
Computing invariant measures with dimension redu
tionmethodsJens Kemper∗November 13, 2008Abstra
tWe present an algorithm to 
ompute invariant measures in high dimensions, e.g. indis
retizations of s
alar rea
tion di�usion equations. The algorithm 
ombines subdivisionte
hniques developed by Dellnitz, Junge and 
o-authors with Proper Orthogonal De
ompo-sition as a model redu
tion method. Sin
e the algorithm 
omputes dis
rete measures withsupport in a low dimensional subspa
e of the state spa
e we present methods for representingand 
omparing su
h measures. One su
h method aims at a dis
retization of the Prohorovmetri
. The paper also 
ontains numeri
al results of the algorithms.1 Introdu
tionIn this paper we des
ribe a feasible ansatz for the 
omputation of invariant measures in highdimensional dynami
al systems. More pre
isely, we 
onsider the dis
rete dynami
al systemde�ned by
ui+1 = F (ui), i = 0, 1, 2, . . .where F is a di�eomorphism of RN with large N ≫ 1. Typi
ally these large dis
retedynami
al systems arise from spatial dis
retizations of partial di�erential equations (seese
tion 7 for details).When we explore the longtime behavior of dynami
al systems there are in prin
iple two
lassi
al numeri
al approa
hes. One uses the simulation of many traje
tories over large timeintervals and in this way tries to get an overall pi
ture of the dynami
s. The disadvantage ofthis ansatz is that one 
annot be sure to fet
h all information of the long time behavior bythis simulation te
hnique. For example think of almost invariant sets in whi
h traje
toriesare 
aptured for long time s
ales.The se
ond approa
h is to make a global statisti
al analysis of the underlying system, forexample the 
omputation of invariant measures of the system. Denote byMN = M(RN ) theset of probability measures on RN and re
all that a measure µ ∈ MN is 
alled F -invarianti�

µ(A) = µ(F−1(A)) for all A ∈ B(RN).The Frobenius-Perron Operator P : MN → MN is de�ned by
P (µ)(A) = µ(F−1(A)) for all A ∈ B,su
h that �xed points of P are invariant measures.For numeri
al 
omputations one approximates the Frobenius-Perron operator by largematri
es and 
omputes eigenve
tors to the eigenvalue 1 whi
h lead to approximate invariant
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measures. In re
ent years a promising approa
h was developped by Dellnitz, Junge and
o-workers. ([DFJ01℄, [DJ98℄, [DJ99℄) This ansatz uses Ulam's method ([Ula60℄) whi
hbasi
ally means, that the state spa
e is dis
retized into a box 
overing, from whi
h one
omputes transition probabilities that represent the dis
retized version of the Frobenius-Perron operator. By rather e�
ient storing algorithms for the boxes and using an adaptiveway of bise
ting boxes this te
hnique is a powerful tool to 
ompute invariant measures insystems of low dimension. Details of this algorithm will be explained later.However, when used in higher dimension this subdivision algorithm, 
alled 'AdaptiveInvariant Measure (AIM) algorithm', su�ers from the '
urse of dimension'. Even whenthe support of the invariant measure is low-dimensional, the subdivision algorithm has todeal with an exponentially in
reasing number of boxes in the �rst re
ursion steps. If thestate spa
e is N -dimensional 2N boxes are 
reated to derive the �rst dis
retization in every
oordinate. Sin
e no relevant redu
tion 
an be expe
ted before this step, the number ofboxes qui
kly ex
eeds a 
omputable amount even though the relevant dynami
s is embeddedin a low dimensional manifold.There are several ways to approa
h this problem. We brie�y dis
uss three of them.
• One 
an simplify the 
omputation of invariant measures by using stru
ture proper-ties of the underlying system. Dellnitz and 
o-workers have presented an ansatz us-ing symmetries of the dynami
al system ([MHvMD06℄, [Jun01b℄). They showed, thatthe symmetries of the system are linked to the symmetries of eigenmeasures of thePerron-Frobenius operator. This observation 
an in prin
iple be used to derive theseeigenmeasures with less 
omputational 
osts.
• A new ansatz by Junge and Koltai [JK℄ uses so-
alled sparse hierar
hi
al grids whi
hare based on a tensor produ
t 
onstru
tion. Using the Haar basis of L2([0, 1]N ) �nitedimensional approximation spa
es (given by a sparse basis) are derived whi
h have thelargest bene�t to 
ost ratio. It 
an be shown that by this ansatz the 
omputationale�ort is of signi�
antly lower order than for the standard Ulam basis to a
hieve a
omparable a

ura
y of the approximation.
• Another ansatz, that we follow here, is based on model redu
tion methods. We fo
us onthe so-
alled Proper Orthogonal De
omposition (POD). This method is des
ribed forinstan
e in [HLB96℄. There are many promising results when using this method for the
omputation of single traje
tories mainly in 
ontrol theory (see [KV01℄, [KV02℄). Forlinear systems they 
an also be 
ombined with a balan
ed trun
ation ansatz ([Ant05℄,[ASG01℄, [RCM04℄). In this paper we will use POD to approximate the global dynami
sof a high-dimensional system.The outline of this paper is as follows. In se
tion 2 we brie�y re
all the subdivision algorithm,
alled Adaptive Invariant Measure algorithm, des
ribed in [DFJ01℄, [DJ98℄ and implementedin the Software Pa
kage GAIO. In se
tion 3 we introdu
e the model redu
tion method ofProper Orthogonal De
omposition and explain how we 
ombine this te
hnique with thesubdivision algorithm.Sin
e the approximate invariant measures that are 
omputed by this algorithm live on alower dimensional subspa
e of the original state spa
e, given by the POD basis, it is nontrivialto represent and 
ompare measures for di�erent POD bases and the approximative invariantmeasure of the original subdivision algorithm respe
tively. Therefore we develop a properrepresentation of these dis
rete measures in se
tion 4. Then in se
tion 5 we dis
uss theProhorov metri
, that generates the weak-* topology. We will set up a numeri
al methodfor 
omputing the distan
e of two measures in the Prohorov metri
, whi
h even works whenthe measures are supported on di�erent POD spa
es.We develop in se
tion 6 a more sophisti
ated version of our algorithm where the PODbasis is adaptively 
hanged during the subdivision pro
ess.In se
tion 7 we will present some numeri
al results 
on
erning the approximation ofinvariant measures in a Cha�ee-Infante problem and a more a
ademi
 example where the2



