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Abstract

Integral phase conditions were first suggested by E.J. Doedel as an effi-
cient tool for computing periodic orbits in dynamical systems. In general,
phase conditions help in eliminating continuous symmetries as well as in
reducing the effort for adaptive meshes during continuation. In this paper
we discuss the usefulness of phase conditions for the numerical analysis
of finite- and infinite-dimensional dynamical systems that have continu-
ous symmetries. The general approach (called the freezing method) will
be presented in an abstract framework for evolution equations that are
equivariant with respect to the action of a (not necessarily compact) Lie
group. We show particular applications of phase conditions to periodic,
heteroclinic and homoclinic orbits in ODEs, to relative equilibria and rel-
ative periodic orbits in PDEs as well as to time integration of equivariant
PDEs.

1 Introduction

There is a long tradition in using continuous symmetries for the analysis of
differential equations; see for example the monographs [10, 21, 33]. In general,
such symmetries are expressed as the equivariance of the differential operator
with respect to the action of a Lie group. Solutions of the differential equation
then come in group orbits and this has interesting consequences, for example
inherent symmetries of solutions or symmetry breaking bifurcations. In the
theory of equivariant systems one usually tries to reduce the differential equation
to the so called orbit space the elements of which are equivalence classes created
by applying the group action to a single point in phase space. After factoring
out the group action in this way one applies specific results on existence and
uniqueness of solutions, on bifurcations, or on asymptotic stability.

Contrary to the situation in theory the use of continuous equivariances for
efficient numerical computations seems to be rather rare. An early exception
is E.J. Doedel’s integral phase condition [13] for the computation of periodic
orbits in autonomous ODEs.

∗Department of Mathematics, Bielefeld University, supported by CRC 701.

1



It is a typical example to show that a judicious use of symmetry (in this
case equivariance with respect to time shifts) can enhance rather than hamper
efficiency of a numerical method. Namely, less effort for mesh adaptation is
needed and larger continuation steps are possible.

The ODE example also shows another paradigm of numerical bifurcation
analysis. While theory prefers to reduce problems, e.g by Lyapunov Schmidt or
center manifold reduction, it seems advantageous to rather extend the problem
for numerical purposes (e.g. by choosing unfolding parameters) and adding extra
constraints (e.g. normalizing conditions for eigenvectors). In this way one can
keep as much structure as possible from the original problem and simultaneously
use the normalizing conditions to optimize the conditioning of the extended
problem.

For equivariant evolution equations this means that one should have an extra
parameter (here an element in the associated Lie algebra) that determines the
position on the group orbit, and impose further constraints or phase conditions
such that the point in phase space (e.g. the spatial profile in case of a PDE)
varies as little as possible. Such an approach was developed in [34] and [7] and
will be the main topic of this paper.

After reviewing in Section 2 phase conditions that eliminate the time shift
in ODEs, we set up in Section 3 the general freezing method within an abstract
framework. We then apply our method to the computation of various spatio-
temporal patterns such as traveling and modulated waves in one, spiral waves
in two and scroll waves in three space dimensions. For problems in one space
dimension we will also investigate asymptotic stability and discuss the errors
introduced by finite boundary conditions.

2 Phase conditions for orbits in ODEs

Consider a dynamical system generated by an autonomous n−dimensional or-
dinary differential equation

ut = f(u), u(t) ∈ R
n, f : R

n → R
n smooth. (1)

Due to its autonomous character the nonlinear differential operator

Lu = ut − f(u),

has a simple equivariance with respect to time shifts. I.e. for all γ ∈ R and for
all u in some function space we have

[Lu](· − γ) = L[u(· − γ)]. (2)

Depending on the application appropriate function spaces may be chosen as the
Sobolev space H1(R,Rn), the space of bounded uniformly continuous C1−functions
C1

unif(R,R
n) or the space of one-periodic functions C1

per(R,R
n).
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2.1 Periodic orbits

In order to determine a periodic orbit of the system (1) we should find a period
T > 0 and a solution u(t) of the boundary value problem

ut = f(u), t ∈ [0, T ], u(0) = u(T ).

Introducing the scaled function v(t) = u(tT ), t ∈ [0, 1] the boundary value
problem for (v, T ) ∈ C1([0, 1],Rn) × R now reads

vt = Tf(v), t ∈ [0, 1], v(0) = v(1). (3)

Due to equivariance (2) the solutions of (3) are only determined up to a phase
shift and a further condition is needed to make the solution unique. In the first
publication on the continuation package Auto [13] Doedel suggested to use an
anchor equation (as it was called in [13]) that tries to minimize the L2-distance
to some template function v̂ ∈ C1

per(R,R
n), i.e. tries to minimize

ρ(v, γ) =

∫ 1

0

||v(t− γ) − v̂(t)||22 dt = ||v(· − γ) − v̂||2L2
. (4)

By differentiating with respect to γ a necessary condition for a local minimum
is

∫ 1

0

(v(t− γ) − v̂(t))T v̂t(t) dt = 0. (5)

A more formal statement is contained in the following lemma; see [4] for a proof.

Lemma 2.1. Suppose that v̂ ∈ C1
per(R,R

n) is a nonconstant 1−periodic func-
tion. Then there exist neighborhoods U of v̂ in the C1−topology and Γ ⊂ R

of 0 such that for any v ∈ U the L2-distance from (4) has a unique minimum
at γ = γ(v) ∈ Γ where γ : U → V is a C1−mapping satisfying γ(v̂) = 0 and
condition (5).

During computations one selects v such that the phase condition (5) holds
at γ = 0, i.e.

∫ 1

0

(v(t) − v̂(t))T v̂t(t)dt = 0. (6)

This condition has several advantages over a Poincaré type condition such as

(v(0) − v̂(0))T f(v̂(0)) = 0. (7)

If v̂ is a good approximation of v obtained from continuation along a branch,
then condition (6) tries to keep a steep front or a peak of the solution in the
same place. Usually this facilitates mesh adaptation and simultaneously allows
for larger step-sizes along branches. This phase condition is now built into
standard continuation packages such as Auto (with HomCont) [14], Content

[25] and Matcont [12]. It has proved to be most reliable in many applications.
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For an illustration we take the model example from [13], namely

(

u1

u2

)

t

=

(

(1 − λ)u1 − u2

u1 + u2
1

)

.

This system is in fact Hamiltonian at λ = 1 and a continuous family of cycles
bifurcating from the origin and ending in a homoclinic orbit exists. For a de-
tailed treatment of the Hamiltonian case we refer to [32]. Figure 1 shows the
result of continuing the periodic orbits with both phase conditions (6) and (7).
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Figure 1: Effect of an integral phase condition (a) and of a point phase condition
(b).

We finally mention that conditions (6) and (7) are special cases of the general
form ψ(v) = 0, where ψ : C1([0, 1],Rn) → R is a C1 mapping. Following [4, 17],
one can characterize the admissible phase conditions that lead to a regular
solution (v, T ) ∈ C1([0, 1],Rn) × R of the operator equation

F (v, T ) = (vt − Tf(v), v(0) − v(1), ψ(v)) = 0 (8)

as follows. Let u(t) be a T -periodic solution of (1) such that v(t) = u(tT )
satisfies ψ(v) = 0. Then the pair (v, T ) is a regular solution of (8), if and
only if, 1 is a simple Floquet multiplier and Dψ(v)vt 6= 0 where Dψ denotes
the Frechet derivative of ψ. An easy calculation shows, that the last condition
requires 〈vt, v̂t〉L2

6= 0 for (6) and vt(0)T f(v̂(0)) 6= 0 for (7). One may call (8) a
defining equation for an isolated periodic orbit. The recent paper [16] provides
a considerable extension of this general approach to defining equations for all
codimension 1 bifurcations of periodic orbits, namely: fold (saddle-node), flip
(period-doubling) and Neimark-Sacker bifurcations; see also [26].

