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Abstract

We consider quadratic eigenvalue problems with large and sparse ma-
trices depending on a parameter. Problems of this type occur, for ex-
ample, in the stability analysis of spatially discretized and parameterized
nonlinear wave equations. The aim of the paper is to present and analyze
a continuation method for invariant subspaces that belong to a group of
eigenvalues the number of which is much smaller than the dimension of
the system. The continuation method is of predictor-corrector type simi-
lar to the approach for the linear eigenvalue problem in [5], but we avoid
linearizing the problem which will double the dimension and change the
sparsity pattern. The matrix equations that occur in the predictor and
the corrector step are solved by a bordered version of the Bartels-Stewart
algorithm. Furthermore, we set up an update procedure that handles the
transition from real to complex conjugate eigenvalues which occur when
eigenvalues from inside the continued cluster collide with eigenvalues from
outside. The method is demonstrated on several numerical examples: a
homotopy between random matrices, a fluid conveying pipe problem, and
a traveling wave of a damped wave equation.

1 Introduction

Quadratic eigenvalue problems are ubiquitous in applications to vibrating sys-
tems (see the surveys [26],[3],[2]) and usually derive from a second order system

Au′′ +Bu′ + Cu = f(t), u(t), f(t) ∈ Rm, A,B,C ∈ Rm,m.
Typically the matrices in this equation are large and sparse and, in addition,
depend on parameters. For the stability problem it is sufficient to compute the
group of eigenvalues that is closest to the imaginary axis and to study how this
group varies with the parameter (see e.g. [27] for such an application).
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This motivates to consider quadratic matrix polynomials that depend on a
real parameter s ∈ R

P (λ, s) = A(s)λ2 +B(s)λ+ C(s), λ ∈ C. (1)

We assume the real matrices A(s), B(s), C(s) ∈ Rm,m to depend smoothly on
s. Rather than computing single eigenvalues and eigenvectors we are interested
in computing invariant pairs (X,Λ) ∈ Rm,k × Rk,k, i.e. pairs (X,Λ) for which
(

X
XΛ

)

has rank k and which satisfy

P (Λ, s)X = A(s)XΛ2 +B(s)XΛ + C(s)X = 0. (2)

Note that Jordan pairs, as defined in [14],[26]), correspond to k = 2m with

Λ having a Jordan structure. Our interest is in k ≪ 2m where

(

X
XΛ

)

is a

low-dimensional invariant subspace of a linearization. Once (X,Λ) has been
computed one can solve the low-dimensional eigenvalue problem Λy = λy (by
any existing code) and obtain solutions v = Xy to the quadratic eigenvalue
problem

P (λ, s)v = (A(s)λ2 +B(s)λ + C(s))v = 0.

The purpose of this paper is to investigate under which conditions smooth so-
lution branches (X,Λ) = (X(s),Λ(s)) of (2) exist and how to compute them in
an efficient way.

We will mainly generalize and adapt the techniques from [5] for the linear
eigenvalue problem to the quadratic case. Note that related approaches have
been developed for the linear invariant subpace problem in [10],[7], however,
without discussing singular situations. Our approach will be to perform con-
tinuation directly on the quadratic subspace problem (2) rather than applying
the known techniques to the linearized problem. The reason for doing this
is two-fold. First, there are many ways of linearizing a quadratic (or polyno-
mial) eigenvalue problem and the recent work in [26],[20], [21] shows that the
conditioning of the linearized problem can strongly depend on the type of lin-
earization. Second, we keep the original sparsity pattern of the matrices that
dominates the structure of the linear systems to be solved. Linearization will
generally destroy this pattern and increase the system size simultaneously.

In Section 2 we investigate the relations between the bifurcation problems
induced by the quadratic and the linearized subspace problem. In particular,
we show that, when using Newton’s method for solving the subspace problem,
there is a slight difference in the iterates due to second order terms. We also
show that turning points for the subspace problem (2) relate to the occurrence of
double eigenvalues and the transition from a pair of real eigenvalues to a complex
conjugate pair and vice versa. This generalizes a result for single eigenvalues
from [23] to invariant subspaces.

The details of the predictor corrector method for solving the system (2) are
provided in Section 3. It turns out that in both steps linear matrix equations
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with large and sparse bordered matrices have to be solved. We show how the
Bartels Stewart algorithm [15] and its bordered version [5] can be generalized
to reduce the numerical work to the solution of a sequence of bordered vector
equations. Further, in Section 3 we show that the analysis of turning points from
Section 2 leads to a switching algorithm for updating the invariant subspace
when collisions with outside eigenvalues occur.

In Section 4 we demonstrate our method on several examples: a Galerkin
approximation for a fluid conveying pipe problem [27], a traveling wave of a
damped wave equation [12],[13], and a homotopy path between two random
matrix polynomials,

2 Invariant pairs of quadratic eigenvalue

problems and their linearizations

In this section we consider the parameter independent matrix polynomial

P (λ) = Aλ2 +Bλ+ C, λ ∈ C, (3)

where A,B,C ∈ Km,m, K = R,C. We assume that A is nonsingular, i.e the
matrix pencil is regular.

2.1 Multiplicity of subspaces and regular solutions

As in [5] for the linear case we define the multiplicity of invariant subspaces for
the quadratic case. Let σ(A) denote the spectrum of a matrix A.

Definition 2.1. A pair (X,Λ) ∈ Km,k×Kk,k is called an invariant pair of rank
k for the quadratic polynomial P (λ) if the following two conditions hold

(i) rank

(

X
XΛ

)

= k,

(ii) AXΛ2 +BXΛ + CX = 0.

The multiplicity of (X,Λ) is defined to be the number ℓ − k + 1, where ℓ is
the largest integer such that an invariant pair (X̃, Λ̃) ∈ Km,ℓ × Kℓ,ℓ of rank
ℓ satisfying σ(Λ̃) = σ(Λ) exists. An invariant pair of multiplicity 1 is called
simple.

