
FREEZING STOCHASTIC TRAVELLING WAVES
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Abstract. We consider in this paper a new method for computing stochastic travelling waves that freezes
the wave in the computational domain so it does not move. We obtain a stochastic partial differential algebraic
equation that we then discretize and solve. We compare this to a standard approach of simply solving a stochastic
partial differential equation directly and examine wave profiles and wave speeds for the Nagumo equation. We
examine the effect of multiplicative and additive noise on the speed of propagation with the noise intensity. For
multiplicative Itô noise the wave speed is not always strictly increasing with noise intensity. We illustrate that the
method can be applied when nucleation of new stochastic travelling waves occurs with additive noise. Finally we
compute using a weaker notion of wave speed to freeze the travelling wave.

1. Introduction. The effects of stochastic forcing on solutions of stochastic partial differen-
tial equations (SPDEs) has recently received a great deal of attention in applications ranging from
material science, atmosphere modelling to neural science. Of particular interest are the effects of
noise on travelling waves and fronts as these are often physically important solutions. We use the
term travelling wave to include both travelling and pulses, fronts and waves and we develop in
this paper numerical methods to solve for stochastic versions of these objects.

We consider the stochastic PDE

du =
[

uxx + f(u)
]

dt+ g(u, t)dW (t), given u(0) = u0, x ∈ R. (1.1)

For the most part we understand the noise in the Itô sense although we do also consider the
Stratonovich case. For ease of exposition we take u : R×R+ → R although the obvious extensions
to higher dimensions hold. For additive noise the function g is taken as a constant whereas for
multiplicative noise g depends on u. In the case of no noise (g = 0) we recover the deterministic
PDE

ut = uxx + f(u), given u(0) = u0, x ∈ R. (1.2)

In the deterministic case the analysis of travelling waves both analytically and by numerics is a
mature field. This is not the case for SPDEs where much of the analysis is performed for specific
equations or for the case of small noise. Indeed with stochastic forcing existence for all time of
these waves is not guaranteed and the definition of quantities such as wave speed vary from system
to system. For the case of additive noise the position of a stochastic travelling wave is generally
determined from the position of a level set. The centres of these fronts can be shown, for small
noise, to follow a rescaled Brownian motion, see [25, 7, 12] and in these small noise cases equations
can be obtained for the mean wave speed. In the case of multiplicative noise the front may exist
for all times and the wave front may have compact support and be well–defined over some time
varying interval in space [a(t), b(t)]. Multiplicative noise is seen to change the wave speed of the
wave and the position is seen to diffuse from the mean (or Goldstein mode), for reviews see [14, 20].
However, it is not our aim to replicate these results here. Instead we develop a new computational
technique for computing time dependent waves that may be applied to stochastically forced PDEs.

We extend a numerical method introduced in [5] for deterministic PDEs of the form (1.2)
This method freezes the wave in the computational domain by adding a convection term to the
equation to compensate for the movement of the wave or pulse. Unlike many ad-hoc methods,
where the amount of convection is simply estimated or guessed at, an extra algebraic condition
is added to the system and a wave speed is explicitly solved for as a time dependent quantity.
To determine the unknown instantaneous wave speed we minimize the L2 distance between the
computed solution and a given fixed template function û. Convergence of this method for PDEs
was considered in [28] and stability of the discrete waves was shown under the same conditions that
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ensure stability of the continuous solution in [29]. We use this approach to motivate a definition
of a stochastic travelling wave. Numerically we solve for the wave profile and a time dependent
wave speed for (1.1) which is, in the case of stochastic forcing, a random variable. As a specific
example to illustrate the computational method and to compare against existing techniques we
consider the scalar Nagumo equation [15]

du = [uxx + u(1 − u)(u− α)] dt+ (ν + µu(1 − u))dW, (1.3)

With ν 6= 0 and µ = 0 we have additive noise and µ 6= 0 the noise is multiplicative. For
multiplicative noise we have that u = 0 and u = 1 are stationary and numerical simulations
suggest a wave exists between them. The deterministic equation

ut = uxx + u(1 − u)(u− α), u(x, t) ∈ R, x ∈ R, t > 0, (1.4)

is often used for testing algorithms since a travelling wave solution u(x, t) = udet(x−ct) connecting
the stationary points u− = 0, u+ = 1 of this equation is explicitly known

udet(x) =
(

1 + e
−x
√

2

)−1

, c = −
√

2 (1

2
− α) α ∈ (0,

1

2
), (1.5)

besides other explicit solutions, such as pulses, sources and sinks [8], [1].
In the cases we consider here we discretize the SPDEs and stochastic partial differential alge-

braic equations(SPDAEs) in space using standard uniformly spaced finite differences and eliminate
the boundary conditions. That is for the second derivative with N points and spatial step ∆x
we approximate the derivative ∂xx ≈ A where A = 1

∆x2B ∈ R
N−2,N−2 for Dirichlet boundary

conditions and for Neumann boundary conditions,

A =
1

∆x2
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.

