
Shadowing and inverse shadowing in set-valued
dynamical systems. Contractive case

Sergei Yu. Pilyugin†∗, Janosch Rieger‡

Abstract

We obtain several results on shadowing and inverse shadowing for
set-valued dynamical systems that have a contractive property. Ap-
plications to T -flows of differential inclusions are discussed.
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1 Introduction and Basic Notation

The shadowing property for classical dynamical systems (with discrete or
continuous time) is now well-studied (see, for example, the monographs [11,
10]). This property means that, near approximate trajectories, there exist
exact trajectories of the system considered. If a dynamical system has the
shadowing property, then, for example, results of numerical modeling reflect
the global structure of trajectories of the system.

Another type of shadowing properties is related to the following question:
Given a (large enough) family of approximate trajectories, can we find, for a
chosen exact trajectory, a close approximate trajectory from the given family?
The corresponding property is called the inverse shadowing property. It was
introduced in [5] and studied intensively by various authors (see, for example,
[12, 9]).
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Let us also mention that from results of W.-J. Beyn [3] it follows that
an autonomous system of differential equations has an analog of the inverse
shadowing property in a neighbourhood of a hyperbolic rest point with re-
spect to pseudotrajectories generated by numerical one-step methods.

In this paper, we study the shadowing and inverse shadowing properties
for set-valued dynamical systems. One of the main objects to which our
results are applicable are T -flows of differential inclusions (very important,
for example, in control theory [4, 14]).

We introduce a contractive property (stability condition) for set-valued
dynamical systems and show that any system satisfying this condition has
both shadowing and inverse shadowing properties (and the distance between
the corresponding exact and approximate trajectories is estimated linearly
in terms of the error).

Let us pass to basic notation. A set-valued dynamical system on a metric
space (M, dist) is determined by a set-valued mapping F : M → 2M \ {∅}
and its iterates. In what follows, we identify the mapping F and the corre-
sponding dynamical system.

A sequence η = {pk} is a trajectory of the system F if

pk+1 ∈ F (pk) for any k ∈ Z. (1)

A sequence ξ = {xk} is called a d-pseudotrajectory of F if an error of size
d > 0 is allowed in every step, i.e., if

dist(xk+1, F (xk)) ≤ d for any k ∈ Z. (2)

The distance between two subsets A and B of Rm is measured by the
deviation

dev(A, B) = sup
a∈A

inf
b∈B

|a − b|

or by the Hausdorff distance

distH(A, B) = max{dev(A, B), dev(B, A)}.

If A and B are compact sets, there exists a (possibly not unique) vector
Dev(A, B) ∈ Rm such that Dev(A, B) = b − a for some a ∈ A and b ∈ B
with |b− a| = dev(A, B). Let us note that if A is a point and B is a convex
set, then the vector Dev(A, B) is defined uniquely. In addition, if B(t) is
a continuous (w.r.t. distH) family of convex sets, then the vector-function
Dev(A, B(t)) is continuous in t as well (cf. Theorem 1.7.1 of [2]).

The collection of compact subsets of Rm will be denoted by C(Rm), while
the class of compact and convex subsets of Rm will be denoted by CC(Rm).
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As usual, for a sequence η = {ηk} ∈ (Rm)Z,

||η||∞ = sup
k∈Z

|ηk|.

In section 2, we establish several shadowing results (for convex-valued
dynamical systems and for dynamical systems with sufficiently large ”con-
tinuous convex kernels”). In section 3, similar inverse shadowing results are
proved.

2 Shadowing

We begin with a result on shadowing for set-valued dynamical systems.

Theorem 1. Let F : Rm → CC(Rm) be a set-valued mapping for which there
exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies the following stability
condition:

distH(F (x), F (x + v)) ≤ λ|v| for any x ∈ Rm and |v| ≤ a. (3)

If ξ = {xk} ∈ (Rm)Z is a d-pseudotrajectory for some d < (1 − λ)a, then
there exists a solution η ∈ (Rm)Z of (1) such that

||ξ − η||∞ ≤ d

1 − λ
. (4)

Proof. Define the sets Hd := {v ∈ Rn : |v| ≤ d

1 − λ
} and H∞

d := (Hd)
Z.

Then Hd ⊂ Rn is compact w.r.t the Euclidean topology and H∞
d ⊂ (Rm)Z is

compact w.r.t. the Tikhonov topology.
Take some V = {vk} ∈ H∞

d and define a sequence W = {wk} by

wk+1 = Dev(xk+1, F (xk + vk)).

Such a sequence W is unique since the sets F (xk + vk) are convex.
Condition (3) implies that the mapping F is continuous w.r.t. distH .

