
A C∞ density theorem for differential
inclusions with Lipschitz continuous right

hand sides

Janosch Rieger
Fakultät für Mathematik, Universität Bielefeld

Postfach 100131, D-33501 Bielefeld

November 5, 2008

Abstract

By definition, solutions of differential inclusions are absolutely con-
tinuous functions with L1 derivatives. We prove that at least for a class
of Lipschitz continuous right hand sides the C∞-solutions are dense
in the set of all solutions with respect to the supremum norm.
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1 Introduction

Differential inclusions have been intensively studied since the fifties (cf. [6])
when it was discovered that rigorous existence results for solutions of differ-
ential equations with a non-smooth right hand side could be proved within
this new framework. When the basics of control theory were established,
control problems could also be reformulated as differential inclusions (see
Chapter 10 of [1]).

It is well-known that the C1-solutions of the initial value problem

ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0 (1)

are dense in the set of all solutions w.r.t the supremum norm for certain
classes of right-hand sides.
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Filippov showed (cf. [5]) that this statement holds true whenever F is
Lipschitz continuous and has closed and uniformly locally connected values.
He constructs a sequence of absolutely continuous solutions in such a way
that a suitable measure of discontinuity of the derivatives converges to zero
along the sequence.

In a later article (see [13]), Wolenski provided a simpler proof for locally
Lipschitz continuous right hand sides with convex and compact values. In
contrast to Filippov, he uses a sequence of continuously differentiable approx-
imations obtained by a modified Picard-Lindelöf iteration which converge
uniformly to a solution.

The aim of this paper is to prove that even the C∞-solutions are dense
in the set of all solutions provided that the right hand sides are stout (i.e.
arbitrarily small blowups of Lipschitz continuous and convex and compact
valued mappings, see Definition 1). Unlike the articles mentioned above, the
proof uses convolutions in order to smoothen the functions. For the sake of
completeness, an alternative convolution-based proof for the classical results
is provided.

This result might be of some theoretical interest, because many control
problems and systems with uncertainties are equivalent to a differential inclu-
sion with a stout right hand side. On the other hand, many authors (cf. e.g.
[3], [4], [7], [8], [11], and the survey [9]) have introduced numerical methods
for differential inclusions, but nobody has yet been able to establish higher
order convergence of a set-valued numerical scheme for some sufficiently gen-
eral class of right-hand sides. Any insight into the smoothness properties of
the set of solutions might be valuable for further advances in this area.

While intuition suggests that the C∞ solutions should also be dense in
the set of all solutions whenever the right hand side is continuous and

F (x) = IntF (x) for all x ∈ Rd,

it seems very difficult to either prove this claim or give a counterexample.
As our proof heavily relies on the comparatively rigid concept of Lipschitz
continuity, it is impossible to adapt it to this more delicate problem.

2 The result

Let | · | be a vector norm in Rd. As usual, B(x, δ) := {ξ ∈ Rd : |ξ − x| ≤ δ},
and for A ⊂ Rd, we set

||A|| := sup
a∈A
|a|.
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Let CC(Rd) denote the set of all compact convex subsets of Rd and let dist
and distH be the nonsymmetric and the symmetric Hausdorff distance, re-
sprectively. The convex hull of a set A will be denoted by co(A).

Definition 1. A set-valued mapping F : Rd → CC(Rd) is called (L, δ0)-
stout with constants δ0 > 0 and L > 0 if there exists a Lipschitz continuous
mapping Fδ0 : Rd → CC(Rd) with Lipschitz constant L such that

F (x) = B(Fδ0(x), δ0) ∀x ∈ Rd. (2)

Remark 2. Since Fδ0 is Lipschitz continuous with Lipschitz constant L,
the mappings defined by x 7→ B(Fδ0(x), δ) with δ > 0, and in particular
F , are Lipschitz continuous with the same constant. Obviously, the images
B(Fδ0(x), δ) are compact and convex. Thus an (L, δ0)-stout mapping is (L, δ)-
stout for every δ ∈ (0, δ0], where

Fδ(x) := B(Fδ0(x), δ0 − δ). (3)

The following remark formalizes a simple geometric principle.

Remark 3. Let Fi ⊂ Rd, i ∈ I and G ⊂ Rd be closed and convex, where I
is some index set. Then

dist(co(∪i∈IFi), G) ≤ sup
i∈I

dist(Fi, G), (4)

Proof. Let f ∈ co(∪i∈IFi). There exist λ0, . . . , λd ∈ [0, 1] and f0, . . . , fd ∈
∪i∈IFi, fj ∈ Fij such that f =

∑d
j=0 λjfj and

∑d
j=0 λj = 1. Let gj ∈ G be

such that
|fj − gj| = dist(fj, G) ≤ dist(Fij , G).

