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Abstract

For non-autonomous difference equations of the form

xn+1 = f(xn, λn), n ∈ Z
we consider homoclinic trajectories. These are pairs of trajectories that con-
verge in both time directions towards each other. We derive a numerical
method to approximate such homoclinic trajectories in two steps. In the first
step one of the infinite trajectories is approximated by a finite segment and
precise error estimates are given. In a subsequent step, a second trajectory
that is homoclinic to the first one is computed as follows. We transform
the original system into a topologically equivalent form, having zero as an
n-independent fixed point. Then, the techniques, developed in Hüls (2006)
apply and we gain an approximation of a non-autonomous homoclinic orbit,
converging towards the origin. Transforming back to the original coordinates
leads to the desired homoclinic trajectories. The approximation method and
the validity of the error estimates are illustrated by an example.

Keywords: Non-autonomous discrete time dynamical systems, Homoclinic trajec-
tories, Numerical approximation, Error analysis.

1 Introduction

For autonomous systems it is well known that the dynamics in a neighborhood of
a homoclinic orbit is chaotic, see Smale (1967). Therefore, homoclinic orbits were
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analyzed in various studies, cf. Palis & Takens (1993) for an historical overview.
Approximation results are of particular importance, see for example Beyn (1990)
for continuous time systems as well as the current version of the bifurcation toolbox
Matcont Dhooge et al. (2003) for an implementation. For discrete time systems,
we refer to Beyn & Hüls (2004), Beyn et al. (2004), Beyn & Kleinkauf (1997), Hüls
(2005).

In several realistic applications from physics or mathematical biology, the limita-
tion to autonomous systems is too restrictive. These models require the development
of non-autonomous tools. In the preliminary article Hüls (2006) the non-autonomous
difference equation

xn+1 = fn(xn), n ∈ Z (1)

is considered. It is assumed that fn ∈ C∞(Rk,Rk) is a diffeomorphism for all
n ∈ Z, having zero as an n-independent fixed point, i.e. fn(0) = 0 for all n ∈ Z.
With respect to this fixed point, a homoclinic orbit is computed numerically in Hüls
(2006). Note that the points of a homoclinic orbit lie in the intersection of the
corresponding stable and unstable fiber bundles of the fixed point 0. These fiber
bundles are the non-autonomous equivalent of the invariant manifolds in autonomous
systems, cf. Hirsch et al. (1977), Pötzsche & Siegmund (2004).

More precisely, a homoclinic orbit x̄Z = (x̄n)n∈Z is a solution of (1), fulfilling
limn→±∞ x̄n = 0. The proposed method for computing a finite approximation on
some interval J = [n−, n+] ∩ Z, requires to solve the boundary value problem

0Z = ΓJ(yJ) :=
(

(

yn+1 − fn(yn)
)

n=n−,...,n+−1
, b(yn−

, yn+
)
)

, (2)

with an appropriately chosen boundary operator b ∈ C1(R2k,Rk), restricting the
end points yn±

, for example, to the unstable and stable subspace of the fixed matrix
Df0(0), respectively, cf. Hüls (2006). Under reasonable assumptions, the boundary
value problem (2) possesses a unique solution in a sufficiently small neighborhood
of the exact solution.

In this paper, we push these ideas one step further by skipping the assumption
that an n-independent fixed point exists. Then, the only candidate for the role of
the fixed point ξ̄ = 0 from the previous setup, is a bounded trajectory ξ̄Z of (1), cf.
Langa et al. (2002). Thus a homoclinic orbit x̄Z is a trajectory, converging in both
time directions towards ξ̄Z, i.e.

lim
n→±∞

‖x̄n − ξ̄n‖ = 0. (3)

On the other hand ξ̄Z is also a homoclinic orbit w.r.t. x̄Z. Due to this symmetry,
we call two trajectories homoclinic if they satisfy (3).

Systems of the form (1) are typically generated by parameter dependent maps,
where the parameter varies in time. Therefore, we consider parameter-dependent
systems of the form

xn+1 = f(xn, λn), n ∈ Z, (4)
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where λZ denotes some sequence of parameter values. In this paper, we analyze the
following problems:

(1) Determine a bounded solution ξ̄Z of (4), given the sequence λ̄Z.
(2) Determine an orbit x̄Z, homoclinic to ξ̄Z.

Note that both trajectories are generally not known explicitly.
In Section 2, we first introduce our basic assumptions and prove dichotomy

results for the variational equation. Then we derive an algorithm for the numerical
approximation of the bounded trajectory ξ̄Z. For the computations, we solve the
boundary value problem ΓJ(ξJ) = 0 on some interval J = [n−, n+], using periodic
boundary conditions. Doing so, the error at the outer points ξn±

is quite large,
since the boundary condition is not accurate and in addition each point ξ̄n of the
exact orbit depends on all parameter values λ̄Z, cf. Figure 1. Fortunately, this
influence decreases exponentially fast toward the middle of the interval, see Theorem
4. By taking only the inner points, cf. Theorem 5, we gain an approximation that is
accurate up to any given accuracy. We state the corresponding algorithm in Section
2.3.