For the first spatial derivative ∂x ≈ 1/∆xD∗ where ∗ ∈ {L,C,R} we introduce
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1

2
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and the boundary conditions are dealt with in the standard manner. For convection terms we
either used DC or, where up-winding is an issue, we choose the appropriate DL, DR or a weighted
combination [5]

∂x ≈ Dµ := e−βµDL + (1 − e−βµ)DR, (1.6)

where β is a parameter (β = 0 or β = 1

2
in our computations) and in what follows µ will be some

function of the wave speed.
The outline of the rest of the paper is as follows. We review in Section 2 the computation of

travelling waves in the deterministic case and then extend to the case of stochastic forcing. We
propose a definition of a stochastic travelling wave based on the deterministic case. We obtain a
system of stochastic partial differential algebraic equations (SPDAEs) which we then discretize.
In Section 3 we illustrate the numerical method on the Nagumo equation with multiplicative noise
and examine numerically (weak) convergence of the profiles and wave speeds of the SPDAE to
the SPDE. We investigate the effect of the choice of template function û and initial data u0.
In Section 3.2 we present numerical results for Itô and Stratonovich multiplicative noise on how
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the wave speed changes with noise intensity. Additive noise in considered in Section 3.3 where we
again examine the wave speed with noise intensity and illustrate the algorithm when new travelling
waves are nucleated. Finally we consider weaker versions of the stochastic travelling wave fixed in
the computational domain by mean wave speeds and then discuss the results and computational
method.

2. Freezing travelling waves. In this section we introduce the (stochastic) differential
algebraic equations that we use to define the travelling wave problem. We start by reviewing the
more familiar deterministic case before considering the case with stochastic forcing. In both cases
we reduce the infinite problem to finite dimensions by truncating the computational domain and
discretizing in space.

2.1. Deterministic PDE. Let us assume that equation (1.2) has a travelling wave solution
u, so that u can be written as

u(x, t) = udet(ξ), ξ = x− λdett, (2.1)

where udet ∈ C2
b (R,Rm) denotes the waveform and λdet its wave speed. In a comoving frame

v(ξ, t) = u(ξ − λdett, t) equation (1.2) reads

vt = vξξ + λdetvξ + f(v), ξ ∈ R, t ≥ 0 (2.2)

of which the travelling wave udet is a stationary solution. Since the wave speed λdet is generally
unknown we transform equation (1.2) into a co-moving frame with unknown position γ(t), i.e. we
insert the ansatz v(x, t) = u(x− γ(t), t) into (1.2). Then we obtain

vt = vxx + f(v) + λvx, (2.3)

where λ(t) = γ′(t). In order to compensate for the additional variable λ we add a so called phase
condition

0 = ψ(v, λ) (2.4)

which together with (2.3) forms a partial differential algebraic equation (PDAE) [5]. The position
γ of the wave can then be calculated by integrating

γ′ = λ, γ(0) = 0, to get γ(t) =

∫ t

0

λ(s)ds.

For the numerical implementation we need to truncate the spatial domain from x ∈ R to x ∈ [0, L]
and impose appropriate boundary conditions such as Neumann, Dirichlet or projection boundary
conditions [28]. We then solve (2.3) and (2.4) for x ∈ [0, L]. In contrast to traditional travelling
wave computations this method does not rely on λ being a constant wave speed.

2.1.1. Choice of phase condition. Thus far we have not discussed the choice of the phase
fixing function ψ in (2.4). Since the phase condition only selects one representative out of the
infinite family of solutions, there is some freedom of choice here. The simplest phase condition is
to align to some norm the solution with respect to a given template function û, that is we minimize
the ‖u− û‖ for a given norm. It is natural to take the L2 norm in which case we take

ψfix(u) = 〈ûx, u− û〉.

This choice was termed the template fitting method in [23]. Clearly there is a choice as to the
profile to minimize against. By using this phase condition the PDAE defined by (2.4), (2.3) is of
differentiation index 2. It is possible to reduce the index by differentiating (2.4) with respect to
time to obtain

ψfix,diff(u, λ) = 〈ûx, ut〉 = 〈ûx, uxx + f(u, ux) + λux〉.
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Another possible choice of phase condition stems from minimizing the temporal change ‖vt‖L2 and
this leads to the orthogonality constraint, also known as the method of mechanical connections
[23] in the deterministic case:

ψorth(u) = 〈ux, ut〉.

The last two techniques are applicable where the solution is differentiable in time and so in general
apply only to the deterministic system [5].

2.1.2. Discretization. Discretizing in space with N grid points and after eliminating the
boundary conditions we obtain the following DAE system for λ ∈ R and v ∈ R

N−2 for Dirichlet
or v ∈ R

N for Neumann boundary conditions

v′ = Av + λ(Dλv + η) + f(v) + ϕ

0 = ψh(v, λ),
(2.5)

where the vectors ϕ, η are used to deal with the boundary conditions. This system can be solved
by using appropriate DAE solvers [3] or we can use a linear implicit Euler method to obtain the
fully discrete system

vn+1 = vn + ∆t
[

Avn+1 + λn+1(Dλnvn + η) + f(vn) + ϕ
]

0 = 〈DC û, v
n+1 − û〉

(2.6)

which leads to the system

(

I − ∆tA −∆t(Dλnvn + η)
∆xDC û

T 0

) (

vn+1

λn+1

)

=

(

∆t(vn + f(vn) + ϕ)
〈DC û, û〉

)

.