Then g :=
∑d

j=0 λjgj ∈ G, and

|f − g| ≤
d∑
j=0

λj|fj − gj| ≤
d∑
j=0

λj dist(Fij , G) ≤ sup
i∈I

dist(Fi, G).

Now we formulate our main result:

Theorem 4. Let F : Rd → CC(Rd) be (L, δ0)-stout with δ0 ∈ (0, 1]. Then
the infinitely many times differentiable solutions of the initial value problem

ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0 (5)

are dense in the set of all solutions with respect to the maximum norm.
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Proof. Let x(·) be a solution of (5). We will construct smooth solutions aδ(·)
arbitrarily close to x(·).

Step 1: A-priori bounds. The solution x is à-priori bounded: Let z(s) ∈
F (x(0)) such that |ẋ(s)− z(s)| = dist(ẋ(s), F (x(0))). Then

|x(t)− x(0)| ≤
∫ t

0

|ẋ(s)|ds

≤
∫ t

0

|ẋ(s)− z(s)|+ |z(s)|ds

≤
∫ t

0

distH(F (x(s)), F (x(0))) + ||F (x(0))||ds

≤ t||F (x(0))||+
∫ t

0

L|x(s)− x(0)|ds,

and by the Gronwall lemma,

|x(t)− x(0)| ≤ t||F (x(0))||+
∫ t

0

s||F (x(0))||LeL(t−s)ds

= t||F (x(0))||+ 1

L
||F (x(0))||(eLt − Lt− 1)

=
1

L
||F (x(0))||(eLt − 1).

In particular,

|x(t+ η)− x(t)| ≤ 1

L
||F (x(t))||(eLη − 1)

≤ 1

L

[
||F (x(0))||+ distH(F (x(t)), F (x(0)))

]
(eLη − 1)

≤ 1

L

[
||F (x(0))||+ L|x(t)− x(0)|

]
(eLη − 1)

≤ 1

L

[
||F (x(0))||+ ||F (x(0))||(eLt − 1)

]
(eLη − 1)

≤ 1

L
||F (x(0))||eLT︸ ︷︷ ︸

=:C1

(eLη − 1). (6)

Step 2: Regular approximation. Now we construct a regular approxima-
tion xδ of x. Without loss of generality we can assume that

ẋ(t) ∈ F (x(t)) ∀t ∈ [0, T ]
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as a function. We formally continue it as a function ẋ ∈ L1
loc(R,Rd) by

setting

ẋ(t) :=


ẋ(T ), T < t
ẋ(t), 0 < t ≤ T
ẋ(0), t ≤ 0.

(7)

For given δ ∈ (0, δ0], there exists a function ϕδ ∈ C∞0 (R,R+) satisfying
supp(ϕδ) ⊂ [−δ, δ] and

∫
R ϕδ(τ)dτ = 1 such that

yδ(s) :=

∫
R
ϕδ(τ)ẋ(s− τ)dτ

is a function yδ ∈ C∞(R,Rd) (see Theorem 2.16 in [10]) with∫ T

0

|yδ(s)− ẋ(s)|ds ≤ δ.

Hence xδ ∈ C∞(R,Rd) given by

xδ(t) := x(0) +

∫ t

0

yδ(s)ds

satisfies
|xδ(t)− x(t)| ≤ δ ∀t ∈ [0, T ].

Note that yδ is Lipschitz continuous in [−1, T + 1] with Lipschitz constant
Kδ > 0.

Step 3: Construction of a regular selection. Consider the time dependent
mappings

F̃ : R× Rd → CC(Rd), F̃ (t, x) := F (x)− yδ(t) (8)

and
F̃δ : R× Rd → CC(Rd), F̃δ(t, x) := Fδ(x)− yδ(t), (9)

where the Fδ is the δ-retract of F defined in (3). Since F̃δ(t, x) is Lipschitz
continuous in t and x, its minimal selection

(t, x) 7→ m(F̃δ(t, x))

is continuous by theorem 1.7.1 in [2]. Take a ψδ ∈ C∞0 (R × Rd,R+) with
supp(ψδ) ⊂ B(0, δ

2Kδ
) × B(0, δ

2L
) and

∫
R×Rd ψδ(t, x)d(t, x) = 1, so that the

function

m̃(t, x) :=

∫
R×Rd

ψδ(θ, ξ)m(F̃δ(t− θ, x− ξ)) d(θ, ξ) (10)
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is an element of C∞(R × Rd,Rd). According to Theorem 1.6.13 in [12], it
satisfies

m̃(t, x) ∈ co{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}

⊂ co(F̃δ(B(t,
δ

2Kδ

), B(x,
δ

2L
)))

⊂ co(B(F̃δ(B(t,
δ

2Kδ

, x),
δ

2
)))