In Section 3, an algorithm for the approximation of a second trajectory x̄Z that is
homoclinic to ξ̄Z, is introduced. The idea is to consider the topologically equivalent
system

yn+1 = f(yn + ξ̄n) − ξ̄n+1, n ∈ Z
and apply the techniques from Hüls (2006) in order to approximate a homoclinic
orbit w.r.t. the fixed point 0. Transforming back to the original coordinates, we
finally obtain an approximation of the homoclinic trajectory x̄Z.

For an illustration, we consider Hénon’s map in Section 4. One of its parameters
is chosen at random and we get a non-autonomous system of the form (4). We espe-
cially indicate that the approach gives us high accuracy approximations of bounded
trajectories. Furthermore, homoclinic trajectories are computed numerically.

2 Approximation of bounded trajectories

Consider the non-autonomous difference equation

xn+1 = fn(xn), n ∈ Z. (5)

In Hüls (2006) the existence of a fixed point of fn is assumed that does not depend
on n and approximation results for homoclinic orbits w.r.t. this fixed point are
introduced.

In this paper, we consider a more general setup in which an n-independent fixed
point does not exist. The only replacement for a fixed point is a complete trajectory,
which is a solution ξZ of (5), cf. Langa et al. (2002). Thus, the non-autonomous
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analog of a homoclinic orbit x̄Z, converging in both time directions towards a fixed
point ξ̄, is a trajectory x̄Z that converges towards another trajectory ξ̄Z. These
trajectories are called homoclinic. Note that if a trajectory x̄Z is homoclinic to ξ̄Z
i.e.

lim
n→±∞

‖x̄n − ξ̄n‖ = 0, (6)

then ξ̄Z is also homoclinic to x̄Z.

Definition 1 Let ξ̄Z and x̄Z be two solutions of (5). These trajectories are homo-

clinic to each other, if (6) holds.

Non-autonomous difference equations of the form (5) occur in several applica-
tions in form of parameter dependent maps, in which the parameter varies in time.
Therefore, we restrict ourselves to the non-autonomous difference equation

xn+1 = f(xn, λn), n ∈ Z, (7)

where λZ = (λn)n∈Z is a bounded sequence. Throughout this paper, we address
questions of the following type. Assume λZ and therefore the non-autonomous
family fn = f(·, λn), n ∈ Z is given. Can one approximate bounded or homoclinic
trajectories of (7) with high accuracy?

First, we impose the following assumptions on f .

A1 f ∈ C∞(Rk ×R,Rk) and f(·, λ) is a diffeomorphism for all λ ∈ R.

A2 There exists a sequence λ̄Z ∈ RZ such that (7) possesses the bounded solution
ξ̄Z.

A3 The variational equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z
possesses an exponential dichotomy on Z, cf. Definition 9.

Let J = [n−, n+]∩Z be a discrete interval, where the cases n− = −∞ and n+ = ∞
are included. We define the space of bounded sequences on J w.r.t. ‖ · ‖ by

XJ :=

{

uJ = (un)n∈J ∈ (Rk)J : sup
n∈J

‖un‖ < ∞

}

and denote by 0J the zero element in XJ .
For a given sequence λZ, an orbit xZ ∈ XZ, i.e. a solution of (7), is a zero of the

operator Γ : XZ ×RZ → XZ, defined as

Γ(ξZ, λZ) :=
(

ξn+1 − f(ξn, λn)
)

n∈Z. (8)

Let λ̄Z be the sequence from assumption A2. In general, the bounded solution
ξ̄Z is not known explicitly. Even worse, the sequence ξ̄Z is not convergent. The
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main task, we consider in this section, is to compute an approximation of this
bounded trajectory. First, we prove that a bounded trajectory also exists in some
neighborhood of ξ̄Z, if the parameter sequence λZ varies slightly around λ̄Z.
Lemma 2 Assume A1–A3. Then there exist two neighborhoods U(λ̄Z) and V (ξ̄Z),
such that

Γ(ξZ, λZ) = 0Z (9)

has for all λZ ∈ U(λ̄Z) a unique solution ξZ ∈ V (ξ̄Z).

Proof: Since Γ(ξ̄Z, λ̄Z) = 0Z, the assertion follows from the implicit function theo-
rem, if DxΓ(ξ̄Z, λ̄Z) is invertible.

Note that uZ is a solution of DxΓ(ξ̄Z, λ̄Z)uZ = 0 if and only if

un+1 = Dxf(ξ̄n, λ̄n)un, for all n ∈ Z. (10)

By assumption A3, equation (10) possesses an exponential dichotomy on Z. There-
fore, uZ = 0Z is the only bounded solution of (10).

�

Let λZ ∈ U(λ̄Z) and denote by ξZ the unique bounded solution of (7) in V (ξ̄Z).
The next lemma shows that the variational equation

un+1 = Dxf(ξn, λn)un, n ∈ Z (11)

possesses an exponential dichotomy on Z.

Lemma 3 Assume A1–A3. Then a neighborhood V of ξ̄Z exists, such that the
difference equation

un+1 = Dxf(̺n, λn)un, n ∈ Z
possesses for ̺Z ∈ V , λZ ∈ U(λ̄Z) an exponential dichotomy on Z. The dichotomy
constants do not depend on the specific sequence ̺Z.
Proof: Due to assumption A3, the difference equation (10) has an exponential
dichotomy on Z. An application of the Roughness-Theorem 10 guarantees the exis-
tence of an exponential dichotomy of the perturbed equation

un+1 =
(

Dxf(ξ̄n, λ̄n) +
[

Dxf(̺n, λn) − Dxf(ξ̄n, λ̄n)
])

un, n ∈ Z
if

‖Dxf(̺n, λn) − Dxf(ξ̄n, λ̄n)‖ ≤ β (12)

holds, where β is specified in Theorem 10. But the inequality (12) is satisfied if V
is chosen sufficiently small.

