
Computing invariant measures with dimension redutionmethodsJens Kemper∗November 13, 2008AbstratWe present an algorithm to ompute invariant measures in high dimensions, e.g. indisretizations of salar reation di�usion equations. The algorithm ombines subdivisiontehniques developed by Dellnitz, Junge and o-authors with Proper Orthogonal Deompo-sition as a model redution method. Sine the algorithm omputes disrete measures withsupport in a low dimensional subspae of the state spae we present methods for representingand omparing suh measures. One suh method aims at a disretization of the Prohorovmetri. The paper also ontains numerial results of the algorithms.1 IntrodutionIn this paper we desribe a feasible ansatz for the omputation of invariant measures in highdimensional dynamial systems. More preisely, we onsider the disrete dynamial systemde�ned by
ui+1 = F (ui), i = 0, 1, 2, . . .where F is a di�eomorphism of RN with large N ≫ 1. Typially these large disretedynamial systems arise from spatial disretizations of partial di�erential equations (seesetion 7 for details).When we explore the longtime behavior of dynamial systems there are in priniple twolassial numerial approahes. One uses the simulation of many trajetories over large timeintervals and in this way tries to get an overall piture of the dynamis. The disadvantage ofthis ansatz is that one annot be sure to feth all information of the long time behavior bythis simulation tehnique. For example think of almost invariant sets in whih trajetoriesare aptured for long time sales.The seond approah is to make a global statistial analysis of the underlying system, forexample the omputation of invariant measures of the system. Denote byMN = M(RN ) theset of probability measures on RN and reall that a measure µ ∈ MN is alled F -invarianti�

µ(A) = µ(F−1(A)) for all A ∈ B(RN).The Frobenius-Perron Operator P : MN → MN is de�ned by
P (µ)(A) = µ(F−1(A)) for all A ∈ B,suh that �xed points of P are invariant measures.For numerial omputations one approximates the Frobenius-Perron operator by largematries and omputes eigenvetors to the eigenvalue 1 whih lead to approximate invariant
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measures. In reent years a promising approah was developped by Dellnitz, Junge ando-workers. ([DFJ01℄, [DJ98℄, [DJ99℄) This ansatz uses Ulam's method ([Ula60℄) whihbasially means, that the state spae is disretized into a box overing, from whih oneomputes transition probabilities that represent the disretized version of the Frobenius-Perron operator. By rather e�ient storing algorithms for the boxes and using an adaptiveway of biseting boxes this tehnique is a powerful tool to ompute invariant measures insystems of low dimension. Details of this algorithm will be explained later.However, when used in higher dimension this subdivision algorithm, alled 'AdaptiveInvariant Measure (AIM) algorithm', su�ers from the 'urse of dimension'. Even whenthe support of the invariant measure is low-dimensional, the subdivision algorithm has todeal with an exponentially inreasing number of boxes in the �rst reursion steps. If thestate spae is N -dimensional 2N boxes are reated to derive the �rst disretization in everyoordinate. Sine no relevant redution an be expeted before this step, the number ofboxes quikly exeeds a omputable amount even though the relevant dynamis is embeddedin a low dimensional manifold.There are several ways to approah this problem. We brie�y disuss three of them.
• One an simplify the omputation of invariant measures by using struture proper-ties of the underlying system. Dellnitz and o-workers have presented an ansatz us-ing symmetries of the dynamial system ([MHvMD06℄, [Jun01b℄). They showed, thatthe symmetries of the system are linked to the symmetries of eigenmeasures of thePerron-Frobenius operator. This observation an in priniple be used to derive theseeigenmeasures with less omputational osts.
• A new ansatz by Junge and Koltai [JK℄ uses so-alled sparse hierarhial grids whihare based on a tensor produt onstrution. Using the Haar basis of L2([0, 1]N ) �nitedimensional approximation spaes (given by a sparse basis) are derived whih have thelargest bene�t to ost ratio. It an be shown that by this ansatz the omputationale�ort is of signi�antly lower order than for the standard Ulam basis to ahieve aomparable auray of the approximation.
• Another ansatz, that we follow here, is based on model redution methods. We fous onthe so-alled Proper Orthogonal Deomposition (POD). This method is desribed forinstane in [HLB96℄. There are many promising results when using this method for theomputation of single trajetories mainly in ontrol theory (see [KV01℄, [KV02℄). Forlinear systems they an also be ombined with a balaned trunation ansatz ([Ant05℄,[ASG01℄, [RCM04℄). In this paper we will use POD to approximate the global dynamisof a high-dimensional system.The outline of this paper is as follows. In setion 2 we brie�y reall the subdivision algorithm,alled Adaptive Invariant Measure algorithm, desribed in [DFJ01℄, [DJ98℄ and implementedin the Software Pakage GAIO. In setion 3 we introdue the model redution method ofProper Orthogonal Deomposition and explain how we ombine this tehnique with thesubdivision algorithm.Sine the approximate invariant measures that are omputed by this algorithm live on alower dimensional subspae of the original state spae, given by the POD basis, it is nontrivialto represent and ompare measures for di�erent POD bases and the approximative invariantmeasure of the original subdivision algorithm respetively. Therefore we develop a properrepresentation of these disrete measures in setion 4. Then in setion 5 we disuss theProhorov metri, that generates the weak-* topology. We will set up a numerial methodfor omputing the distane of two measures in the Prohorov metri, whih even works whenthe measures are supported on di�erent POD spaes.We develop in setion 6 a more sophistiated version of our algorithm where the PODbasis is adaptively hanged during the subdivision proess.In setion 7 we will present some numerial results onerning the approximation ofinvariant measures in a Cha�ee-Infante problem and a more aademi example where the2