Lorenz system is embedded into a high dimensional system.2 Adaptive invariant measure algorithmWe re
all some basi
 steps of the set-oriented methods developed by Dellnitz, Junge et al.([DFJ01℄, [DJ98℄). The Adaptive Invariant Measure algorithm (AIM algorithm) adaptivelyre�nes box 
overings of a positive invariant starting box. On these box 
olle
tions dis
retemeasures are 
omputed as �xed points of dis
retized Perron-Frobenius operators. For laterreferen
e in se
tion 3 we present a simple version of this algorithm.The AIM algorithm
• Initialization: Let B0 be a positive invariant box with 
enter c ∈ RN and radius
r ∈ RN

B0 := B(c, r) := {x ∈ RN : |xi − ci| ≤ ri, i = 1 . . . , N}.The initial box 
olle
tion is B0 = {B0} and the initial dis
rete measure µ0 :
B(RN) → [0, 1] is de�ned by

u0(A) =
λN (A ∩B0)

λN (B0)
, A ∈ B(RN),where λN is the N -dimensional Lebesgue measure.

• Re
ursion step: Assume that a partition Bk−1 of a subset of B0 is given with adis
rete measure µk−1 : B(RN) → [0, 1].1. Choose a subset B(1) of Bk−1 where the a
tual measure is above average
B(1) = {B ∈ Bk−1 : µk−1(B) ≥ 1/|Bk−1|}.Subdivide boxes in B(1) in 
oordinate (k mod N) into a re�ned box 
olle
tion

B(2) and 
ontinue witĥ
Bk := (Bk−1 \ B

(1)) ∪ B(2),K := |B̂k|.2. Cal
ulate a normalized �xed point u ∈ RK , ‖u‖1 = 1 of the Frobenius-Perronmatrix Pk = (pij)ij ∈ RK,K de�ned by
pij =

λ(Bj ∩ F−1(Bi))

λ(Bj)
, 1 ≤ i, j ≤ K. (1)where B̂k = {B1, . . . , BK}.3. Set

Bk = {Bi ∈ Bk : i = 1, . . . ,K and ui > 0} ⊂ B̂kA new dis
rete measure µk : B(RN) → [0, 1] is de�ned by
µk(A) =

K∑

i=1

ui

λN (A ∪Bi)

λN (Bi)
, A ∈ B(RN).It is easy to see, that the Frobenius-Perron matrix de�ned by (1) is 
olumn sto
hasti
 in3



the sense
K∑

i=1

pij = 1, for all j = 1, . . . ,Ksin
e we assume B0 to be positive invariant under F . Then the following theorem ensures theexisten
e of a �xed point - or in other words the existen
e of an eigenve
tor to the eigenvalue
1 = ρ(P ) with nonnegative entries.Theorem 2.1 ([Min88℄). Let A be a real matrix with nonnegative entries. Then the followingstatements hold:

• The spe
tral radius r := max{|λ| : λ is eigenvalue of A} is an eigenvalue of A.
• There is an eigenve
tor to the eigenvalue r with nonnegative entries.
• The estimate mini

∑
j aij ≤ r ≤ maxi

∑
j aij holdsThe dis
rete measure µk is absolutely 
ontinuous with density uk : RN → [0, 1] de�nedby

uk :=
K∑

i=1

ui

λN (Bi)
1Biwhere 1A is the 
hara
teristi
 fun
tion of the set A ⊂ RN :1A(x) =

{
1, x ∈ A
0, otherwiseTogether with

µk(RN ) =

K∑

i=1

ui = 1this shows, that µk is a probability measure.A 
onvergen
e result based on the theory of small random perturbations 
an be foundin [Jun01a℄. Roughly speaking, the result states that the AIM algorithm, when applied toa system with su�
iently small noise, generates an approximate invariant measure that is
lose to the SRB measure of the deterministi
 system. For details on su
h small randomperturbations see [Kif86℄.3 Proper Orthogonal De
ompositionThe 
on
ept of Proper Orthogonal De
omposition is used to produ
e redu
ed-order modelsmainly in problems arising in 
ontrol theory. The idea is to determine a nested familyof subspa
es in the original state spa
e that optimally span the data 
onsisting of givensnapshots. Usually these snapshots are derived from traje
tories of the system.3.1 Formulation of PODThe formal de�nition of the Proper Orthogonal De
omposition 
an be formulated in anarbitrary Hilbert spa
e H , see [HLB96℄De�nition 3.1. Let y1, . . . , yn ∈ H be a 
olle
tion of snapshots. An l-dimensional orthonor-mal system {wk}k=1,...,l is 
alled proper orthogonal de
omposition basis of rank l if it solvesthe minimization problem
E({ψ}l

k=1) :=
∑

‖yj −
l∑

k=1

(yj , ψk)Hψk‖
2
H minimized over orthonormal bases.4



Theorem 3.2. Let W := span{y1, . . . , yp} ⊂ H. Let σ1 ≥ . . . ≥ σm > 0, m = dimW , be thesingular values and let w1, . . . , wm ∈ W be the 
orresponding singular ve
tors of the linearmap U ∈ L(Rp,W ) de�ned by
U(v) =

p∑

j=1

(v, ej)yjwhere ej are the Cartesian basis ve
tors of Rp. Then {wk}k=1,...,l is a POD basis of rank
l ≤ m with error

E({wk}k=1,...,l) =

m∑

k=l+1

σ2
k.(see [KV01℄, [HLB96℄)In our 
ontext we take H = RN and therefore, U ∈ RN,p is just the matrix with thesnapshots y1, . . . , yp ∈ RN as 
olumns.3.2 The AIM algorithm in redu
ed spa
eThe easiest way to 
ombine POD as a redu
tion method with invariant measure algorithmsis to 
ompute a basis in the �rst step and apply the algorithm in the redu
ed system. Wewill propose this ansatz in the following algorithmThe PODAIM algorithm

• Snapshots For randomly 
hosen points u(0)
1 , . . . , u

(0)
p ∈ B0 
ompute short traje
to-ries to get test points

uj = F q(u
(0)
j ), j = 1 . . . , p.