�

For sufficiently small ‖λZ − λ̄Z‖, it holds that ξZ ∈ V , and consequently, (11)
possesses an exponential dichotomy.
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In the following, we denote by V the sufficiently small convex neighborhood of
ξ̄Z from Lemma 3. Let λZ ∈ U(λ̄Z) and denote by ξZ(λZ) the unique solution of (9),
cf. Lemma 2. We choose U such that ξZ(λZ) ∈ V holds for all λZ ∈ U .

For the numerical approximation of the bounded trajectory ξ̄Z we introduce an
algorithm and derive error estimates in the three steps. First, we prove in Section
2.1 that the difference between two solutions of (7) for different sequences λZ, µZ
that coincide on some interval J , decreases exponentially fast towards the middle.
Then, an approximation result for bounded trajectories is introduced in Section
2.2, assuming that the parameter sequences is convergent, i.e. limn→±∞ λn = λ.
Combining these results, we gain an approximation for arbitrary trajectories in
Section 2.3.

2.1 Bounded trajectories with varying tails

Assume that the sequence λ̄Z is given, cf. assumption A2. For computing a finite
approximation zJ of the bounded trajectory ξ̄Z, we introduce the boundary value
problem, cf. Hüls (2006)

ΓJ(zJ , λ̄J) :=
(

(

zn+1 − f(zn, λ̄n)
)

n∈J̃
, b(zn−

, zn+
)
)

= 0J , (13)

where J = [n−, n+] and J̃ = [n−, n+ − 1] are finite intervals. Obviously, the finite
middle part of the sequence ξ̄Z, denoted by ξ̄J , depends on λ̄J but also on the
parameters λ̄n, n /∈ J . On the other hand, the finite approximations, i.e. the
solutions of the boundary value problem (13), coincide for all sequences µ̄Z and
λ̄Z fulfilling µ̄n = λ̄n for n ∈ J . Thus, no matter what boundary operator we
choose, we will have a relatively large approximation error at the boundary. For
numerical calculations we choose periodic boundary conditions

bper(x, y) := (x − y). (14)

Fortunately, the influence of the outer points decreases exponentially fast towards
the middle of the interval J as one can see from the following theorem.

Theorem 4 Assume A1–A3. Let J be a finite interval and U , V are given as
stated above. Choose λZ, µZ ∈ U such that λn = µn for n ∈ J . Denote by ξZ,
ζZ ∈ V the bounded solutions w.r.t. λZ and µZ, respectively, cf. Lemma 2. Then
there exist two constants C, α > 0 that do not depend on λZ and µZ, such that

‖ξn − ζn‖ ≤ C
(

e−α(n−n−) + e−α(n+−n)
)

(15)

holds for all n ∈ J .

Proof: Due to our assumptions it holds that

ξn+1 = f(ξn, λn) and ζn+1 = f(ζn, µn), n ∈ Z.
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Let dZ = ζZ−ξZ and hZ = µZ−λZ. Then dZ is a solution of the following difference
equation

dn+1 = f(ξn + dn, λn + hn) − f(ξn, λn)

= f(ξn + dn, λn) +

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn − f(ξn, λn)

= f(ξn, λn) +

∫ 1

0

Dxf(ξn + τdn, λn)dτ dn

+

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn − f(ξn, λn)

=

∫ 1

0

Dxf(ξn + τdn, λn)dτ dn +

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn.

The homogeneous difference equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z
possesses by assumption A3 an exponential dichotomy on Z. Let β > 0 as demanded
in the Roughness-Theorem 10. From the construction of U and V and (12), we get

sup
n∈Z ∥∥∥∥∫ 1

0

Dxf(ξn + τdn, λn) − Dxf(ξ̄n, λ̄n)dτ

∥

∥

∥

∥

≤ sup
n∈Z ∫ 1

0

βdτ = β.

Applying the Roughness-Theorem 10, we get an exponential dichotomy on Z of the
difference equation

un+1 = Anun, An =

∫ 1

0

Dxf(ξn + τdn, λn)dτ, n ∈ Z. (16)

Let (K, α, P s
n, P u

n ) be the corresponding dichotomy data and denote the solution
operator of (16) by Φ, i.e. un = Φ(n, m)um for all n, m ∈ Z.

Now, consider the inhomogeneous difference equation

un+1 = Anun + rn, rn =

∫ 1

0

Dλf(ξn + dn, λn + τhn)dτ hn, n ∈ Z. (17)

The unique bounded solution of (17) on Z is

un =
∑

m∈ZG(n, m + 1)rm,

cf. Palmer (1988), where G is Green’s function, defined as

G(n, m) =

{

Φ(n, m)P s
m, n ≥ m,

−Φ(n, m)P u
m, n < m.