2.2 Homoclinic and heteroclinic orbits

It is natural to extend the numerical methods for periodic orbits to orbits
that connect stationary points in infinite time. Such orbits typically occur in
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parametrized systems

ut = f(u, λ), u(t) ∈ R
n, f : R

n × R
p → R

n smooth. (9)

Connecting orbits have numerous applications, in particular they appear as
traveling waves of PDEs; see Section 3.1.

Definition 2.2. A pair (ū, λ̄) ∈ C1(R,Rn) × R
p is called a connecting orbit

pair of the system (9) if ū is a solution of (9) at λ = λ̄ and if the following limits
exist

lim
t→∞

ū(t) = ū+, lim
t→−∞

ū(t) = ū−. (10)

The connecting orbit is called homoclinic if ū+ = ū− and heteroclinic otherwise.

From (10) we infer that ū± are stationary points, i.e. f(ū±, λ̄) = 0 and that
ū ∈ C1

b (R,Rn), i.e. C1 and bounded on R. Nondegeneracy of a connecting orbit
may be defined as follows; cf. [3].

Definition 2.3. A connecting orbit pair (ū, λ̄) is called nondegenerate if the
following conditions hold:

(i) The matrices fu(ū±, λ̄) ∈ R
n,n are hyperbolic with n±s eigenvalues of

negative real part and n±u = n− n±s eigenvalues of positive real part.

(ii) p = n−s − n+s + 1

(iii) If u ∈ C1
b (R,Rn), λ ∈ R

p satisfies the variational equation
ut = fu(ū, λ̄)u+ fλ(ū, λ̄)λ, then λ = 0 and u = cūt for some c ∈ R.

Conditions (i) and (ii) ensure that the dimension n−u + p of the center-
unstable manifold of (ū−, λ̄) in the extended phase space R

n × R
p and the

dimension n+s + p of the center-stable manifold of (ū+, λ̄) add up to n+ p+ 1
which is one more than the dimension of the extended phase space R

n × R
p.

Condition (iii) then guarantees that these two manifolds intersect transversely
in the connecting orbit {(ū(t), λ̄) : t ∈ R}. Similar to the periodic case one can
characterize connecting orbit pairs as regular solutions of an operator equation

F (u, λ) = (ut − f(u, λ), ψ(u, λ)) = 0, (11)

where the phase condition is defined by a smooth map
ψ : C1

b (R,Rn,n) × R
p → R; see [3] for a proof.

Proposition 2.4. Let (ū, λ̄) be a connecting orbit pair satisfying ψ(ū, λ̄) = 0
and conditions (i) and (ii) of Definition 2.3. Then (ū, λ̄) is a regular solution
of (11) if and only if the orbit pair is nondegenerate and ψu(ū, λ̄)ūt 6= 0.

The analog of the functional (4) to be minimized is

ρ(u, γ) =

∫ ∞

−∞

||u(t− γ) − û(t)||22 dt = ||u(· − γ) − û||2L2
= ||u− û(· + γ)||2L2

,
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where we take u ∈ û + H1 and assume that û ∈ C2
b (R,Rn) is a template

function that satisfies ût ∈ H1. Then the phase condition is again obtained
from the necessary condition of a minimum 〈u − û, ût〉L2

= 0. In applications
it may be unrealistic to assume that such a template function is known be-
cause it essentially requires to know ū± beforehand and to choose û such that
||û(t)− ū±|| = O(e−α|t|). In general, ū± will depend on λ and be determined by
f(ū±, λ) = 0. Therefore, Doedel and Friedman [15, 20] suggested to minimize
||ut − ût(· − γ)||L2

, which leads to the phase condition

〈ut − ût, ûtt〉L2
= 0. (12)

There are several ways to solve the boundary value problem (11) on the
infinite line. One may discretize using globally defined Galerkin functions or
transform the domain R to a bounded interval and then devise methods that
handle the resulting singularities; see [27, 30, 31]. Perhaps the simplest method
that allows to employ existing boundary value solvers is to approximate (11)
by a finite boundary value problem on some large interval J = [T−, T+]. This
approach was proposed and analyzed in [] and implemented in the HomCont

part of Auto [14].
For u ∈ C1(J,Rn), λ ∈ R

p we consider the finite boundary value problem

FJ(u, λ) = (ut − f(u, λ), B(u(T−), u(T+)), λ), ψJ (u, λ)) = 0, (13)

where the smooth maps B : R
2n+p → R

n+p−1,(u−, u+, λ) 7→ B(u−, u+, λ) and
ψJ : C1(J,Rn)×R

p → R determine the boundary condition and the approximate
phase condition respectively. The error introduced by this approximation can
be estimated as follows (see [3],[20],[41]).

Theorem 2.5. Let (ū, λ̄) be a nondegenerate connecting orbit pair of (9) such
that

(i) B(ū−, ū+, λ̄) = 0 and the matrix
(

∂B
∂u−

(ū−, ū+, λ̄)X−s
∂B
∂u+

(ū−, ū+, λ̄)X+u

)

∈ R
n+p−1,n+p−1

is nonsingular, where the columns of X−s ∈ R
n,n−s and X+u ∈ R

n,n+u

form a basis of the stable subspace of fu(ū−, λ̄) and of the unstable subspace
of fu(ū+, λ̄) respectively;

(ii) ψ(ū, λ̄) = 0, ψJ (ū|J , λ̄) → 0 as J → R, the derivatives DψJ are equicon-
tinuous in a uniform neighborhood of (ū|J , λ̄) and |DψJ (ū|J , λ̄)ū′|J | ≥ δ >

0 for some δ > 0.

Then there exist constants ρ,K > 0 and an interval J0 ⊂ R with the following
properties. For all J0 ⊂ J the boundary value problem (13) has a unique solution
(uJ , λJ) in a C1-ball of radius ρ and center (ū|J , λ̄). Furthermore, there is a
unique phase shift γJ near zero such that ũ = ū(·−γJ ) satisfies ψJ(ũ|J , λJ ) = 0
and the following estimate holds

||ũ|J − uJ ||C1 + ||λ̄− λJ || ≤ C||B(ũ(T−), ũ(T+), λ̄)||. (14)
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In view of (12) and (13) it is natural to take the phase conditions

ψJ(u, λ) = 〈u− û, ût〉L2(J) or ψJ(u, λ) = 〈ut − ût, ûtt〉L2(J).

The most natural choice for boundary conditions are so called projection bound-
ary conditions that force the endpoints u(T−), u(T+) to lie in the tangent space
of the unstable manifold at ū− and the stable manifold at ū+. These conditions
may be written as

B(u−, u+, λ) =

(

Y T
−s(λ)(u− − u−(λ))
Y T

+u(λ)(u+ − u+(λ))

)

, (15)

where f(u±(λ), λ) = 0 and the columns of Y−s(λ) ∈ R
n,n−s and Y+u(λ) ∈

R
n,n+u form a basis of the stable subspace of fT

u (u−(λ), λ) and of the unstable
subspace of fT

u (u+(λ), λ) respectively. Note that, by Definition 2.3, equation
(15) imposes n−s + n+u = n + p − 1 boundary conditions. Methods to com-
pute these matrices such that they depend smoothly on the parameter λ were
proposed in [3] and, more recently, via a smooth block Schur decomposition in
[11]. For numerous computations that apply this approach to specific examples
we refer to [3, 14, 15, 20].