Lorenz system is embedded into a high dimensional system.2 Adaptive invariant measure algorithmWe reall some basi steps of the set-oriented methods developed by Dellnitz, Junge et al.([DFJ01℄, [DJ98℄). The Adaptive Invariant Measure algorithm (AIM algorithm) adaptivelyre�nes box overings of a positive invariant starting box. On these box olletions disretemeasures are omputed as �xed points of disretized Perron-Frobenius operators. For laterreferene in setion 3 we present a simple version of this algorithm.The AIM algorithm
• Initialization: Let B0 be a positive invariant box with enter c ∈ RN and radius
r ∈ RN

B0 := B(c, r) := {x ∈ RN : |xi − ci| ≤ ri, i = 1 . . . , N}.The initial box olletion is B0 = {B0} and the initial disrete measure µ0 :
B(RN) → [0, 1] is de�ned by

u0(A) =
λN (A ∩B0)

λN (B0)
, A ∈ B(RN),where λN is the N -dimensional Lebesgue measure.

• Reursion step: Assume that a partition Bk−1 of a subset of B0 is given with adisrete measure µk−1 : B(RN) → [0, 1].1. Choose a subset B(1) of Bk−1 where the atual measure is above average
B(1) = {B ∈ Bk−1 : µk−1(B) ≥ 1/|Bk−1|}.Subdivide boxes in B(1) in oordinate (k mod N) into a re�ned box olletion

B(2) and ontinue witĥ
Bk := (Bk−1 \ B

(1)) ∪ B(2),K := |B̂k|.2. Calulate a normalized �xed point u ∈ RK , ‖u‖1 = 1 of the Frobenius-Perronmatrix Pk = (pij)ij ∈ RK,K de�ned by
pij =

λ(Bj ∩ F−1(Bi))

λ(Bj)
, 1 ≤ i, j ≤ K. (1)where B̂k = {B1, . . . , BK}.3. Set

Bk = {Bi ∈ Bk : i = 1, . . . ,K and ui > 0} ⊂ B̂kA new disrete measure µk : B(RN) → [0, 1] is de�ned by
µk(A) =

K∑

i=1

ui

λN (A ∪Bi)

λN (Bi)
, A ∈ B(RN).It is easy to see, that the Frobenius-Perron matrix de�ned by (1) is olumn stohasti in3



the sense
K∑

i=1

pij = 1, for all j = 1, . . . ,Ksine we assume B0 to be positive invariant under F . Then the following theorem ensures theexistene of a �xed point - or in other words the existene of an eigenvetor to the eigenvalue
1 = ρ(P ) with nonnegative entries.Theorem 2.1 ([Min88℄). Let A be a real matrix with nonnegative entries. Then the followingstatements hold:

• The spetral radius r := max{|λ| : λ is eigenvalue of A} is an eigenvalue of A.
• There is an eigenvetor to the eigenvalue r with nonnegative entries.
• The estimate mini

∑
j aij ≤ r ≤ maxi

∑
j aij holdsThe disrete measure µk is absolutely ontinuous with density uk : RN → [0, 1] de�nedby

uk :=
K∑

i=1

ui

λN (Bi)
1Biwhere 1A is the harateristi funtion of the set A ⊂ RN :1A(x) =

{
1, x ∈ A
0, otherwiseTogether with

µk(RN ) =

K∑

i=1

ui = 1this shows, that µk is a probability measure.A onvergene result based on the theory of small random perturbations an be foundin [Jun01a℄. Roughly speaking, the result states that the AIM algorithm, when applied toa system with su�iently small noise, generates an approximate invariant measure that islose to the SRB measure of the deterministi system. For details on suh small randomperturbations see [Kif86℄.3 Proper Orthogonal DeompositionThe onept of Proper Orthogonal Deomposition is used to produe redued-order modelsmainly in problems arising in ontrol theory. The idea is to determine a nested familyof subspaes in the original state spae that optimally span the data onsisting of givensnapshots. Usually these snapshots are derived from trajetories of the system.3.1 Formulation of PODThe formal de�nition of the Proper Orthogonal Deomposition an be formulated in anarbitrary Hilbert spae H , see [HLB96℄De�nition 3.1. Let y1, . . . , yn ∈ H be a olletion of snapshots. An l-dimensional orthonor-mal system {wk}k=1,...,l is alled proper orthogonal deomposition basis of rank l if it solvesthe minimization problem
E({ψ}l

k=1) :=
∑

‖yj −
l∑

k=1

(yj , ψk)Hψk‖
2
H minimized over orthonormal bases.4



Theorem 3.2. Let W := span{y1, . . . , yp} ⊂ H. Let σ1 ≥ . . . ≥ σm > 0, m = dimW , be thesingular values and let w1, . . . , wm ∈ W be the orresponding singular vetors of the linearmap U ∈ L(Rp,W ) de�ned by
U(v) =

p∑

j=1

(v, ej)yjwhere ej are the Cartesian basis vetors of Rp. Then {wk}k=1,...,l is a POD basis of rank
l ≤ m with error

E({wk}k=1,...,l) =

m∑

k=l+1

σ2
k.(see [KV01℄, [HLB96℄)In our ontext we take H = RN and therefore, U ∈ RN,p is just the matrix with thesnapshots y1, . . . , yp ∈ RN as olumns.3.2 The AIM algorithm in redued spaeThe easiest way to ombine POD as a redution method with invariant measure algorithmsis to ompute a basis in the �rst step and apply the algorithm in the redued system. Wewill propose this ansatz in the following algorithmThe PODAIM algorithm

• Snapshots For randomly hosen points u(0)
1 , . . . , u

(0)
p ∈ B0 ompute short trajeto-ries to get test points

uj = F q(u
(0)
j ), j = 1 . . . , p.