⊂ co(B(F̃δ(t, x), δ)) = F̃ (t, x)

for t ∈ [0, T ] and x ∈ Rd, which implies

yδ(t) + m̃(t, x) ∈ F (x). (11)

On the other hand,

|m̃(t, x)| ≤ ‖co{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}‖
= ‖{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}‖

≤ sup{dist(0, F̃δ(θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}

≤ sup{dist(0, F̃ (θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}+ δ

≤ sup{dist(0, F̃ (t, x)) + dist(F̃ (t, x), F̃ (θ, x))

+ dist(F̃ (θ, x), F̃ (θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}+ δ

≤ dist(0, F̃ (t, x)) + 2δ = dist(yδ(t), F (x)) + 2δ.

Step 4: Corresponding solution. By the Cauchy-Peano theorem, the ini-
tial value problem

ȧδ(t) = yδ(t) + m̃(t, aδ(t)), aδ(0) = x(0) (12)

admits a solution aδ(·) on a maximal subinterval J ⊂ [0, T ] with 0 ∈ J . It
is an element of C∞(J,Rd), and because of (11) it is also a solution of the
original differential inclusion (5). For t ∈ J one obtains

|xδ(t)− aδ(t)| ≤
∫ t

0

|yδ(s)− (yδ(s) + m̃(s, aδ(s)))|ds

=

∫ t

0

|m̃(s, aδ(s))|ds

=

∫ t

0

dist(yδ(s), F (aδ(s))) + 2δ ds.
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By Theorem 1.6.13 in [12],

yδ(s) ∈ co{ẋ(τ) : τ ∈ s− supp(ϕδ)}. (13)

Hence

|xδ(t)− aδ(t)| ≤
∫ t

0

dist(co{∪s−supp(ϕδ)F (x(τ))}, F (aδ(s))) + 2δ ds

(4)

≤
∫ t

0

sup
τ∈[s−δ,s+δ]

dist(F (x(τ)), F (aδ(s))) + 2δ ds

≤
∫ t

0

sup
τ∈[s−δ,s+δ]

L|x(τ)− aδ(s)|+ 2δ ds

(6)

≤
∫ t

0

L(|x(s)− aδ(s)|+ C1(e
Lδ − 1)) + 2δ ds

≤
∫ t

0

L|xδ(s)− aδ(s)|+ L(δ + C1(e
Lδ − 1)) + 2δ︸ ︷︷ ︸

=:C2(δ)

ds.

The Gronwall lemma yields

|xδ(t)− aδ(t)| ≤ C2(δ)t+

∫ t

0

C2(δ)sLe
L(t−s)ds

= C2(δ)t+
1

L
C2(δ)(e

Lt − Lt− 1)

=
1

L
C2(δ)t(e

Lt − 1),

and thus

|x(t)− aδ(t)| ≤ δ +
1

L
C2(δ)t(e

Lt − 1)

≤ δ +
1

L
C2(δ)T (eLT − 1). (14)

In particular, aδ is bounded on J . Hence J = [0, T ], and

||x− aδ||∞ ≤ δ +
1

L
C2(δ)T (eLT − 1) (15)

−→ 0 as δ → 0.

Let us sketch an alternative proof for the classical result of Filippov and
Wolenski using the above techniques. Please note that here it is not necessary
to smoothen the minimal selection and thus we don’t need to assume that
the set-valued mapping F has a δ-retract.
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Theorem 5. Let F : Rd → CC(Rd) be Lipschitz continuous. Then the
continuously differentiable solutions of the initial value problem

ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0 (16)

are dense in the set of all solutions with respect to the maximum norm.

Proof. The à-priori estimate and the regular approximation xδ(·) can be ob-
tained exactly as in the previous proof. For the construction of a regular
selection, we can consider the time dependent mapping

F̃ : R× Rd → CC(Rd), F̃ (t, x) := F (x)− yδ(t).

Since yδ is continuous, F̃ is continuous w.r.t the Hausdorff metric and con-
sequently, the minimal selection (t, x) 7→ m(t, x) of F̃ is also continuous.
Obviously

|m(t, x)| = dist(yδ(t), F (x)),

and
yδ(t) +m(t, x) ∈ F (x) ∀t ∈ [0, T ], ∀x ∈ Rd.

By the Cauchy-Peano theorem, the initial value problem

ȧδ(t) = yδ(t) +m(t, aδ(t)), aδ(0) = x(0) (17)

admits a solution aδ(·) on a maximal subinterval J ⊂ [0, T ] with 0 ∈ J . The
following estimates are merely a simplified version of the previous calcula-
tions. Of course, the solution aδ(·) is defined on the whole interval [0, T ]
and it is continuously differentiable, because the right hand side of (17) is a
continuous function.
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