The interpretation of this definition in terms of linearizations ([14]) is rather

obvious. The columns of Φ =

(

X
XΛ

)

span an invariant subpace of the lineariza-

tion in first companion form

L(λ) = Mλ−N =

(

I 0
0 A

)

λ−
(

0 I
−C −B

)

, (4)
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i.e. MΦΛ − NΦ = 0, rank(Φ) = k. The multiplicity of the pair (X,Λ) then
coincides with the multiplicity of the invariant subspace im(Φ) of L(λ) as defined
in [5] (see [25] for the notion of a simple invariant subspace). Note that any two
linearizations Lj(λ) = Mjλ − Nj , j = 1, 2 of (3) are equivalent ([14, Ch.1.3])
and the matrices M−1

j Nj are similar, [14, Ch.S1]. Therefore, L1(λ) and L2(λ)
have the same maximal dimension ℓ of an invariant subspace with corresponding
spectrum equal to σ(Λ).

In order to turn equation (ii) of Definition 2.1 into a well-posed square system
for (X,Λ) we add k2 normalization conditions. More specifically, we consider
the operator

T (X,Λ) =

(

AXΛ2 +BXΛ + CX

X̂H(X −X0) + Ŷ H(XΛ −X0Λ0)

)

= 0, (5)

where X̂, Ŷ ,X0 ∈ Km,k,Λ0 ∈ Kk,k are suitable initial approximations. Later on
these matrices will be determined by the predictor in the continuation process.
Simple invariant pairs can be characterized as regular solutions of (5) as follows.

Theorem 2.2. Let A,B,C ∈ Km,m, X̂, Ŷ ,X0 ∈ Km,k, Λ0 ∈ Kk,k be given such
that X̂HX0 + Ŷ HX0Λ0 is nonsingular. Then (X0,Λ0) is a simple invariant pair
of rank k for P (λ) if and only if it is a regular solution of the equation (5).

Remark 2.3. Regularity means that the total derivative DT (X0,Λ0) is nonsin-
gular. Newton’s method for solving (5) will then converge locally and quadrati-
cally.

Proof. Adapted to the current setting, Theorem 2 in [5] states the following.
Given Φ̂,Φ0 ∈ K2m,k,Λ0 ∈ Kk,k such that Φ̂HΦ0 is nonsingular, the pair (Φ0,Λ0)
is a regular solution of the matrix equation

F (Φ,Λ) =

(

MΦΛ −NΦ

Φ̂H(Φ − Φ0)

)

= 0 (6)

if and only if (Φ0,Λ0) is a simple invariant pair of rank k for the linear pencil
L(λ) = Mλ−N . We apply this result to the linearization (4) with the settings

Φ̂ =

(

X̂

Ŷ

)

, Φ0 =

(

X0

X0Λ0

)

. (7)

First note that Φ̂HΦ0 is nonsingular by assumption and hence Φ0 has rank k.
Further, by the remarks preceding the theorem we infer that (X0,Λ0) is a simple
invariant pair of rank k for P (λ) iff (Φ0,Λ0) is a simple invariant pair of rank k
for L(λ). Therefore, it suffices to show that the regularity of solutions (X0,Λ0)
to (5) and of (Φ0,Λ0) to (6) are equivalent. Using

P (Λ)X = AXΛ2 +BXΛ + CX (8)

the derivatives read

DT (X0,Λ0)(H,∆) =

(

P (Λ0)H +AX0(Λ0∆ + ∆Λ0) +BX0∆

X̂HH + Ŷ H(HΛ0 +X0∆)

)

(9)
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DF (Φ0,Λ0)(Ψ,∆) =

(

M(Φ0∆ + ΨΛ0) −NΨ

Φ̂HΨ

)

. (10)

Partitioning Ψ =

(

Ψ1

Ψ2

)

, an easy calculation shows that

DF (Φ0,Λ0)(Ψ,∆) =

(

X0∆ + Ψ1Λ0 − Ψ2

G

)

where G = DT (X0,Λ0)(Ψ1,∆) if

X0∆ + Ψ1Λ0 = Ψ2. (11)

Hence, if 0 6= (H,∆) ∈ ker(DT (X0,Λ0)) then

0 6=
((

H
X0∆ +HΛ0

)

, ∆

)

∈ kerDF (Φ0,Λ0).

Conversely, if 0 6= (Ψ,∆) ∈ kerDF (Φ0,Λ0) then 0 6= (Ψ1,∆) ∈ kerDT (X0,Λ0)

where Ψ =

(

Ψ1

Ψ2

)

. Note that Ψ1 = 0,∆ = 0 implies Ψ2 = 0 by (11).

2.2 Nonequivalence of Newton’s method

In the previous section we saw that regularity of the derivatives (9) and (10)
transforms into each other. Thus local convergence of Newton’s method for (6)
and (5) is guaranteed under the same conditions. We now show that the Newton
corrections of one step also transform into each other, whereas the Newton steps
themselves don’t.

Proposition 2.4. Let the relations (7) for the normalizing matrices hold and
consider one Newton step for (5)

DT (X,Λ)(H,∆T ) = −T (X,Λ), (X̃, Λ̃T ) = (X,Λ) + (H,∆T ) (12)

and one Newton step for (6)

DF (Φ,Λ)(Ψ,∆F ) = −F (Φ,Λ), (Φ̃, Λ̃F ) = (Φ,Λ) + (Ψ,∆F ). (13)

If the initial data are related by Φ =

(

X
XΛ

)

then DT (X,Λ) is nonsingular if

and only if DF (Φ,Λ) is nonsingular, and in this case the following holds

∆F = ∆T , Ψ =

(

H
HΛ +X∆T

)

,

∆̃F = ∆̃T , Φ̃ =

(

X̃

X̃Λ̃T

)

−
(

0
H∆T

)

.

(14)
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Remark 2.5. Equation (14) shows that the Λ-correction is identical for both
systems whereas the invariant pair update differs by the second order term H∆T .
Therefore, the Newton iterates of (5) and (6) will generally not transform into
each other through linearization.

Proof. The equivalence of invertibility for DF (Φ,Λ) and DT (X,Λ) was shown
in the proof of Theorem 2.2. It remains to show (14). Using (7),(9) we find that
the equations in (12) read

AHΛ2+AX(Λ∆T+∆TΛ)+B(HΛ+X∆T )+CH = −AXΛ2−BXΛ−CX, (15)

X̂HH + Ŷ (HΛ +X∆T ) = −X̂(X −X0) − Ŷ H(XΛ −X0Λ0), (16)

whereas (13) leads to

Φ1∆F + Ψ1Λ − Ψ2 = −Φ1Λ + Φ2,

A(Φ2∆F + Ψ2Λ) + CΨ1 +BΨ2 = −(AΦ2Λ + CΦ1 +BΦ2),

X̂HΨ1 + Ŷ HΨ2 = −(X̂H(Φ1 −X0) + Ŷ H(Φ2 −X0Λ0)).