Note that for the reference or template ûx we use the central difference approximation DC since
this is most accurate and is convection instabilities are not an issue for this term.

It has been shown in [28] that for L → ∞ and ∆x → 0 the stationary solution of (2.5)
converges to the exact travelling wave solution of the PDE (under a uniqueness assumption).
Moreover it has been shown that the solution of (2.5) inherits the nonlinear stability properties
of (1.2).

2.2. Stochastic PDE and stochastic travelling wave. We seek travelling wave solutions
to the SPDE

du = [uxx + f(u)]dt+ g(u)dW, u(0) = u0 (2.7)

posed on the real line with g(u) = (ν + µh(u)), where ν and µ are parameters that allow us
to consider additive and multiplicative noise. We consider noise given by W (t), a Q–Wiener
process [11], and assume that Q has eigenfunctions φn with corresponding eigenvalues ζn ≥ 0, in
which case

W (t) =
∑

n

ζ1/2
n φnβn(t), (2.8)

for independent Brownian motions βn. We assume that the covarianceQ operator of W (t) satisfies
either Q = I and we have space-time white noise or that we approximate exponential decay in the
correlation length ξ > 0 in which case

E (W (t, x)) E (W (s, y)) ≈ min(t, s)Q(x− y), Q(x) =
1

2ξ
exp

(

−πx
2

4ξ2

)

,

ζn = exp(− ξ2λn

L ), where λn = n2π2

L2 where L is the length of the interval [26, 17]. Results on the
existence of a solution for (2.7) on the infinite domain can be found in [31] with f and g Lipschitz
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and further results maybe found in [11, 9]. Other results exists for the Allen-Cahn equation with
additive noise see [22] and for the stochastic FKPP equation [27].

Although intuitively it is understood what is meant by a stochastic travelling wave it is not
easy to find a definition in the literature, however for a review see [14]. Typically a stochastic
travelling wave and speed is either defined by the evolution of a level set such as in [19, 30] or
through the evolution relative to a deterministic wave, such as through a small noise expansion
such as in [18]. Inspired by the deterministic fixing of a wave we define a stochastic travelling
wave relative to a reference function û and consider the following SPDAE for (v(x, t), λ(t))

dv = [vxx + λvx + f(v)] dt+ g(v)dW, v(0) = u0

0 = ψ(v, λ).
(2.9)

We define u to be a travelling wave solution of the SPDE (2.7) with respect to template function
û(x) if there exists a random variable λ such that v satisfies (2.9) and ‖v− û‖L2 is minimized, and

u(x, t) = v

(

x−
∫ t

0

λ(s)ds, t

)

.

We call the time-dependent random variable λ(t) the instantaneous wave speed and the time-
average

Λ(t) :=
1

t

∫ t

0

λ(s)ds

the wave speed at time t. If we minimize the distance in the L2 norm then once again the natural
phase condition for (2.9) is

ψ(u, λ) = 〈ûx, u− û〉 = 0.

We are not going to perform a convergence analysis here of the SPDAE. However, we note
that for the case of small noise we can apply Itô’s lemma and perform standard analysis to obtain
a modified deterministic PDE to which the results of [28] may be applied to relate the solutions
of the SPDE to the SPDAE.

By defining a travelling wave through (2.9) we introduce the random variable λ (which we
called instantaneous wave speed) which is used to freeze the wave. We could instead define a
weaker versions by taking statistics of λ. For example we can take the time-averaged wave speed
Λ(t) for each realization

dv = [vxx + Λvx + f(v)] dt+ g(v)dW, v(0) = u0

0 = ψ(v, λ).
(2.10)

Other weaker forms of travelling wave solution are possible where the instantaneous wave speed
λ or time average wave speed Λ of an individual realization is replaced by its expectation over
realizations

dv = [vxx + E (λ) vx + f(v)] dt+ g(v)dW, v(0) = u0

0 = ψ(v, λ);
(2.11)

and

dv = [vxx + E (Λ) vx + f(v)] dt+ g(v)dW, v(0) = u0

0 = ψ(v, λ).
(2.12)

Using the sample mean of λ and Λ for fixing we are essentially using a “group velocity” to fix the
wave and as a result the mean profile will contain a spread as each individual realization is not
fixed at the same point. By taking these weaker notions of wave speed to freeze” the wave we
observe spreading of the front profiles, as discussed in [14], (see for example Figure 3.13).
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So far we have not commented on the choice of profile û to minimize against. The obvious
choice is to minimize against the profile of the unforced travelling wave from the deterministic
system when such a wave exists. For the stochastic PDE this mimics the small noise type analysis
of seeking waves close to the deterministic waves. In examples where we do not have an analytic
expression for the deterministic travelling wave û then this can be solved for simultaneously or a
sample solution solved for and saved. However, this is a matter of choice and we could minimize
the L2 norm against any fixed profile. The other obvious choice for a template function is to ask
for the wave speed and profile with respect to the given initial data u0. We examine these different
choices of template functions û in the numerical results in Section 3.