Hence, the mapping vk 7→ wk+1 is continuous by Theorem 1.7.1. of [2] men-
tioned in the introduction. Furthermore,

|wk+1| ≤ dist(xk+1, F (xk)) + dist(F (xk), F (xk + vk))

≤ d + λ|vk| ≤ d + λ
d

1 − λ
=

d

1 − λ
.

Hence, W ∈ H∞
d . Thus, the operator σ defined by σ(V ) = W maps the

compact convex set H∞
d into itself.
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Since the (k+1)th element of σ(V ) depends on the k th element of V only,
the operator σ is continuous w.r.t. the Tikhonov topology. By the Tikhonov-
Schauder fixed point theorem, there is a sequence V = {vk} ∈ H∞

d such that
σ(V ) = V . Thus,

xk+1 + vk+1 = xk+1 + Dev(xk+1, F (xk + vk)) ∈ F (xk + vk),

and the trajectory η = {pk} ∈ (Rm)Z given by pk := xk + vk is a solution of
(1) with

||η − ξ||∞ = ||V ||∞ ≤ d

1 − λ
.

Remark 2. Let us note that the problem of shadowing for set-valued dy-
namical systems has been considered by E. Akin (see Appendix 11 of [1]).
In [1], the author defines hyperbolic sets for set-valued dynamical systems.
According to the definition of [1], on a hyperbolic set, a pseudotrajectory with
a small error is shadowed by a unique real trajectory.

The following example shows that, in contrast to the case studied by Akin,
in the conditions of Theorem 1 the shadowing trajectory is not necessarily
unique.

Consider the plane R2 with coordinates x = (x1, x2) and the segment
I = {x : x1 = 0, 0 ≤ x2 ≤ 1}.

Define a set-valued dynamical system generated by the constant mapping
F (x) = I, x ∈ R2. Obviously, the mapping F satisfies the stability condition
of Theorem 1 with any a > 0 and λ ∈ (0, 1).

It is easy to see that the conclusion of Theorem 1 holds in the following
form: If ξ is a d-pseudotrajectory with any d > 0, then there exists an exact
trajectory η such that

||ξ − η||∞ ≤ d (5)

(indeed, it is enough to repeat the proof of Theorem 1 taking into account the
obvious inequality |wk+1| ≤ d).

Let us show that the corresponding shadowing trajectory is not necessarily
unique. Indeed, fix d > 0 and consider the sequence ξ = {zk} with zk =
(d(1 − 2−|k|), 0). Clearly, ξ is a d-pseudotrajectory of F (and at the same
time, ξ is not a δ-pseudotrajectory with δ < d).

A sequence η = {pk} is a trajectory of F if and only if pk ∈ I for all k.
Note that we cannot find an exact trajectory η for which an analog of (5)
holds with a smaller constant on the right.

Now it is easy to understand that inequality (5) holds for any sequence
η = {rk}, where rk belongs to the vertical side of the triangle with vertices
(0, 0), zk, and (0, d

√
1 − (1 − 2−|k|)2).
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The following theorem states that a shadowing result can still be obtained
if F is not convex-valued itself but contains a sufficiently large “continuous
convex kernel” G.

Theorem 3. Let F : Rm → 2Rm \ {∅} be a set-valued mapping for which
there exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies the stability
condition (3).

Fix d < 1−λ
2

a and assume that there exists a set-valued mapping G :
Rm → CC(Rm) which is continuous w.r.t. distH and satisfies the following
conditions:

G(x) ⊂ F (x) and distH(F (x), G(x)) < d for any x ∈ Rm.

If ξ = {xk} ∈ (Rm)Z is a d-pseudotrajectory of F , then there exists a solution
η ∈ (Rm)Z of (1) such that

||ξ − η||∞ ≤ 2d

1 − λ
. (6)

Proof. The proof follows the same lines as that of Theorem 1. Define the

sets Hd := {v ∈ Rn : |v| ≤ 2d

1 − λ
} and H∞

d := (Hd)
Z.

Take some V = {vk} ∈ H∞
d and define a sequence W = {wk} by

wk+1 = Dev(xk+1, G(xk + vk)).

Since the sets G(xk+vk) are convex, the above relations define an operator
σ by σ(V ) = W . This operator is continuous w.r.t. the Tikhonov topology.

The inequalities

|wk+1| ≤ dist(xk+1, F (xk)) + dist(F (xk), F (xk + vk))+

+ dist(F (xk + vk), G(xk + vk)) ≤ d + λ|vk| + d ≤ 2d + λ
2d

1 − λ
=

2d

1 − λ

imply that if V ∈ H∞
d , then W ∈ H∞

d .
By the Tikhonov-Schauder fixed point theorem, there is a sequence V =

{vk} ∈ H∞
d such that σ(V ) = V . Thus,

xk+1 + vk+1 = xk+1 + Dev(xk+1, G(xk + vk)) ∈ F (xk + vk),

and the trajectory η = {pk} ∈ (Rm)Z given by pk := xk + vk is a solution of
(1) with

||η − ξ||∞ = ||V ||∞ ≤ 2d

1 − λ
.