• POD 
omputation By a singular value de
omposition of U ∈ RN,p with 
olumns
u1, . . . , up we get (

S 0
)

= WTUVwith
S = diag(σ1, . . . , σN ) ∈ RN,N , σ1 ≥ . . . ≥ σN ≥ 0where W ∈ RN,N , V ∈ Rp,p are orthogonal. We 
hoose l ≪ N e.g. by �ndingthe smallest l with σl+1

σ1
≤ ε and split W =

(
W1 W2

) with W1 ∈ RN,l and
W2 ∈ RN,N−l

• AIM algorithm in POD spa
e A ve
tor u ∈ RN in the subspa
e de�ned by W1is representated by α ∈ Rl via u = W1α. We de�ne a lower dimensional dis
retedynami
al system by
αi+1 = WT

1 F (W1αi) ∈ RlFor this dynami
al system we 
hoose a proper positive invariant starting box andapply the AIM algorithm des
ribed in 2 to obtain a dis
rete measure µl : B(Rl) →
[0, 1] de�ned by

µl(A) =
K∑

i=1

ui

λl(A ∩Bi)

λl(Bi)
, A ∈ B(Rl) (2)where {Bi}

K
i=1 is the box 
olle
tion in the redu
ed spa
e obtained by the AIMalgorithm.

5



• Embedding A box B = B(c, r) ⊂ Rl 
an be embedded into the set BW1 ⊂ RN inthe original spa
e by the matrix W1:
BW1 := {z = W1x ∈ RN : x ∈ B} = {z = W1x ∈ RN : |xi − ci| ≤ ri, i = 1, . . . , l}These embedded boxes form the support of the extended measure µN : B(RN) →

[0, 1] de�ned by
µN (A) =

K∑

i=1

ui

λl(A ∩BW1

i )

λl(B
W1

i )
, A ∈ B(RN). (3)Remark 3.3. 1. In (3) we denote by λl the Lebesgue measure on the l-dimensional sub-spa
e span{w1, . . . , wl} of RN . We have λl(B

W1

i ) = λl(Bi) and
λl(A ∩BW1

i ) = λl({x ∈ Bi : W1x ∈ A} = λl(Bi ∩W
−1
1 (A))where W−1

1 (A) = {x ∈ Rl : W1x ∈ A} denotes the preimage of A under W1. Therefore,
µN 
an also be expressed as

µN (A) =
K∑

i=1

ui

λl(Bi ∩W
−1
1 (A))

λl(Bi)
.2. Observe that in 
ontrast to the measure µl in the redu
ed system given by (2), theextended measure µN is not absolutely 
ontinuous. This is revealed by an alternativede�nition of µN that also shows the measure property of µN . Therefore let δ0 : B(R) →

[0, 1] denote the onedimensional Dira
 measure (
f. [Bau92℄, �25). De�ne
µ̃N = µl ⊗

N⊗

j=l+1

δ0where µ1 ⊗ µ2 denotes the produ
t measure of µ1, µ2 a

ording to [Bau92℄, Def. 23.4.Then an alternative de�nition of µN is given by the transformation of µ̃N via theorthogonal matrix W ∈ RN,N :
µN (A) = µ̃N (WT (A)), A ∈ B(RN).Several extensions and problems of this �rst naive approa
h will be dis
ussed in thefollowing se
tions.We are fa
ing two problems when we examine the results of the PODAIM algorithm.

• Representing dis
rete measures in a high dimensional state spa
e. We will present anansatz in the following se
tion whi
h uses our assumption that a point in our state spa
e
orresponds to a spatial dis
retized solution u : [0, 1] → R of a paraboli
 equation at a�xed time. We will introdu
e a suitable histogram over the unit interval.
• Comparison of dis
rete measures embedded in a high dimensional spa
e with lowerdimensional support. We will show in se
tion 5, that usual dis
retizations of the weakmetri
 do not work in our 
ontext but that the Prohorov metri
 is a suitable distan
eof measures that 
an be 
omputed numeri
ally.6



4 Representing dis
rete measures in high dimensionsAs des
ribed in the previous se
tion the result of our algorithm is a dis
rete measure µN :
B(RN) → [0, 1] with support on a box 
olle
tion in an l-dimensional subspa
e of our statespa
e RN given by (3).Sin
e we are fo
ussing on Finite Element dis
retizations of s
alar paraboli
 equations, inour 
ontext a state u ∈ RN 
orresponds to a pie
ewise linear fun
tion u : [0, 1] → R givenby

u(
i

N + 1
) = ui, i = 1, . . . , N, u(0) = u(1) = 0.This motivates the following representation.4.1 HistogramRe
all the starting box in our phase spa
e B0 = B(c, r) and set rM = max0≤i≤N ri. Wedivide the set

Q =

[
1

2(N + 1)
,

2N + 1

2(N + 1)

]
× [−rM , rM ] ⊂ R2into a 
olle
tion of boxes as follows

Q =

N⋃

i=1

J⋃

j=1

Qijwhere
Qij =

[
2i− 1

2(N + 1)
,

2i+ 1

2(N + 1)

]
×

[
(2(j − 1) − J)

rM
J
, (2j − J)

rM
J

]
=: Ri × Sj .Then we 
ount those support boxes of our dis
rete measure whose i-th 
enter 
omponent isin the 
orresponding interval to get a fun
tion h : Q ⊂ R2 → R de�ned by

h(Qij) =
K∑

k=1

uk1Qij
(

i

N + 1
, (W1ck)i) =

K∑

k=1

uk1Sj
((W1ck)i)where Bk = Bk(ck, rk) ⊂ Rl, k = 1, . . . ,K denote the support boxes with 
enter ck andradius rk.We 
an interpret h as a histogram operator sin
e h(Qij) approximates

µN (Aij), Aij := Ri−1 × Sj ×RN−iNote that
µN (Aij) =

K∑

k=1

uk

λl(Aij ∩B
W1

k )

λl(B
W1

k )

=

K∑

k=1

uk

λl({x ∈ BW1

k : xi ∈ Sj})