2.2.1. Discretization of the SPDAEs. We truncate (2.7) and (2.9) to a finite domain with
x ∈ [0, L] and impose either Dirichlet or Neumann boundary conditions at x = 0 and x = L. We
discretize the derivatives in space by the finite differences approximations outlined in Section 1.
For our time discretizations we consider here the semi–implicit Euler–Maruyama methods for Itô
noise and the Heun method to approximate Stratonovich noise, see for example [16]. To discretize
the noise we need to implement a Brownian increment ∆Wn. For space–time white noise we

can take the jth element of ∆Wn as
√

∆t
∆x χn where χn are normally independent identically

distributed with mean zero and variance one. For spatially correlated (smoother) noise we use
the eigenfunctions of the linear operator to form the noise using (2.8) and evaluate on the finite
difference grid on [0, L].

The linear semi–implicit Euler–Maruyama scheme gives the discretization

un+1 = un + ∆t
[

Aun+1 + λn+1 (Dλnun + η) + f(un) + ϕ
]

+ g(un)∆Wn

0 = 〈ûx, u
n+1 − û〉

(2.13)

and given un (and λn) we can solve (2.13) to find un+1 and λn+1 at the cost of an extra linear
solve

(

I − ∆tA −∆t(Dλnvn + η)
∆xDC û

T 0

) (

vn+1

λn+1

)

=

(

∆t(vn + f(vn) + ϕ) + g(un)∆Wn

〈DC û, û〉

)

.

This scheme has better stability properties than solving (2.13). The weaker versions of the stochas-
tic travelling wave systems (2.10), (2.11) and (2.12) are discretized and solved for in a similar way.

In order to deal with the Stratonovich noise we use the explicit Euler - Heun method [13, 16]

z = un + g(un)∆Wn

un+1 = un + ∆t [Aun + λn (Dλnun + η) + f(un) + ϕ] +
1

2
(g(z) + g(un))∆Wn

0 = 〈ûx, u
n+1 − û〉.

(2.14)

The literature on solving stochastic DAEs is in its infancy, however there are some analytic and
computational results mainly arising from examining noise in circuit simulations, see for example
[24, 21, 32, 33].

3. Numerical Results. We use the Nagumo equation (1.3) to illustrate the algorithm for
both multiplicative and additive space-time white noise. We solve (2.9) using the linear implicit
method (2.6) with Dirichlet boundary conditions and the following numerical parameters: L =
60,∆x = 0.5,∆t = 0.1.

We compare beloa wave speeds and profiles where the wave is fixed from solving the SPDAE
(2.9) and from solving the SPDE (2.7) directly. Wave Speeds for the SPDAE are computed from
random variable λ and we consider

E (λ) , Λ(t) =
1

t

∫ t

0

λ(s)ds, E (Λ) , Λ̄ =
1

T2 − T1

∫ T2

T1

E (Λ(t)) dt. (3.1)

We approximate the integrals over time for Λ(t) and Λ̄ above by the trapezoidal rule.
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Λ̄ µ = 0 µ = 0.0625 µ = 0.125 µ = 0.25 µ = 0.5 µ = 1
N = 1000 0.35344 0.35354 0.35380 0.35476 0.35874 0.37660
N = 10000 0.35353 0.35377 0.35462 0.35853 0.36578

Table 3.1

Limiting wave speeds Λ̄ as a function of noise intensity µ with û = u0 = udet and the expectation taken over
1000 and 10000 realizations and T1 = 100, T2 = 200. Note the value for µ = 0 is a computed value, where as the
analytic value is

√
2/4 ≈ 0.35355.

For the SPDE with a well defined wave with compact support so that at u(−∞, · ) = u−,
u(∞, · ) = u+ we can define a travelling wave and wave speed using the two points

a(t) := sup{z : u(x, t) = u−, x ≤ z}, b(t) := sup{z : u(x, t) = u+, x ≥ z}, (3.2)

and in addition we can take the ’mid point’ level set of a wave

c(t) := sup{z : u(x, t) = (u− + u+)/2, x ≤ z}. (3.3)

For some realizations of the SPDAE below we need to deal with solutions that fail to exists after
some finite time. To do this we can either monitor the instantaneous wave speed so that |λ(t)| < tol
or the L2 norm ‖u(t)‖L2 < tol for some tolerance tol (which we took to be 10).

3.1. Multiplicative noise. We present numerical results with α = 0.25 for the nonlinearity
in the computation of v and λ for (1.3) with ν = 0. The majority of the results are performed
with 1000 realizations, however we also examine a larger sample of 10000 realizations. We examine
different values for the intensity of the noise but in particular we take µ = 0.5 to compare the
majority of solutions.

