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1 Introduction

In many applied problems in biology, physics or chemistry traveling waves
arise as solutions of systems of partial differential equations of the form

Ut = f(U, Ux, Uxx) in [0,∞) × IR. (1)

A traveling wave has the special property that it is constant if one looks at
it in a comoving frame. More precisely this means if U is a traveling wave
solution of (1) with speed c, the function Ũ(t, x) := U(t, x + ct) is a steady
state of the transformed PDE

0 =
d

dt
U(t, x + ct) = f(Ũ , Ũx, Ũxx) + cŨx in [0,∞) × IR. (2)

For the stability analysis of traveling waves it is important to know where
the point spectrum of the linearized right hand side of (2) lies. We will show
how this can be approximated by computing the spectrum of boundary value
problems.

2 General assumptions on the problem’s structure

We consider a linear coupled hyperbolic-parabolic PDE of the form
(
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)
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xx
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(
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x

+
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) (

u

v

)

,

(3)
where P : H2(IR, Cn)×H1(IR, Cm) → L2(IR, Cn)×L2(IR, Cm). This structure,
for example, may arise by linearizing the nonlinear PDE (2) at the wave’s
profile (see also Section 4).
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Assumptions. We now state the basic assumptions on the operator P .

(0) The matrix valued functions Bij and Cij are twice continuously differen-
tiable and converge to constant limit matrices:
• B11(x) → B11± ∈ Cn,n, C11(x) → C11± ∈ Cn,n as x → ±∞.

• B22(x) → B22± ∈ Cm,m, B22,x(x) → 0 ∈ Cm,m, and
C22(x) → C22± ∈ Cm,m as x → ±∞,

‖B22,xx‖∞ < ∞, ‖C22,x‖∞ < ∞.

• B12(x) → B12±, C12(x) → C12± ∈ Cn,m, and
C21(x) → C21± ∈ Cm,n, as x → ±∞, ‖B12,x‖∞ < ∞.

(P) The matrix A ∈ Cn,n satisfies A + A∗ ≥ αI > 0 as a quadratic form for
some α ∈ IR.

(H) The matrix function B22 is real diagonal valued and there exist b0, γ > 0
such that for all x ∈ IR the diagonal elements satisfy
|bii(x) − bjj(x)| ≥ γ, for i 6= j,

bii(x) ≥ b0, for 1 ≤ i ≤ r, and −bii(x) ≥ b0, for r + 1 ≤ i ≤ m.
Furthermore the real part of the diagonal entries of the limit matrices
C22± is bounded from above by −2δ for some δ > 0.

(D) There exists δ > 0 such that for all ω ∈ IR and for all s ∈ C the equality

det

(

−ω2

(

A 0
0 0

)

+ iω

(

B11± B12±
0 B22±

)

+ ω

(

C11± C12±
C21± C22±

))

= 0 (4)

implies ℜs ≤ −δ.

Note that assumption (0) is generically satisfied if the profile of the trav-
eling wave is a smooth connecting orbit of rest states of the nonlinear PDE
(1).

For our analysis of the spectral properties of P we consider the resolvent
equation

(sI − P )

(

u

v

)

=

(

f

g

)

in L2(IR, Cn) × L2(IR, Cm) (5)

and transform it into a first order system using the variables (u, Aux, v) = z

L(s)z = zx − M(x, s)z = (0,−f + B12B
−1
22 g,−B−1

22 g)T . (6)

Here we consider the operator L(s) as a mapping H2×H1×H1 → H1×L2×L2.
The matrix M is of the form

M(·, s) =





0 A−1 0
B12B

−1
22 C21+(sI − C11) −B11A

−1 −C12− B12B
−1
22 (sI − C22)

−B−1
22 C21 0 B−1

22 (sI − C22)



 .