5



Remark 4. At first glance it seems that, for a continuous mapping F : Rm →
C(Rm) with connected images and with the property that for every x ∈ Rm

there exists a convex set F̃ (x) ⊂ F (x) such that distH(F̃ (x), F (x)) < ϑ,
there must exist a “continuous convex kernel” G : Rm → CC(Rm) such that
G(x) ⊂ F (x) and distH(G(x), F (x)) < ϑ. Simple counterexamples show that
this is not the case.

The aim of the following reasoning is to prove a shadowing result for the
(usually not convex) T -flow of a differential inclusion. Consider a differential
inclusion

ẋ(t) ∈ F (x(t)) almost everywhere. (7)

We fix a point x0 and denote by

SF (x0, [0, T ]) := {ϕ ∈ AC([0, T ], Rd) : ϕ is a solution of (7), ϕ(0) = x0}

the set of all solutions of the differential inclusion with the initial condition
x(0) = x0, where AC([0, T ], Rd) is the space of all absolutely continuous
functions. For 0 ≤ t ≤ T let

SF (x0, t) := {ϕ(t) : ϕ ∈ SF (x0, [0, T ])}

be the reachable set at time t and set BP (0) = {x ∈ Rm : |x| ≤ P}.

Lemma 5. Let F : Rm → CC(Rm) be Lipschitz continuous and let F (x) ⊂
BP (0) for some P > 0 and all x ∈ Rm. For every T > 0 there exists a
Lipschitz continuous selection of SF (·, T ).

Proof. According to Theorem 1.9.1 of [2], there exists a Lipschitz continuous
selection f : Rm → Rm of F ; let L > 0 be a Lipschitz constant of f . If
ϕ(t, x0) is the unique solution of

ẋ(t) = f(x(t)), x(0) = x0, 0 ≤ t ≤ T,

then ϕ(t, x0) ∈ SF (x0, [0, T ]) and ϕ(T, x0) ∈ SF (x0, T ). The inequalities

|ϕ(T, x0) − ϕ(T, x1)| ≤ |x0 − x1| +
∫ T

0

|f(ϕ(t, x0)) − f(ϕ(t, x1))|dt ≤

≤ |x0 − x1| + L

∫ T

0

|ϕ(t, x0) − ϕ(t, x1)|dt

and the Gronwall lemma imply that

|ϕ(T, x0) − ϕ(T, x1)| ≤ |x0 − x1|eLT ,

and ϕ(T, ·) is a Lipschitz continuous selection.
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Moreover, every solution x(t) of the differential inclusion (7) with x(0) =
x0 satisfies the inequality

|x(T ) − x(0)| ≤
∫ T

0

|ẋ(s)|ds ≤ PT,

and
diam(SF (x0, T )) ≤ 2PT. (8)

Theorem 6. Assume that the mapping F in the differential inclusion (7)
satisfies the conditions of Lemma 5. Assume, in addition, that there exist
numbers a > 0 and λ ∈ (0, 1) such that the T -flow SF (·, T ) satisfies the
stability condition

distH(SF (x, T ), SF (x + v, T )) ≤ λ|v| for any x ∈ Rm and |v| ≤ a. (9)

If

T ≤ d

2P
and d <

1 − λ

2
a,

then for any d-pseudotrajectory ξ = {xk ∈ Rm} of the set-valued dynamical
system

zn+1 ∈ SF (zn, T ) (10)

there exists a solution η of (10) such that

||ξ − η||∞ ≤ 2d

1 − λ
.

Proof. Lemma 5 guarantees the existence of a Lipschitz continuous selection
g of SF (·, T ). By (8),

distH(g(x), SF (x, T )) ≤ 2PT ≤ d,

and Theorem 3 applies.

The stability condition (9) is a reasonable generalization of the classical
concept of a contraction. Consider the T-flow of (7) with the following
property:

Definition 7. A set-valued mapping F : Rd → 2Rd
satisfies the relaxed one-

sided Lipschitz condition (ROSL) with a constant µ ∈ R if for any x′, x′′ ∈ Rd

and y′ ∈ F (x′) there exists a y′′ ∈ F (x′′) such that

〈y′′ − y′, x′′ − x′〉 ≤ µ|x′′ − x′|2.
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Set-valued mappings that satisfy the ROSL condition or related dissipa-
tivity concepts have been thoroughly investigated in [6], [7], and [8]. The
results displayed there indicate that, if µ < 0, then the T -flow of such a map-
ping is a contraction in the sense of the stability condition (9). Since this
fact is not explicitly mentioned there, we would like to refer to a short proof
in [13] in order to show that our stability condition is valid for a reasonably
large class of differential inclusions.