3.1.1. A test case. To test the algorithm we use the exact deterministic solution (1.5) for
both the initial value (u0 = udet) and for the template function (û = udet). In Figure 3.1 (a) we
plot in space-time a single realization of the travelling wave fixed in the computational domain.
There is an interface at x ≈ 30 which does not travel as we integrate in time, illustrating a single
realization is frozen by the algorithm (compare to Figure 3.3 where the wave is not fixed). The
instantaneous wave speed λ(t) used to the fix the wave is plotted in (b). In (c) we plot the wave
speed Λ(t) computed from the instantaneous wave speed λ(t) in (b). In this realization we observe
an initial transient in Λ(t) before convergence to a well defined quantity. In Figure 3.2 we show
mean profiles and mean wave speeds over different realizations of the same system. In (a) the
mean (over 1000 samples) of the solution v at T2 = 200 is displayed. In Figure 3.2 (b) and (c)
we plot the E (λ) and E (Λ) respectively over 1000 realizations and 10000 realizations. These two
plots illustrate the variability in the mean instantaneous wave speeds E (λ) and convergence of
the time average wave speed E (Λ) to a well defined quantity. We can get an estimate of limiting
wave speed Λ̄, for example taking T1 = 100 and T2 = 200. For µ = 0.5 we find Λ̄ ≈ 0.3587 and
Λ̄ ≈ 0.3585, (with 1000 and 10000 realizations) this compares with the deterministic wave speed
of 0.3534. For the profiles of the computed waves we have that at T2 = 200 the L2 difference
between the mean profile and the deterministic profile is in the order of 10−3 for 1000 as well as
for 10000 samples.

To provide some validation of the computations with the SPDAE we compare profiles and
wave speeds from direct simulation of the SPDE (2.7). In Figure 3.3 (a) is plotted the solution
from a single realization and in contrast to Figure 3.1 (a) we see the interface propagate in time
to the right, in Figure 3.3 (b) we show the mean profiles at t = 0, t = 500, t = 1000 and
t = 2000. Since the wave now propagates we are forced to consider a much larger computational
domain. In Figure 3.4 (a) we show mean wave speeds from such a computation. We compare
the value obtained from the wave speed Λ̄ with the corresponding values a(t)/t, b(t)/t, c(t)/t
used to define the wave speed using a direct simulation of the travelling wave defined in (3.2) and
(3.3). The values of a(t)/t, b(t)/t, c(t)/t converge slowly to the limiting value Λ̄ obtained with
the freezing approach. In fact we observed that the convergence of Λ(t) in general is much faster
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Fig. 3.1. (a) Space-time plot of a single realization, frozen using SPDAE (2.9), in (b) the corresponding
instantaneous wave speed λ(t), and in (c) the wave speed Λ(t).
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Fig. 3.2. Plot of mean profile (a) over 1000 realizations, (b) the mean instantaneous wave speeds, E (λ(t))
and (c) wave speeds E (Λ(t)) with 1000 and 10000 realizations.

than a(t)/t, b(t)/t, c(t)/t By data fitting with X(t) = α/t + β, X ∈ {a, b, c} and extrapolation
we obtained limiting values of a ≈ 0.3413, b ≈ 0.34134 and c ≈ 0.34123.
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Fig. 3.3. (a) Space-time plot of a single realization solved with no freezing. In (b) are plotted snapshots of
mean(u) for travelling wave at t = 0, t = 500, t = 1000 and t = 2000.

We also compare the mean profiles from the SPDE to the profile obtained from the SPDAE.
To avoid the spreading of the wave we align all the SPDE solutions by taking the level set c(200)
as a common reference. In the absence of noise the L2 error is of order 10−6. In Figure 3.4 (b)
the weak error

‖E (uSPDAE) − E (uSPDE) ‖2
L2

is plotted against time, where the expectation is taken over 1000 realizations. We see that the
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differences between the mean profiles increases with the noise but that it remains small. This is a
good indication that the profiles computed by the two methods are the same.
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Fig. 3.4. In (a) we have plotted mean wave speeds a(t)/t, b(t)/t, c(t)/t via a level set approach, note the slow
convergence to Λ̄ of the SPDAE and the effect of the boundary for t > 1750. In (b) a comparison of the L2 weak
error between the SPDE (2.7) and SPDAE (2.9) in time as the strength of the noise increases.

Remark: Extrapolation of a, b and c to obtain a limiting value of approximately 0.341 from
the SPDE leads to and underestimate if we compare Λ̄ = 0.3544 (µ = 0.5 from Table 3.1.1) from
the SPDAE. A similar phenomena is seen in the deterministic setting (µ = 0) where a, b and c
are also slow to converge and implicit Euler with a large step size also gives an underestimate
of the wave speed. Solving the PDE using implicit Euler for ∆t = 0.01 we find a wave speed of
Λ ≈ 0.3531 and for ∆t = 0.1 Λ ≈ 0.3501 (based on the position of c(t)). If we freeze the wave
wave we obtain Λ ≈ 0.35344 for ∆t = 0.1 and ∆t = 0.01. The analytic value for the deterministic
travelling wave on the real line is Λ̄ =

√
2/4 ≈ 0.35355.

3.1.2. Choice of reference û. Now that we have tested the SPDAE approach we now
examine the sensitivity of the algorithm to the choice of the template function û. We tested the
algorithm with a range of different template functions: a perturbation of the deterministic solution
û = upd was chosen so as not to satisfy the boundary conditions as upd(0) = 0.8 and upd(L) = 0.2.
The other template functions all satisfy the boundary conditions (u√, utanh, ulin and ucos) but
with different profiles

upd = 0.6/(1+exp(x−L/2))+0.2, u√ =
1

2
+

L− 2x√
2 + L− 2x2

, utanh = (1+tanh(L/2−x))/2

ulin(x) = (L− x)/L, ucos(x) = cos(πx/L).