(17)

Setting Φ1 = X,Φ2 = XΛ,Ψ1 = H,Ψ2 = HΛ +X∆T ,∆F = ∆T in (17) we see
that the first equation is trivially satisfied while the second and the third agree
exactly with (15),(16). Finally, we note that

Φ̃2 = Φ2 + Ψ2 = XΛ +HΛ +X∆T = (X +H)(Λ + ∆T ) −H∆T .

2.3 Equivalence of turning points

In this section we consider the simplest type of singular (i.e. nonregular) solution
of (5) that occurs in real systems K = R. In one-parameter systems we find such
singular solutions at turning points where the branch of solutions has a tangent
that is vertical with respect to the parameter (see e.g. [1],[18],[4] ). Two of the
conditions for a quadratic turning point (X0,Λ0) are

ker(DT (X0,Λ0)) = span{(H0,∆0)} with 0 6= (H0,∆0) ∈ Rm,k × Rk,k, (18)

D2T (X0,Λ0)(H0,∆0)
2 /∈ im(DT (X0,Λ0)). (19)

The third condition describes transversality with respect to the parameter, see
Proposition 3.1. A characterization of (18),(19) in terms of multiplicities was
shown in [5] for the linear subspace problem. The following result generalizes
this to the quadratic eigenvalue problem.

Theorem 2.6. Let the assumptions of Theorem 2.2 hold. Then the following
conditions are equivalent.

(i) The pair (X0,Λ0) ∈ Rm,k ×Rk,k is a singular solution of (5) that satisfies
conditions (18),(19).
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(ii) The pair (X0,Λ0) ∈ Rm,k × Rk,k is an invariant pair of rank k for the
quadratic polynomial P (λ) that has multiplicity two. There exists a real
eigenvalue λ0 ∈ σ(Λ0) of multiplicity two such that

P (λ0)v0 = 0, P (λ0)v1 = P ′(λ0)v0, (20)

for some v0 ∈ im(X0)\{0} and

(

v1
λ0v1 − v0

)

/∈ im

(

X0

X0Λ0

)

.

Remark 2.7. We give an interpretation of condition (ii). Equation (20) states
that there is an eigenvector v0 with eigenvalue λ0 ∈ σ(Λ0) and a generalized
eigenvector v1 that is not represented by the invariant pair (X0,Λ0) in the

following sense. Note that

(

X0

X0Λ0

)

has rank k by our assumptions and that
(

v0
λ0v0

)

∈ im

(

X0

X0Λ0

)

by the proof below. Hence there exists a unique c0 ∈ Rk
such that

v0 = X0c0, X0(Λ0 − λ0I)c0 = 0.

But, according to condition (ii), there is no c1 ∈ Rk such that

v1 = X0c1, X0((Λ0 − λ0I)c1 + c0) = 0.

Proof. Similar to Theorem 2.2 we use the characterization of singular solutions
of the linearized system (6) from [5, Theorem 3]. For matrices Φ̂,Φ0 ∈ R2m,k,
Φ̂TΦ0 nonsingular, the following are equivalent

(i′) (Φ0,Λ0) ∈ R2m,k × Rk,k is a singular solution of (6) satisfying

ker(DF (Φ0,Λ0)) = span{(Ψ0,∆0)} with 0 6= (Ψ0,∆0) ∈ R2m,k × Rk,k,
(21)

D2F (Φ0,Λ0)(Ψ0,∆0)
2 /∈ im(DF (Φ0,Λ0)). (22)

(ii′) (Φ0,Λ0) is an invariant pair of L(λ) = λM − N of rank k and with
multiplicity 2. There exist λ0 ∈ σ(Λ0) ∩ R and ϕ0 ∈ im(Φ0), ϕ1 /∈ im(Φ0)
such that

λ0Mϕ0 −Nϕ0 = 0, λ0Mϕ1 −Nϕ1 = Mϕ0. (23)

With the settings (4),(7) it is sufficient to prove the equivalences (i) ⇐⇒ (i′)
and (ii) ⇐⇒ (ii′).
Proof of (i) ⇐⇒ (i′)

Using the arguments from the end of the proof of Theorem 2.2 we find that
(18) implies (21) with

Ψ0 =

(

H0

X0∆0 +H0Λ0

)

. (24)
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Conversely, if (21) holds for (Ψ0,∆0) and we set Ψ0 =

(

H0

Ψ2

)

then we obtain

Ψ2 = X0∆0 +H0Λ0 from (11) and condition (18) follows. Next we evaluate the
second derivative of F . Using (10), (7), (24) we find that the condition

DF (Φ0,Λ0)(Ψ, ∆̃) = D2F (Φ0,Λ0)(Ψ0,∆0)
2

holds for some Ψ =

(

Ψ1

Ψ2

)

∈ R2m,k, ∆̃ ∈ Rk,k if and only if the following

equations are satisfied

X0∆̃ + Ψ1Λ0 − Ψ2 = 2H0∆0 (25)

A(X0Λ0∆̃ + Ψ2Λ0) +BΨ2 + CΨ1 = 2A(X0∆0 +H0Λ0)∆0 (26)

X̂TΨ1 + Ŷ TΨ2 = 0. (27)

Similarly, the condition

DT (X0,Λ0)(H,∆) = D2T (X0,Λ0)(H0,∆0)
2

is equivalent to the set of equations

P (Λ0)H +AX0(Λ0∆ + ∆Λ0) +BX0∆ = 2AH0(Λ0∆0 + ∆0Λ0)

+BH0∆0 +AX0∆
2
0

(28)

X̂TH + Ŷ (HΛ0 +X0∆) = 2Ŷ TH0∆0. (29)

If one solves (25) for Ψ2 and inserts this into (26), (27) then one obtains equa-
tions (28),(29). Therefore, if (Ψ, ∆̃) is a solution of (25)-(27), then (H,∆) =
(Ψ1, ∆̃)) solves (28),(29). Conversely, any solution (H,∆) of (28),(29) leads to
a solution

Ψ =

(

H
X0∆ +HΛ0 − 2H0∆0

)

, ∆̃ = ∆

of the system (25)-(27). This proves that (19) and (22) are equivalent.

Proof of (ii) ⇐⇒ (ii′) By the discussion following Definition 2.1 we know that
the multiplicities of the invariant pairs (X0,Λ0) for P (λ) and of (Φ0,Λ0) for
L(λ) are the same (see (7) for the definition of Φ0).