(7)
Recall that an operator L : z 7→ zx−M(x)z, M(x) ∈ Cl,l is said to have an

exponential dichotomy on a closed interval J if there exist positive numbers
K, β, and for every x ∈ J there is a projection π(x) ∈ Cl,l such that
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S(x, y)π(y) = π(x)S(x, y), ∀x, y ∈ J,

|S(x, y)π(y)| ≤ Ke−β(x−y), ∀x ≥ y ∈ J,

|S(x, y)(I − π(y))| ≤ Ke−β(y−x), ∀x < y ∈ J,

(8)

where S(·, ·) is the solution operator to L. We call (K, β, π) the data of the
exponential dichotomy. For general results about systems with exponential
dichotomies see [4].

By assumption (0) the limit matrices M±(s) := limx→±∞ M(x, s) exist
and the dispersion relation (D) implies that these are hyperbolic matrices for
all s ∈ C with ℜs > −δ. More generally M±(s) are non-hyperbolic if and
only if the number s lies on the algebraic curves defined by (4). But for the
stability analysis we are only interested in the rightmost part of the spectrum.

We denote by V I
±(s) and V II

± (s) bases of the stable and unstable subspace
of M±(s), respectively. By the Roughness Theorem [4, 2] the hyperbolicity of
the limit matrices implies that for each s ∈ {ℜs > −δ} the operator L(s) has
exponential dichotomies on IR+ and IR−.

Using the transformation z̃ =





I 0 0
0 1√

s
I 0

0 0 I









I 0 0
0 I B12±
0 0 I



 z for ℜs suffi-

ciently large, it is shown in [9] that the dimensions of V I
+(s) and V I

−(s), and of
V II

+ (s) and V II
− (s) coincide for ℜs > −δ′. Then a result from [8] shows that

L(s) is a Fredholm operator of index zero for ℜs > −δ. Utilizing the relation
of L(s) and sI − P we obtain that for all s ∈ C with ℜs > −δ the operator
sI − P is Fredholm of index zero.

It is well known (e.g. [6]) that the operator sI −P is one to one for s ∈ IR
sufficiently large, such that the following lemma is implied.

Lemma 1. The operator P only has isolated eigenvalues of finite algebraic
multiplicity in the right half plane {ℜs > −δ}.

Hence we can decompose the spectrum of P according to σ(P ) = σP ∪̇σess,
where σP is the point spectrum which consists of all isolated eigenvalues of
finite multiplicity, and σess := σ(P ) \ σP is the essential spectrum.

3 Statement of the main result

As explained in Section 2 there only is point spectrum to the right of the axis
{ℜs = −δ}. Since it is in general not possible to determine the location of
the point spectrum analytically one has to approximate it numerically. One
possibility is to implement the “Evans function” which is an analytic function
whose roots coincide with eigenvalues of the operator, for details see [5] and
the references therein. Another possibility is to restrict the operator P to a
finite but large interval and to impose suitable boundary conditions, see for
example [2]. Then one uses the spectrum of these boundary value problems
as an approximation.
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We follow the latter approach and consider the restriction of the resolvent
equation (5) to a finite interval J = [x−, x+]

(sI − P|J)

(

uJ

vJ

)

=

(

fJ

gJ

)

in L2(J, Cn) × L2(J, Cm), (9)

where P|J is defined the same way as P , but only on the interval J . In order
to obtain a well-posed problem on the finite interval J , we impose boundary
conditions

R

(

uJ

vJ

)

= η ∈ C2n+m, (10)

where R is a two point boundary operator of the form

R

(

uJ

vJ

)

:=
(

RI
− RII

− RIII
−

)





uJ(x−)
uJ,x(x−)
vJ (x−)



+
(

RI
+ RII

+ RIII
+

)





uJ(x+)
uJ,x(x+)
vJ(x+)



. (11)

The crucial assumption we must make on the boundary operator is the
determinant condition

D(s) := det
[ (

RI
− RII

− A−1 RIII
−

)

V II
− (s) ,

(

RI
+ RII

+ A−1 RIII
+

)

V I
+(s)

]

. (12)

This condition basically states that the stable and unstable subspaces of the
solutions can be controlled at the left and right endpoint of the interval,

respectively. As above V
I/II
± (s) are bases of the stable and unstable subspaces

of M±(s).
Using a general convergence result, the following proposition, which gives

quantitative resolvent estimates of the finite interval problem, is proven in
[3]. It is also possible to prove this proposition applying techniques from the
theory of exponential dichotomies as is done in [2] for the purely parabolic
case.