λl(B
W1

k )

≈
K∑

k=1

uk

{
1, if ((c(BW1

k ))i = (W1ck)i ∈ Sj

0, otherwise
= h(Qij)where c(BW ) denotes the 
enter of an embedded box BW ⊂ RN . Here the approximationpro
ess is reasonable be
ause in general diam(BW ) << 2 rM

J
= diam(Sj) holds for the7



support boxes BW ⊂ RN and, therefore, most boxes either lie in Aij or in its 
omplementas indi
ated by the 
enter.With this dis
rete representation operator we visualize our results by 
olor 
oding Qija

ording to the value h(Qij). It is easy to see, that the 
orresponding matrixH = (h(Qij))ijis sto
hasti
 if the support boxes are lo
ated in B0

J∑

j=1

h(Qij) =

K∑

k=1

uk

J∑

j=1

1Qij
(i, (W1c)i)

=
∑

B=B(c,r)∈B

uk(B) = 1For examples we refer to se
tion 7.5 Comparing dis
rete measures: Prohorov metri
In this se
tion we develop an algorithm for 
omputing the distan
e of dis
rete measuresobtained by our algorithm.Re
all that the support of µN in the PODAIM algorithm is given by a low dimensionalbox 
olle
tion B = {B1, . . . , BK} embedded in an l-dimensional subspa
e spanW as boxes
BW

k ⊂ RN , k = 1, . . . ,K. With these boxes µN : B(RN) → [0, 1] is de�ned by (3).Our aim is to 
ompare measures for di�erent 
hoi
es of l ≤ N and di�erent POD bases
W ∈ RN,l in
luding the measure of the AIM algorithm where l = N and W = IN is theidentity matrix.5.1 The weak-* topologyRe
all that the spa
e M(Q) of probability measures on a 
ompa
t set Q de�nes a 
ompa
tmetri
 spa
e via the weak-* metri
 d∗ : M(Q) ×M(Q) → R+ de�ned by

d∗(µ, ν) =

∞∑

i=0

2−i

∣∣∣∣
∫
gi dµ−

∫
gi dν

∣∣∣∣ , (4)where (gi)i is a dense sequen
e in C(Q) (see [Dud02℄).If we apply this metri
 in our 
ontext to approximate d∗(µN , νN ), where the 
orrespondingdis
rete measures µ and ν have support on box 
olle
tions {Aj}j, {Bk}k in the POD spa
esde�ned by W1 ∈ RN,l1 and WN,l2
2 , we have to 
hoose a proper (�nite) sequen
e of testfun
tions (gi)i. Due to the shape of our dis
rete measures a natural 
hoi
e is

{1
A

W1
1

, . . . ,1
A

W1
J

,1
B

W2
1

, . . . ,1
B

W2
K

}However, one easily shows that the approximate weak-* distan
e is 1 as soon as the supportsof the dis
rete measures are disjoint. Therefore we avoid using the de�nition (4) dire
tly.5.2 The 
on
ept of blowing up boxesA more promising ansatz is given by the Prohorov metri
 whi
h plays a role in theoreti
alaspe
ts of probability theory. ([Dud02℄, [Bil68℄). This metri
 is oriented geometri
ally.De�nition 5.1. Let
M(S) := {µ : B → [0, 1] : µ is a probability measure},8



where S is a metri
 spa
e with Borel σ-algebra B. De�ne the Prohorov metri
 p by
p(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B} (5)where µ, ν ∈ M(S) and Aε is the ε-neighborhood of A:

Aε := {x ∈ S : d(x,A) < ε}.Note the following well known result.Theorem 5.2 ([Dud02℄). The mapping p : M(S) × M(S) → R+ de�nes a metri
 on thespa
e of probability measures M(S). Moreover, p is equivalent to the weak-* metri
.We show that the Prohorov metri
 is well suited for numeri
al dis
retizations.5.3 ImplementationAgain we take the boxes of the supports as test sets for the dis
retized version of the Prohorovmetri
. Let µN , νN : B(RN) → [0, 1] be two dis
rete measures on box 
olle
tions A =
{Aj}j=1,...,J ⊂ Rl1 , B = {Bk}k=1,...,K ⊂ Rl2 embedded by W1 ∈ RN,l1,W2 ∈ RN,l2 intoRN . (
f. (3))

µN (A) =

J∑

j=1

uj

λl1(A ∩AW1

j )

λl2(A
W1

j )
, νN (A) =

K∑

k=1

uk

λl2(A ∩BW1

k )

λl2(B
W1

k )
, A ∈ B(RN).Remember the de�nition BW = {Wx ∈ RN : x ∈ B}. We dis
retize the analyti
 Prohorovdistan
e p(µN , νN ) in two steps to get a 
omputable version p[2](µN , νN ). In the �rst step,we repla
e A ∈ B by our boxes of the supports in de�nition (5) and get

p[1](µN , νN ) = max{p
[1]
1 (µN , νN ), p

[1]
2 (µN , νN )}with

p
[1]
1 (µN , νN) = inf{ε > 0 : µN (AW1

j ) ≤ νN ((AW1

j )ε) + ε}.The distan
e p[1]
2 is de�ned analogous via the box 
olle
tion {BW2

k }K
k=1. We will fo
us on p[1]

1in the following, all impli
ations will be the same for p[1]
2 .By de�nition it holds

µN (AW1

j ) =

J∑

i=1

ui

λl1(A
W1

j ∩AW1

i )

λl1(A
W1

i )
= uj , j = 1, . . . , Jand similarly νN(BW2

k ) = vk, k = 1, . . . ,K. This allows us to write p[1]
1 as

p
[1]
1 (µN , νN ) = inf{ε > 0 : max

j=1...,J
(uj − νN ((AW1

j )ε) − ε) ≤ 0}.In the next step we explain how to approximate
νN ((AW1

j )ε) =

K∑

k=1

vk

λl2(B
W2

k ∩ (AW1

j )ε)

λl2(B
W2

k )
.By a Monte-Carlo ansatz with P test points bk1 , . . . , bkP ∈ Bk we get

λl2(B
W2

k ∩ (AW1

j )ε)