(18)
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Since (16) possesses an exponential dichotomy the following estimates hold

‖G(n, m)‖ = ‖Φ(n, m)P s
m‖ ≤ Ke−α(n−m), for n ≥ m, (19)

‖G(n, m)‖ = ‖Φ(n, m)P u
m‖ ≤ Ke−α(m−n), for n < m. (20)

Note that due to our assumptions ‖rn‖ is bounded from above by some constant R
for all n ∈ Z and rn = 0 for n ∈ J = [n−, n+], since λn = µn for n ∈ J .

For n ∈ J we derive an estimate of ‖un‖

‖un‖ ≤
∑

m∈Z ‖G(n, m + 1)rm‖

=

n−−1
∑

m=−∞

‖G(n, m + 1)rm‖ +

∞
∑

m=n++1

‖G(n, m + 1)rm‖

=

n−−1
∑

m=−∞

‖Φ(n, m + 1)P s
m+1rm‖ +

∞
∑

m=n++1

‖Φ(n, m + 1)P u
m+1rm‖ (21)

≤

n−−1
∑

m=−∞

RKe−α(n−m−1) +

∞
∑

m=n++1

RKe−α(m+1−n)

= RK

(

0
∑

m=−∞

e−α(n−m−n−) +

∞
∑

m=0

e−α(m+n++2−n)

)

=
RK

1 − e−α

(

e−α(n−n−) + e−α(n+−n+2)
)

.

By construction, dZ is the bounded solution of (17), thus the estimate

‖dn‖ ≤ C
(

e−α(n−n−) + e−α(n+−n)
)

holds for all n ∈ J with the constant C = RK
1−e−α

.
�

2.2 Approximation of bounded trajectories with constant

tails

From the previous section, we know that for two given sequences λ̄Z, µ̄Z that coincide
on the interval J , the corresponding solutions ξ̄Z, ζ̄Z of (7) are exponentially close
in the middle of J . On the other hand, the solution of the boundary value problem
(13) does not depend on λ̄n for n /∈ J .

In this section, we prove an approximation theorem for bounded trajectories
ζ̄Z in case the parameter sequences µ̄Z is convergent. We impose the following
assumptions.
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A4 A sequence µ̄Z ∈ U with corresponding solution ζ̄Z ∈ V of (7) and µ̄ ∈ R, ζ̄ ∈Rk exist, such that

lim
n→+∞

µ̄n = lim
n→−∞

µ̄n =: µ̄ and lim
n→+∞

ζ̄n = lim
n→−∞

ζ̄n =: ζ̄ . (22)

Note that if λ̄Z and ξ̄Z, introduced in assumption A2, do not vary to much as
n → ±∞, sequences µ̄Z ∈ U , ζ̄Z ∈ V exist that satisfy (22). On the other hand,
the condition A4 is naturally fulfilled in several applications. Let ζ̄ be a hyperbolic
fixed point of f(·, µ̄). For the constant sequence µ̄Z defined as µ̄n = µ̄, the constant
trajectory ζ̄Z (ζ̄n = ζ̄) obviously is a solution of (7). By Lemma 2 a generally non-
constant bounded trajectory ξ̄Z exist for λ̄Z ∈ U(µ̄Z), fulfilling A2, see the example
in Section 4.

We assume that µ̄Z is given as in assumption A4 and approximate the bounded
trajectory ζ̄Z by a finite orbit segment.

Theorem 5 Assume A1–A4. Then constants δ, N , C > 0 exist, such that the
approximating system ΓJ(zJ , µ̄J) = 0, cf. (13), with periodic boundary conditions
(14), possesses a unique solution

zJ ∈ Bδ(ζ̄J) for J = [n−, n+], −n−, n+ ≥ N.

The approximation error can be estimated as

‖ζ̄J − zJ‖ ≤ C‖ζ̄n−
− ζ̄n+

‖. (23)

Proof: First, we show that D1ΓJ(ζ̄J , µ̄J) has for sufficiently large intervals J a
uniformly bounded inverse.

Let (yJ̃ , r) ∈ XJ̃ × Rk. Then the inhomogeneous equation D1ΓJ(ζ̄J , µ̄J)uJ =
(yJ̃ , r) is equivalent to

un+1 − Dxf(ζ̄n, µ̄n)un = yn, n ∈ J̃ , (24)

un−
− un+

= r. (25)

Let Φ be the solution operator of the homogeneous equation

un+1 = Dxf(ζ̄n, µ̄n)un, n ∈ Z.

This difference equation possesses according to Lemma 3 an exponential dichotomy
on Z. Therefore, any solution of (24) is of the form

un = Φ(n, 0)v +
∑

m∈J̃

G(n, m + 1)ym, n ∈ J,

with some v ∈ Rk. Here, G denotes Green’s function, introduced in (18). We
introduce the following decomposition of v

v = Φ(0, n−)V −1
n−

v− + Φ(0, n+)W−1
n+

v+, v− ∈ R(P s), v+ ∈ R(P u),
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where P s, P u denote the constant dichotomy projectors of un+1 = Dxf(ζ̄, µ̄)un,
n ∈ Z and

Vn−
:= I + P s − P s

n−
: R(P s

n−
) → R(P s),

Wn+
:= I + P u − P u

n+
: R(P u

n+
) → R(P u).