In the deterministic setting, all these template functions lead to well defined profiles and wave
speeds. In Figure 3.5 EΛ(t) is plotted with û ∈ {upd, ulin, utanh, u√} as template functions for

µ = 0.00626 (a), µ = 0.25 (b)and µ = 0.5 (c). For all these values the wave speeds follow the
same trend in t and appear to converge, however closer inspection suggests that for û = ulin we
obtain a systematically smaller wave speed (more evident as the noise intensity is increased). To
get estimates of the limiting wave speeds we take T1 = 100 and T2 = 200 and base or expectation
on those solutions that exist to T2 = 200, the results are shown in Table 3.1.2. Comparing to
Table 3.1.1 we see the same qualitative behaviour as µ is increased and for µ = 0.5 a limiting
value of Λ̄ ≈ 0.36. The consistently low estimate for the wave speed using û = ulin is observed
for finer discretization and changing the parameter β in the convection term. Note that for the
larger noise µ = 0.5 some of our realizations fail to exist (the wave speed becomes numerically
unbounded) and the minimization of the L2 norm has failed. For the SPDE and the SPDAE with
the reference function û = udet of Section 3.1.1 we do not observe this spurious behaviour. These
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û upd ulin u√ utanh

µ = 0.00625 0.3532 0.3532 0.3531 0.3533
µ = 0.125 0.3535 0.3533 0.3533 0.3536
µ = 0.25 0.3546 0.3537 0.3544 0.3551
µ = 0.5 0.3594 (999) 0.3551 0.3583 (592) 0.3604 (535)

Table 3.2

Limiting wave speeds Λ̄ as a function of noise intensity and reference functions û, with T1 = 100, T2 = 200
and 1000 realizations. For µ = 0.5 we indicate the number of samples where that is less than 1000.

failures are based on the choice of the reference function and arise from the discretization of the
convection term, see the discussion in Section 4. For the template û = ucos we have a large number
of realizations that fail to exist and very slow convergence of the wave speed.
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Fig. 3.5. Plot of E(Λ(t)) for different choices of references û (a) µ = 0.0625, (b) µ = 0.125 and (c) µ = 0.5
where the mean is taken over solutions that exist to time T = 200.

3.1.3. Sensitivity to the choice of initial data. We now examine convergence in the
initial data u0 with a template function of û = udet. Starting the SPDAE computations of the
travelling wave with the linear function u0 = ulin gives different results. There is now a transient
time to converge to the travelling wave. This is illustrated in Figure 3.6 where we have plotted
the evolution of the mean wave profile in (a) of the SPDAE with 1000 realizations and in (b)
one realization from the SPDAE. In both (a) and (b) after an initial transient, the wave is fixed,
compare to (c) which shows one sample from solving the SPDE.

During the transient when the wave is fixed many of the realizations fail due to the fact that
λ gets too large – and so the minimization of the L2 norm fails. We consider these as the wave
ceasing to exist (and these are removed before taking the mean). We assume that in this case
these failures are purely due to the large convection since for the SPDE all realizations converge
to a travelling wave form. By monitoring the wave speed we are able to determine the extinction
time of the travelling wave.

In Figure 3.7 we show the time averaged mean of λ with respect to realizations where |λ| < 10
as well as their number Nexist. In (a) we show E(λ) and in (b) E(Λ) based both on all solutions
and those that only survive to the final time. We observes that Nexist decreases from 10000 to 89
during the transitional period exponentially. The spurious extinction of waves during the transient
due adding in the convection term and the associated numerical instabilities is a disadvantage of
the method as implemented.

3.1.4. Spatially correlated noise. We can examine the performance of the method for
noise with different spatial correlations - in particular as the spatial regularity of the noise increases.
Solutions are similar to the space–time white noise cases such as Figure 3.1 and Figure 3.2 and
are not reproduced here.

In Figure 3.8 (a) we have plotted the mean wave speed Λ(t) against time for three different
correlation lengths ξ = 1, 10, 100 and with two different reference functions û = udet and û = ulin.
First consider the reference function û = udet. We see that the effect of increasing the correlation
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(a) (b) (c)

Fig. 3.6. Solution of the Nagumo equation with initial data u0 = ulin. In (a) the mean and (b) a single
realization both computed using the fixing with û = udet. There is a small transient and the wave remains fixed.
In (c) is a single sample where the wave is not fixed in the domain and we see the wave travelling during and after
the transient.
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Fig. 3.7. In (a) we plot E(λ(t)) based on all 10000 samples and based on only those that survive to the final
time and in (b) is plotted the corresponding E(Λ). Finally we plot the number of solutions that exist as a function
of time. After a rapid decrease 89 exist to the final time.

length is to decrease the wave speed from Λ̄ = 0.3591 for the space-time white noise (see Table
3.1.2). We see a similar drop in the wave speed with correlation length taking û = ulin and
furthermore for large correlation lengths (spatially smooth noise) the wave speeds for the two
different reference functions converges and is close to the deterministic value.