• POD omputation By a singular value deomposition of U ∈ RN,p with olumns
u1, . . . , up we get (

S 0
)

= WTUVwith
S = diag(σ1, . . . , σN ) ∈ RN,N , σ1 ≥ . . . ≥ σN ≥ 0where W ∈ RN,N , V ∈ Rp,p are orthogonal. We hoose l ≪ N e.g. by �ndingthe smallest l with σl+1

σ1
≤ ε and split W =

(
W1 W2

) with W1 ∈ RN,l and
W2 ∈ RN,N−l

• AIM algorithm in POD spae A vetor u ∈ RN in the subspae de�ned by W1is representated by α ∈ Rl via u = W1α. We de�ne a lower dimensional disretedynamial system by
αi+1 = WT

1 F (W1αi) ∈ RlFor this dynamial system we hoose a proper positive invariant starting box andapply the AIM algorithm desribed in 2 to obtain a disrete measure µl : B(Rl) →
[0, 1] de�ned by

µl(A) =
K∑

i=1

ui

λl(A ∩Bi)

λl(Bi)
, A ∈ B(Rl) (2)where {Bi}

K
i=1 is the box olletion in the redued spae obtained by the AIMalgorithm.
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• Embedding A box B = B(c, r) ⊂ Rl an be embedded into the set BW1 ⊂ RN inthe original spae by the matrix W1:
BW1 := {z = W1x ∈ RN : x ∈ B} = {z = W1x ∈ RN : |xi − ci| ≤ ri, i = 1, . . . , l}These embedded boxes form the support of the extended measure µN : B(RN) →

[0, 1] de�ned by
µN (A) =

K∑

i=1

ui

λl(A ∩BW1

i )

λl(B
W1

i )
, A ∈ B(RN). (3)Remark 3.3. 1. In (3) we denote by λl the Lebesgue measure on the l-dimensional sub-spae span{w1, . . . , wl} of RN . We have λl(B

W1

i ) = λl(Bi) and
λl(A ∩BW1

i ) = λl({x ∈ Bi : W1x ∈ A} = λl(Bi ∩W
−1
1 (A))where W−1

1 (A) = {x ∈ Rl : W1x ∈ A} denotes the preimage of A under W1. Therefore,
µN an also be expressed as

µN (A) =
K∑

i=1

ui

λl(Bi ∩W
−1
1 (A))

λl(Bi)
.2. Observe that in ontrast to the measure µl in the redued system given by (2), theextended measure µN is not absolutely ontinuous. This is revealed by an alternativede�nition of µN that also shows the measure property of µN . Therefore let δ0 : B(R) →

[0, 1] denote the onedimensional Dira measure (f. [Bau92℄, �25). De�ne
µ̃N = µl ⊗

N⊗

j=l+1

δ0where µ1 ⊗ µ2 denotes the produt measure of µ1, µ2 aording to [Bau92℄, Def. 23.4.Then an alternative de�nition of µN is given by the transformation of µ̃N via theorthogonal matrix W ∈ RN,N :
µN (A) = µ̃N (WT (A)), A ∈ B(RN).Several extensions and problems of this �rst naive approah will be disussed in thefollowing setions.We are faing two problems when we examine the results of the PODAIM algorithm.

• Representing disrete measures in a high dimensional state spae. We will present anansatz in the following setion whih uses our assumption that a point in our state spaeorresponds to a spatial disretized solution u : [0, 1] → R of a paraboli equation at a�xed time. We will introdue a suitable histogram over the unit interval.
• Comparison of disrete measures embedded in a high dimensional spae with lowerdimensional support. We will show in setion 5, that usual disretizations of the weakmetri do not work in our ontext but that the Prohorov metri is a suitable distaneof measures that an be omputed numerially.6



4 Representing disrete measures in high dimensionsAs desribed in the previous setion the result of our algorithm is a disrete measure µN :
B(RN) → [0, 1] with support on a box olletion in an l-dimensional subspae of our statespae RN given by (3).Sine we are foussing on Finite Element disretizations of salar paraboli equations, inour ontext a state u ∈ RN orresponds to a pieewise linear funtion u : [0, 1] → R givenby

u(
i

N + 1
) = ui, i = 1, . . . , N, u(0) = u(1) = 0.This motivates the following representation.4.1 HistogramReall the starting box in our phase spae B0 = B(c, r) and set rM = max0≤i≤N ri. Wedivide the set

Q =

[
1

2(N + 1)
,

2N + 1

2(N + 1)

]
× [−rM , rM ] ⊂ R2into a olletion of boxes as follows

Q =

N⋃

i=1

J⋃

j=1

Qijwhere
Qij =

[
2i− 1

2(N + 1)
,

2i+ 1

2(N + 1)

]
×

[
(2(j − 1) − J)

rM
J
, (2j − J)

rM
J

]
=: Ri × Sj .Then we ount those support boxes of our disrete measure whose i-th enter omponent isin the orresponding interval to get a funtion h : Q ⊂ R2 → R de�ned by

h(Qij) =
K∑

k=1

uk1Qij
(

i

N + 1
, (W1ck)i) =

K∑

k=1

uk1Sj
((W1ck)i)where Bk = Bk(ck, rk) ⊂ Rl, k = 1, . . . ,K denote the support boxes with enter ck andradius rk.We an interpret h as a histogram operator sine h(Qij) approximates