First, let (ii) be satisfied. We define

ϕ0 =

(

v0
λ0v0

)

, ϕ1 =

(

v1
λ0v1 − v0

)

(30)

and with (20) readily verify that

λ0Mϕ0 −Nϕ0 = 0 λ0Mϕ1 −Nϕ1 = Mϕ0. (31)

By assumption we have ϕ1 /∈ im(Φ0), therefore it remains to show ϕ0 ∈ im(Φ0).
Since (Φ0,Λ0) has multiplicity 2 there exist an invariant subspace Y ⊃ im(Φ0),
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dim(Y ) = k + 1 of M−1N which belongs to the spectral set σ(Λ0) and which
is maximal with this property. From (31) and λ0 ∈ σ(Λ0) we conclude ϕ1 ∈ Y .
Since ϕ1 /∈ im(Φ0) we have Y = im(Φ0)⊕span{ϕ1}. Therefore, there are unique
c ∈ Rk and ρ ∈ R such that ϕ0 = Φ0c + ρϕ1. If ρ = 0 then ϕ0 ∈ im(Φ0) as
claimed. If ρ 6= 0 then

0 = M−1Nϕ0 − λ0ϕ0

= (M−1NΦ0 − λ0Φ0)c+ ρ(M−1Nϕ1 − λ0ϕ1)

= Φ0(Λ0 − λ0I)c− ρϕ0

implies ϕ0 ∈ im(Φ0).

The implication (ii′) =⇒ (ii) is shown easily. Let us write ϕ0 =

(

v0
w0

)

and

ϕ1 =

(

v1
w1

)

. Then (23) implies (20) as well as the relations

w0 = λ0v0, w1 = λ0v1 − v0.

Therefore, the last conditions in (ii) follow from ϕ0 ∈ im(Φ0) and ϕ1 /∈ im(Φ0).

For later purposes in Section 3.3.2 we note that one can actually use the
pair (H0,∆0) in the kernel (see (18)) for computing an invariant pair (X1,Λ1)
of rank k + 1 that extends the pair (X0,Λ0).

Theorem 2.8. Let the assumptions of Theorem 2.2 hold and let condition (i)
of Theorem 2.6 be satisfied. Then the matrix H0 is of rank 1 and has the form

H0 = v1ψ
T , where 0 6= ψ ∈ Rk, ψTΛ0 = λ0ψ

T . (32)

The extended matrices

X1 =
(

X0 v1
)

∈ Rm,k+1, Λ1 =

(

Λ0
1

ψTψ
∆0ψ

0 λ0

)

∈ Rk+1,k+1 (33)

form an invariant pair for P (λ) of rank k + 1.

Proof. We use the the property (21) for the linearized system (6). It is shown
in [5, Theorem 3] that the matrix Ψ0 in (21) is of rank 1 and has the form

Ψ0 = ϕ1ψ
T , 0 6= ψ ∈ Rk, (34)

where ϕ1 is the generalized eigenvector from (23). Using (34),(23) in (21) yields

0 = MΨ0Λ0 −NΨ0 +MΦ0∆0

= Mϕ1ψ
TΛ0 −Nϕ1ψ

T +MΦ0∆0

= M
[

ϕ1ψ
T (Λ0 − λ0I) + ϕ0ψ

T + Φ0∆0

]

.
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From the nonsingularity of M and ϕ0 ∈ im(Φ0), ϕ1 /∈ im(Φ0) we conclude
ψT (Λ0 − λ0I) = 0. Multiplying by ψ from the right yields ϕ0ψ

Tψ = −Φ0∆0ψ.
We combine this with (23) to obtain

(

NΦ0 Nϕ1

)

=
(

MΦ0Λ0 λ0Mϕ1 −Mϕ0

)

= M
(

Φ0 ϕ1

)

(

Λ0
1

ψTψ
∆0ψ

0 λ0

)

.
(35)

Therefore, Φ1 =
(

Φ0 ϕ1

)

and Λ1 form an invariant pair of rank k + 1 for the
linearization L(λ) = Mλ−N . By (7),(30) the matrix X1 from (33) is the upper
block of Φ1 and hence, together with Λ1, forms an invariant pair of rank k + 1
for P (λ).

3 Continuation of invariant pairs

3.1 Existence and smooth dependence of branches

In this section we consider the quadratic matrix polynomial P (λ, s) from (1)
that depends smoothly on a parameter s ∈ R and we ask for a smooth family
of invariant pairs (X(s),Λ(s)) of rank k ≤ 2m, i.e.

P (Λ(s), s)X(s) = A(s)X(s)Λ(s)2 +B(s)X(s)Λ(s) + C(s)X(s) = 0.

The matrices X(s) ∈ Rm,k will be normalized by

X̂T (X(s) −X0) + Ŷ T (X(s)Λ(s) − Y0) = 0,

where X̂, Ŷ ,X0 ∈ Rm,k, Λ̂,Λ0 ∈ Rk,k, Y0 = X0Λ0 are suitable rank k matrices.
These will be fixed during a single predictor and corrector step, but they will
vary during global continuation along the branch.

Suppose that, initially, we have a simple invariant pair (X0,Λ0) of rank k
for P (λ, s0) and we set X̂ = X0, Ŷ = Y0 = X0Λ0. By Theorem 2.2 we can apply
the implicit function theorem near (X0,Λ0, s0) to the equation

T (X,Λ, s) =

(

A(s)XΛ2 +B(s)XΛ + C(s)X

X̂T (X −X0) + Ŷ T (XΛ − Y0)

)

= 0. (36)

This yields a locally unique and smooth branch (X(s),Λ(s)), |s − s0| ≤ ε of
simple invariant pairs of rank k for the polynomial P (λ, s) such that X(s0) =
X0,Λ(s0) = Λ0.

In the following we first consider the continuation of these simple pairs. Then
we treat the case of turning points on the branch where the continued subspace
will be inflated.

3.2 Continuation of simple branches

We discuss the details of implementing a standard predictor corrector method
(see e.g. [1],[18],[4]) for continuing a branch of simple invariant pairs (X(s),Λ(s))
as above.
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3.2.1 Predictor

Assume that (X0,Λ0) is a regular solution of (36) at s = s0. Then we compute
the tangent

(H0,∆0) = (X ′(s0),Λ
′(s0))

to the branch (X(s),Λ(s)) at s = s0 from

D(X,Λ)T (X0,Λ0, s0)(H0,∆0) = −DsT (X0,Λ0, s0).