In Figure 3.8 (b) we have examined the effect of the spatial correlation on the existence of
solutions in the transient period with initial data u0 = ulin and now û = udet. We see that as the
noise is smoother in space (as ξ increases) there are fewer solutions that cease to exist due to the
numerical instability from the convection term.

3.2. Itô & Stratonovich multiplicative noise. In this section we briefly examine the
effect of Itô versus Stratonovich noise on the computed wave speeds. In [2] Stratonovich noise is
considered with a correlation length equal to be that of the grid spacing so that ξ = ∆x = 0.2 for
a range of different non–linear regimes. We consider a scaled noise intensity and define ǫ = µ2 and
examine how the wave speed Λ̄ varies as the noise intensity ǫ is increased. The authors obtain a
front velocity from an average over an “appropriate time window” of

∫

L
u(x, t)dt and compare to a

small noise analysis. We use our definition of the travelling wave and our method to compute wave
speed against the noise intensity using the Heun method of (2.14). Results are shown in Figure 3.9
(a) for α ∈ {−1,−0.5,−0.3, 0, 0.3, 0.45}. To obtain the limiting wave speed the averages are taken
over 1000 realizations that exist to a final time of T2 = 200. We recover in the Stratonovich case
the well known results that the wave speed increases with the noise intensity. Note that due to
waves ceasing to exist in some cases we needed to compute with a large set of initial realizations
and for α = 0.45 with Stratonovich noise it was not feasible to obtain 1000 realizations for ǫ = 0.5,
0.55 and 0.6 that existed at T2 = 200.

In Figure 3.9 (b) we repeat the calculations however now for Itô noise and we do not observe
the same increase in wave speed with the noise intensity. Indeed for the nonlinearity with α = −1
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Fig. 3.8. For spatially correlated noise (a) the dependence of wave speed on the correlation length ξ for two
û = udet and û = ulin. In (b) we see that as correlation length is increased the number of samples surviving the
transient starting from initial condition u0 = ulin increases.

the wave speed is no longer strictly increasing as a function of the noise intensity. Since an Itô–
Stratonovich correction changes the non–linear term we would not expect to see exactly the same
behaviour for large noise.
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Fig. 3.9. Wave speeds Λ̄ with increasing noise intensity for Stratonovich noise (a) and Itô noise (b), each
line corresponds to a different nonlinearity with α ∈ {−1,−0.5,−0.3, 0, 0.3, 0.45}, each data point taken with 1000
realizations and T2 = 200.

3.3. Additive noise. We briefly consider the case of additive noise in the SPDE for which,
unless the noise has some special properties, a solution will in general cease to exist at some finite
time. However, even for quite large noise, a wave like structure can persist for long times. We
can use our definition to define the travelling wave in this case, where the level set is not well
defined, and to determine wave speeds and existence times. First we consider small additive noise
i.e. ν = 0.05 and µ = 0. For this case we know from analytical results (eg [7, 12], see also [14])
that the wave front follows a Brownian path. In Figure 3.10 (a) we plot a sample realization and
in (b) is plotted the instantaneous wave speed λ(t) and in (c) the wave speed E (Λ(t)) computed
from those solutions that exist at time T = 200.

We now change the parameter α in the non-linearity to α = 0.1 and illustrate how the SPDAE
approach deals with nucleation and extinction of waves. In Figure 3.12 we have plotted in (a)
a single realization of the SPDE (so not frozen) showing nucleation and subsequent extinction
(t ≈ 98) of a travelling wave. In (b) is plotted a single realization from computing using the
SPDAE approach. We see the wave is fixed in the domain and at t ≈ 50 a wave is nucleated at
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Fig. 3.10. Additive noise with ν = 0.05. In (a) a sample realization fixed in the domain and in (b) the
corresponding λ(t). In (c) is plotted the wave speed E (Λ(t)).
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Fig. 3.11. Influence of additive white noise on the wave speed Λ̄ for (a) α = 0.25 and (b) α = 0.1. In both
cases there is a clear increase in the wave speed from the deterministic case (ν = 0) as the wave speed is increased.

x ≈ 100 by the additive noise. The computations are based on the original wave which remains
fixed until it interacts with the nucleated wave and is annihilated at t ≈ 94 when the computations
stop when the wave cease to exist. In (c) and in (d) we have plotted mean profiles for the SPDE
and the frozen SPDAE systems. In each case we see a well defined front from the averaging
and individual nucleations and annhilations are no longer distinguishable (although in (d) a large
solution pollutes the data at t ≈ 130 – this then ceased to exist at the next time step).

3.4. Computations using averaged quantities. Computing wave profiles using averaged
quantities leads to the wave being ’polluted’ by the spread of the individual waves (see [14]). We
examine numerical solution of (2.10) where the time averaged wave speed Λ(t) is used to fix the
wave in the computational domain. However numerically this does not completely freeze each
individual wave as we are now freezing with respect to an averaged quantity and the mean profile
gives an indication of the position of the group of waves. We illustrate this in Figure 3.13 with
results from a single realization in (a) which is not frozen (compare to Figure 3.1) and in (b) we
plot the corresponding Λ(t). In (c) the mean profile is plotted and shows a growth in the interval
[a(t), b(t)] and in (d) the corresponding Λ(t) is plotted. One numerical advantage of computing
a weaker quantity is that the computations are more stable as this reduces the variance in the
convection term and there is less chance of switching from upwinding to downwinding and large
convection terms.