λl2(B
W2

k )
≈

1

P
#{bkp : W2b

k
p ∈ (AW1

j )ε} =
1

P
{bkp : d(W2b

k
p, A

W1

j ) < ε}9



Now we approximate
νN ((AW1

j )ε) ≈ wj(ε) :=

K∑

k=1

uk

p
#{bki : d(W2b

k
i , A

W1

j ) < ε}.We will see below, that d(W2b
k
p, A

W1

j ) 
an be 
omputed analyti
ally. Then we approximatethe Prohorov distan
e by
p
[1]
1 (µN , νN) ≈ p

[2]
1 (µN , νN ) :=

{
min{ε > 0 : f1(ε) = 0}, f1(0) > 0
0, otherwisewhere f1;R+ → R is de�ned by

f1(ε) = max
j=1,...,J

(αj − wj(ε) − ε).Sin
e wj is isotone for every j = 1, . . . , J , f1 is antitone and we 
an 
ompute the root of
f e.g. by Newton's method to get p[2]

1 (µN , νN).The se
ond value p[2]
2 (µN , νN ) 
an be 
omputed in an analogous way by approximating

p
[1]
2 (µN , νN ).Computation of the distan
esNow we fa
e the problem to 
ompute

d(W2t, A
W1)where Wi ∈ RN,li, i = 1, 2 are orthogonal matri
es, t ∈ Rl2 and a box A = B(c, r) with
enter and radius c, r ∈ Rl1 is proje
ted to AW1 ⊂ RN via W1.We set t1 = WT

1 (W2t) ∈ Rl1 . Be
ause W2t − W1t1 is orthogonal to the hyperplane
ontaining W1t1 and AW1 we get for the Eu
lidean distan
e
d(W2t, A

W1)2 = d(W1t1, A
W1)2 + ‖W2t−W1t1‖2.Now on the one hand we have

d(W1t1, A
W1)2 = d(t1, A)2 = ‖d‖2where d ∈ Rl1 is given by

di = max(0, |(t1)i − ci| − ri), i = 1, . . . , l1.On the other hand we use orthogonality to get
‖W2t−W1t1‖

2 = ‖W2t‖
2 − ‖W1t1‖

2 = ‖t‖2 − ‖t1‖
2.Altogether we obtain

d(W2t, A
W1)2 = ‖d‖2 + ‖t‖2 − ‖t1‖

2.Observe that only the lengths of low dimensional ve
tors t ∈ Rl2 , d, t1 ∈ Rl1 are used for the
omputation.
10
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tFigure 1: Illustration of the Eu
lidean distan
e 
omputation needed forthe approximation of the Prohorov distan
e. Here the spatial dimensionsare given by N = 1, l1 = l2 = 1.6 Adaptive POD algorithmLooking 
loser at the original subdivision algorithm it is an obvious idea to 
ompute thePOD modes adaptively during the re
ursion steps of the AIM algorithm. Sin
e the algorithm
omputes short time traje
tories to build the transfer matrix, this data 
an be used to derivean adapted POD basis during the algorithm.The algorithm PODADAPT works as follows. Instead of 
omputing dis
rete measuresin a �xed state spa
e, also the POD subspa
e will be 
hanged dynami
ally. Therefore wemanage not only a box 
olle
tion and a 
orresponding dis
rete measure but also the PODbasis throughout the algorithm. We start with the original state spa
e or in other wordsthe 
anoni
al basis of RN as the �rst POD basis. Ofter some re
ursion steps the 
omputedtraje
tories are used to 
ompute a new POD basis. Now the system is transformed into thenew state spa
e and a new box 
olle
tion of 
omparable 
omplexity is built in the new statespa
e. Then the algorithm 
ontinues to work in the new state spa
e.In detail we suggest the following algorithmThe PODADAPT algorithm
• Initialization: Start with W = IN , l = N . B0 = {Q}, Q ⊂ RN positive invariant,
u0 : B0 → [0, 1] de�ned by u0(Q) = 1.

• Re
ursion step k: Let Bk−1 a 
olle
tion of boxes in the POD spa
e given by
W ∈ RN,l.1. New box 
olle
tion: As in the original AIM algorithm 
al
ulate a new box
olle
tion Bk of J = |Bk| boxes.

11



2. Test points: As in the AIM algorithm 
hoose P random points in ea
h box
B ∈ Bk

u
(j)
1 , . . . , u

(j)
P ∈ Bk ⊂ Rl, j = 1, . . . , J.and evaluate the modi�ed right hand side for these ve
tors

v(j)
p := F (Wu(j)

p ) ∈ RN .3. AIM algorithm: Compute an approximation uk of an invariant measure asin the POD algorithm from the �xed point of the Perron-Frobenius matrix
P = (pij)ij with

pij =
1

P
|{WT v(j)

p ∈ Bi : p = 1, . . . , P}|, i, j = 1, . . . , J4. POD transformation: After a �xed number of re
ursion steps 
ompute anew POD basis in the following way:� POD snapshots In ea
h box 
hoose image points the number of whi
h isdetermined by the dis
rete measure uk:
V := {v(j)

p : j = 1, . . . , J, p = 1, . . . , ⌈uk(Bj)P ⌉}where ⌈x⌉ is the smallest natural number above x.� POD basis: Cal
ulate a new POD basis W̃ ∈ RN,l̃ by a singular valuede
omposition of V . Choose l̃ < N in a reasonable way, e.g. su
h that the
l̃ + 1 largest singular value is smaller than a given toleran
e.� Transformation: After a given number of re
ursion steps (e.g. one inea
h spa
e dimension) we transfer the system to a new l̃ dimensional PODspa
e given by W̃ using the following steps(a) Determine the box B = B(c, r) ∈ Bk with the smallest diameter of the
urrent 
olle
tion and set rm := min{ri : i = 1, . . . , l}.(b) Create a box 
olle
tion B̂ = {B̂1, . . . , B̂M} as a 
overing of W̃TQ whereall boxes B̂i = B̂i(c, r) have the same radius r = (rm, . . . , rm)T .(
) Eliminate all boxes not 
ontaining embedded test points:

B̃ = {B ∈ B̂ : B ∩ {W̃v(j)
p : j = 1, . . . , J, p = 1, . . . , P} 6= ∅}.Continue with the new POD basis W = W̃ of dimension l = l̃ and thebox 
olle
tion B = B̃.We will analyze this algorithm and 
ompare with the results from the PODAIM algorithmin the following se
tion.7 Numeri
al resultsWe analyze our algorithms for two dis
rete dynami
al systems. The �rst one is given bya generalization of the well-known Lorenz system. We will embed this system into a highdimensional spa
e to see how the POD approximation pro
ess works.12



In the se
ond example we apply our algorithms to spa
e-time dis
retizations of a paraboli
equation. We 
hoose the s
alar Chafee-Infante problem whi
h has a 
ubi
 nonlinearity. Thedis
retization uses the Finite Element Method (FEM).7.1 Embedded Lorenz systemWe derive a dis
rete dynami
al system from the following system of ODEs
u′ =




u′1
u′2
u′3
u′4...
vN




=




σ(u2 − u1)
ρu1 − u2 − u1u3

u1u2 − βu3

−αu4

. . .
−αuN




=: FL(u) (6)The �rst three equations of the system are just given by the Lorenz system ([Lor63℄). Wewill use the 'standard' parameters σ = 10, ρ = 28, β = 8/3 in the following.We take α > 0 so that the remaining equations de�ne exponentially de
reasing 
ompo-nents. A dis
rete dynami
al system is derived from (6) by Euler dis
retization.
ui+1 = Fh(ui), Fh(v) = v + hFL(v)Now we embed the system into a quadrati
 manifold. Therefore we de�ne tε : R→ R by

tε(x) = (1 − ε)x+ εx2.Some analysis shows, that tǫ is a one-to-one mapping of Dε :=
(
− 1−ε

2ε
,∞

) onto Rε :=(
− (1−ε)2

4ε2 ,∞
). The inverse fun
tion t−1

ε : Rε → Dε is given by
t−1
ε (y) =

√
y

ε
+

(1 − ε)2

4ε2
−

1 − ε

2ε
.With these s
alar fun
tions we 
an formulate a quadrati
 perturbation in higher systems via

Tε : DN
ε → RN

ε de�ned by
Teps(v)i = tε(vi), i = 1, . . . , Nwith T−1

ε de�ned in an analogue way via t−1
ε . To randomize the orientation of the perturba-tion we transform the state spa
e with some randomly 
hosen orthogonal matrix Q ∈ RN,N .Altogether we get a dis
rete dynami
al system

vi+1 = Gh,ε(vi) := Tε(QFh(QTT−1
ε (vi))), i = 1, . . . , N. (7)In Figure 2 we present the result of the PODAIM algorithm for the system (7) in dimen-sion N = 10. The following parameter values have been used.

σ = 10, ρ = 28, β = 8/3

Q ∈ RN,N with QTQ = I10 and Q has random entries
ǫ = 0.001, α = 0.9, h = 0.01The largest singular values 
omputed in step 2 were

σ1 = 742.0957, σ2 = 333.8305, σ3 = 75.0522, σ4 = 2.3911Due to the gap in magnitude between σ3 and σ4 the POD dimension l = 3 was 
hosen.13



It is reasonable that the resulting POD spa
e, given by W ∈ R10,3, is lo
ated near thesubspa
e spanned by the �rst three 
olumns Q3 ∈ R10,3 of the linear transformation Q, sin
eonly a small quadrati
 perturbation was added to the state spa
e. To measure the distan
ewe 
ompute the prin
ipal angles as de�ned in [GvL96℄ (Algorithm 12.4-3 and 
orrespondingde�nition):For general subspa
es de�ned by A ∈ Rm,q, B ∈ Rm,p, q ≥ p, the 
osine of the prin
ipleangles θk, k = 1, . . . , q are given by the singular values of C = QT
1Q2 where A = Q1R1 and

B = Q2R2 are the QR de
ompositions of A and B respe
tively with Q1 ∈ Rq,q, Q2 ∈ Rp,porthonormal.Sin
e W and Q3 are orthonormal in our 
ase the prin
ipal angles are given by cos−1(σk),
k = 1, 2, 3, where σk are the singular values of WTQ3. As expe
ted the prin
ipal angles aresmall:

θ = (0.0009, 0.0034, 0.0111)T .The Figure 2 shows the resulting box 
olle
tion in the POD spa
e after k = 27 re
ursionsteps.

Figure 2: Resulting box 
olle
tion of PODAIM algorithm for the embed-ded Lorenz system in N = 10 dimensions.7.2 S
alar Chafee-Infante problemWe apply our algorithm to a dynami
al system arrising from the dis
retization of the s
alarChafee-Infante problem with a 
ubi
 nonlinearity
ut = uxx − λ(u3 − u), 0 < x < 1, t > 0, (8)
u(0, t) = u(1, t) = 0, t > 0 (9)Before we 
an apply our algorithms we have to fully dis
retize the paraboli
 system.Finite ElementsFor the spatial dis
retization we 
hoose a Standard Finite-Elements ansatz (
f. [LT03℄) withlinear basis fun
tions. Therefore let xi = ih, i = 1, . . . , N be the equally distributed grid14



points in the unit interval with step size h = 1
N+1 . We 
hoose pie
ewise linear basis fun
tions

Λj : [0, 1] → R given by
Λj(xi) = δij , (i, j ∈ {1, . . . , N})By the weak formulation in Vh := span{Λ1, . . . ,ΛN} one gets the 
ondition for the �niteelement solution uh ∈ Vh by

(
d

dt
uh(t),Λj)2 + a(uh(t),Λj) = λ(uh(t)3 − uh(t),Λj)2, (1 ≤ j ≤ N)with the ellipti
 form

a(u, v) =

∫ 1

0

u′ v′ dx, (u, v ∈ Vh).Using the representation uh(t) =
∑N

i=1 αi(t)Λi ∈ V h one gets a system of ODEs
Bhα

′(t) +Ahα = λGh(α(t)). (10)where Bh = ((Λj ,Λi)2)ij ∈ RN,N is the mass matrix and Ah = (a(Λj ,Λi))ij ∈ RN,N thesti�ness matrix. Further on, the nonlinear fun
tion G : RN → RN is de�ned by
Gh(α)j =