µN (Aij), Aij := Ri−1 × Sj ×RN−iNote that
µN (Aij) =

K∑

k=1

uk

λl(Aij ∩B
W1

k )

λl(B
W1

k )

=

K∑

k=1

uk

λl({x ∈ BW1

k : xi ∈ Sj})

λl(B
W1

k )

≈
K∑

k=1

uk

{
1, if ((c(BW1

k ))i = (W1ck)i ∈ Sj

0, otherwise
= h(Qij)where c(BW ) denotes the enter of an embedded box BW ⊂ RN . Here the approximationproess is reasonable beause in general diam(BW ) << 2 rM

J
= diam(Sj) holds for the7



support boxes BW ⊂ RN and, therefore, most boxes either lie in Aij or in its omplementas indiated by the enter.With this disrete representation operator we visualize our results by olor oding Qijaording to the value h(Qij). It is easy to see, that the orresponding matrixH = (h(Qij))ijis stohasti if the support boxes are loated in B0

J∑

j=1

h(Qij) =

K∑

k=1

uk

J∑

j=1

1Qij
(i, (W1c)i)

=
∑

B=B(c,r)∈B

uk(B) = 1For examples we refer to setion 7.5 Comparing disrete measures: Prohorov metriIn this setion we develop an algorithm for omputing the distane of disrete measuresobtained by our algorithm.Reall that the support of µN in the PODAIM algorithm is given by a low dimensionalbox olletion B = {B1, . . . , BK} embedded in an l-dimensional subspae spanW as boxes
BW

k ⊂ RN , k = 1, . . . ,K. With these boxes µN : B(RN) → [0, 1] is de�ned by (3).Our aim is to ompare measures for di�erent hoies of l ≤ N and di�erent POD bases
W ∈ RN,l inluding the measure of the AIM algorithm where l = N and W = IN is theidentity matrix.5.1 The weak-* topologyReall that the spae M(Q) of probability measures on a ompat set Q de�nes a ompatmetri spae via the weak-* metri d∗ : M(Q) ×M(Q) → R+ de�ned by

d∗(µ, ν) =

∞∑

i=0

2−i

∣∣∣∣
∫
gi dµ−

∫
gi dν

∣∣∣∣ , (4)where (gi)i is a dense sequene in C(Q) (see [Dud02℄).If we apply this metri in our ontext to approximate d∗(µN , νN ), where the orrespondingdisrete measures µ and ν have support on box olletions {Aj}j, {Bk}k in the POD spaesde�ned by W1 ∈ RN,l1 and WN,l2
2 , we have to hoose a proper (�nite) sequene of testfuntions (gi)i. Due to the shape of our disrete measures a natural hoie is

{1
A

W1
1

, . . . ,1
A

W1
J

,1
B

W2
1

, . . . ,1
B

W2
K

}However, one easily shows that the approximate weak-* distane is 1 as soon as the supportsof the disrete measures are disjoint. Therefore we avoid using the de�nition (4) diretly.5.2 The onept of blowing up boxesA more promising ansatz is given by the Prohorov metri whih plays a role in theoretialaspets of probability theory. ([Dud02℄, [Bil68℄). This metri is oriented geometrially.De�nition 5.1. Let
M(S) := {µ : B → [0, 1] : µ is a probability measure},8



where S is a metri spae with Borel σ-algebra B. De�ne the Prohorov metri p by
p(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B} (5)where µ, ν ∈ M(S) and Aε is the ε-neighborhood of A:

Aε := {x ∈ S : d(x,A) < ε}.Note the following well known result.Theorem 5.2 ([Dud02℄). The mapping p : M(S) × M(S) → R+ de�nes a metri on thespae of probability measures M(S). Moreover, p is equivalent to the weak-* metri.We show that the Prohorov metri is well suited for numerial disretizations.5.3 ImplementationAgain we take the boxes of the supports as test sets for the disretized version of the Prohorovmetri. Let µN , νN : B(RN) → [0, 1] be two disrete measures on box olletions A =
{Aj}j=1,...,J ⊂ Rl1 , B = {Bk}k=1,...,K ⊂ Rl2 embedded by W1 ∈ RN,l1,W2 ∈ RN,l2 intoRN . (f. (3))

µN (A) =

J∑

j=1

uj

λl1(A ∩AW1

j )

λl2(A
W1

j )
, νN (A) =

K∑

k=1

uk

λl2(A ∩BW1

k )

λl2(B
W1

k )
, A ∈ B(RN).Remember the de�nition BW = {Wx ∈ RN : x ∈ B}. We disretize the analyti Prohorovdistane p(µN , νN ) in two steps to get a omputable version p[2](µN , νN ). In the �rst step,we replae A ∈ B by our boxes of the supports in de�nition (5) and get

p[1](µN , νN ) = max{p
[1]
1 (µN , νN ), p

[1]
2 (µN , νN )}with

p
[1]
1 (µN , νN) = inf{ε > 0 : µN (AW1

j ) ≤ νN ((AW1

j )ε) + ε}.The distane p[1]
2 is de�ned analogous via the box olletion {BW2

k }K
k=1. We will fous on p[1]

1in the following, all impliations will be the same for p[1]
2 .By de�nition it holds

µN (AW1

j ) =

J∑

i=1

ui

λl1(A
W1

j ∩AW1

i )

λl1(A
W1

i )
= uj , j = 1, . . . , Jand similarly νN(BW2

k ) = vk, k = 1, . . . ,K. This allows us to write p[1]
1 as

p
[1]
1 (µN , νN ) = inf{ε > 0 : max

j=1...,J
(uj − νN ((AW1

j )ε) − ε) ≤ 0}.In the next step we explain how to approximate
νN ((AW1

j )ε) =

K∑

k=1

vk

λl2(B
W2

k ∩ (AW1

j )ε)