We finally notice that projection boundary conditions imply exponential
decay of the term on the right hand side of (14). More precisely, we have

||ũ|J − uJ ||C1 + ||λ̄− λJ || = O(e2α−T− + e−2α+T+),

where 0 < α− < ℜ(µ) for all eigenvalues µ of fu(ū−, λ) with positive real part
and ℜ(µ) < −α+ < 0 for all eigenvalues eigenvalues of fu(ū+, λ̄) with negative
real part. For the parameter a superconvergence behavior was observed in [3]
and a corresponding estimate proved in [35], namely:

||λ̄− λJ || = O(e(2α−+α+)T− + e−(2α++α−)T+).

.

3 Phase conditions and equivariant PDEs

In this section we consider time-dependent PDEs that have continuous sym-
metries in the spatial operator. Therefore we will be concerned with phase
conditions that act on the spatial variables of the solutions. First, we introduce
the method of freezing that employs phase conditions in order to decompose a
time dependent solution into a time-dependent group orbit and a spatial profile
that varies as little as possible. Second, this method will be used to compute rel-
ative equilibria, i.e. spatial profiles the group orbits of which are invariant under
the PDE flow. The underlying general approach was developed independently
in [34] and in [7].
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3.1 Traveling waves

A special class of relative equilibria in one space dimension are traveling wave
solutions u(x, t) = v̄(x− λ̄t) of parabolic PDEs

ut = Auxx + f(u), u(·, 0) = u0, x ∈ R, u(x, t) ∈ R
m, (16)

where A ∈ R
m,m is positive definite, v̄ denotes the profile of the wave and λ̄ ∈ R

its velocity.
These solutions are stationary in the moving coordinate system which is

obtained via the transformation v(ξ, t) = u(x, t), ξ = x− λ̄t, i.e. v̄ and λ̄ solve

0 = Av̄xx + f(v̄) + λ̄v̄x. (17)

Given a stationary solution v̄, each shifted version v̄γ = v̄(·−γ) is also a solution
of (17). As in Section 2 we add a phase condition defined by some functional ψ
in order to obtain a well posed boundary value problem for (v, λ), namely:

0 = Avxx + f(v) + λvx,

0 = ψ(v, vx, λ).

The natural choice for ψ stems from the phase condition discussed in Section
2. One minimizes the H1-distance or the L2-distance to a template function v̂.
This leads to the functional ψ(v) = 〈v̂x, v − v̂〉H1 or

ψ(v) = 〈v̂x, v − v̂〉L2
. (18)

Transforming to a first order system we can apply the results from Section 2 for
studying well-posedness (Proposition 2.4) and approximation (Theorem 2.5).

In our next step we are going to use phase conditions also for the non sta-
tionary case. Now we let the transformation into the moving frame depend on
time in the following way

u(x, t) = v(x− γ(t), t), (19)

where γ(0) = 0 and we define λ(t) = γ̇(t). With this setting equation (16)
together with the phase condition transforms into a partial differential algebraic
equation (PDAE) for (v, λ), namely:

vt = Avxx + f(v) + λvx, v(·, 0) = u0,

0 = ψ(v, vx, λ).
(20)

Note that the initial value λ(0) is not prescribed but, as usual with DAEs, is
determined by differentiating the constraint ψ = 0 with respect to time and
using the differential equation. In Section 3.3 we will discuss possible choices
for the phase condition that lead to PDAEs of different index. System (20) can
be completed by the simple ODE γ̇ = λ(t), γ(0) = 0 (called the reconstruction
equation in [34]). The traveling wave (v̄, λ̄) now appears as a stationary solution
of the system (20) and, in case of stability, we expect the solution of (20) to
converge to (v̄, λ̄) during time evolution; see Section 4.
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(a) (b)

Figure 2: Calculation of a wave in the Nagumo equation (21): traveling wave
(a) and frozen wave (b).

Example 3.1. The standard toy example of a traveling wave is a heteroclinic
orbit between two metastable states in the Nagumo equation [23]

ut = uxx + u(1 − u)(u− a), u(x, t) ∈ R, x ∈ R, t > 0, (21)

where a ∈ (0, 1
2 ). An explicit traveling wave connecting the stationary points

u− = 1, u+ = 0 is

v̄(x) = 1 −
(

1 + e
−x
√

2

)−1

, λ̄ =
√

2 ( 1
2 − a). (22)

In Figure 2 we show the results of a numerical computation for a = 0.25
with finite differences in space (∆x = 0.1) and the implicit Euler method in
time (∆t = 0.1). Panel (a) is for the the non-frozen system (21) and panel (b)
for the frozen system (20). In both cases the spatial interval is J = [−30, 30] and
we use Dirichlet boundary conditions. Similar to Section 2, the frozen system
has the advantage that steep gradients stay in approximately the same place
and the front does not leave the computational domain in finite time.
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Figure 3: Calculation of a wave in the Nagumo equation (21): (t, x)-plot of the
frozen wave (a), and time evolution of λ (b).
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In Figure 3 we show another representation of the frozen wave as a color-
coded (t, x)-plot in panel (a), while panel (b) is the time evolution of the velocity
λ. This kind of plot will be used throughout the paper.

Example 3.2. We consider an autocatalytic system [1, 28] as given by

ut = auxx − uf(v), a > 0, u, v : R → R

vt = vxx + uf(v),
(23)

where f(v) = vm for v ≥ 0 and zero otherwise. This system has traveling wave
solutions if the parameter m ≥ 2 is not too large. As in [1, 28] we choose
limit values (u−, v−) = (0, 1), (u+, v+) = (1, 0) in order to eliminate a scaling
invariance.

Figure 4(a) and (b) show the solution of the original and of the frozen system,
respectively, in an interval of length 100 for the original system and of length
30 for the frozen system. Here a = 0.1, m = 2, and we used the Crank-
Nicholson method (∆x = 0.1, ∆t = 0.1) and Dirichlet boundary conditions.
Figure 4(c) and (d) show the u- and v-components of the frozen system and
the time evolution of µ. Again, the example shows how the method of freezing
allows to observe phenomena that become visible only after a transient phase,
while in a direct numerical simulation the solution may leave the finite domain
before the steady profile appears.

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

 

 

u, v

u
v

x
0 20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

1

µ

t

(a) (b)

(c) (d)

Figure 4: Calculation of a wave in autocatalytic system (23): traveling wave
(a), frozen wave (b), u- and v-component at t = 100 (c), and time evolution of
µ (d).
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3.2 Freezing solutions of equivariant PDEs

Let M be a manifold modelled over some Banach space X and let N be a sub-
manifold modelled over some dense subspace Y ⊂ X [9]. Consider an evolution
equation

ut = F (u), u(0) = u0, (24)

with a vector field F : N → TM where TM denotes the tangent bundle of M .
We assume that (24) is equivariant with respect to a finite dimensional (possibly
non-compact) Lie group G acting on M via

a : G×M →M, (γ, v) 7→ a(γ, v),

with the property

a(γ1 ◦ γ2, v) = a(γ1, a(γ2, v)), a(1, v) = v, 1 = unit element in G.

