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Abstract

Numerical methods for initial value problems for differential inclu-
sions usually require a discretization of time as well as of the set valued
right hand side. In this paper, two numerical fixed grid methods for
the approximation of the full solution set are proposed and analyzed.
Convergence results are proved which show the combined influence of
time and (phase) space discretization.

1 Introduction

In order to obtain a numerical scheme for the approximation of the set
S (z0,[0,T]) of solutions of the initial value problem

x(t) € F(z(t)) a.e. in [0,T], z(0) = xo, (1)

it is necessary to discretize the problem appropriately. Unlike the classical
ODE-case, a discretization of the time interval only is usually not sufficient
and generically leads to an uncountable set of solutions. There is an extensive
literature on error estimates for such semi-discretized systems, see e.g. [2, 3].

In our view there are two meaningful types of spatial discretization: ei-
ther an approximation of the images of F' by a finite set of points is generated
and used to construct approximating trajectories, or the phase space is de-
composed into small cells (usually cartesian boxes related to a fixed grid)
and the cells visited by trajectories are recorded. A method of the first type
is analyzed in [4], where convex combinations of extremal points of F-images
are used. A method of the second type is employed in [7] to compute the
reachable set of (1) with a prescribed accuracy.

A decomposition of the phase space into boxes has the nice effect that
the state space of the numerical methods becomes discrete and even finite



for finite times. In [5, 6, 10] it has been shown that methods from graph
theory can be applied to the discretized flow in order to determine the control
sets and the reachable sets of a system or to compute optimal feedback
stabilization.

The influence of small so called realization-errors on Runge-Kutta schemes
has been studied in [8], but the global setup of the estimates there is quite
different from that presented here which makes a direct comparison of the
results difficult.

The aim of this paper is to investigate and compare both types of dis-
cretization that are both based on box approximations: the first in velocity
space of F-images and the second in phase space of z-variables. In fact,
for the Euler scheme it turns out that both approaches transform into each
other, which, however, cannot be expected for higher order schemes. In
section 3 we discuss some implementational details and show applications to
two examples: the normal form system for Hopf bifurcation and the Michaelis
Menten system from reaction kinetics. This demonstrates that our method
leads to fully discretized differential inclusions that simultaneously allows for
a reasonable convergence analysis on finite time intervals.

2 Main Results

Let 0 =ty < ... < ty = T be an equidistant grid with step-size h = %
in [0,7], and let A, = pZ® be a p-mesh in R? equipped with the maximum
norm | - [. For any o € A, the set Bg(z) = {«/ € R? : |z — 2/ < g} will

be referred to as the box with center z. Let ¢, : 2R? _, 280 he the mapping
given by
d
co(A) = (A+ B (0)) N4, Ae2¥,

which maps a set A to the collection of the centers of those boxes which have
a nontrivial intersection with A.
Let S} (o, [0, T]) be the set of functions ¢ : [0, 7] — R? which satisfy

©(0) = z0, @(thr1) € w(tr) + he,(F(o(tr))), (2)

and

thr1 — 1 t— g
(t) = ———(ty) + ———@(tg1) Vt € [t tra].
lot1 — tk Tet1 — tk
These functions can be interpreted as piecewise linear solutions of an Euler
scheme, where F' has been modified by an appropriate projection of its images

to the mesh A,,.



Alternatively, consider the set S i (x0,[0,T7]) of functions ¢ : [0, 7] — R
which satisfy

©(0) = z0, @(trr1) € 0(tr) + cp(RF(p(tr))), (3)

and tesr —t t—t
k41 — — U

) = = —p(ls) + ———

( lot1 — tk (t) Tet1 — tk

These solutions are obtained by a successive application of the Euler method

using the original multifunction F, and an appropriate projection of the

Euler method’s images to the mesh A,. In contrast to the first approach,

the projection happens in the phase space, such that

P(ttr) Vt € [t trral-

gO(tk) € xg + Ap Vo< k< N, \V/QO € gip(l‘o, [O,T])
Nevertheless the following relation holds
Sive (20,0, T]) = Si (0, [0, T)), (4)

the implications of which will be discussed in Remark 3.

Let CC(R?) denote the set of all compact convex subsets of R? and let
dist and disty be the unsymmetric and the symmetric Hausdorff distance,
resprectively. The following theorems provide estimates for the accuracy of
both approximations.