λl2(B
W2

k )
.By a Monte-Carlo ansatz with P test points bk1 , . . . , bkP ∈ Bk we get

λl2(B
W2

k ∩ (AW1

j )ε)

λl2(B
W2

k )
≈

1

P
#{bkp : W2b

k
p ∈ (AW1

j )ε} =
1

P
{bkp : d(W2b

k
p, A

W1

j ) < ε}9



Now we approximate
νN ((AW1

j )ε) ≈ wj(ε) :=

K∑

k=1

uk

p
#{bki : d(W2b

k
i , A

W1

j ) < ε}.We will see below, that d(W2b
k
p, A

W1

j ) an be omputed analytially. Then we approximatethe Prohorov distane by
p
[1]
1 (µN , νN) ≈ p

[2]
1 (µN , νN ) :=

{
min{ε > 0 : f1(ε) = 0}, f1(0) > 0
0, otherwisewhere f1;R+ → R is de�ned by

f1(ε) = max
j=1,...,J

(αj − wj(ε) − ε).Sine wj is isotone for every j = 1, . . . , J , f1 is antitone and we an ompute the root of
f e.g. by Newton's method to get p[2]

1 (µN , νN).The seond value p[2]
2 (µN , νN ) an be omputed in an analogous way by approximating

p
[1]
2 (µN , νN ).Computation of the distanesNow we fae the problem to ompute

d(W2t, A
W1)where Wi ∈ RN,li, i = 1, 2 are orthogonal matries, t ∈ Rl2 and a box A = B(c, r) withenter and radius c, r ∈ Rl1 is projeted to AW1 ⊂ RN via W1.We set t1 = WT

1 (W2t) ∈ Rl1 . Beause W2t − W1t1 is orthogonal to the hyperplaneontaining W1t1 and AW1 we get for the Eulidean distane
d(W2t, A

W1)2 = d(W1t1, A
W1)2 + ‖W2t−W1t1‖2.Now on the one hand we have

d(W1t1, A
W1)2 = d(t1, A)2 = ‖d‖2where d ∈ Rl1 is given by

di = max(0, |(t1)i − ci| − ri), i = 1, . . . , l1.On the other hand we use orthogonality to get
‖W2t−W1t1‖

2 = ‖W2t‖
2 − ‖W1t1‖

2 = ‖t‖2 − ‖t1‖
2.Altogether we obtain

d(W2t, A
W1)2 = ‖d‖2 + ‖t‖2 − ‖t1‖

2.Observe that only the lengths of low dimensional vetors t ∈ Rl2 , d, t1 ∈ Rl1 are used for theomputation.
10
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PSfrag replaements
AW1

W2t

RW2

RW1

W1t1

t1 := W T
1 (W2t)

tFigure 1: Illustration of the Eulidean distane omputation needed forthe approximation of the Prohorov distane. Here the spatial dimensionsare given by N = 1, l1 = l2 = 1.6 Adaptive POD algorithmLooking loser at the original subdivision algorithm it is an obvious idea to ompute thePOD modes adaptively during the reursion steps of the AIM algorithm. Sine the algorithmomputes short time trajetories to build the transfer matrix, this data an be used to derivean adapted POD basis during the algorithm.The algorithm PODADAPT works as follows. Instead of omputing disrete measuresin a �xed state spae, also the POD subspae will be hanged dynamially. Therefore wemanage not only a box olletion and a orresponding disrete measure but also the PODbasis throughout the algorithm. We start with the original state spae or in other wordsthe anonial basis of RN as the �rst POD basis. Ofter some reursion steps the omputedtrajetories are used to ompute a new POD basis. Now the system is transformed into thenew state spae and a new box olletion of omparable omplexity is built in the new statespae. Then the algorithm ontinues to work in the new state spae.In detail we suggest the following algorithmThe PODADAPT algorithm
• Initialization: Start with W = IN , l = N . B0 = {Q}, Q ⊂ RN positive invariant,
u0 : B0 → [0, 1] de�ned by u0(Q) = 1.

• Reursion step k: Let Bk−1 a olletion of boxes in the POD spae given by
W ∈ RN,l.1. New box olletion: As in the original AIM algorithm alulate a new boxolletion Bk of J = |Bk| boxes.
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2. Test points: As in the AIM algorithm hoose P random points in eah box
B ∈ Bk

u
(j)
1 , . . . , u

(j)
P ∈ Bk ⊂ Rl, j = 1, . . . , J.and evaluate the modi�ed right hand side for these vetors

v(j)
p := F (Wu(j)

p ) ∈ RN .3. AIM algorithm: Compute an approximation uk of an invariant measure asin the POD algorithm from the �xed point of the Perron-Frobenius matrix
P = (pij)ij with

pij =
1

P
|{WT v(j)

p ∈ Bi : p = 1, . . . , P}|, i, j = 1, . . . , J4. POD transformation: After a �xed number of reursion steps ompute anew POD basis in the following way:� POD snapshots In eah box hoose image points the number of whih isdetermined by the disrete measure uk:
V := {v(j)

p : j = 1, . . . , J, p = 1, . . . , ⌈uk(Bj)P ⌉}where ⌈x⌉ is the smallest natural number above x.� POD basis: Calulate a new POD basis W̃ ∈ RN,l̃ by a singular valuedeomposition of V . Choose l̃ < N in a reasonable way, e.g. suh that the
l̃ + 1 largest singular value is smaller than a given tolerane.� Transformation: After a given number of reursion steps (e.g. one ineah spae dimension) we transfer the system to a new l̃ dimensional PODspae given by W̃ using the following steps(a) Determine the box B = B(c, r) ∈ Bk with the smallest diameter of theurrent olletion and set rm := min{ri : i = 1, . . . , l}.(b) Create a box olletion B̂ = {B̂1, . . . , B̂M} as a overing of W̃TQ whereall boxes B̂i = B̂i(c, r) have the same radius r = (rm, . . . , rm)T .() Eliminate all boxes not ontaining embedded test points:

B̃ = {B ∈ B̂ : B ∩ {W̃v(j)
p : j = 1, . . . , J, p = 1, . . . , P} 6= ∅}.Continue with the new POD basis W = W̃ of dimension l = l̃ and thebox olletion B = B̃.We will analyze this algorithm and ompare with the results from the PODAIM algorithmin the following setion.7 Numerial resultsWe analyze our algorithms for two disrete dynamial systems. The �rst one is given bya generalization of the well-known Lorenz system. We will embed this system into a highdimensional spae to see how the POD approximation proess works.12



In the seond example we apply our algorithms to spae-time disretizations of a paraboliequation. We hoose the salar Chafee-Infante problem whih has a ubi nonlinearity. Thedisretization uses the Finite Element Method (FEM).7.1 Embedded Lorenz systemWe derive a disrete dynamial system from the following system of ODEs
u′ =




u′1
u′2
u′3
u′4...
vN




=




σ(u2 − u1)
ρu1 − u2 − u1u3

u1u2 − βu3

−αu4

. . .
−αuN




=: FL(u) (6)The �rst three equations of the system are just given by the Lorenz system ([Lor63℄). Wewill use the 'standard' parameters σ = 10, ρ = 28, β = 8/3 in the following.We take α > 0 so that the remaining equations de�ne exponentially dereasing ompo-nents. A disrete dynamial system is derived from (6) by Euler disretization.
ui+1 = Fh(ui), Fh(v) = v + hFL(v)Now we embed the system into a quadrati manifold. Therefore we de�ne tε : R→ R by

tε(x) = (1 − ε)x+ εx2.Some analysis shows, that tǫ is a one-to-one mapping of Dε :=
(
− 1−ε

2ε
,∞

) onto Rε :=(
− (1−ε)2

4ε2 ,∞
). The inverse funtion t−1

ε : Rε → Dε is given by
t−1
ε (y) =

√
y

ε
+

(1 − ε)2

4ε2
−

1 − ε

2ε
.With these salar funtions we an formulate a quadrati perturbation in higher systems via

Tε : DN
ε → RN

ε de�ned by
Teps(v)i = tε(vi), i = 1, . . . , Nwith T−1

ε de�ned in an analogue way via t−1
ε . To randomize the orientation of the perturba-tion we transform the state spae with some randomly hosen orthogonal matrix Q ∈ RN,N .Altogether we get a disrete dynamial system

vi+1 = Gh,ε(vi) := Tε(QFh(QTT−1
ε (vi))), i = 1, . . . , N. (7)In Figure 2 we present the result of the PODAIM algorithm for the system (7) in dimen-sion N = 10. The following parameter values have been used.

σ = 10, ρ = 28, β = 8/3

Q ∈ RN,N with QTQ = I10 and Q has random entries
ǫ = 0.001, α = 0.9, h = 0.01The largest singular values omputed in step 2 were

σ1 = 742.0957, σ2 = 333.8305, σ3 = 75.0522, σ4 = 2.3911Due to the gap in magnitude between σ3 and σ4 the POD dimension l = 3 was hosen.13



It is reasonable that the resulting POD spae, given by W ∈ R10,3, is loated near thesubspae spanned by the �rst three olumns Q3 ∈ R10,3 of the linear transformation Q, sineonly a small quadrati perturbation was added to the state spae. To measure the distanewe ompute the prinipal angles as de�ned in [GvL96℄ (Algorithm 12.4-3 and orrespondingde�nition):For general subspaes de�ned by A ∈ Rm,q, B ∈ Rm,p, q ≥ p, the osine of the prinipleangles θk, k = 1, . . . , q are given by the singular values of C = QT
1Q2 where A = Q1R1 and

B = Q2R2 are the QR deompositions of A and B respetively with Q1 ∈ Rq,q, Q2 ∈ Rp,porthonormal.Sine W and Q3 are orthonormal in our ase the prinipal angles are given by cos−1(σk),
k = 1, 2, 3, where σk are the singular values of WTQ3. As expeted the prinipal angles aresmall:

θ = (0.0009, 0.0034, 0.0111)T .The Figure 2 shows the resulting box olletion in the POD spae after k = 27 reursionsteps.

Figure 2: Resulting box olletion of PODAIM algorithm for the embed-ded Lorenz system in N = 10 dimensions.7.2 Salar Chafee-Infante problemWe apply our algorithm to a dynamial system arrising from the disretization of the salarChafee-Infante problem with a ubi nonlinearity
ut = uxx − λ(u3 − u), 0 < x < 1, t > 0, (8)
u(0, t) = u(1, t) = 0, t > 0 (9)Before we an apply our algorithms we have to fully disretize the paraboli system.Finite ElementsFor the spatial disretization we hoose a Standard Finite-Elements ansatz (f. [LT03℄) withlinear basis funtions. Therefore let xi = ih, i = 1, . . . , N be the equally distributed grid14



points in the unit interval with step size h = 1
N+1 . We hoose pieewise linear basis funtions