By equivariance we mean that the following relation holds

a(γ,N) ⊂ N ∀γ ∈ G,

F (a(γ, u)) = Ta(γ, u)F (u), ∀u ∈ N, γ ∈ G,

where Ta : G × TM → TM denotes the tangent action of a. We assume that
the linear map

Ta(γ, v) : TvM → Ta(γ,v)M, w 7→ Ta(γ, v)w

is a homeomorphism for each v ∈M (Note that a(g, ·) corresponds to Φg : N →
N in [29, 34] and Ta(g, ·) corresponds to Ψg : TM → TM) . Furthermore, we
assume that for any v ∈M the map

a(·, v) : G→M, γ 7→ a(γ, v)

is continuous and that it is continuously differentiable for any v ∈ N with
derivative denoted by

da(γ, v) : TγG→ Ta(γ)vM, λ 7→ da(γ, v)λ.

For the construction of some spaces that satisfy this smoothness requirement
we refer to [7]. Finally, we denote by Lγ : G→ G, g 7→ γ ◦ g the multiplication
by γ ∈ G from the left and by dLγ(g) : TgG → Tγ◦gG its derivative. Then we
define the exponential exp(tµ) for µ in the Lie algebra T1G as the solution of

γ̇ = dLγ(1)µ.
The evolution of γ(t) describes the motion on the group. Other equivalent
definitions of exp are in common use [9, 10, 29].

Generalizing the ansatz (19) to u(t) = a(γ(t), v(t)) equation (24) can be
transformed into a system for the unknowns v(t) ∈M , γ(t) ∈ G, µ(t) ∈ T1G as
follows (cf. [7, 34]).

vt = F (v) − da(1, v)µ, v(0) = u0 (25a)

γ̇ = dLγ(1)µ, γ(0) = 1. (25b)
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Lemma 3.3. For some T > 0 let u ∈ C1((0, T ],M) ∩ C([0, T ], N) be a so-
lution of (24) and let γ ∈ C1([0, T ], G) be arbitrary with γ(0) = 1. Then
v(t) defined by u(t) = a(γ(t), v(t)) and µ(t) defined by (25b) are solutions of
equation (25a). Conversely, assume that v ∈ C1((0, T ],M) ∩ C([0, T ], N) and
µ ∈ C1([0, T ], T1G) solve equation (25a) and define γ ∈ C1([0, T ], G) as the
solution of (25b). Then u(t) = a(γ(t), v(t)) solves equation (24) on [0, T ].

Proof. Insert the ansatz u(t) = a(γ(t), v(t)) into (24) and use equivariance to
obtain

da(γ, v)γ̇ + Ta(γ, v)vt = ut = F (u) = F (a(γ, v)) = Ta(γ, v)F (v). (26)

Differentiating the relation a(γ ◦ g, v) = a(γ, a(g, v)), g, γ ∈ G, v ∈ N with
respect to g at g = 1 leads to

Ta(γ, v)da(1, v)µ = da(γ, v)dLγ(1)µ, ∀µ ∈ T1G. (27)

Finally, define µ(t) by γ̇(t) = dLγ(1)µ and combine (26), (27) to find

Ta(γ, v) [vt − F (v) + da(1, v)µ] = 0,

and, hence, (25a) by the invertibility of Ta(γ, v). The converse is proved in a
similar way.

Lemma 3.3 shows that system (25) does not have a unique solution (v, µ, γ).
Rather we have p = dimG additional degrees of freedom that will be fixed by
a phase condition ψ : N × T1G→ R

p. The phase condition together with (25a)
yields a PDAE for v and µ, namely:

vt = F (v) − da(1, v)µ,
0 = ψ(v, µ).

(28)

Equation (25b) is called the reconstruction equation in [34]. It is decoupled from
system (28) and can be solved by an a-posteriori process.

The traveling waves in Examples 3.1 and 3.2 easily fit into the abstract
framework.

Example 3.4. For the Lie group G = R consider the shift action a(γ, u)(x) =
u(x − γ). There are different possiblities for the choice of spaces M and N .
Either take M = Cunif , N = C2

unif or M = w + L2 ⊃ N = w + H2 where
w ∈ C2

b (R,R2) satisfies wx, wxx ∈ L2 and has the correct limit behavior, e.g.
w(x) = ū± + O(e−α|x|) as x → ±∞. For the last choice we actually use the
manifold structure of M and N . In both cases we have da(1, v)µ = −µvx and
using a template function v̂ ∈ N the system (28) is given by (20) with ψ given
in (18).

Example 3.5. Consider a system (16) of dimension m = 2 such that the nonlin-
earity is equivariant with respect to rotations, i.e.

f(Rρv) = Rρf(v) ∀v ∈ R
2, ρ ∈ R, where Rρ =

(

cos ρ − sin ρ
sin ρ cos ρ

)

.
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Figure 5: Conditions ψfix (a) and ψmin (b).

Equations of this type arise as real versions of complex-valued systems for ex-
ample the Ginzburg-Landau equation. The Lie group is G = S1 × R and the
action a : G× L2 → L2 on u : R → R

2 at γ = (ρ, τ) is given by

a(γ, u)(x) = R−ρu(x− τ).

With M = L2, N = H2 we obtain da(1, v)(µτ , µρ) = −vxµτ − Rπ

2
vµρ and (28)

has the form
vt = Avxx + µτvx + µρRπ

2
v + f(v),

0 = 〈v̂′, v − v̂〉L2
, 0 = 〈Rπ

2
v, v − v̂〉L2

.

The reconstruction equations read τ̇ = µτ , τ(0) = 0 and ρ̇ = µρ, ρ(0) = 0.

3.3 Fixed versus minimizing phase conditions

In the abstract setting of Section 3.2 assume that M is a Banach space in which
we have a continuous inner product 〈·, ·〉2 with associated norm ||v||2. One
way to set up a phase condition (in the spirit of Section 2) is to minimize the
distance of the frozen solution v from the group orbit O(v̂) = {a(γ, v̂) : γ ∈ G} of
a template function v̂; see Figure 5(a). The necessary condition for a minimum
of ‖a(γ, v̂) − v‖2 to occur at γ = 1 is

ψfix(v)µ = 〈da(1, v̂)µ, v − v̂〉2 = 0 ∀µ ∈ T1G. (29)

In the beginning one may choose as template the initial value v̂ = u0. Note that
ψ in (29) maps into the dual T ∗1G of the Lie algebra which is isomorphic to R

p.
Another possibility is to minimize the temporal change ‖vt‖2 at each time

instance which leads to the condition

ψmin(v)µ = 〈da(1, v)µ, vt〉2 = 0 ∀µ ∈ T1G. (30)

As illustrated in Figure 5(b) this condition requires the frozen trajectory v(t)
to be orthogonal to the group orbit of v(t) at all times.

For the case of traveling waves we show how to transform solutions of the
PDAE for both phase conditions into each other, i.e., we transform solutions

13



(v, λ) of
vt = vxx + f(v) + λvx

0 = 〈v̄x, v − v̄〉L2

(31)

into solutions (w, µ) of
wt = wxx + f(w) + λwx

0 = 〈wx, wt〉L2
.

(32)

The following Lemma will be used for the stability analysis in Section 4.3.

Lemma 3.6. Let (v, λ) be a solution of (31). Then (w, µ) defined by

w(x, t) = v(x− η(t), t), µ = λ− η̇,

and

η(t) =

∫ t

0

〈vx(·, τ), vt(·, τ)〉L2

‖vx(·, τ)‖2
L2

dτ

is a solution of the system (32).

Proof. We have

wt = vt − vxη̇ = vxx + f(v) + (λ− η̇)vx = wxx + f(w) + µwx.