Theorem 1. Let F': RY — CC(RY) be Lipschitz continuous w.r.t. disty with
Lipschitz constant L > 0, and let P > 0 such that F(x) C Bp(0) Vo € R%
Then the estimate

1 h
dist (S, (o, [0,T1), S™ (20, [0,T7)) < (e — 1)(ﬁp 5ot Ph)
holds in C([0, T], R, || - ||o)-

Proof. Let ¢ € Sf (20,[0,T]). Then ¢(t) € c,(F(p(tx))) Vt € (g, ts1), and

t
. h
o(0) — (0] < [ 19(6)lds < Ph+ 5p
ty
Thus

dist(o(t), F(e(1)))

IA A
PR =Y
“w w»n
=t
T T
—~
S
~—~
PSS
S
~
~— T~
-~ X
s N
5 =
= 2
= 5
+ =

A
=
©
S
|
©
=

|
no | >



By the Gronwall-Filippov-Wazewski theorem (Theorem 2.4.1 in [1]) there
exists a ¢ € ST (xp, [0,T]) such that

g h 1 h
SUP|¢U%%Mﬂ|§t/ T (LPhLop+D)ds = (€17 -1) (o= p+p+Ph).
0<t<T 0 20 2 2L 2

O

Theorem 2. Let F': RY — CC(RY) be Lipschitz continuous w.r.t. disty with
Lipschitz constant L > 0, and let P > 0 such that F(z) C Bp(0) Vz € R%
Then the estimate

dist(S" (x0, [0, T)), S (0, [0, T])) < (LPh + g)TeLT +2Ph + gh.

holds in C([0,T],R% || - |]oo)-

Proof. Let ¢ € S¥(x0,[0,T]). The aim is to construct a function ¢ €
Siy ,(20,[0,T1) close to . Without loss of generality ¢ (t) € F(u(t)) Vt €
[0,7]. By Theorem 1.6.13 in [11],

1 [te+1

- t ‘(s)ds c m({w(s) © 5 € [th, thta]}),

where €0 denotes the closure of the convex hull. Thus for every € > 0 there
exist Ao, - - -, Aea € [0, 1] with S0 Ai = 1and scg, .. ., Sca € [tr, tag] such
that

trt1

d
% " W(s)ds — ; )\E,i¢(se,i)| <e.

Furthermore, for 0 < i < d there exist &, € F(o(t;)) such that
distir (F((5..)), F(2(13)
Ltp(sei) — @(tn)] |

Ll - p(ed] + [ 9()lds)

ty

Llt(te) — o(tr)| + LPh.

W}(Se,i) - ge,i|

ININIA

IA

Because of the convexity of F(p(ty)), we have & := Z?:o Ae.iei € Fp(tr)),

d
1> Aeith(seq) — &l < LI(ty) — o(ty)] + LPh,
=0



and

= [ (s)ds —
1 ktkH ' d . d '
S ‘E ’l/)(S)dS - Z )\e,iw(se,i” + | Z )\e,i’l/}<se,i) - §e|
1=0 =0

ty

< et LIb(t) — o(ty)| + LPh.

Let ¢, :=

. Since F(p(t))) is compact, there exists a convergent subse-
quence (& ,) o

f (&, ) such that ¢ := limy_ & , € F(o(ty)), and

[ S
- Y(s)ds — & < LIy (te) — @(te)| + LPh.
ty
Now take some & € c¢,(€) and define p(ty1) == (tx) + hE. Then we
obtain

1 [te+r .
[ s ¢
ty
Tt

d(s)ds — €| + € = ¢

|_
g
< LR(t) - o(t)| + LPh+ £,

or
tet+1

[ (s)ds — hél < Lhlu (1) — olte)| + LPR + 3 ph.

2%

Hence

tet+1

[Y(trs1) = ()| < [9() — @(te)] + | Y(s)ds — hé|

tg

< (1+ (1) — olt)| + LPI* + Sph.

By induction,

k—1
1
2
(t) = ()| < (LPR*+ ph) Y~ (14 Lh)*
]:

1.7
< (LPh*+ 5 —ph) heLT

= (LPh+ 5)TeLT
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forall 0 <k < N. If t € (tg,tps1) for some 0 < k < N, then

(t) — p(t)] < / () ds + (& — t) €] + [ot) — o(te)]

< 2Ph+Sh+ |u(t) — ot
Thus
(1) — o(t)] < (LPh + g)TeLT 4 2Ph+ gh vt € [0, 7).
O

Remark 3. For the Euler scheme, the discretization of the wvelocity space
(presented above) and the discretization of the phase space coincide in the
following sense: If one chooses p = och® with 0 > 0, a > 0, the equality

S/f,aha ('r()v [07 T]) = giﬁoh“ra ('r()v [07 T]) <5>
can be obtained by the transformation
Tp + hegna (F(23))

1
= xn—l—hahacl(% ()

o 1+«
= z,+0h cl(htha
= Zp + Coprva(h(F(z4))

with p = oh®, and the same error estimates as in theorems 1 and 2 are valid
for the corresponding phase space discretization if p is chosen to be oh'™®.
For a proper balance, one should use p = h in Theorems 1 and 2 in order
to obtain O(h)-convergence, and thus one should use p = h* for phase space
discretizations.