Λj : [0, 1] → R given by
Λj(xi) = δij , (i, j ∈ {1, . . . , N})By the weak formulation in Vh := span{Λ1, . . . ,ΛN} one gets the ondition for the �niteelement solution uh ∈ Vh by

(
d

dt
uh(t),Λj)2 + a(uh(t),Λj) = λ(uh(t)3 − uh(t),Λj)2, (1 ≤ j ≤ N)with the ellipti form

a(u, v) =

∫ 1

0

u′ v′ dx, (u, v ∈ Vh).Using the representation uh(t) =
∑N

i=1 αi(t)Λi ∈ V h one gets a system of ODEs
Bhα

′(t) +Ahα = λGh(α(t)). (10)where Bh = ((Λj ,Λi)2)ij ∈ RN,N is the mass matrix and Ah = (a(Λj ,Λi))ij ∈ RN,N thesti�ness matrix. Further on, the nonlinear funtion G : RN → RN is de�ned by
Gh(α)j =

∫ 1

0

Λj(x)

{
(

N∑

i=1

αΛi(x))
3 −

N∑

i=1

αΛi(x)

}
dx (11)We derive an expliit formula from (10) by inserting the formulas for the basis funtions Λj.Then we get

Bh =
h

6
B, Ah =

1

h
A, Gh(α) = hG(α)with

B =




4 1

1
. . . . . .. . . . . . 1

1 4



, A =




2 −1

−1
. . . . . .. . . . . . −1

−1 2



,

G(α)j =
αj−1

6
+

2αj

3
+
αj+1

6
−
α3

j−1

20
−

2α3
j

5
−
α3

j+1

20

−
α2

j−1αj

10
−

3αj−1α
2
j

20
−

3α2
jαj+1

20
−
αjα

2
j+1

10This leads to the following expliit ODE (note 1
h

= N + 1)
α′(t) = 6B−1(−(N + 1)2Aα(t) − λG(α(t)). (12)For the time disretization we take the expliit Euler method and derive from (12) a disretedynamial system that we will analyze with our algorithms desribed above:

αi+1 = F (αi), i = 1, 2, . . . , (13)where F : RN → RN is de�ned by
F (α) = α+

1

∆t

(
6B−1(−(N + 1)2Aα− λG(α))

)
.Note that we have to satisfy the stability restrition

∆t

h2
≤

1

2
⇐⇒ ∆t ≤

1

2(N + 1)2
.15



The dynamial behavior of the ontinuous problem is well-analyzed, see for instane[Hen81℄, [Rob01℄. Depending on the parameter λ > 0 the �xed-points of (8) are desribedby the following theorem.Theorem 7.1. Let n ∈ N be given with n2π2 < λ < (n+ 1)2π2. Then the following holds
• The ontinuous Cha�ee-Infante problem (8) possesses 2n+ 1 �xed points φ0, φ±1 , . . .,
φ±n

• φ0 is just the trivial solution and φ+
k and φ−k are symmetri with d

dx
φ+

k > 0 and d
dx
φ−k <

0 respetively. Moreover φk± has k − 1 zeros in (0, 1) at
1

k
,
2

k
, . . . ,

k − 1

k

• For n = 0 the only �xed point φ0 is stable. For n ≥ 1 we have 2 stable �xed points φ±1and 2n− 1 unstable �xed points φ0 and φ±k , 2 ≤ k ≤ n.One an also onstrut an absorbing set for the Chafee-Infante problem. By that theexistene of a global attrator A in the Sobolev spae H1
0 ([0, 1]) is guaranteed. Further on,the existene of a Lyapunov funtion on the global attrator gives a detailed desription ofthe global attrator.Theorem 7.2 ([Rob01℄). The global attrator A of the Chafee-Infante problem is given bythe union of the unstable manifolds of its �xed points:

A =
⋃

{Wu(φ) : φ ∈ {φ0, φ
±
1 , . . . , φ

±
n }}.where φ±i are the �xed points de�ned in theorem 7.1 and Wu(v) denotes the unstable manifoldof v.The onvergene theory of Finite Element disretizations of semilinear paraboli equa-tions ([LSS94℄, [Lar99℄) leads to the same shape of the attrator for the spatially disretizationbeause the existene of a Lyapunov funtion and an absorbing set transfers with slightlyperturbed bifuration points.It is known that the support of all invariant measures is a subset of the global attrator, see[CKR08℄, where this result is shown for modi�ed Navier-Stokes equations. More preisely wewill see below, that the support sets of the disrete measures we obtain from the set-orientedalgorithms onsist of small neighborhoods of the non-trivial �xed points. This is due to thefat that the unstable manifolds between the �xed points are not part of the support of SRBmeasures approximated by the AIM algorithm.Multiple eigenvalue 1 of the Perron-Frobenius matrixReall that the Perron-Frobenius theorem 2.1 for nonnegative matries guarantees the exis-tene of the eigenvalue 1 of the Perron-Frobenius matrix and of a orresponding nonnegativeeigenvetor.In the ontext of the transfer operator eah Dira measure of a �xed point orrespondsto an eigenvetor to the eigenvalue 1 of the Perron-Frobenius matrix P . That means that wehave to fae the problem of a geometrially multiple eigenvalue 1 of P . In order to obtain asmuh as possible of the dynamis of our system we are interested in a equally weighted linearombination of the eigenvetors orresponding to the Dira measures as a representation ofthe disrete measure.Reall that the Perron-Frobenius theorem 2.1 for nonnegative matries guarantees the ex-istene of the eigenvalue 1 of the Perron-Frobenius matrix and of a orresponding nonnegativeeigenvetor. Typial eigenproblem solvers (e.g. eigs in MATLAB) will give us an orthonormalbasis {v1, . . . , vk} of the eigenspae to the eigenvalue 1. But in general these vetors may16



have negative entries although there exists a basis of nonnegative vetors orresponding tothe Dira measures.Hene we setup an algorithm to transfer the orthonormal basis {v1, . . . , vk} to anotherorthonormal basis {p1, . . . , pk} with nonnegative vetors pi. If we arrange the vetors inmatries V ∈ RN,k and P ∈ RN,k with olumns vi and pi respetively we write
P = V Owhere O ∈ RK,K is an orthonormal matrix. For simpli�ation we write O as a ompositionof rotation matries