4. Discussion. We have offered a generalized definition of a travelling wave that now depends
on the choice of the reference function û. This gives a defined quantity to consider which is
particularly useful where a level set approach might fail such as for additive noise. This definition
led to an efficient algorithm that allows the computation of stochastic travelling waves. We applied
this to the Nagumo equation from mathematical biology however these computational techniques
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(a) (b)

(c) (d)

Fig. 3.12. Nucleation of travelling waves and annihilation for the Nagumo equation with α = 0.1. In (a) the
space-time plot shows computations of the SPDE (no freezing) and in (b) the SPDAE where the wave is frozen.
In (c) and (d) are plotted means over realizations for the frozen and travelling cases.

can be applied to a host of other problems.

The algorithm described has several numerical advantages over simply solving the SPDE.
When the wave travels and we solve the SPDE we need to take a large computational domain
(we took L = 650 instead of L = 60) to ensure that the wave stays in the domain during the
computation and is not affected by the boundary conditions. This has a number of consequences.
To compute with the same spatial accuracy we obtain a much larger numerical system to solve.
For this system we need to generate many more random numbers and so loose efficiency (this is
particular true in this case where the wave has compact support). Furthermore we see in Figure
3.4 that at t ≈ 1800 the travelling wave feels the boundary effects, which perturbs the convergence
of the wave speeds, this is not evident just by examining the wave profile). Convergence is also
slower for the SPDE and we used extrapolation to obtain the values of a, b and c. The accuracy
of these quantities also seems less reliable, even for the deterministic case (see for example the
remark towards the end of Section 3.1.1). The SPDAE approach avoids these difficulties.

A disadvantage of method is that by adding in the convection term leads numerical instabilities
and to a fairly large number of solutions that fail to exist. We have seen in Section 3.1.2 and
Section 3.1.3 that there is failure of the waves to exist when solved as the SPDAE which is
not observed when simply solving the SPDE. This can be understood since we introduce large
convection terms that that may change sign from one step to the next and introduce numerical
instabilities. A more careful discretization of the convection term may improve this – for example
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(a) (b)

Fig. 3.13. In (a) the solution from a single realization and in (b) the mean over 1000 samples. Here (2.10)
was solved so the time-averaged wave speed Λ(t) is used to ’fix’ the wave for each realization and the mean profile
spreads.

predicting the sign of the instantaneous wave speed λ(t) for (1.6) with u0 = ulin and û = udet can
improve the number of solutions that exist to the final time by a factor of 10, but does not eliminate
spurious extinctions. To avoid extinctions in the transients from initial data one possible practical
solution is to solve with the wave travelling (computing λ) and to fix the wave after convergence
of λ. Alternatively, if the domain size and computational demands are not an issue, then another
option is not to fix the wave and simply to compute the instantaneous wave speeds λ(t) and this
approach is pursued in [10].

Our investigation of the Nagumo equation has revealed three interesting and new computa-
tional observations that we have not seen reported in the literature. For multiplicative Itô noise
we see that spatial correlation seems to decrease the wave speed, as in Figure 3.8. Increasing the
noise intensity does not always increase the wave speed, rather it depends on the nonlinearity, see
Figure 3.9. For additive noise in the Nagumo equation we see that the wave speed is increased
with the noise intensity like in the multiplicative case – this is probably because of the small
perturbations ahead of the front make the wave faster.

There are a number of areas for further investigation, one of these is to investigate a stable
implementation of the convection term. This would allow us with confidence to determine the
extinction of solutions purely due to noise and eliminate those from numerically instability. It
would also be interesting to examine existence through the minimization to a reference function
as well as convergence of the method. Finally we note that such fixing techniques can also be
applied to more general situations in the deterministic cases such as spiral waves [5, 6] and wave
interactions [4] and these techniques should also apply to the stochastic case.
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[28] V. Thümmler, Numerical Analysis of the method of freezing traveling waves, PhD thesis, Bielefeld University,
2005.

[29] , Asymptotic stability of discretized and frozen relative equilibria, Preprint 06-030, CRC 701, Bielefeld
University, 2006.

[30] R. Tribe, A travelling wave solution to the Kolmogorov equation with noise, Stochastics, 56 (1996), pp. 317–
340.

[31] J. Walsh, An introduction to stochastic partial differential equations., in Ecole d’ete de probabilites de Saint-
Flour XIV, D. Williams, ed., vol. 1180 of Lect. Notes Math., Springer, 1986, pp. 265–437.

[32] R. Winkler, Stochastic differential algebraic equations of index 1 and applications in circuit simulation, J.
Comput. Appl. Math., 157 (2003), pp. 477–505.

[33] , Stochastic differential algebraic equations in transient noise analysis, in Proceedings of ’Scientific
Computing in Electrical Engineering’, Mathematics in Industry, Sept 2004.