Proposition 1. Let Ω ⊂ {ℜs > −δ′} be a compact subset of the resolvent set
ρ(P ) of P and assume D(s) 6= 0 for all s ∈ Ω.

Then there is a compact interval J0 and K0 > 0 such that for all J =
[x−, x+] ⊃ J0 and for all s ∈ Ω the finite interval problem (9), (10) has
for every right hand side fJ ∈ L2(J, Cn), gJ ∈ L2(J, Cm), η ∈ C2n+m a
unique solution (uJ , vJ) ∈ H2(J, Cn)×H1(J, Cm). Moreover the solution can
be estimated by

‖uJ‖H2 + ‖vJ‖H1 + |uJ |Γ + |uJ,x|Γ + |vJ |Γ ≤ K0

(

‖f‖L2
+ ‖g‖L2

+ |η|
)

,

where |u|2Γ := |u(x−)|2 + |u(x+)|2.

Together with Lemma 1 this proposition also gives a qualitative result that
at most the point spectrum of the operator P is approximated in the right
half plane. But note that it does not say whether each eigenvalue is really
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approximated, and how close the approximate spectrum is to the spectrum of
P . This will be the statement of our Theorem 1. Before we state this theorem
we introduce some notation. As usual we denote by N (A) the kernel of an
operator A. Furthermore we will use the Banach spaces

E := H2(IR, Cn) × H1(IR, Cm), F := L2(IR, Cn) × L2(IR, Cm),

EJ := H2(J, Cn) × H1(J, Cm), F := L2(J, Cn) × L2(J, Cm) × C2n+m.

Finally we denote by

A(s) := sI − P ∈ L(E, F ) and AJ (s) :=

(

sI − P|J
R

)

∈ L(EJ , FJ )

the operator polynomials, corresponding to the all line operator and to its
finite interval approximation. Note that the boundary operator R is included
in the definition of the finite interval approximation.

For an element s0 in the point spectrum σP of P choose ε > 0 such that
s0 is the only element of the spectrum of P in the closed ball Bε(s0). Then we
call σJ := {s ∈ Bε(s0) : s is an eigenvalue AJ (·)} the s0–group of eigenvalues
of AJ

2.

Theorem 1. Let the assumptions (0), (P), (H), and (D) hold and let Σ be
an open neighborhood of the isolated eigenvalue s0.
Assume D(s) 6= 0 for all s ∈ Σ and choose ε > 0 such that Bε(s0) ⊂ Σ. Let
β± denote the dichotomy exponents of L(s0) on IR±.
Then there is a compact interval J0 ⊂ IR such that for every interval J =
[x−, x+] ⊃ J0 the following properties hold.

The s0-group of eigenvalues σJ converges to the eigenvalue s0, in the sense
that for every 0 < β′ < min(β−, β+) there is c = c(β′) > 0 such that

max
s∈σJ

|s − s0| = dist(σJ , s0) ≤ ce−
β′

κ
min(x+,−x−), (13)

where κ is the maximal multiplicity of an eigenvector of A(·) to the eigenvalue
s0.

The eigenspace of AJ (·) for σJ converges to the eigenspace of A(·) to the
eigenvalue s0. Moreover the following estimate holds

sup




∥

∥

(

uJ
vJ

)∥

∥

EJ

= 1

sJ ∈ σJ ,
(

uJ
vJ

)

∈ N (AJ (sJ))





inf
(

u0
v0

)

∈N (A(s0))

∥

∥

∥

∥

(

uJ

vJ

)

−

(

u0|J
v0|J

)∥

∥

∥

∥

EJ

≤ c e−
β′

κ
min(x+,−x−).