∫ 1

0

Λj(x)

{
(

N∑

i=1

αΛi(x))
3 −

N∑

i=1

αΛi(x)

}
dx (11)We derive an expli
it formula from (10) by inserting the formulas for the basis fun
tions Λj.Then we get

Bh =
h

6
B, Ah =

1

h
A, Gh(α) = hG(α)with

B =




4 1

1
. . . . . .. . . . . . 1

1 4



, A =




2 −1

−1
. . . . . .. . . . . . −1

−1 2



,

G(α)j =
αj−1

6
+

2αj

3
+
αj+1

6
−
α3

j−1

20
−

2α3
j

5
−
α3

j+1

20

−
α2

j−1αj

10
−

3αj−1α
2
j

20
−

3α2
jαj+1

20
−
αjα

2
j+1

10This leads to the following expli
it ODE (note 1
h

= N + 1)
α′(t) = 6B−1(−(N + 1)2Aα(t) − λG(α(t)). (12)For the time dis
retization we take the expli
it Euler method and derive from (12) a dis
retedynami
al system that we will analyze with our algorithms des
ribed above:

αi+1 = F (αi), i = 1, 2, . . . , (13)where F : RN → RN is de�ned by
F (α) = α+

1

∆t

(
6B−1(−(N + 1)2Aα− λG(α))

)
.Note that we have to satisfy the stability restri
tion

∆t

h2
≤

1

2
⇐⇒ ∆t ≤

1

2(N + 1)2
.15



The dynami
al behavior of the 
ontinuous problem is well-analyzed, see for instan
e[Hen81℄, [Rob01℄. Depending on the parameter λ > 0 the �xed-points of (8) are des
ribedby the following theorem.Theorem 7.1. Let n ∈ N be given with n2π2 < λ < (n+ 1)2π2. Then the following holds
• The 
ontinuous Cha�ee-Infante problem (8) possesses 2n+ 1 �xed points φ0, φ±1 , . . .,
φ±n

• φ0 is just the trivial solution and φ+
k and φ−k are symmetri
 with d

dx
φ+

k > 0 and d
dx
φ−k <

0 respe
tively. Moreover φk± has k − 1 zeros in (0, 1) at
1

k
,
2

k
, . . . ,

k − 1

k

• For n = 0 the only �xed point φ0 is stable. For n ≥ 1 we have 2 stable �xed points φ±1and 2n− 1 unstable �xed points φ0 and φ±k , 2 ≤ k ≤ n.One 
an also 
onstru
t an absorbing set for the Chafee-Infante problem. By that theexisten
e of a global attra
tor A in the Sobolev spa
e H1
0 ([0, 1]) is guaranteed. Further on,the existen
e of a Lyapunov fun
tion on the global attra
tor gives a detailed des
ription ofthe global attra
tor.Theorem 7.2 ([Rob01℄). The global attra
tor A of the Chafee-Infante problem is given bythe union of the unstable manifolds of its �xed points:

A =
⋃

{Wu(φ) : φ ∈ {φ0, φ
±
1 , . . . , φ

±
n }}.where φ±i are the �xed points de�ned in theorem 7.1 and Wu(v) denotes the unstable manifoldof v.The 
onvergen
e theory of Finite Element dis
retizations of semilinear paraboli
 equa-tions ([LSS94℄, [Lar99℄) leads to the same shape of the attra
tor for the spatially dis
retizationbe
ause the existen
e of a Lyapunov fun
tion and an absorbing set transfers with slightlyperturbed bifur
ation points.It is known that the support of all invariant measures is a subset of the global attra
tor, see[CKR08℄, where this result is shown for modi�ed Navier-Stokes equations. More pre
isely wewill see below, that the support sets of the dis
rete measures we obtain from the set-orientedalgorithms 
onsist of small neighborhoods of the non-trivial �xed points. This is due to thefa
t that the unstable manifolds between the �xed points are not part of the support of SRBmeasures approximated by the AIM algorithm.Multiple eigenvalue 1 of the Perron-Frobenius matrixRe
all that the Perron-Frobenius theorem 2.1 for nonnegative matri
es guarantees the exis-ten
e of the eigenvalue 1 of the Perron-Frobenius matrix and of a 
orresponding nonnegativeeigenve
tor.In the 
ontext of the transfer operator ea
h Dira
 measure of a �xed point 
orrespondsto an eigenve
tor to the eigenvalue 1 of the Perron-Frobenius matrix P . That means that wehave to fa
e the problem of a geometri
ally multiple eigenvalue 1 of P . In order to obtain asmu
h as possible of the dynami
s of our system we are interested in a equally weighted linear
ombination of the eigenve
tors 
orresponding to the Dira
 measures as a representation ofthe dis
rete measure.Re
all that the Perron-Frobenius theorem 2.1 for nonnegative matri
es guarantees the ex-isten
e of the eigenvalue 1 of the Perron-Frobenius matrix and of a 
orresponding nonnegativeeigenve
tor. Typi
al eigenproblem solvers (e.g. eigs in MATLAB) will give us an orthonormalbasis {v1, . . . , vk} of the eigenspa
e to the eigenvalue 1. But in general these ve
tors may16



have negative entries although there exists a basis of nonnegative ve
tors 
orresponding tothe Dira
 measures.Hen
e we setup an algorithm to transfer the orthonormal basis {v1, . . . , vk} to anotherorthonormal basis {p1, . . . , pk} with nonnegative ve
tors pi. If we arrange the ve
tors inmatri
es V ∈ RN,k and P ∈ RN,k with 
olumns vi and pi respe
tively we write
P = V Owhere O ∈ RK,K is an orthonormal matrix. For simpli�
ation we write O as a 
ompositionof rotation matri
es

O = O1(α1)O2(α2) · · ·Ok−1(αk−1)with
Ol(α) = (oij)ij ,

oi,j∈{l,l+1} =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

oij = δij , i 6∈ {l, l+ 1} or j 6∈ {l, l+ 1}In this way we rotate the basis ve
tors one by one into the 
one of nonnegative ve
tors.Therefore we minimize the following fun
tion to get the angles αl, l = 1, . . . , k − 1:
fl(α) =min(