Note that the relation above is not true for more complicated schemes.
Consider for example the Heun method

h h
Tnt1 € Tp + iF(a:n) + §F(:cn + hF(x,)),

where a discretization in the velocity space
h h
Tpt1 € Tp + 5001(F(xn)) + 5001(F(xn + thl(F(:En))))
leads to two successive projections in the third term, while a discretization in

the phase space

h h
Tpi1 € Tp + cp2(§F(:cn) + §F(:cn + hF(x,)))

needs only one projection.



The following Lemma gives some information on the error caused by the
algorithm if only an approximation G of the right hand side F' is available.
This is useful for the implementation, because it might be difficult to repre-
sent F' properly in a computer program. According to the theorems above it
seems reasonable to allow an error ¢ which does not exceed LPh.

Lemma 4. Let F,G : RY — CC(R?) be Lipschitz continuous with Lipschitz
constant L, and let 6 > 0 such that

distg (F(z),G(x)) <4
for all z € RY. Then
dist (S, w0, [0.71), S, (0, [0, T1)) < (6 + p)Te.
Proof. Since the problem is symmetric, it is sufficient to estimate
dist(Sy (20, [0,T1), Sy (20, [0,T7)).
Let z(-) € S} (x0,[0,T]) be given by
z(0) = xg, x((n+ 1)h) = x(nh) + hé&,, & € c,(F(z(nh))).

Now construct a piecewise linear y(-) € Si (o, [0, T]) close to . For a given
y(nh), there exists a ¢, € c,(F(y(nh))) such that

[€n — bl < distu(c,(F(x(nh))), ¢,(G(y(n ))))
< distu(F(z(nh)), Gly(nh))) +
< disty(F(x(nh)),G(x(nh))) + dlStH(G<SL’(nh)), G(y(nh))) +
< §+ L|z(nh) —y(nh)| + p.

Hence

[z((n 4+ 1)h) —y((n+ 1)h)] |z(nh) —y(nh)| + hl&n — ¢l

(14 Lh)|z(nh) —y(nh)| + (6 + p)h,

IA A

and by induction,

|z(nh) —y(nh)| < (d + p)h z_:(l + Lh)* < (6 + p)Te ™

Since trajectories are obtained via linear interpolation, this estimate holds
not only for {nh: 0 <n < N} but for all t € [0,T]. 0O

Under the same conditions as above the relation (4) implies the estimate

distys (57 (w0, [0, 7)), SC (w0, 0, T])) < (6 + %)TeLT.



3 Implementation and Example

3.1 Approximation of all Trajectories

If one wants to approximate all trajectories, the data must be organized as a
graph (as sketched in Figure 1) in order to save memory and computational
costs. Once the graph is computed, one can simply read off the trajecto-
ries: Every path of length N starting with the initial value is an element
of S}Z ,(20,[0,T]) and vice versa. A similar but considerably larger graph is

Initial
value
A
etc.
etc.
‘ Node ‘ ‘ Node ‘

EZANEVAN

Figure 1: Trajectories of the differential inclusion stored as a graph

used in [5, 6, 10] for the approximation of control sets and optimal feedback
stabilization.

3.2 Approximation of the Reachable Sets

In order to compute the reachable set RY (o, T) of (1) at time T, one can
use the methods presented above without storing the trajectories. Let the
relevant region in the phase space be decomposed into boxes which can be
marked either as ’true’ or ’false’. The set of the centers of the boxes which
are marked as 'true’ in the n-th step of the algorithm will be denoted by M,,.

At the beginning My = {x¢}, i.e. only the box with center x( is marked.
Then our method is successively applied:

Mui1 = Usem, & + ¢, (hF (7).

The image M,, can either be stored as a list or as a matrix with en-
tries true’ and ’false’. The first technique is time consuming because of the
maintainance of the tree, while the second technique needs a lot of memory



t=h

t=0

t=2h

Figure 2: The evolution of the approximations of the reachable sets

because of the required fine spatial discretization. We propose to run a test
routine from time to time which determines whether the first or the second
approach is more efficient in that moment.