(14)
Furthermore the dimensions of the generalized eigenspace to A(·) to s0 and of
AJ (·) to the s0–group σJ coincide.

2For a definition of eigenvalue, eigenvector, and multiplicity of eigenvectors for
operator polynomials see, for example, [7].
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The theorem is state in a more quantitative version in [9], where also a close-
ness result for the generalized eigenspaces is stated. The proof is in [9] and
it applies the abstract theory of discrete approximations (see [10]). The main
problem in the proof is to show that for every s ∈ Σ the operators AJ (s)
regularly converge to the all line operator A(s). This is shown in [3].

4 Approximating the point spectrum of the

FitzHugh-Nagumo system

As an example we consider the FitzHugh-Nagumo system. The system reads

ut = uxx + u −
1

3
u3 − v, vt = Φ(u + a − bv), (15)

where we choose the parameter values a = 0.7, b = 0.8, Φ = 0.08. It is well
known that for this choice of parameters the system (15) has a stable and an
unstable traveling pulse. We denote by (u, v)T (x) the profile of the pulse and
by c its speed. Furthermore let (u∞, v∞)T denote the limit for x → ∞.

Linearizing the system in the comoving frame at the profile leads to the
linear PDE (cf. (3))

(

u

v

)

t

=

(

1 0
0 0

) (

u

v

)

xx

+

(

c 0
0 c

) (

u

v

)

x

+

(

1 − u2 −1
Φ −Φb

) (

u

v

)

. (16)

Obviously the assumptions (0), (P), and (H) are satisfied. It follows from the
following observation that also assumption (D) is fulfilled.

If there are matrices H± =

(

Hi
± 0
0 Hii

±

)

, H± = H∗
± > 0, Hii

± diagonal,

with
Hi

±A + A∗Hi
± > 0, H±B± − B∗

±H± = 0,

H±C± + C∗
±H± < −2δH for some δ > 0

then assumption (D) holds.
Choosing H = diag(1, Φ−1) shows that the FitzHugh-Nagumo system also

satisfies (D).
For our computations we approximate the unstable traveling wave on a

large interval J = [0, 65] with projection boundary conditions, see [1]. For
the computation of the spectrum we then linearize at this approximation and
discretize using central differences and suitable boundary conditions. For the
figures shown in this paper we always used periodic boundary conditions since
they obviously satisfy the determinant condition (12) for all s with ℜs > −δ

if the profile is a pulse.
In Figure 1 we plot the spectrum of (16) with periodic boundary conditions

corresponding to the unstable wave. One can see the isolated eigenvalue at 0
which always appears for traveling waves and also that the unstable eigenvalue
is present in the spectrum.
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Fig. 1. The spectrum of the finite interval operator using central differences and
periodic boundary conditions.
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Fig. 2. Convergence of the zero eigenvalue for the unstable traveling wave for dif-
ferent step sizes and interval lengths.

In Figure 2 we compute the length of the eigenvalue closest to zero of the
discretized operator for different step sizes and interval lengths. Similarly in
Figure 3 we compute the distance of the eigenvalue with maximal real part
of the discretized operator to the unstable eigenvalue of the pulse. Since the
exact value of the unstable eigenvalue is not known explicitly we treated the
eigenvalue with maximal real part of the operator on the interval J = [0, 65]
with step size 0.005 as the exact unstable eigenvalue.

One can observe the exponential rate of convergence of the eigenvalues
depending on the interval length as predicted in Theorem 1. Furthermore one
can see that the eigenvalues seem to converge exponentially fast, also in the
step size of the discretization. Note that the convergence to the unstable eigen-
value seems to be much better. This is, because we only use an approximation
of it which is not exact. So the picture is probably to optimistic.
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Fig. 3. Convergence of the unstable eigenvalue.
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