∑
{pil : pil > 0, i = 1, . . . , k},−

∑
{pil : pil < 0, i = 1, . . . , k})

+ min(
∑

{pi,l+1 : pi,l+1 > 0, i = 1, . . . , k},−
∑

{pi,l+1 : pi,l+1 < 0, i = 1, . . . , k})where P = (pij) = V O1(α1) · · ·Ol−1(αl−1)Ol(α).Then we expe
t that ea
h 
olumn pi of
P = V O1(α1)O2(α2) · · ·Ok−1(αk−1)is nonnegative and therefore a good approximation to a Dira
 measure in a �xed point ofthe system. By summing up and normalizing the 
olumns we get a suitable new �xed point

u of P with ‖u‖1 = 1

u :=
v

‖v‖1
, v =

k∑

i=1

pi.ResultsAs a �rst test example we 
ompare the results of the AIM and the PODAIM algorithm onsystem (13) for the following parameters.
N = 6

λ = 80

∆t = 0.001From the bifur
ation theory we expe
t 5 �xed points of the system that should be dete
tedby the invariant measure algorithms. Due to symmetry these �xed points are lo
ated in atwodimensional subspa
e of RN . Indeed the PODAIM algorithm evolves a POD dimensionof l = 2. In Figure 3 we see a histogram representating the dis
rete measure 
omputed bythe AIM algorithm after 66 subdivision steps, i.e. 11 bise
tions in ea
h spa
e dimension.The four nontrivial �xed points are well dete
ted.In Figure 4 we see the promising result that also in the POD spa
e the �xed points aredete
ted although their shape is slightly perturbed from the shape in the AIM algorithm. In17
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Dimension N = 6, λ = 80, ∆ t = 0.001,      
AIM algorithm: 66 steps (11 bisections), 665512 boxes.

Figure 3: Resulting box 
olle
tion of AIM algorithm for the Chafee-Infante problem in N = 6 dimensions with parameter λ = 80 after
k = 66 subdivision steps.
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PODAIM with 2 modes: 22 steps (11 bisections), 283 boxes.

Figure 4: Resulting box 
olle
tion of PODAIM algorithm for the Chafee-Infante problem in N = 6 dimensions with parameter λ = 80. The PODdimension is l = 2 and k = 22 subdivision steps are 
omputed.this �gure the dis
rete measure is illustrated after k = 22 subdivision steps 
orrespondingalso to 11 bise
tions in ea
h spa
e dimension. The most remarkable result of this example isthe number of boxes building the support of the two dis
rete measures. In the AIM algorithm- despite of the simple form of the approximated invariant measure - more than 600.000 boxesare building the support of the dis
rete measure while in the PODAIM algorithm only 283boxes are needed to produ
e a similar result.18



We 
an also quantify the di�eren
e of the dis
rete measures obtained by the AIM and thePODAIM algorithm using the numeri
al realization of the Prohorov metri
 des
ribed in 5.In table 7.2 the Prohorov distan
es are listed after ea
h algorithm has performed a multipleof the spa
e dimension N = 6 and l = 2 respe
tively. The values indi
ate a 
onvergen
eof the two dis
rete measures although a quite large distan
e remains until the end of there�nement pro
ess. This remainder is explained by the approximation error of the PODbasis and 
an also be seen in the histogram where the shape of the higher-order �xed pointsdi�er.
m p(µmN , µ

[P ]
ml

)1 0.27232 0.23423 0.15474 0.07945 0.06536 0.08727 0.07988 0.11709 0.072710 0.0824Table 6: Prohorov distan
e of the dis
rete measures µk and µ
[P ]
k


om-puted by the AIM and PODAIM algorithm after mN and ml re
ursionstepsWe end this se
tion with a look to the result of the PODADAPT algorithm des
ribed in6. With the same parameters as above we start with the AIM algorithm (in other words:
W = I6). The �rst 
omputation of a new POD basis is performed after 12 re
ursion steps, i.e.after bise
ting two times in ea
h 
oordinate. Then, after every l re
ursion steps, whi
h meansone bise
ion in ea
h 
oordinate, the POD basis is adapted and the state spa
e is transformed.In Figure 5 we see the resulting histogram after 12 bise
tions in ea
h 
oordinate. This
orresponds to 47 re
ursion steps of the AIM algorithm, sin
e the ve
tor of POD dimensionso

uring during the algorithm is

L = (6, 6, 6, 6, 6, 5, 2, 2, 2, 2, 2, 2)T.The Figure shows that the dis
rete measure approximates only the Dira
 measures of the2 stable �xed points. Other information about the system is apparently lost in the PODapproximation pro
ess.8 OutlookThis paper fo
usses on numeri
al aspe
ts of 
omputing invariant measures in high dimen-sional spa
es. Several numeri
al as well as theoreti
al problems remain open. An importantnumeri
al goal is the improvement of the PODADAPT algorithm whi
h is not yet verye�
ient.The long-term theoreti
al goal is a 
onvergen
e theory for the dis
rete measures 
omputedby the PODAIM and PODADAPT algorithm respe
tively. This will require to generalizePOD estimates that are well-known for single traje
tories to the 
ase of approximations whenmany short time traje
tories. First promising results for easy systems have been established.19
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Figure 5: Resulting box 
olle
tion of PODADAPT algorithm for theChafee-Infante problem in N = 6 dimensions with parameter λ = 80.The 
urrent POD dimension after 12 bise
tions or k = 47 re
ursion stepsis l = 2.Referen
es[Ant05℄ A. C. Antoulas. Approximation of large-s
ale dynami
al systems , Band 6 vonAdvan
es in Design and Control . So
iety for Industrial and Applied Mathe-mati
s (SIAM), Philadelphia, PA, 2005.[ASG01℄ A. C. Antoulas, D. C. Sorensen und S. Guger
in. A survey of model redu
tionmethods for large-s
ale systems. In Stru
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es in mathemati
s, 
om-puter s
ien
e, and engineering, I (Boulder, CO, 1999), Band 280 von Contemp.Math., Seiten 193�219. Amer. Math. So
., 2001.[Bau92℄ H. Bauer. Maÿ- und Integrationstheorie. de Gruyter Lehrbu
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