O = O1(α1)O2(α2) · · ·Ok−1(αk−1)with
Ol(α) = (oij)ij ,

oi,j∈{l,l+1} =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

oij = δij , i 6∈ {l, l+ 1} or j 6∈ {l, l+ 1}In this way we rotate the basis vetors one by one into the one of nonnegative vetors.Therefore we minimize the following funtion to get the angles αl, l = 1, . . . , k − 1:
fl(α) =min(

∑
{pil : pil > 0, i = 1, . . . , k},−

∑
{pil : pil < 0, i = 1, . . . , k})

+ min(
∑

{pi,l+1 : pi,l+1 > 0, i = 1, . . . , k},−
∑

{pi,l+1 : pi,l+1 < 0, i = 1, . . . , k})where P = (pij) = V O1(α1) · · ·Ol−1(αl−1)Ol(α).Then we expet that eah olumn pi of
P = V O1(α1)O2(α2) · · ·Ok−1(αk−1)is nonnegative and therefore a good approximation to a Dira measure in a �xed point ofthe system. By summing up and normalizing the olumns we get a suitable new �xed point

u of P with ‖u‖1 = 1

u :=
v

‖v‖1
, v =

k∑

i=1

pi.ResultsAs a �rst test example we ompare the results of the AIM and the PODAIM algorithm onsystem (13) for the following parameters.
N = 6

λ = 80

∆t = 0.001From the bifuration theory we expet 5 �xed points of the system that should be detetedby the invariant measure algorithms. Due to symmetry these �xed points are loated in atwodimensional subspae of RN . Indeed the PODAIM algorithm evolves a POD dimensionof l = 2. In Figure 3 we see a histogram representating the disrete measure omputed bythe AIM algorithm after 66 subdivision steps, i.e. 11 bisetions in eah spae dimension.The four nontrivial �xed points are well deteted.In Figure 4 we see the promising result that also in the POD spae the �xed points aredeteted although their shape is slightly perturbed from the shape in the AIM algorithm. In17
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Figure 3: Resulting box olletion of AIM algorithm for the Chafee-Infante problem in N = 6 dimensions with parameter λ = 80 after
k = 66 subdivision steps.
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Figure 4: Resulting box olletion of PODAIM algorithm for the Chafee-Infante problem in N = 6 dimensions with parameter λ = 80. The PODdimension is l = 2 and k = 22 subdivision steps are omputed.this �gure the disrete measure is illustrated after k = 22 subdivision steps orrespondingalso to 11 bisetions in eah spae dimension. The most remarkable result of this example isthe number of boxes building the support of the two disrete measures. In the AIM algorithm- despite of the simple form of the approximated invariant measure - more than 600.000 boxesare building the support of the disrete measure while in the PODAIM algorithm only 283boxes are needed to produe a similar result.18



We an also quantify the di�erene of the disrete measures obtained by the AIM and thePODAIM algorithm using the numerial realization of the Prohorov metri desribed in 5.In table 7.2 the Prohorov distanes are listed after eah algorithm has performed a multipleof the spae dimension N = 6 and l = 2 respetively. The values indiate a onvergeneof the two disrete measures although a quite large distane remains until the end of there�nement proess. This remainder is explained by the approximation error of the PODbasis and an also be seen in the histogram where the shape of the higher-order �xed pointsdi�er.
m p(µmN , µ

[P ]
ml

)1 0.27232 0.23423 0.15474 0.07945 0.06536 0.08727 0.07988 0.11709 0.072710 0.0824Table 6: Prohorov distane of the disrete measures µk and µ
[P ]
k

om-puted by the AIM and PODAIM algorithm after mN and ml reursionstepsWe end this setion with a look to the result of the PODADAPT algorithm desribed in6. With the same parameters as above we start with the AIM algorithm (in other words:
W = I6). The �rst omputation of a new POD basis is performed after 12 reursion steps, i.e.after biseting two times in eah oordinate. Then, after every l reursion steps, whih meansone biseion in eah oordinate, the POD basis is adapted and the state spae is transformed.In Figure 5 we see the resulting histogram after 12 bisetions in eah oordinate. Thisorresponds to 47 reursion steps of the AIM algorithm, sine the vetor of POD dimensionsouring during the algorithm is

L = (6, 6, 6, 6, 6, 5, 2, 2, 2, 2, 2, 2)T.The Figure shows that the disrete measure approximates only the Dira measures of the2 stable �xed points. Other information about the system is apparently lost in the PODapproximation proess.8 OutlookThis paper fousses on numerial aspets of omputing invariant measures in high dimen-sional spaes. Several numerial as well as theoretial problems remain open. An importantnumerial goal is the improvement of the PODADAPT algorithm whih is not yet verye�ient.The long-term theoretial goal is a onvergene theory for the disrete measures omputedby the PODAIM and PODADAPT algorithm respetively. This will require to generalizePOD estimates that are well-known for single trajetories to the ase of approximations whenmany short time trajetories. First promising results for easy systems have been established.19
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