Using (9) and the operator P (Λ0, s0) from (2) we obtain the following linear
system of dimension (m+ k)k for (H0,∆0)

(

P (Λ0, s0)H0 +A(s0)X0(∆0Λ0 + Λ0∆0) +B(s0)X0∆0

X̂TH0 + Ŷ T (X0∆0 +H0Λ0)

)

=

(

−(A′(s0)X0Λ
2
0 +B′(s0)X0Λ0 + C′(s0)X0)

0

)

.

(37)

This matrix system for H0,∆0 contains a singular part H0 → P (Λ0, s0)H0

bordered by k2 extra unknowns and equations. When linearizing P (Λ0, s0) one
obtains a matrix equation of Sylvester type (see [15]) that is again singular. It
is essential to use the bordering for a stable solution. An algorithm for solving
(37) that exploits this structure will be provided in Section 3.2.3 below.

Given a stepsize δ > 0 and the solution (H0,∆0) of (37) we compute the
predictor from

(X1,Λ1, s1) = (X0,Λ0, s0) + δ(H0,∆0, 1). (38)

3.2.2 Corrector

In the corrector step we solve the system (36) with (s, X̂,X0, Ŷ , Y0) replaced
by (s1, X0, X1, X0Λ0, X1Λ1), i.e. we use the predicted values and adapt the
normalization condition. We note that Theorem 2.2 does no longer apply di-
rectly to this adapted equation. But for small δ we have changed the system
(36) only slightly and thus still expect to have a unique solution. Starting at
(X1,Λ1), Newton’s method generates the sequence (Xν ,Λν), ν ≥ 1 defined by
(Xν+1,Λν+1) = (Xν ,Λν) + (Hν ,∆ν) where

P (Λν , s1)Hν +A(s1)Xν(Λν∆ν + ∆νΛν) +B(s1)Xν∆ν = −P (Λν , s1),

X̂THν + Ŷ T (Xν∆ν +HνΛν) = 0.
(39)

Note that the right hand side of the normalization equation stays always zero
during iteration. The system (39) is of the same type as (37) and is solved by
the algorithm below.
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3.2.3 The bordered Bartels Stewart algorithm

Both linear systems (37), (39) are of the form
(

P (Λ)H + AX(∆Λ + Λ∆) +BX∆

X̂TH + Ŷ T (X∆ +HΛ)

)

=

(

R
S

)

(40)

where H,R, X̂, Ŷ ∈ Rm,k, S,Λ,∆ ∈ Rk,k and σ(Λ) ⊂ σ(P (·)) with P as in
(8). Using the underlying idea of the Bartels Stewart algorithm for Sylvester
equations [15] we reduce equation (40) to a sequence of linear systems with
borderings of matrices P (λ), λ ∈ σ(Λ0). As in [5] we call this the bordered
Bartels-Stewart algorithm.

First compute the complex Schur decomposition of the matrix Λ (see [15])

QHΛQ = Λ̃, QHQ = I, Λ̃ upper triangular. (41)

This involves solving an eigenvalue problem of very small dimension k ≪ 2m.
Using Λ2Q = QΛ̃2 we transform (40) into

(

P (Λ̃)H̃ +AX∆̃Λ̃ + (AXΛ +BX)∆̃

X̂T H̃ + Ŷ T (H̃Λ̃ +X∆̃)

)

=

(

R̃

S̃

)

where
R̃ = RQ, S̃ = SQ, H̃ = HQ, ∆̃ = ∆Q. (42)

Since Λ̃ is upper triangular we can compute the columns H̃j , ∆̃j of H̃, ∆̃
recursively as in the Bartels-Stewart algorithm (see [15], Ch. 7.6.3) from a
sequence of k bordered (complex) linear systems

(

P (Λ̃jj) AX(Λ + Λ̃jjI) +BX

X̂T + Λ̃jj Ŷ
T Ŷ TX

)(

H̃j

∆̃j

)

=

(

R̃j −
∑j−1

ν=1

[

Λ̃νj(AX∆̃ν +BH̃ν) + (Λ̃2)νjAH̃ν

]

S̃j −
∑j−1
ν=1 Λ̃νj Ŷ

T H̃ν

)

, j = 1, . . . , k.

(43)

Using (42) the solution H,∆ is obtained from H̃, ∆̃. Note that, although the
system is complex, the final solution H,∆ will be real. The important feature
of the system above is that the upper left block P (Λ̃jj) is typically a large
sparse, almost singular matrix. Systems of this type occur quite frequently
in bifurcation problems and several approaches for their efficient and stable
solution have been developed that use several calls of a black box solver for
P (Λ̃jj) or its transpose, [6],[16],[17], [22], [24]. During the continuation of k-
dimensional simple invariant pairs we can expect that its rank drops at most by
k which can be compensated for by the bordering.

3.3 Turning points and subspace updates

3.3.1 Pseudo-arclength continuation

Rather than parameterizing solution branches of (36) by the given parameter
s we apply a path following algorithm to compute smooth solution branches of

12



the form
(X(t),Λ(t), s(t)) ∈ Rm,k × Rk,k × R, t ∈ R. (44)

Using Theorem 2.6 we show that at a turning point (i.e. ds
dt

(t) = 0, d
2s
dt2

(t) 6= 0)
a real eigenvalue from the continued cluster σ(Λ(t)) collides with an eigenvalue
from outside to form a complex conjugate pair, see the discussion in Section
3.3.2. In order to deal with such bifurcations of real eigenvalues, but also for
reasons of computational efficiency, we use a pseudo arclength method for (36)
which adds an extra equation of the form

〈Ẋ,X −X0〉 + 〈Λ̇,Λ − Λ0〉 + ṡ(s− s0) = δ. (45)

Here δ is some step-size, the matrices Ẋ ∈ Rm,l, Λ̇ ∈ Rk,k and ṡ ∈ R are
approximate tangent vectors from the previous point on the branch, and we use
a (suitably scaled) inner product for rectangular matrices

〈A,B〉 =
1

ℓk
trace(ATB) for A,B ∈ Rℓ,k.