Since P s,u
n → P s,u as n → ±∞, Vn−

and Wn+
have a uniformly bounded inverse for

sufficiently large −n−, n+. In this notation, (25) reads

V −1
n−

v− + Φ(n−, n+)W−1
n+

v+ − Φ(n+, n−)V −1
n−

v− − W−1
n+

v+ = R, (26)

where R =
∑

m∈J̃ G(n+, m + 1)ym −
∑

m∈J̃ G(n−, m + 1)ym + r. Employing the
dichotomy estimates, the second and third term in (26) converge exponentially fast
to 0 as n± → ±∞ and it follows that (26) has a unique solution for sufficiently large
−n−, n+. From (19) and (20), we get with some generic constant C > 0 the uniform
estimate ‖R‖ ≤ C (‖yJ̃‖ + ‖r‖) and therefore ‖v±‖ ≤ C (‖yJ̃‖ + ‖r‖). Furthermore,
using the dichotomy estimates we get

‖Φ(n, 0)v‖ ≤ ‖Φ(n, n−)P s
n−
‖‖V −1

n−
v−‖ + ‖Φ(n, n+)P u

n+
‖‖W−1

n+
v+‖

≤ C (‖v−‖ + ‖v+‖) .

Thus, a J-independent constant σ exists, such that

‖uJ‖ ≤ σ−1 (‖yJ̃‖ + ‖r‖) ,

and consequently ‖D1ΓJ(ζ̄J , µ̄J)−1‖ ≤ σ−1.
The remaining part of the proof is an application of Lemma 11 with the setting

Y = (XJ , ‖ · ‖), Z =
(

XJ̃ ×Rk, ‖ · ‖ + ‖ · ‖
)

, F = ΓJ(·, µ̄J), y0 = ζ̄J .

We show that assumption (41) of Lemma 11 is fulfilled. By assumption A1 there
exists a δ > 0 such that

‖D1ΓJ(zJ , µ̄J) − D1ΓJ(ζ̄J , µ̄J)‖ ≤ sup
n∈J̃

‖Dxf(zn, µ̄n) − Dxf(ζ̄n, µ̄n)‖ ≤
σ

2

for zJ ∈ Bδ(ζ̄J).
Assumption (42) can also be verified with κ = σ

2
:

‖ΓJ(ζ̄J , µ̄J)‖ =
∥

∥

∥

(

ζ̄n+1 − f(ζ̄n, µ̄n)
)

n∈J̃

∥

∥

∥
+ ‖b(ζ̄n−

, ζ̄n+
)‖ = ‖ζ̄n−

− ζ̄n+
‖ ≤

σ

2
δ

holds due to assumption A4 for sufficiently large −n−, n+.
By Lemma 11 a unique solution zJ of ΓJ(zJ , µ̄J) = 0 exists in Bδ(ζ̄J) for J

sufficiently large, and an estimate of the approximation error follows from (44):

‖ζ̄J − zJ‖ ≤
1

σ − κ
‖ΓJ(ζ̄J , µ̄J) − ΓJ(zJ , µ̄J)‖ =

2

σ
‖ζ̄n−

− ζ̄n+
‖.

�
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2.3 Approximation of bounded trajectories with varying

tails

Let λ̄Z be the given sequence from assumption A2. Denote by J = [n−, n+] a finite
interval. Combining the previous results, we show that one obtains an approximation
of the trajectory ξ̄Z ∈ V on the finite interval J that is accurate up to any given
accuracy ∆. The main idea is to compute an approximation of the orbit on a longer
interval. Since the approximation errors occur at the boundary of this interval, we
only take the accurate middle part. Formally, we carry out these computations in
two steps.

In the first step, we define for an interval J̄ the sequence µ̄J̄Z by

µ̄J̄
n =

{

λ̄n, for n ∈ [n̄−, n̄+],
µ̄, for n /∈ [n̄−, n̄+],

where µ̄ is defined as in A4. Denote by ζ̄Z = ζ̄Z(J̄) the unique bounded solution of

ζn+1 = f(ζn, µ̄
J̄
n), n ∈ Z

in V (Lemma 2). For sufficiently large intervals J̄ , a non-empty interval J ⊂ J̄ can
be chosen due to Theorem 4, such that

‖ξ̄n − ζ̄n‖ ≤
∆

2
holds for all n ∈ J. (27)

In the second step, we compute a finite approximation of ζ̄Z by solving (13). Due to
Theorem 5, an interval Ĵ ⊃ J exists, such that the following error estimate holds,
cf. (23):

‖ζ̄Ĵ − zĴ‖ ≤
∆

2
. (28)

Combining the results (27) and (28), we get for n ∈ J

‖ξ̄n − zn‖ ≤ ‖ξ̄n − ζ̄n‖ + ‖ζ̄n − zn‖ ≤
∆

2
+

∆

2
= ∆.

Thus, the middle part zJ is a finite approximation of ξ̄Z on the interval J with
accuracy ∆.

This algorithm is illustrated in Section 4.1 by an example.

3 Homoclinic trajectories

Applying the approach introduce in the previous section, we gain for a given pa-
rameter sequence λ̄Z a finite approximation of the bounded trajectory ξ̄Z of (7). In
the following, we derive an algorithm for computing a second trajectory x̄Z that is
homoclinic to the first one, see Definition 1. First, we assume existence as well as
transversality.
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A5 Let λ̄Z as in A2. For this parameter sequence a solution x̄Z of

xn+1 = f(xn, λ̄n), n ∈ Z
exists, that is homoclinic to ξ̄Z and non-trivial, i.e. x̄Z 6= ξ̄Z.