3.3 Example
3.3.1 A classical system from bifurcation analysis

We apply our method to the two-dimensional equation

i = ax; — v — x1(2? + 22)
Ty = T+ axy — $2($% + x%)

(6)

which is the normal form of the Hopf bifurcation. By a transformation to
polar coordinates
p = pla—p?)
o =1
it becomes obvious that for a > 0 the origin is an unstable fixed point and
that there is a stable limit cycle of radius v/a.
We study the set valued system

7 € [0.3,0.6]zy — 1o — 21 (23 + 23) (7)
Ty € x1+[0.3,0.6]z — zo(z? + 23).

As it is impossible to visualize the set of all solutions of the differential
inclusion, we just show some randomly chosen ones in Figure 4.

Figure 5 allows more insight into the behaviour of the set of solutions as a
whole. The pictures show the set S{ o, (2o, t) for t =0,...,15. In order to
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Figure 3: Typical deterministic trajectories of (6)
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Figure 4: Some solutions of the differential inclusion (7)
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Figure 5: Approximations of the reachable sets of (7)

give an idea of the computational costs, we present some statistics in Figure
6. The graphs show how many boxes and how often these boxes have been
visited by some trajectory. Note that the figures might vary depending on the
algorithm which is used for the approximation. Nevertheless, it is clear that
an increase of precision leads to an enourmous increase of the computational
costs, which is a problem for list based algorithms in particular.

3.3.2 Reaction Kinetics: The Michaelis-Menten Model

The Michaelis-Menten model describes a simple biochemical process, during
which an organic substrate molecule is changed into a product by the help of
an enzyme. At first, the substrate molecule forms a complex with an enzyme.
In a second step, the substrate molecule changes its shape and becomes the
product, which leaves the complex in a third step.

11



10 steps, stepsize=0.1, 377 visits altogether
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Figure 6: Distribution of hits in model (7)

The chemical equation

k
StE=SERpLE
k_1

can easily be expressed as a four dimensional system of differential equations
which can be reduced to the system

= —]{31608 + (kls -+ k’_l)C (8)
= k’1608 — (kls + k’_l + k’g)C,

where the k; are rate constants, ey is the concentration of the enzyme, and
s and ¢ stand for the concentrations of the substrate and substrate-enzyme
complex, respectively. For a more detailed discussion of this model see e.g.
[9].

Figure 7 shows a phase portrait of the system for the parameter values
ki1 =2.65,k_1 =0.06, ks = 3.5, and ey = 0.1. A set valued F'is obtained from
(8) by formally replacing some parameters by intervals (which for example
may reflect incomplete knowledge of reaction constants). The set Si (o, 1)
of solutions of

§ € —[2.5,2.8legs + ([2.5,2.8]s + k_1)c (9)
¢ € [2.5,2.8]egs — ([2.5,2.8]s + k_1 + [3.4,3.6])c
for t =0,...,11 is displayed in Figure 8, where h = 55 and p = 1555 Again,
we try to illustrate the computational costs by the statistics in Figure 9.
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Figure 7: Phase portrait of the Michaelis-Menten system (8)
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250 steps, stepsize=0.1, 511 visits altogether
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Figure 9: Distribution of hits in model (9)

4 Discussion

The quality of a numerical method is not only specified by its order of conver-
gence, but also by its computational costs. For differential inclusions these
costs depend on the behaviour of F' in a very sensitive manner which makes
a worst case analysis meaningless.

Theorems 1 and 2 indicate that reasonable convergence for a scheme with
time step h can only be expected for grid spacings like p = O(h*) with o > 0,
a > 0. The character of this result is independent of the underlying Euler
scheme. The nature of the projection to a mesh is that of a round-off error
which inevitably appears as an additive term in the final estimate.

In algorithms which discretize the images of F', the round-off error

disty(F(x), o(F(x))) < p

contributes an additive term of magnitude ph to the local discretization error,
because the latter is obtained by integration over an interval of lenght h. If
the phase space is decomposed into boxes, the round-off error of magnitude

14



p constitutes an additive term of the local discretization error by definition,
causing an additive term £ to appear in the error of convergence.

Hence we draw the conclusion that any fixed grid method with order

of convergence O(h?) needs a spatial discretization p = oh? in the velocity
space or p = ohP™! in the phase space respectively. This finding does not
encourage the development of higher order schemes, because for a given set
A C R? the set ¢(A) C A, for suitable p is a very cheap approximation
w.r.t. the Hausdorff distance for a desired accuracy. In most cases it will be
considerably cheaper than the approximation of A by convex combinations
of its extremal points as proposed in [4].
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