemma 3.3

Let u € Egss be given and set v = (v, —1,Up_,... v“n+>”n++1)' It remains to compute

the external points v, _1, vy, +1 and p from the equations (18b), (24) which read

0=Pv, +QYdov, + PNv,, +QY v,
0 = P_D(/’i’l}n7 + ¢n7)u + Tnf) + P—E(AUTL+ + q>n+/-j/ + T’I’L+)
0= <‘IJ7/~XU>J,L + (¥, (I)>Jh.u + <\I/7T>Jh'

We use the relation
2

040_vy, =
+0-0 n

2
(501/77, + 6_'Un) = E(*éovn + 5—‘,—1}77.) (81)

as well as the definition of A in (17a) to obtain the equivalent system for w =
(w_,wy) = (ovn_,0ovn, ) € R*™ and p € RP

M (I:) = RUu+R'r (82)
where
QY QY 0
M= —P;(A - gth_) Pf(A - gth) %(PPtlI)n_ +PP®,, ) | € RZmHp2mte
-V, (A-3B, ) ¥, (A+3B,) (0, @),
—PNu,,_ — P_f_vumr
Ry — —PPAS u,, — PPAS_u,, —2(PPC, u, + PmeumZ
ny— - )
— UL (Abyun_ + 5Cn_un_) = VE (A6 _un, + 2Ch un, ) — % 72“ UT A,
1 0
R'r=—= | (PPr, +PPr,,)
<\Il,r>.]h
For J, — R the matrix M converges to
) QY QY 0
M = —PPA PPA 0

—(S(0)(@n_))TA (S(0(zn,))TA 3(S(0),5(0)),
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which is invertible due to condition (15) and the invertibility of the p x p matrix
(8(0),S(v)) which is ensured by Hypothesis 2.3. Therefore the solution (w, /i) of
M(w, )T = R"r (i.e. u = 0) can be estimated by

[@]| < const h([[rn_|| + [[rn [|) < const hflr(|, (83)

and we obtain the same estimate for w = (w_, w4 ) with a different constant. Together
with the relations

Up_—1 = —2hw_ 4+ Uyp_41 = —2hw_, Uny 41 = 2hwy + U, 1 = 2hwy

this implies
[on_ 1]l + lvn, 1]l < const hfjw|| < const h?||r||. (84)

Furthermore, the relation
04 Un, =200Un, — 04lp, 1 =2w4, 04U, 1 =0_vy_ = 2w_ (85)

leads for u = 0 with (83) to

04vll., < const Allr]|... (36)
Similarly by (81) we find
2 2 2 2
64'_6_1]77(7 = E(—’UJ_ + (S+Un7) = —EU}_, (5+(5_Un+ = E(’LU+ — (5+Un+_1) = E’U}_A,_,

which implies with (83)
1640l < const 7]

Together with (84),(86) this leads to (25).

O
For the proof of Lemma 3.4 we use the uniform contraction principle in the following
form.

Theorem 6.2. Let X,Y be Banach spaces and F : (X xY) D B,(0) x Bs(0) — Y be
a continuous mapping, which satisfies the following estimates for q € [0,1):

[F(2,y1) — F(x,y2)|| < qllyr —y2ll Yz € By(0), y1,y2 € Bs(0) (87)
[F(z,0)| <6(1—q) Ve B,(0) (88)

Then for each x € B,(0) there exists a unique fized point § = g(x) of F(x,-), i.e.
F(x,9(x)) = g(x) and the following estimate holds

1
ly1 = gell < quyl — F(z,y1) = (y2 = F(z,12))[| Vo € By(0),y1,92 € Bs(0).
(89)
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Note that (89) implies the continuity of ¢ in B,(0), since
1
lg(z1) = g(z2)| < 3—_llg(@1) = Fl@1, 9(21)) = (g(w2) = F(z1, g(2)))

_ %qHF(mg,g(:Ez)) — F(x1,g(x2))]-

Proof of Lemma 3.4
Let u € €go be given and set v = (v, —1,Up_, ... ,un+7vn++1). It remains to compute
the external points v,__1, vy, +1 and p from the equations (18b), (19) which read

0 - Pivvn7 + Q]jéovn7 + P_{_Vv'n,+ + Qf(sov’nq,

0=PP(Avy_ +Pn_pi+on_(v,10) + PP (Av, + P+ o, (v, 11)) (91)

0= (T, Av+ u+p(v,p)),,
Define the map y : 2 x R?™ — eg;, (u,w) — v, w= (w_,wy) by

Up =Up, M=T_,...,Ny, VUp__1=—2hw_+up_y1, Un,41=2hwy +up, 1.
Then dpv,, = w4 and we obtain
Ix(w, w) = x(u, 2)ll 2, , < chVhllw = z]|.
Relation (85) leads to
() = x(a, 2) gy < VAl — 21 (92)

as well as
()l < ellullgs + Allwl)- (93)

In the same way as in the proof of Lemma 3.3 we obtain with (81) the following system
which is equivalent to (91).