With the shift invariance of 〈·, ·〉L2
and the definition of η we get

〈wt, wx〉L2
= 〈vt − η̇vx, vx〉L2

= 0.

4 Relative equilibria and stability

In this section we study relative equilibria of equivariant evolution equations.
In particular, we consider relative equilibria of parabolic systems in one space
dimension. We use phase conditions to approximate relative equilibria on finite
intervals and study their asymptotic stability in the Lyapunov sense via the
freezing method.

4.1 Relative Equilibria

We seek for solutions of (24) which have the special form u(t) = a(γ(t), v̄) for
some time independent function v̄.

Definition 4.1. A solution ū of (24) is called a relative equilibrium if it has the
form ū(t) = a(γ̄(t), v̄) for some v̄ ∈ N and for some function γ̄ ∈ C1([0,∞), G).

Without loss of generality we can assume γ̄(0) = 1. Usually the whole group
orbit O(v̄) = {a(γ, v̄), γ ∈ G} is called a relative equilibrium, if it is invariant
under the semi-flow; see [10, 29]. We found the equivalent constructive definition
above more convenient from a numerical point of view [7], because it includes
explicitly the orbit γ̄(t) on the group. The following lemma shows the connection
between ū, γ̄ and v̄.
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Lemma 4.2. Let ū(t) = a(γ̄(t), v̄) be a relative equilibrium with trivial stabilizer
Sv̄ = {γ ∈ G : a(γ, v̄) = v̄}. Then there exists µ̄ ∈ T1G such that (v̄, µ̄) solve

0 = F (v̄) − da(1, v̄)µ̄ (33)

and ˙̄γ = dLγ̄(1)µ̄, γ(0) = 1.
Conversely, if (33) holds for (v̄, µ̄) then ū(t) = a(γ̄(t), v̄) with γ̄ = exp(tµ̄)

is a relative equilibrium of (24).

Proof. The orbit O(v̄) has tangent space Tv̄O(v̄) = range(da(1, v̄)) and it is
well known [10, Lemma 4.10.4] that dimTv̄O(v̄) = dimG − dimSv̄. Hence the
stabilizer is trivial, if and only if, da(1, v̄) is one-to-one. By Lemma 3.3 we
find that µ̄(t) = dLγ(1)−1 ˙̄γ ∈ T1G is continuous and satisfies (33). Since v̄ is
independent of t and da(1, v̄) is one-to-one, we obtain that µ̄ is independent of
t as well.

Remark 4.3. If v̄ has nontrivial stabilizer then one can still write γ̄ as an expo-
nential in terms of the Lie algebra of the stabilizer and its normalizer; see [10,
Theorem 7.2.4].

Choosing a basis {e1, . . . , ep} in T1G we can identify the Lie algebra with
R

p via µ =
∑p

i=1 µie
i . Further, setting Si(v) = −da(1, v)ei we find from (28)

and Lemma 4.2 the equation to be solved for (v̄, µ̄), namely:

0 = F (v) + S(v)µ, where S(v)µ =

p
∑

i=1

µiS
i(v)

0 = ψ(v, µ).

4.2 Approximation of relative equilibria on finite intervals

We now treat the special case when the evolution equation (24) is a parabolic
system of the form (16). We assume that the operators Si are differential
operators Si(v)(x) = Si

0v(x) + Si
1vx(x) for suitable matrices Si

0, S
i
1 ∈ R

m,m.
For the numerical computation of relative equilibria for (16) we solve a

boundary value problem on a finite interval J = [x−, x+], namely:

0 = Avxx + S(v)µ+ f(v), x ∈ [x−, x+], (34a)

η = Bv, (34b)

0 = 〈Si(v̂)|J , v − v̂|J 〉J , i = 1, . . . , p. (34c)

Here v̂ is a template function and B is the two-point boundary operator

Bv = P−v(x−) +Q−vx(x−) + P+v(x+) +Q+vx(x+), P±, Q± ∈ R
2m,m.

The linearization of (34a) with respect to v at (v̄, µ̄) is given by

Λu = Auxx +Bux + Cu, B =

p
∑

i=1

µ̄iS
i
1, C(x) = f ′(v̄(x)) +

p
∑

i=1

µ̄iS
i
0. (35)
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If limx→±∞ v̄(x) = v± and limx→±∞ v̄x(x) = 0 then Λ turns for x → ±∞ into
the constant coefficient operator

Λ±v = Avxx +Bvx + C±v, C± = lim
x→±∞

C(x).

The main spectral assumptions on Λ are the following:

Hypothesis 4.4 (spectral condition). The eigenvalue 0 lies in the connected
component of C \ {Σ+ ∪ Σ−} that contains a right half plane, where

Σ± = {s ∈ C : det(−κ2A+ iκB + C± − sI) = 0, for some κ ∈ R}.

Hypothesis 4.5 (eigenvalue condition). The functions Si(v̄) = −da(1, v̄)ei,
i = 1, . . . , p lie in H2, are linearly independent and span the null space of
Λ : H2 → L2 i.e. ker(Λ) = span{S1(v̄), . . . , Sp(v̄)}. Moreover, the algebraic
and the geometric multiplicity of zero are both equal to p.

Hypothesis 4.4 guarantees that the quadratic eigenvalue problem associated
with Λ± has m stable and m unstable eigenvalues; cf. [5]. In view of condition
(i) of Theorem 2.5 we consider the following determinant (cf. [5])

D = det

(

(

P− Q−

)

(

Y s
−

Y s
−Σs

−

)

(

P+ Q+

)

(

Y u
+

Y u
+Σu

+

))

, (36)

where (Σs
−, Y

s
−), (Σu

+, Y
u
+ ) ∈ R

m,m ×R
m,m solve the quadratic eigenvalue prob-

lems
AY Σ2 +BY Σ + C±Y = 0

with ℜσ(Σs
−) < 0 and ℜσ(Σu

+) > 0. Then we can formulate the determinant
condition and a consistency assumption for the boundary conditions.

Hypothesis 4.6 (boundary conditions). The boundary condition (34b) is
satisfied at the stationary points v̄±, i.e. η = P−v̄−+P+v̄+ and the determinant
D defined in (36) is non-zero.

As in Section 2 the boundary conditions have to control the terms that grow
in forward time on the positive axis and in backward time on the negative axis.
These are given by the stable/unstable manifolds of the stationary points. Note
that the determinant condition is satisfied for Dirichlet, Neumann and periodic
boundary conditions; cf. [5].

For simplicity we first formulate the theorem for pulses, i.e. we use M = L2,
N = H2. In order to generalize this to fronts one needs the additional condition
a(γ, v̂) − v̄ ∈ H2.

Hypothesis 4.7 (phase condition). The phase condition is satisfied by v̄,
i.e. 〈S(v̂), v̄ − v̂〉L2

= 0, v̄ − v̂ ∈ H1, S(v̂) ∈ L2 and the matrix

〈S(v̂), S(v̄)〉L2
=

(
∫

R

[Si(v̂)](x)T [Sj(v̄)](x)dx

)p

i,j=1

∈ R
p,p

is non-singular.

16



10
−310

−210
−1 20

40
60

80

10
−15

10
−10

10
−5

Th

errλ

10
−310

−210
−1 20

40
60

80

10
−8

10
−6

10
−4

10
−2

Th

errv

(a) (b)

Figure 6: Approximation error errλ = |λh− λ̄| (a) and errv = ‖vh− v̄|Jh

‖H2
h

(b).

The following approximation result is an adaptation of Theorem 2.5 to the
current situation; see [40] for a proof.