For completeness we write down the analogs of (37)-(39) in this setting. The
tangent (H0,∆0, τ0) to the branch at (X0,Λ0, s0) is computed from

(

D(X,Λ)T
0 DsT

0

〈Ẋ | 〈Λ̇| ṡ

)(

(H0,∆0)
τ0

)

=

(

0
1

)

, (46)

where T is given in (36) and the upper index 0 indicates evaluation at (X0,Λ0, s0).
The predicted point is

(X1,Λ1, s1) = (X0,Λ0, s0) + δ(H0,∆0, τ0).

The corrector solves the system

(

T (X,Λ, s)

〈Ẋ,X −X1〉 + 〈Λ̇,Λ − Λ1〉 + ṡ(s− s1)

)

= 0.

Starting at (X1,Λ1, s1) the Newton steps are

(Xν+1,Λν+1, sν+1) = (Xν ,Λν , sν) + (Hν ,∆ν , σν), ν ≥ 1 (47)

where
(

D(X,Λ)T
ν DsT

ν

〈Ẋ | 〈Λ̇| ṡ

)(

(Hν ,∆ν)
σν

)

= −
(

T ν

0

)

. (48)

Equations (46) and (48) lead to linear systems for H ∈ Rm,k, ∆ ∈ Rk,k and
µ ∈ R of the following type (compare (40))

P (Λ)H +AX(∆Λ + Λ∆) +BX∆ + Γµ = R ∈ Rm,k
X̂TH + Ŷ T (X∆ +HΛ) = S ∈ Rk,k (49)

〈Ẋ,H〉 + 〈Λ̇,∆〉 + ṡµ = d ∈ R
13



where Γ ∈ Rm,k. For example, in the predictor step we have

Γ = DsP (Λ0, s0)X0 = A′(s0)X0Λ
2
0 +B′(s0)X0Λ0 + C′(s0)X0.

The bordered Bartels-Stewart from Section 3.2.3 can be modified for this case
as follows. First, put Λ into upper triangular form as in (41) and transform the
data as in (42) where in addition˜̇X = ẊQ,˜̇Λ = Λ̇Q. For simplicity we drop the
“˜” and work with (49) where Λ is upper triangular. We compute the columns
Hj ,∆j of H,∆ and the value µ via the ansatz

(Hj ,∆j , µ) = (H0
j ,∆

0
j , µ

0
j) +

j
∑

i=1

αi(H
i
j ,∆

i
j , µ

i
j), j = 1, . . . , k. (50)

Defining the bordered matrix

Mj =







P (Λjj , s0) AX(Λ + ΛjjI) +BX Γj

X̂T + Λjj Ŷ
T Ŷ TX 0

1
mk
ẊT
j

1
k2 Λ̇Tj

ṡ
k






(51)

we determine the unknowns in (50) for j = 1, . . . , k from

Mj





H0
j

∆0
j

µ0
j



 =





Rj −
∑j−1
i=1 Λij(AX∆0

i +BH0
i ) + (Λ̃2)ijAH

0
i

S̃j −
∑j−1

i=1 Λij Ŷ
TH0

i

0



 ,

Mj





Hi
j

∆i
j

µij



 =





−∑j−1
ν=1 Λνj(AX∆i

ν +BHi
ν) + (Λ2)νjAH

i
ν

−∑j−1
ν=1 Λνj Ŷ

THi
ν

0



 for i = 1, . . . , j − 1,

Mj







Hj
j

∆j
j

µjj






=





0
0
1



 .

The last entry ṡ
k

guarantees that Mj is nonsingular even in the predictor step

where we normalize with (Ẋ, Λ̇, ṡ) = (0, 0, 1). Finally, the αi are calculated
from the k-dimensional system











µ1
2 − µ1

1 µ2
2

...
...

. . .

µ1
k − µ1

1 µ2
k . . . µkk

1 . . . 1

















α1

...
αk






=











µ2
1 − µ3

2
...

µ2
1 − µk+1

k

d











(52)

Setting µ = µ0
1 + α1µ

1
1 one verifies that the desired solution is given by (50).

Contrary to (43) the linear systems above involve a bordering of the singular
matrix P (Λjj , s0) of width k + 1. They can be expected to be well-conditioned
even at the turning points which correspond to double real eigenvalues. We
note, however, that the overall method is rather expensive since one has to
solve 1

2 (k + 1)(k + 2) bordered systems.
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3.3.2 Update of invariant pairs at turning points

The parameter dependent version of the linearized problem (6) is

F (Φ,Λ, s) =

(

M(s)ΦΛ −N(s)Φ

Φ̂H(Φ − Φ0)

)

= 0, (53)

where

L(λ, s) = M(s)λ−N(s) =

(

I 0
0 A(s)

)

λ−
(

0 I
−C(s) −B(s)

)

. (54)

As an easy consequence of Section 2.3 we note the following.

Proposition 3.1. Let X̂, Ŷ ,X0 ∈ Rm,k,Λ0 ∈ Rk,k be given such that X̂TX0 +
Ŷ TX0Λ0 is nonsingular and define Φ̂,Φ0 by (7). Then the triple (X0,Λ0, s0) is
a quadratic turning point of the system (36) if and only if the triple (Φ0,Λ0, s0)
is a quadratic turning point of the linearized system (53).

Proof. By definition a quadratic turning point (Φ0,Λ0, s0) of (53) satisfies con-
ditions (21), (22) at s = s0 and the transversality condition

DsF (Φ0,Λ0, s0) /∈ imD(Φ,Λ)F (Φ0,Λ0, s0). (55)

By the proof of Theorem 2.6 it is sufficient to prove that (55) is equivalent to

DsT (X0,Λ0, s0) /∈ imD(X,Λ)T (X0,Λ0, s0). (56)

Note that equation (55) leads to a system of type (25)-(27) with right-hand
sides 0,DsP (Λ0, s0)X0,0 and (56) is of the form (28),(29) with right-hand sides
DsP (Λ0, s0)X0,0. From this the assertion follows.

Suppose now that we have detected and computed a quadratic turning point
on a branch (44), see [4], [8], [9], [11], [18] for appropriate methods and imple-
mentations. Then a continuation method will reverse the s- direction and follow
a branch of invariant pairs that differs from the previous invariant pairs by just
one real eigenvalue. As follows from [19],[23] the turning point for the real
system can be interpreted as a complex bifurcation point for the complexified
equation. At this point two real eigenvalues meet to form a double eigenvalue
which, when keeping the parameter direction, form a complex conjugate pair
of eigenvalues associated to a two-dimensional real invariant subspace. In our
situation one of the real eigenvalues is in the continued group before the turning
point and the other one is picked up upon turning back. Otherwise the spectral
sets are identical.