A6 The trajectory x̄Z is transversal, i.e.

un+1 = Dxf(x̄n, λ̄n)un, n ∈ Z for uZ ∈ XZ ⇐⇒ uZ = 0.

First, we prove that the exponential dichotomy of the variational equation

un+1 = Dxf(ξ̄n, λ̄n)un, n ∈ Z (29)

implies exponential dichotomies on Z− and on Z+ of the difference equation

un+1 = Dxf(x̄n, λ̄n)un, n ∈ Z. (30)

Lemma 6 Assume A1–A5. Then the difference equation (30) possesses exponen-
tial dichotomies on Z− and on Z+.

Proof: Since (29) possesses an exponential dichotomy on Z and ‖x̄n − ξ̄n‖ → 0 as
n → ±∞, there exists an N > 0, such that

∥

∥Dxf(x̄n, λ̄n) − Dxf(ξ̄n, λ̄n)
∥

∥ < β, for all |n| ≥ N,

where β is the bound for the additive perturbation in Theorem 10. Thus, (30) pos-
sesses exponential dichotomies on (−∞,−N ] and on [N,∞) which can be extended
to Z− and Z+, respectively.

�

After these preparations, we introduce techniques for the numerical approxima-
tion of the second trajectory x̄Z which is homoclinic to the first one. The main
idea is to transform the system (7) into a topologically equivalent form, having
zero as an n-independent fixed point. Then we apply an approach for approximat-
ing homoclinic orbits w.r.t. a constant fixed point to the transformed system. The
corresponding algorithm is introduced in Hüls (2006).

First, a topologically equivalent system is introduced, having a constant fixed
point. We refer to Aulbach & Wanner (2003), where the notion of topological
equivalence for non-autonomous systems is introduced.

Lemma 7 Assume A1–A5. Let Tn(y) := y + ξ̄n and

gn(y) := T−1
n+1 ◦ f(·, λ̄n) ◦ Tn(y).

Then the two difference equations (7) and

yn+1 = gn(yn), n ∈ Z (31)

are topologically equivalent and 0Z is a solution of (31).

12



Proof: For proving topological equivalence, we show that orbits of (31) transform
into orbits of (7) and vice versa.

Let yZ be an orbit of (31). Then

xn := Tn(yn), n ∈ Z
is a solution of (7), since

xn+1 = Tn+1(yn+1) = Tn+1 ◦ T−1
n+1 ◦ f(·, λ̄n) ◦ Tn(yn)

= f(·, λ̄n) ◦ Tn(yn) = f(xn, λ̄n).

Furthermore,

gn(0) = T−1
n+1 ◦ f(·, λ̄n) ◦ Tn(0)

= T−1
n+1 ◦ f(ξ̄n, λ̄n) = T−1

n+1(ξ̄n+1) = 0, for all n ∈ Z.

�

As a consequence, the task of computing a second trajectory of (7) that is homo-
clinic to ξ̄Z is equivalent to the computation of a homoclinic orbit ȳZ of (31) w.r.t.
the fixed point 0.

In the second case, we obtain a finite approximation of the homoclinic orbit ȳZ
on the interval J by solving

ΓJ(yJ) =
(

(yn+1 − gn(yn))n∈J̃ , b(yn−
, yn+

)
)

= 0J , (32)

where the boundary operator b ∈ C1(R2k,Rk) is chosen such that the end points yn±

are restricted to the unstable and stable subspace of the constant matrix Dg0(0), cf.
Hüls (2006). Formally, we define the projection boundary operator as

b(x, y) :=

(

Y T
s x

Y T
u y

)

, x, y ∈ Rk, (33)

where the columns of Ys and Yu form an orthogonal basis of the stable and unstable
subspace of Dg0(0)T . Note that the stable and unstable subspace of Dg0(0)T is
orthogonal to the unstable and stable subspace of Dg0(0), respectively. We do not
construct a boundary operator, restricting the end points to the linearizations of the
corresponding unstable and stable fiber bundles. These fiber bundles are generally
not known explicitly, cf. Hirsch et al. (1977) for the case of normally hyperbolic
manifolds. Furthermore, the effort to approximate these fiber bundles numerically is
not justified by a slightly better rate of convergence of the above described algorithm,
see Hüls (2006).

By assumption A5, x̄Z and ξ̄Z are homoclinic trajectories, and ȳZ defined as

ȳn = T−1
n (x̄n) = x̄n − ξ̄n, n ∈ Z

13



is a homoclinic orbit of (31) w.r.t. the fixed point 0. Furthermore, the variational
equations (30) and

un+1 = Dgn(ȳn)un, n ∈ Z (34)

coincide. Consequently, (34) possesses an exponential dichotomy with the same data
as (30), and the transversality assumption A6 holds for the transformed system,
too. Geometrically, the transversality assumption A6 states that the corresponding
stable and unstable fiber bundles of the fixed point 0 intersect transversally for the
transformed system (31), cf. (Hüls 2006, Lemma 3.7). The following theorem, cf.
(Hüls 2006, Theorem 4.2), applies and guarantees (local) existence of a solution of
(32) and therefore (local) well-posedness of our approach.