Theorem 4.8 (Approximation of relative equilibria on finite intervals).
Assume Hypotheses 4.4–4.7 hold. Then there exist ̺ > 0, T > 0, such that
for min{−x−, x+} > T the boundary value problem (34) has a unique solution
(vJ , µJ ) in a ball B̺(v̄|J , µ̄) = {(v, µ) ∈ H2(J,Rm)×R

p : ‖v̄|J −v‖H2 +‖µ̄−µ‖ <
̺}. Further, there exist group elements γJ ∈ G such that ṽ = a(γJ , v̄) satisfies
the following estimate for some α > 0

‖vJ − ṽ|J‖H2 + ‖µJ − µ̄‖ ≤ const e−α min{−x−,x+}.

A similar version for a full discretization with finite differences can be found
in [43]. In that case one obtains an error estimate on the grid Jh = {hn, n− ≤
n ≤ n+} for the approximate solution (vh, µh), namely:

‖vh − v̄|Jh

‖H2
h

+ ‖µh − µ̄‖ ≤ const (h2 + e−αh min{−n−,n+}), (37)

where ‖ · ‖H2
h

is the discrete analog of the H2 norm. A similar result holds for

the norm ‖ · ‖∞.

Example 4.9. In case of the Nagumo equation from Example 3.1 we can compare
the approximation with the exact solution. Figure 6 shows the approximation
error of the traveling wave for Dirichlet boundary conditions. The grid size h
was varied logarithmically from 10−4 to 10−1 and the size of the symmetric
interval [−T, T ] linearly from 20 to 80. We observe that the convergence of
ṽ and λ̃ to the exact solution v̄ and λ̄ given in (22) is exponential in T and
quadratic in h. This is in good agreement with the approximation result (37).

4.3 Stability of relative equilibria in one space dimension

Stability results for traveling waves on the real line, or more generally, relative
equilibria are well known for parabolic systems [22], [45]. Here the notion of
asymptotic stability with asymptotic phase is used. By the freezing method

17



this notion is converted into the usual asymptotic (Lyapunov-) stability. In
the following we present a stability result for relative equilibria in the frozen
setting. For stability the spectral assumptions 4.4 and 4.5 have to be tightened
as follows.

Hypothesis 4.10. The curves Σ+ ∪Σ− lie in the open left half plane and zero
is the only eigenvalue with real part greater equal zero.

Theorem 4.11 (Stability of relative equilibria). Assume Hypotheses 4.4,
4.5, 4.10 and 4.7 hold. Then there exist ε, ν > 0 such that for all u0 ∈ v̂+H1(R)
with ||u0 − v̄||H1 ≤ ε the system

vt = Avxx + f(v) + S(v)µ, v(·, 0) = u0

0 = 〈S(v̂), v − v̂〉L2

has a unique solution v ∈ C1((0,∞), v̂ + H1(R)) ∩ C([0,∞), v̂ + H1(R)) and
µ ∈ C([0,∞),Rp). Moreover, this solution satisfies

||v(·, t) − v̄||H1 + ‖µ(t) − µ̄‖ ≤ const e−νt‖v0 − v̄‖H1 ∀t ≥ 0.

Remark 4.12. For the case of traveling waves a proof of this theorem can be
found in [42]. The generalization to arbitrary groups is straightforward by the
techniques used for Theorem 4.8. It is also shown in [42] that one can allow
more general nonlinearities f(v, vx) of the form

f(u, v) = f1(u)v + f2(u), f1 ∈ C1(Rm,Rm,m), f2 ∈ C1(Rm,Rm),

where f1, f2, f
′
1, f

′
2 are globally Lipschitz. This includes the case of the nonlin-

earity uux in Burgers equation.
An analogous result for a spatial discretization with finite differences is given

in [42] for traveling waves and in [44] for general relative equilibria in one space
dimension.

Remark 4.13. We note that a general stability theorem for finite dimensional
equivariant systems is given in [10, Th. 7.4.2].

For the special case of stationary solutions of (31) the local stability estimate
reads

‖v(·, t) − v̄‖H1 + |λ(t) − λ̄| ≤ const e−αt‖v0 − v̄‖H1 ∀t ≥ 0. (38)

Using the transformation between the different phase conditions ψfix and ψmin

in Lemma 3.6 we will show how stability transfers to the ψmin case.
We define the bilinear form b : H1 ×H1 → R via

b(u, v) =

∫

R

−ux(x)TAvx(x) + u(x)T (Bvx(x) + C(x)v(x)) dx

where A,B,C(·) are the bounded matrix functions defined in (35). Then we get
via integration by parts

b(v̂x, v) = 〈v̂x,Λv〉L2
for v ∈ H2 and |b(v̂x, v)| ≤ const ‖v‖H1 .
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We define the projector P onto v̂⊥x along v̄x and the projected differential op-
erator ΛP through

Pv = v − v̂x〈v̂x, v̄x〉−1
L2

〈v̂x, v〉L2
, ΛP = PΛ|range(P ).

The following lemma gives the main estimate for solutions of the non-autonomous
PDAE

vt = Λv + µv̄x + g(t, v, µ), v(0) = v0,

0 = 〈v̂x, v〉.
(39)

Lemma 4.14. Assume that g satisfies

‖g(t, v, µ)‖ ≤ const e−βt(‖v‖H1 + ‖µ‖), β > 0. (40)

Then there exist ρ > 0 and ν ∈ (0, β) such that any solution (v, µ) of (39) with
‖v0‖H1 < ρ obeys the exponential estimate

‖v(t)‖H1 + ‖µ(t)‖ ≤ const e−νt‖v0‖H1 . (41)

Proof. The proof relies on the estimates for r ∈ range(P ) and some α > 0

‖eΛP t r‖L2
≤ Ke−αt‖r‖L2

, ‖eΛP t r‖H1 ≤ Ke−αtt−
1
2 ‖r‖L2

(42)

which follow from the fact that the eigenvalue 0 has been eliminated from the
spectrum of ΛP ; cf. [42, Lemma 1.24]. By the variation of constants formula
the PDAE (39) can be written equivalently as

v(t) = eΛP tv0 +

∫ t

0

eΛP (t−s)P g(s, v(s), µ(s))ds

µ(t) = −〈v̂x, v̄x〉−1
L2

[b(v̂x, v(t)) + 〈v̂x, g(t, v(t), µ(t))〉L2
].

(43)

Using this form, one first shows via Gronwall estimates as in [42] a global bound

‖v(t)‖H1 + ‖µ(t)‖ ≤ C‖v0‖H1 ∀t ≥ 0. (44)

From the second equation in (43) we find with (40) that

‖µ(t)‖ ≤ C[‖v(t)‖H1 + e−βt(‖v(t)‖H1 + ‖µ(t)‖)].

Choose T > 0 such that Ce−βT ≤ 1
2 and obtain

‖µ(t)‖ ≤ C‖v(t)‖H1 ∀t ≥ T. (45)

Now choose 0 < ν < min(α, β) and use (42),(44) and (45) in the first equation
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of (43) to obtain

n(t) = ‖v(t)‖H1eνt ≤ C
(

e(ν−α)t‖v0‖H1

+

∫ t

0

e(ν−α)(t−s)

√
t− s

eνse−βs(‖v(s)‖H1 + ‖µ(s)‖)ds
)

≤ C
(

e(ν−α)t‖v0‖H1 + e(ν−α)(t−T )

∫ T

0

e(ν−α)(T−s)

√
t− s

‖µ(s)‖ds

+

∫ t

0

e(ν−α)(t−s)

√
t− s

eνs‖v(s)‖H1ds
)

≤ C
(

e(ν−α)t‖v0‖H1 +

∫ t

0

e(ν−α)(t−s)

√
t− s

n(s)ds
)

.