Rather than turning back we want our method to continue in the s-direction.
Therefore we update the invariant pair of rank k to one of rank k+1 by including
the generalized eigenvector. The corresponding invariant pair then continues in
the same direction and includes the real and imaginary parts of the eigenvectors
and the corresponding complex conjugate eigenvalues. Theorem 2.8 shows how
to achieve this.
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Let (X0,Λ0, s0) = (X(0),Λ(0), s(0)) denote the computed turning point on
the branch (44) and let (H0,∆0, τ0) 6= 0 with τ0 = 0 denote the tangent to the
branch computed from (46). Differentiating T (X(t),Λ(t), s(t)) = 0 at t = 0
shows that (H0,∆0) spans the kernel of D(X,Λ)T (X0,Λ0, s0). In view of (32) we
compute the singular value decomposition

H0 = σ1v1ψ
T
1 , σ1 > 0, v1 ∈ Rm, ψ1 ∈ Rk, vT1 v1 = ψT1 ψ1 = 1. (57)

A comparison with (32) shows ψ = σ1ψ1 and hence (33) leads to the update
formula

X1 =
(

X0 v1
)

, Λ1 =

(

Λ0
1
σ1

∆0ψ1

0 λ0

)

. (58)

If λ0 is not yet available one can compute it from (32) via

λ0 =
ψTΛ0ψ

ψTψ
= ψT1 Λ0ψ1. (59)

4 Algorithmic details and numerical examples

4.1 A summary of the algorithm

We summarize the essential steps in the continuation of invariant pairs (X(s),Λ(s))
for the quadratic eigenvalue problem (2).

Step1: Initial data
Choose k0 ≤ k ≤ k1 where k0 < k1 ∈ N denote the minimal and the
maximal rank of invariant pairs to be continued,
Choose X1 ∈ Rm,k, Λ1 ∈ Rk,k and s1 ∈ J , where J ⊂ R is the prescribed
interval for the parameter s,
nstep = 0 step counter, δ = δ0 > 0 step-size,

Ẋ = 0, Λ̇ = 0, ṡ = ṡ0 =

{

+1 increase s on the branch

−1 decrease s on the branch

Step2: Corrector
Generate the Newton sequence (Xν ,Λν , sν), ν ≥ 1 from (47),(48). Use
the bordered Bartels Stewart algorithm (49)- (52) for the linear systems.
No convergence: Stop if nstep = 0, otherwise decrease step-size δ and
return to the predictor in step 4 or the update in step 6.
Convergence: Let (X0,Λ0, s0) denote the last Newton iterate. Stop if
s0 /∈ J , otherwise set nstep = nstep + 1 and increase δ appropriately.

Step3: Tangent vector
Solve (46) for H0 ∈ Rm,k,∆0 ∈ Rk,k, τ0 ∈ R using the bordered Bartels
Stewart algorithm (49)-(52).
If ṡτ0 < 0 a turning point is detected, proceed with Step 5.
Let Ẋ = H0, Λ̇ = ∆0, ṡ = τ0.
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Step4: Predictor
(X1,Λ1, s1) = (X0,Λ0, s0) + δ(H0,∆0, τ0).

Goto Step 2.

Step5: Turning point
Compute the turning point (X∗,Λ∗, s∗) of (36) that is close to (X0,Λ0, s0)
and the tangent (H0,∆0, τ0 = 0) at the turning point from (46).

Step6: Update of dimension
Compute the singular value decomposition (57) of H0,
update X1 ∈ Rm,k+1, Λ1 ∈ Rk+1,k+1 according to (58),(59).
Set k = k + 1 and Ẋ = 0, Λ̇ = 0, ṡ = ṡ0.
Validate the estimate X1,Λ1 by performing some corrector steps (see
(47),(48)) and, upon convergence, let (X1,Λ1) be the final iterate.
If k > k1, then depending on the spectrum of Λ∗, reduce k to some
k ∈ [k0, k1] and adapt X1,Λ1 correspondingly.
Set s1 = s∗ + δ0ṡ0.
Proceed with Step 2.

In step 5 we use cubic Hermite interpolation to get a good initial estimate of the
turning point (cf. [8, Ch.5.2]) and then compute an approximate turning point
on the branch. In the update step 6 the dimension of the subspace increases
by one at every turning point. Therefore, it is reasonable to take precautions
for reducing the dimension (we decided to keep the dimension within prescribed
bounds k0 < k1). For example, if stability is the principal issue, one may elimi-
nate the eigenvalues of smallest real part. This can be achieved by solving the
eigenvalue problem for the small matrix Λ∗ (see the step (41) during the linear
solves) and then reducing to an invariant pair with columns complementary to
the eliminated eigenvectors. This strategy will guarantee that we follow the
rightmost group of eigenvalues within the continued cluster. But, of course, due
to the local nature of the method, this does not guarantee that the algorithm
follows the rightmost group of eigenvalues within the whole spectrum.

4.2 Fluid conveying pipes

The analysis of vibration of fluid conveying pipes [27] leads to the following
PDE

uxxxx+s2uxx+γ(x−1)uxx+2
√

β s uxt+γux+utt = 0, x ∈ [0, 1], t ≥ 0, (60)

where β = mf/mp denotes the quotient of the mass of fluid mf and the mass
of pipe mp and γ denotes the gravity constant. The continuation parameter s
is the fluid velocity.

From spatial discretization with a Galerkin ansatz one obtains a parameter-
ized ODE

Iv̈ +B(s)v̇ + C(s)v = 0, B(s), C(s) ∈ Rm,m,
17



where
B(s) = 2

√

β s B̃, C(s) = Ã+ (s2 − γ)G+ γ(D + B̃),

and the matrices Ã, B̃, G and D stem from the Galerkin discretization. The
standard stability analysis leads to the quadratic eigenvalue problem

X(s)Λ2(s) +B(s)X(s)Λ(s) + C(s)X(s) = 0.