Theorem 8 Assume A1–A6. There exist constants δ, N , C > 0, such that the
approximating system ΓJ(yJ) = 0 possesses a unique solution

yJ ∈ Bδ(ȳ|J) for all J = [n−, n+],

where −n−, n+ ≥ N . The approximation error can be estimated as

‖ȳ|J − yJ‖ ≤ C‖b(ȳn−
, ȳn+

)‖. (35)

Transforming yJ back to the original coordinates, we get a finite approximation

xn := Tn(yn) = yn + ξ̄n, n ∈ J

of x̄Z, fulfilling the same error estimate (35).

4 Example

For an illustration of our approach, we approximate homoclinic trajectories for the
well known Hénon-map

x 7→ h(x, λ, b) =

(

1 + x2 − λx2
1

bx1

)

, (36)

cf. Mira (1987), Devaney (1989), Hale & Koçak (1991). Fix the parameters b = 0.3

and let λ̂ = 1.5. Hénon’s map possesses for λ > − (b−1)2

4
the fixed point

ξ(λ, b) =

(

z(λ, b)
bz(λ, b)

)

, where z(λ, b) =
b − 1 +

√

(b − 1)2 + 4λ

2λ
. (37)

The matrix

A = Dxh(ξ, λ̂, b) =

(

−b + 1 −

√

(b − 1)2 + 4λ̂ 1

b 0

)

14



has the eigenvalues σs ≈ 0.15 and σu ≈ −1.998 and consequently this matrix is
hyperbolic. For fixed parameters λ̂ = 1.5, b = 0.3, a transversal homoclinic orbit xZ
w.r.t. the fixed point ξ(λ̂, b) exists, cf. Beyn et al. (2004). In the language of this
paper, xZ and ξZ, where ξn = ξ(λ̂, b) for all n ∈ Z, are two homoclinic trajectories.
When λZ varies in a sufficiently small neighborhood U(λ̂Z), we obtain two, generally
non-constant, homoclinic trajectories ξZ(λZ) and xZ(λZ). Let λ̄Z ∈ U(λ̂Z) and
denote by ξ̄Z and x̄Z the corresponding homoclinic trajectories, then our assumptions
A2-A6 are satisfied. For the forthcoming numerical computations, we choose the
interval I = [1, 2] and take a sequence λZ ∈ IZ at random.

4.1 Approximation of the bounded trajectory

First, we approximate the bounded trajectory ξ̄Z on the finite interval J = [n−, n+].
To this end, we compute a longer orbit segment ξJ̄ on J̄ = [n̄−, n̄+] and take only
the accurate middle part ξJ as suggested in Section 2.3.

For a first illustration, we take two randomly chosen sequences on the inter-
val [−40, 40] that coincide in the middle interval [−20, 20]. The solutions of the
boundary value problem (13), (14) are shown in Figure 1.

−40 −30 −20 −10 0 10 20 30 40
0.5

0.6

0.7

0.8

−40 −30 −20 −10 0 10 20 30 40
−0.5

0

0.5

n

n

λn

ξn

Figure 1: For two randomly chosen parameter sequences with the same
middle part (lower diagram), the upper picture shows the corresponding
solutions of (13), (14).

The choice of n̄± is guided by Theorem 4. We choose n̄± such that the difference
between two solutions with different tails is of the order ∆, i.e.

e−α−(n−−n̄−) + e−α+(n̄+−n+) = O(∆).

Here α± denote the dichotomy constants w.r.t. the stable and unstable direction
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and ∆ = 10−16 is the precision of the machine. Let

n̄− =

⌊

n− −
log ∆

α−

⌋

and n̄+ =

⌈

n+ −
log ∆

α+

⌉

. (38)

As a guess of α±, we take into account the weakest rates in the stable and unstable
directions and define α− = log |σs| and α+ = log |σu|, cf. (21).

For testing the validity of this ansatz, let J̄ = [−100, 100], J̃ = [−150, 150] and

choose a sequence λJ̃ ∈ I J̃ at random. Then, a second sequence µJ̃ is defined, such
that µJ̄ = λJ̄ holds.

With respect to the parameter sequences λJ̃ , µJ̃ , we compute the associated
bounded trajectories ξJ̃ , ζJ̃ , respectively, using Newton’s method for solving the
non-linear systems. As an initial guess xJ̃ , we take the fixed points xn = ξ(λn, b) for
n ∈ J̃ , cf. (37). For an illustration, ‖ξn−ζn‖ is plotted over n in a logarithmic scale.
In Figure 2, these computations are performed for 10 sequences µJ̃ , having different,
randomly chosen tails. Define J = [n−, n+], where n± are given in (38). We expect
that the influence of parameter values outside the interval J̄ is of magnitude O(∆).
For an illustration, two lines are drawn, connecting the points

(

n̄−, 1
2

)

with (n−, ∆)
and

(

n̄+, 1
2

)

with (n+, ∆). As one can see from Figure 2, these results are quite
accurate.

−150 −100 −50 0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

dn

n− n+n̄− n̄+ñ− ñ+

Figure 2: Difference dn = ‖ξn − ζn‖ between two solutions of (7). ξJ̃ is
computed w.r.t. the reference parameter sequence λJ̃ , and ζJ̃ is a solution
w.r.t. the sequences µJ̃ , where λJ̃ and µJ̃ coincide on J̄ = [n̄−, n̄+]. The
results for 10 different µJ̃ are shown. The red lines indicate the predicted
differences.