The Gronwall inequality with weak singularities (cf. [22, Lemma 7.1.1]) yields
the assertion.

Lemma 4.15. Let the assumptions of Theorem 4.11 be satisfied for a noncon-
stant solution (v̄, λ̄) ∈ C

2
b ×R of (31). Then there exists a shift γ ∈ R such that

(v̄(· + γ), λ̄) is an asymptotically stable solution of (32).

Proof. Note that w = vt solves

wt = wxx + f ′(v)w + wxλ+ vxλ̇

0 = 〈v̂x, w〉

and that the first equation with µ := λ̇ is equivalent to

wt = Λw + v̄xµ+ (f ′(v) − f ′(v̄))w + (λ− λ̄)wx + (vx − v̄x)µ.

Now we apply Lemma 4.14 for small ‖v0‖H1 with

g(t, w, µ) = (f ′(v(t)) − f ′(v̄))w + (λ(t) − λ̄)wx + (vx(t) − v̄x)µ.

Note that the exponential decay (40) follows from the stability estimate (38).
Since g is linear in w and µ, we obtain for all v0 from (41) the estimate

‖vt‖L2
+ ‖λ̇‖ ≤ const e−νt‖v0‖H1 ∀t ≥ 0.

By this estimate the following integral exists

η∞ =

∫ ∞

0

〈vx(·, τ), vt(·, τ)〉
‖vx(·, τ)‖2

L2

dτ

and we have

|η(t) − η∞| ≤
∫ ∞

t

|〈vx(·, τ), vt(·, τ)〉|
‖vx(·, τ)‖2

L2

dτ ≤
∫ ∞

t

‖v(·, τ)‖H1‖vt(·, τ)‖L2

‖vx(·, τ)‖2
L2

dτ

≤
∫ ∞

t

(‖v̄‖H1 + Cδ)Ce−ατ

(‖v̄x‖L2
− Cδ)2

dτ ≤ const e−αt.
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Together with the local stability estimate (38) this leads to

‖w(·, t) − v̄(· − η∞)‖H1 + |µ(t) − λ̄|
≤ ‖v(· − η(t), t) − v̄(· − η∞)‖H1 + |λ(t) − η̇(t) − λ̄|
≤ ‖v(·, t) − v̄‖H1 + ‖v̄ − v̄(· + η(t) − η∞)‖H1 + |λ(t) − λ̄| + |η̇(t)|
≤ const e−αt.

5 Spiral waves and beyond

Embedding spiral waves of parabolic systems in R
2 into the abstract framework

of Section 3.2 is a considerable task [37, 46]. Therefore we do not pursue this
in detail here.

5.1 Spiral waves in two space dimensions

Consider a PDE in two space dimensions

ut = ∆u+ f(u), t ≥ 0

u(x, 0) = u0(x), x ∈ R
2.

(46)

This equation is equivariant with respect to the Euclidean group SE(2) = S1
⋉

R
2 ∋ (φ, τ) with action a(γ, v)(x) = v(R−φ(x− τ)) and group multiplication

(φ1, τ1) ◦ (φ2, τ2) = (φ1 + φ2, τ1 +Rφ1
τ2),

where Rφ again denotes rotations; cf. Example 3.5.
Take, for example, v ∈ Cunif = M and N = C2

unif or the subspace Ceucl ⊂
Cunif on which SE(2) acts continuously [46]. Then the infinitesimal genera-
tors da(1, v)ei, i = 1, 2, 3 read da(1, v)e1 = x2vx1

− x1vx2
, da(1, v)e2 = −vx1

,
da(1, v)e3 = −vx2

. For a relative equilibrium u(x, t) = v̄(R−φ(x− τ)) the wave
form v̄ is a solution of

0 = ∆v + f(v) + µ̄1(x1vx2
− x2vx1

) + µ̄2vx1
+ vx2

µ̄3

for some µ̄ ∈ se(2). The motion on the group orbit is given by

γ̇ = dLγ(1)µ̄ =

(

1 0
0 Rφ

)

µ̄

with solution

γ̄(t) =

(

µ̄1t

(I −Rµ̄1t)ξ

)

, where ξ =
1

µ̄1

(

−µ̄3

µ̄2

)

.

Then we can represent the relative equilibrium as follows

ū(x, t) = v̄(R−µ̄1t(x+ (Rµ̄1t − I)ξ)) = v̄(R−µ̄1t(x− ξ) + ξ).
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A fixed reference point x̄ ∈ R
2 with value v̄(x̄) traces the curve

x(t) = Rµ̄1t(x̄− ξ) + ξ, (47)

i.e. a circle of radius ‖x̄− ξ‖ and center ξ. If one uses a geometric definition for
the tip xtip of a spiral wave (see e.g. [8, 46]) then the tip moves on a circle of
radius rtip = ‖xtip − ξ‖. A special case are rigidly rotating Archimedian spirals
which can be written in polar coordinates as v̄(x) = w(r, φ) with w(r, φ) →
w∞(kr + φ) as r → ∞ for some periodic function w∞.

Example 5.1. We use a diffusive version of Barkley’s system [2] as an example,
namely:

ut = ∆u+ 1
ǫ
u(1 − u)(u− 1

a
(v + b)),

vt = Dv∆v + u− v.
(48)

We solve the corresponding PDAE

ut = ∆u+ 1
ǫ
u(1 − u)(u− 1

a
(v + b)) + λ1(yux − xuy) + λ2ux + λ3uy

vt = Dv∆v + u− v + λ1(yvx − xvy) + λ2vx + λ3vy

0 = 〈yûx − xûy, u− û〉L2
, 0 = 〈ûx, u− û〉L2

, 0 = 〈ûy, u− û〉L2

0 = 〈yv̂x − xv̂y, v − v̂〉L2
, 0 = 〈v̂x, v − v̂〉L2

, 0 = 〈v̂y, v − v̂〉L2

with (û, v̂) = (u0, v0) numerically for the parameters Dv = 0.5, a = 0.5, b =
0.05, ǫ = 1

50 by using the Finite Element package Comsol Multiphysics�.
In Figure 7 the time evolution of the u-component and the parameter µ is

displayed.
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Figure 7: Frozen spiral wave of (48): time evolution of u-component (a) and
time evolution of µ (b).

In Figure 8 the prediction of the motion of the tip via (47) (red circle) is
compared to the tip-motion of the non-frozen spiral starting from the same
initial condition (white trace). For the definition of xtip we used the condition
u = 1

2 , v = a
2 − b from [2].
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Figure 8: Prediction of the tip-motion of the spiral wave from Figure 7 via (47)
(red circle) and tip-motion of the non-frozen spiral starting from the same initial
condition (white trace).

5.2 A Scroll wave in 3D

In three space dimensions (46) is equivariant with respect to G = SO(3)⋉R
3 =

SE(3) with action a(γ, v)(x) = v(R−1(x − τ)), γ = (R, τ), τ = (τ1, τ2, τ3) and
group operation γ ◦ γ̃ = (RR̃, τ + Rτ̃). We denote the rotations about the
x1,x2 and x3 axis by Rx1

, Rx2
and Rx3

and for (S1)3 ∋ ρ = (φ1, φ2, φ3) define
Rρ = Rx1

(φ1)Rx2
(φ2)Rx3

(φ3). An easy computation shows that

−da(1)vµ = µ1(vx2
x3 − vx3

x2) + µ2(vx3
x1 − vx1

x3) + µ3(vx1
x2 − vx2

x1)

+ µ4vx1
+ µ5vx2

+ µ6vx3
.