For more details on the derivation of this quadratic eigenvalue problem see [27].
At parameter values β = 0.4, γ = 10, m = 100 we continue a 6 dimensional

invariant pair from s = 0 to s = 14. At s = 0 we start with the eigenvalues
of smallest imaginary part on the y−axis. Figure 2 shows the dependence of
the real part and the imaginary part w.r.t. the parameter s as obtained by
our method. No collisions with outside eigenvalues occur, but there are two
real to complex transitions inside the group. These do not affect our step-size
control and only become visible a-posteriori when plotting the eigenvalues of
the reduced matrix Λ(s). For comparison we show in Figure 1 the full spectrum
at the endpoints s = 0 and s = 14. In the blow-up we indicate the continued
group of eigenvalues by boxes.

The pipe becomes unstable at s ≈ 9.2 through one complex conjuagte pair
indicating a Hopf bifurcation. This is in agreement with the results in [27],
where a simple continuation method for an extended system (obtained by using
Kronecker products) was used to follow two eigenvalues.
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Figure 1: Fluid conveying pipes, full spectrum at s = 0 (top) and s = 14
(bottom).
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Figure 2: Fluid conveying pipes, continuation of 6 dimensional invariant pair,
real part (left) and imaginary part (right).

4.3 Damped hyperbolic wave equation

The damped hyperbolic wave equation with parameter s reads

sutt + ut = uξξ + f(u), (61)

Following [12],[13] we transform (61) via u(ξ, t) = v(
√

1 + sc2ξ − ct, t) into

svtt + vt − 2scvxt = vxx + cvx + f(v). (62)

Stationary solutions v̄(x) of this equation, i.e. v̄′′ + cv̄′ + f(v̄) = 0, then lead
to traveling waves u(ξ, t) = v̄(

√
1 + sc2ξ − ct) of the given system (61). For

example, for the Nagumo nonlinearity f(u) = u(1 − u)(u − µ) we obtain

v̄(x) = (1 + exp(− x√
2
))−1, c = −

√
2(

1

2
− µ). (63)

In order to examine stability of the traveling wave we linearize about v̄. The
ansatz v(x, t) = eλtw(x) leads to the eigenvalue problem

(sλ2 + λ)w − 2sλcw′ = w′′ + cw′ + f ′(v̄)w, x ∈ R. (64)

We truncate to a finite interval J = [−20, 20], use zero Dirichlet boundary
conditions, and discretize (64) with finite differences and m = 200 gridpoints.
With the notation un ≈ w(xn), n = 0, . . . ,m we obtain the quadratic eigenvalue
problem

λ2A(s)u + λB(s)u − Cu = 0,

where A(s) = sI, B(s) = I − 2scD0, C = −(D−D+ + cD0 + diag(f ′(v̄))) and
D±, D0 are matrices generated by forward/backward and central differencing.

Figure 4 show the continuation of invariant pairs for s = [0, 1.5]. Initially, at
s = 0, the spectrum is real and we choose the four dimensional group of right-
most real eigenvalues (including the zero eigenvalue which is always present).
A total of 3 real-to-complex updates as in step 6 occur at parameter values
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indicated by vertical lines. At s = 1.5 we have an invariant pair of rank 7
that corresponds to the zero eigenvalue and to 3 complex conjugate pairs. Note
that we never decrease the dimension in step 6, which corresponds to taking
k0 = 4, k1 ≥ 7 in step 1. For comparison we show again the full spectrum for
the endpoints in Figure 3. The waves are always stable (with asymptotic phase),
for growing values of s real eigenvalues continue to form complex conjugate pairs
and the hyperbolic character of the equation becomes more and more dominant.
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Figure 3: Damped hyperbolic wave equation, full spectrum at s = 0 (top) and
s = 1.5 (bottom).
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Figure 4: Damped hyperbolic wave equation, continuation of 4 dimensional
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4.4 Homotopy of random matrices

For the last example we use a homotopy of matrices A(s) = sA1 + (1 − s)A0,
where A0, A1 ∈ Rm,m are chosen at random and B(s), C(s) are built analo-
gously. For dimension m = 60 we continue a four dimensional invariant sub-
space from s = 0 (see the boxes in Figure 5) until s = 1. Figure 6 shows that
the dimension of the subspaces alternates between 4 and 5 which corresponds
to taking k0 = 4, k1 = 5 in the algorithm. The subspace is enlarged two times
due to collision with other real eigenvalues (dashed vertical lines) and it also
deflated two times (solid vertical lines). Whenever the eigenvalue with smallest
real part was real, the dimension was reduced to 4 causing a deflation. During
continuation the eigenvalues in the group are not always well separated from
the rest of the spectrum. Nevertheless the continuation method works without
problems.
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Figure 5: Homotopy of random matrices (dimension = 60), full spectrum at
s = 0 (top) and s = 1 (bottom).
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5 Conclusions

We have developed the details of an algorithm for computing branches of in-
variant pairs for parameter-dependent quadratic eigenvalue problems. Invariant
pairs are matrix solutions to the quadratic eigenvalue problem (see (2)) that are
in one-to-one correspondence with invariant subspaces of linearizations. In our
approach we extend the quadratic equation for an invariant pair by suitable nor-
malization conditions and then solve by a Newton-like process. The emphasis is
on low dimensional invariant pairs of large and sparse quadratic matrix polyno-
mials as they typically arise in finite element or finite difference discretizations
of PDE’s that are of second order in time. We avoid linearizing the system
which will double its size and may destroy sparsity patterns.

Several numerical issues have been resolved successfully. The linear matrix
equations that arise during the predictor corrector method can be solved by a
bordered Bartels Stewart algorithm. The algorithm involves the Schur decom-
position of a small matrix and the solution of a small number of linear vector
equations with a bordering of the matrix polynomial. It is shown that turning
points on the branch correspond exactly to a double real eigenvalue where two
real eigenvalues collide to form a complex conjugate pair. At such points the
dimension of the invariant pair is increased by one and the theory is used to
compute initial approximations of the updated pair. The method proposed is
strictly local in the sense that invariant pairs can only be updated when such
collisions occur with eigenvalues that are already inside the group.

Quite a few challenging problems remain. While it is rather obvious how
to generalize the techniques of this paper to higher order matrix polynomials
it is not at all clear how to treat genuinely nonlinear eigenvalue problems. In
particular, it is not obvious how to define invariant pairs in general and whether
it makes sense to compute branches that belong to groups of eigenvalues. More
importantly, for the application to stability problems one needs algorithms that
can detect globally all eigenvalues that pass certain critical lines, such as the
imaginary axis, and thus should be included in the continued invariant pair.
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seur. NLEVP: A collection of nonlinear eigenvalue problems.
www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html.

[3] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur.
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