3 Inverse Shadowing

The next two theorems provide some results on inverse shadowing in the
stable case considered above.

Theorem 8. Let η = {pk} ∈ (Rm)Z be a trajectory of a set-valued dynamical
system generated by a mapping F : Rm → 2Rm \ {∅}.

Assume that there exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies
the following stability condition:

distH(F (pk), F (pk + v)) ≤ λ|v| for any k ∈ Z and |v| ≤ a (11)

at the trajectory η.
If Φk : Rm → CC(Rm) is a family of mappings such that any Φk is

continuous w.r.t. distH and d-close to F in the a-neighborhood of η, i.e.,

distH(F (pk + v), Φk(pk + v)) < d for any k ∈ Z and |v| ≤ a, (12)

where d < (1 − λ)a, then there exists a solution ξ = {xk} ∈ (Rm)Z of the
inclusions

xk+1 ∈ Φk(xk), k ∈ Z, (13)

such that

||η − ξ||∞ ≤ d

1 − λ
.

Proof. Let Hd and H∞
d be as in the proof of Theorem 1. Take some V =

{vk} ∈ H∞
d and define a sequence W = {wk} by

wk+1 = Dev(pk+1, Φk(pk + vk)).

By our conditions on the mappings Φk, the operator defined by σ(V ) :=
W is continuous w.r.t. the Tikhonov topology. Furthermore,

|wk+1| ≤ dist(pk+1, F (pk)) + distH(F (pk), F (pk + vk)) +

+ distH(F (pk + vk), Φk(pk + vk)) ≤

≤ λ|vk| + d ≤ d

1 − λ
;
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hence, W ∈ H∞
d .

By the Tikhonov-Schauder theorem, there exists a sequence V = {vk} ∈
H∞

d such that σ(V ) = V . Thus,

pk+1 + vk+1 = pk+1 + Dev(pk+1, Φk(pk + vk)) ∈ Φk(pk + vk),

and ξ = {xk} ∈ (Rm)Z given by xk := pk + vk is a solution of (13) such that

||η − ξ||∞ = ||V ||∞ ≤ d

1 − λ
.

Remark 9. Note again that the T -flow of the differential inclusion (7) satis-
fies the stability condition (11) if its right hand side is ROSL with a constant
µ < 0. Hence, every trajectory of the T -flow is shadowed by an approximate
trajectory.

Similarly to the case of shadowing, Theorem 8 can be generalized to
mappings which contain sufficiently large “continuous convex kernels”.

Theorem 10. Let η = {pk} ∈ (Rm)Z be a trajectory of a set-valued dynamical
system generated by a mapping F : Rm → 2Rm \{∅} that satisfies the stability
condition (11) at the trajectory η.

Let {Φk} be a family of mappings Φk : Rm → 2Rm \ {∅} that are d-close
to F in the a-neighborhood of η, i.e., conditions (12) are satisfied, where
d < (1 − λ)a.

Finally, let Γk : Rm → CC(Rm) be another family of mappings such that
any mapping Γk is continuous w.r.t. distH and satisfies the following assump-
tions:

Γk(x) ⊂ Φk(x) and distH(Γk(x), Φk(x)) < d.

Then there exists a solution ξ = {xk} ∈ (Rm)Z of (13) such that

||η − ξ||∞ ≤ 2d

1 − λ
.

Proof. Now we take the same Hd and H∞
d as in the proof of Theorem 3. Take

V = {vk} ∈ H∞
d and define a sequence W = {wk} by

wk+1 = Dev(pk+1, Γk(pk + vk)).

Again, the operator defined by σ(V ) := W is continuous w.r.t. the Tikhonov
topology. Furthermore,

|wk+1| ≤ dist(pk+1, F (pk)) + distH(F (pk), F (pk + vk)) +

+ distH(F (pk + vk), Φk(pk + vk)) + distH(Φk(pk + vk), Γk(pk + vk)) ≤

≤ λ|vk| + 2d ≤ 2d

1 − λ
,
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hence W ∈ H∞
d .

By the Tikhonov-Schauder theorem, there exists a sequence V = {vk} ∈
H∞

d such that σ(V ) = V . Thus,

pk+1 + vk+1 = pk+1 + Dev(pk+1, Φk(pk + vk)) ∈ Φk(pk + vk),

and ξ = {xk} ∈ (Rm)Z given by xk := pk + vk is a solution of (13) such that

||η − ξ||∞ = ||V ||∞ ≤ 2d

1 − λ
.
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