For a randomly chosen sequence λZ ∈ IZ, we illustrate the numerical approx-
imation of a homoclinic trajectory of length n− = −20, n+ = 20. To this end,
we compute n̄± as n̄− = −40, n̄+ = 74 using (38), and solve the boundary value
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problem (7) on the interval J̄ = [n̄−, n̄+] as described in Section 4.1, using periodic
boundary conditions. Figure 3 shows the solution (left) and the accurate middle
part (right).
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−20 −15 −10 −5 0 5 10 15 20
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x1x1

n−n− n+n+ñ− ñ+

Figure 3: Approximation of the bounded trajectory ξZ (left) and the ac-
curate middle part (right), projected onto the (n, x1)-plane.

4.2 Approximation of a second homoclinic trajectory

In the next step, a homoclinic orbit yJ of the transformed system

yn+1 = h(yn + ξn, λn, b) − ξn+1, n ∈ J (39)

is computed w.r.t. the fixed point 0, see Figure 4 (left). In the right picture, the
distance to the fixed point ‖yn‖ is given in a logarithmic scale, thus one can see the
exponentially fast convergence of the orbit towards the fixed point 0.
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0

x1
x2

‖x1‖

n
n

Figure 4: Homoclinic orbit of the transformed system (39) (left). The
right diagram illustrates the exponential rate of convergence of the orbit
towards the fixed point 0.
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Transforming the orbit yJ back to the original coordinates we obtain an approx-
imation of a second trajectory xJ , where xn = yn + ξn for n ∈ J , that is homoclinic
to ξJ . The two homoclinic trajectories xJ (in black) and ξJ (in red) are shown in
Figure 5.
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x1
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Figure 5: Two homoclinic trajectories xJ (in black) and ξJ (in red). In
the right figure, a projection onto the (n, x1) plane is given.

A Exponential dichotomy

In this appendix, we state some well known results for exponential dichotomies from
Palmer (1988).

Definition 9 A linear difference equation

un+1 = Anun, n ∈ Z
with invertible matrices An ∈ Rk,k and solution operator Φ has an exponential di-

chotomy with data (K, α, P s
n, P u

n ) on J ⊂ Z, if there exist two families of projectors
P s

n and P u
n = I − P s

n and constants K, α > 0, such that the following statements
hold:

P s
nΦ(n, m) = Φ(n, m)P s

m ∀n, m ∈ J,

‖Φ(n, m)P s
m‖ ≤ Ke−α(n−m)

‖Φ(m, n)P u
n ‖ ≤ Ke−α(n−m)

∀n ≥ m, n, m ∈ J.

We introduce an important perturbation result for exponential dichotomies, fre-
quently named as Roughness-Theorem, cf. (Palmer 1988, Proposition 2.10).

Theorem 10 Assume that the difference equation

un+1 = Anun, An ∈ Rk,k invertible, ‖A−1
n ‖ ≤ M ∀n ∈ J
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with an interval J ⊆ Z, possesses an exponential dichotomy with data (K, α, P s
n, P u

n ).
Suppose 0 < δ < α and Bn ∈ Rk,k satisfies ‖Bn‖ ≤ β for all n ∈ J , where

β < M−1,

2K(1 + e−α)(1 − e−α)−1β ≤ 1,

2Keα(e−δ + 1)(eδ − 1)−1β ≤ 1.

Then An + Bn is invertible and the perturbed difference equation

un+1 = (An + Bn)un

possesses an exponential dichotomy on J with data
(

2K(1 + eδ)(1 − e−δ)−1, α −
δ, Qs

n, Q
u
n

)

, where rank(Qs
n) = rank(P s

n) and

‖P s
n − Qs

n‖ ≤ 2K2 1 + e−α

1 − e−α
sup
m∈J

‖Bm‖ for all n ∈ J. (40)

B A Lipschitz inverse mapping theorem

We apply a quantitative version of the Lipschitz inverse mapping theorem, cf. Irwin
(2001), for proving our approximation theorem.

Lemma 11 Assume Y and Z are Banach spaces, F ∈ C1(Y, Z) and F ′(y0) is for
y0 ∈ Y a homeomorphism. Let κ, σ, δ > 0 be three constants, such that the following
estimates hold:

∥

∥F ′(y) − F ′(y0)
∥

∥ ≤ κ < σ ≤
1

∥

∥F ′(y0)−1
∥

∥

∀y ∈ Bδ(y0), (41)

∥

∥F (y0)
∥

∥ ≤ (σ − κ)δ. (42)

Then F has a unique zero ȳ ∈ Bδ(y0) and the following inequalities are satisfied

∥

∥F ′(y)−1
∥

∥ ≤
1

σ − κ
∀y ∈ Bδ(y0), (43)

‖y1 − y2‖ ≤
1

σ − κ

∥

∥F (y1) − F (y2)
∥

∥ ∀y1, y2 ∈ Bδ(y0). (44)

Acknowledgement

The author wishes to thank Wolf-Jürgen Beyn for stimulating discussions about this
paper.

19



References

Aulbach, B. & Wanner, T. (2003), ‘Invariant foliations and decoupling of non-
autonomous difference equations’, J. Difference Equ. Appl. 9(5), 459–472.

Beyn, W.-J. (1990), ‘The numerical computation of connecting orbits in dynamical
systems.’, IMA J. Numer. Anal. 10, 379–405.
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