M (Z’) = R+ g(u, w, ), (94)

where M, R" are given by (82) and (cf. R" in (82))

0

ot = = | M2 a0 + PP (x(00).0)
(¥, oo, 0) ),

For h < hg £hny > T the matrix M is nonsingular and we can define G : £, x R*™ x
R? — R2™ x RP by

G(u,w, p) = MTHR u+ g(u, w, ),
the fixed point of which is a solution of (94). To apply the parametrized contraction
mapping theorem 6.2 we have to verify (87),(88). From (21),(93) we obtain

le(x(,0),0)lz,, < cpllx(w:0)lpg < cpllullyg (95)
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which implies

Vhlle(x(1,0),0) o < lle(x(u,0),0)llz, , < cpllullyg (96)
as well as with Cauchy Schwartz, Hypothesis 2.3 and (93)
(¥, o(x(u,0),0)) 5, | < cllx(w, 0)llz, , < cpllully- (97)
Using (20) we obtain with (92) and (93)
||<p( (u,w), 1) = e(x(u, 2), Nz, ,

< eI, w) = x(w, )l + max(([[x(w, w)llg 5 X (s 2l )l = All) (98)
< e(Vhlw = 2| + (ullyg +hmax([lwll, |2])) e~ All)

Equation (98) leads for HUHH}L < pto

loOx(u, w), 1) = o(x(,2), Mg, , < e(Vht p+h8)(Jw = 2| + |1 — All)

as well as for HUHH}I < \/E||u||100 < Vhp to

loOx(u, w), 1) = 90w 2), Mz, < (VR + p+8)(w = 2| + | = Al

Thus (95), (96), (97) imply for ||u||H}1 <p

(00,001 < (len. (x(w0).0) + g, (s 01O + IR (. 01,05 1)
< cpllullygs

as well as for ||ull; ., <p
7 l9(u, 0,0)[ < epllully - (100)
Similarly, with (98) we find
lg(u, w, 1) = g(u, 2, || < e(hllex(u, w), 1) = e(x(u, 2), M)l
+ Y, p(x (u, w), 1) = p(x(u,2), A) 5, 1) (101)
< clle(x(u,w), 1) — o(x(u, 2), NI, , -

It remains to estimate ||R"u||: The summation by parts formula (80)

(W, Ad_b4u) (010, Abyu),, oV A(Giu)y =W A ),

n_+1lny—1 =
leads for Jy, = [n_ + 1,n4 — 1] with
(U, Au), = (¥, A5_d,u),; + (¥, Bdou), + (¥,Cu),

to
W, > Ay | < ellully - (102)
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Using Hypothesis 2.3 for +hny > T we find
< _1 g, 1,
1@, R, < elullg + e Syl ) < oL+ B 2Tl

This implies with the definition of R* in (82) and (102)

IR ull < c(llully o + 1K, s Aw) 1) < ellully o

0
as well as

u -1 —a A
IR ull < e(h=2e™ T l6sully, , + Vhlulg,, + (¥, Au) )

<c(l+h72e ) |fully
For ||lul|; ., < p we obtain with (100)
1G(,0,0)[| < e([[ully o + [l9(w; 0,0)]) < c(1 + p)l|ully o < cop
and similarly, if h=2e°T < ¢, for lullys < p with (99)
G0, 0| < el + llg(u0,0)[) < (1 + )l < cop

For (w, ), (2, A) € Bs(0) C R*™*! equation (101) leads for [Jul|, ., < p or Hu||H}1 <p
to L

1G(u,w, 1) = Glu 2, M) < ex(Vh+ p+hé) (| = Al + [[w — z]])-

Choosing h,d < 1 so small that v + (% +h)y < é and p < min(1, %) we can
apply Theorem 6.2 with ¢ = §. This yields a unique solution (w, i) € Bs(0) of (94).
Equation (90) implies with the continuity of G estimate (26a) which implies with
T,(0) = 0,7,,(0) = 0 (26b).
]

Proof of Corollary 3.5
Using the definition of T,(-), T, (-) and M,, M, and subtracting (24) from (19) we
obtain that v® = T, (u) — Myu, p = T, (u) — M,u solves mv™ = 0 and

0=BNvA

0 = B2 (Ao + &y + o(T, (u), T, ()

0= (U, Av® + &p® + @(Ty(u), Ty (), -
)

Application of estimate (25) in Lemma 3.3 to (v2, u®) leads to

1T (w) = Myullyz + 1Tu(w) = Myu|| < eflo(To(u), Tu(w))llz, , -
Thus we have for ¢ defined in (28) by (26b) and (21)

ez, , < IAT (W) = Moz, , + 19(Tu(u) = Myw)ll, , + llo(Tow), Tu()ll g, ,
< clle(To(w), Tu(w))l,, < cp(ITo(@)l,,, + 1Tu(@)])
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which leads to
[6(u)llo < cpllully o

as well as for h=2e=7 < co to
ez, , < cpllullyg-

In the same way we obtain for uy, us € £7 that v® = T, (u1) — Myus — (T, (uz) — Myus),

ess

p? =T, (ur) — Myuy — (T, (u2) — Myus) solves 7v2 = 0 and
0=BNvA
0= BY(Av® + & + o(T, (wr), T (ur)) — (T (uz), Tu(uz))),
0= (7, Av® + ‘PMA + @(Ty(ul),Tu(Ul)) - SD(TU(U2)7TM(U2))>J .

h
Again, application of estimate (25) in Lemma 3.3 to (v2, u®) implies
1T (ur) = Myur = (T (uz) = Myua) |l + [[Tu(u1) = Myur — (Tpu(u2) = Myus)|
< cllp(To(ur), Ty(ur)) = (T (u2), Tulu))llz, , -
Thus we obtain with (26a) and (20)
[1@(ur) = G(ua)ll, , < IA(T,(ur) = Myur — (T, (ug) — Myus))ll,
F (T ur) = Myur — (T (u2) = Myuo))ll,
+ o(To(ua), Tu(ur)) = o(To (u2), Tu(u2))llz, ,
< dll@(To (ur), T (ur)) = (T (uz), Tu(u2))ll, ,

< cllur — ugllyg -
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