Example 5.2. We consider the following λ− ω system in complex form

ut = ∆u+ (1 − |u|2 − i|u|2)u, x ∈ R
3, u(x, t) ∈ C (49)

for which rigidly rotating waves exist [24].
We use an adapted version of the code Ezscroll [18] and start in a box of

length 40 with ∆x = 0.1 from an initial function

u0(r, ϕ, z) = e
iz

2π
r
40 (cos(ϕ) + i sin(ϕ))),

which ensures that in each z-slice a rotating spiral develops. We use periodic
boundary conditions on the z-faces and Neumann boundary conditions on the
x- and y-faces. Therefore, the initial function initiates a scroll wave twisted
once in the z-direction; see [18, 19] for more on scroll waves and scroll rings.

Figure 9 shows the real part of the solution of the frozen system at the final
time-instance, as well as the time evolution of µ. The solution in panel (a) is
shown in the form of slices in x,y,z-direction through the origin (0, 0, 0) which
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have been projected to the boundaries to increase visibility. From panel (b)
one can see that first the rotation around and the translations along the z-axis
are active. However, after some transient time only the z-translation is used to
freeze the solution.

We expect that this solution has nontrivial stabilizer since vertical motions in
the z-direction and rotations about the z-axis can be exchanged. Our method
seems to work nevertheless. In fact, system (49) is actually equivariant with
respect to the seven-dimensional group S1 × SE(3), where θ = eiρ ∈ S1 acts
as in Example 3.5. Including this symmetry in the computations leads to ill-
conditioned systems when resolving the phase conditions for the seven parame-
ters.
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Figure 9: Three dimensional scroll wave of (49): slices of the development of u
(a) and time evolution of µ (b).

5.3 Relative periodic orbits

For relative periodic orbits we have a similar definition as for relative equilibria.
We seek for solutions of (24) which have the special form ū(t) = a(γ̄(t), v̄(t))
for some time periodic function v̄.

Definition 5.3. A solution ū of (24) is called a relative periodic orbit if it has
the form ū(t) = a(γ̄(t), v̄(t)) where γ̄ : R → G is a smooth curve satisfying
γ̄(0) = 1 and v̄ : R → N satisfies v̄, v̄t, F (v̄) ∈ C(R,M), is non-constant and
time periodic, i.e. v̄(· + T ) = v̄ for some period T > 0.

As for relative equilibria (see Lemma 4.1) we can relate ū, γ̄ and v̄.

Lemma 5.4. Let ū(t) = a(γ̄(t), v̄(t)) be a relative periodic orbit with trivial sta-
bilizer Sv̄(t), t ∈ [0, T ]. Then there exists a T -periodic function µ̄ ∈ C(R, T1G)
such that for all t ∈ R

v̄t = F (v̄) − da(1, v̄)µ̄ (50)

γ̄t = dLγ(1)µ̄, γ(0) = 1. (51)
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Conversely, if µ̄ ∈ C(R, T1G) and v̄ ∈ C1(R,M) with v̄(t) ∈ N ∀t ∈ R are
T -periodic and solve (50), then a(γ̄(t), v̄) with γ̄ defined by (51) is a relative
periodic orbit of (24).

Proof. The proof is similar to that of Lemma 4.2. For the first assertion define
µ̄(t) by (51) and obtain (50) from Lemma 3.3. Equation (50) then shows that
µ̄ is T -periodic. The converse follows in a similar manner.

Scaling with the period T as in Section 2 we find that v(t) = v̄(tT ), µ(t)
solve

vt = T [F (v) − da(1, v)µ], t ∈ [0, 1], v(0) = v(1).

Example 5.5. Examples of relative periodic orbits in one space dimension are
modulated traveling waves [38]. These have the form ū(x, t) = v̄(x− λ̄t, t) with
v̄(x, t) = v̄(x, t + T ). Such solutions occur for example in the autocatalytic
system already considered in Example 3.2. We solve the system for a = 0.1,
m = 9 on an interval of length 35 in the frozen case, and of length 300 for
the direct simulation with ∆x = 0.1, Dirichlet boundary conditions and with a
θ-method with ∆t = 0.1. In Figure 10(a) and (b) the numerical solutions for
θ = 1

2 of the PDE (23) and of the corresponding PDAE (defining the frozen
system) are shown. Panel (c) shows the solution at the last time instance, while
panel (d) displays the time-evolution of µ. The periodicity of the wave and the
velocity can be seen clearly.
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Figure 10: Calculation of a modulated traveling wave in autocatalytic system
(23) for θ = 1

2 : traveling wave (a), frozen wave (b), u- and v-component at
t = 1000 (c), and time evolution of µ (d).
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Figure 11 shows the modulated traveling wave and the frozen wave when
the implicit Euler method is used, that is, θ = 1. Note that the oscillations
are strongly damped for the standard simulation in panel (a), whereas they are
clearly visible in the frozen case in panel (b).

(a) (b)

Figure 11: Calculation of a modulated traveling wave in autocatalytic system
(23) for θ = 1 (implicit Euler method): traveling wave (a), frozen wave (b).

Combining the principles from Sections 2 and 3 for the computation of rela-
tive periodic orbits we arrive at a boundary value problem (in space and time)
for v ∈ C([0, 1],M),µ ∈ C([0, 1], T1G) and T ∈ R as follows:

vt = T [F (v) − da(1, v)µ], v(0) = v(1),

0 = ψ(v)λ =

∫ 1

0

〈da(1, v̂)λ, v − v̂〉 dt ∀λ ∈ T1G,
0 = φ(v) =

∫ 1

0

〈v̂t, v − v̂〉 dt.

Here 〈·, ·〉 denotes an inner product on M and v̂ ∈ C([0, 1],M) is a template
function from continuation.

5.4 Conclusions and perspectives

Phase conditions are an effective tool in selecting specific orbits in equivari-
ant evolution equations. When based on minimization principles they facilitate
mesh adaptation and speed up continuation along branches. In many applica-
tions the underlying symmetry is induced by the Euclidean group SE(d) acting
on functions defined in the whole space R

d. For numerical computations one
has to truncate to bounded domains and use asymptotic boundary conditions.
Truncation in combination with the method of freezing spatio-temporal patterns
in a co-moving frame raises several numerical as well as theoretical problems.
Only a few of them have been tackled in this paper, mainly for parabolic systems
in one space dimension.

Considerable challenges remain, and we expect the further development of
the field to address theoretical and numerical issues, including the following:
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1. Computation and continuation of relative equilibria and relative peri-
odic orbits in equivariant systems, the detection of bifurcation points and
branch switching at symmetry breaking bifurcations; see, for example, the
recent progress by Wulff and Schebesch [47].

2. Adaptation of the freezing method to relative equilibria with non-trivial
stabilizers.

3. Consideration of linear versus nonlinear stability for spatio-temporal pat-
terns in space dimensions ≥ 2. There are extensive studies of the spectra
associated with systems linearized about spiral waves and their truncation
to bounded domains (see [36, 37, 39]), but a result on nonlinear stability
still seems to be lacking.

4. Development of (implementable) asymptotic boundary conditions for spi-
ral waves, scroll waves and the like.

5. Application of the freezing method to viscous conservation laws. As for
modulated or spiral waves, this case is difficult because of the fact, that
the essential spectrum has a quadratic tangency with the imaginary axis;
see [6].
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