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Abstract

We present an algorithm to compute invariant measures in high dimensions, e.g. in
discretizations of scalar reaction diffusion equations. The algorithm combines subdivision
techniques developed by Dellnitz, Junge and co-authors with Proper Orthogonal Decompo-
sition as a model reduction method. Since the algorithm computes discrete measures with
support in a low dimensional subspace of the state space we present methods for representing
and comparing such measures. One such method aims at a discretization of the Prohorov
metric. The paper also contains numerical results of the algorithms.

1 Introduction

In this paper we describe a feasible ansatz for the computation of invariant measures in high
dimensional dynamical systems. More precisely, we consider the discrete dynamical system
defined by

ui+1:F(ui), i:0,1,2,...

where F is a diffeomorphism of RY with large N > 1. Typically these large discrete
dynamical systems arise from spatial discretizations of partial differential equations (see
section 7 for details).

When we explore the longtime behavior of dynamical systems there are in principle two
classical numerical approaches. One uses the simulation of many trajectories over large time
intervals and in this way tries to get an overall picture of the dynamics. The disadvantage of
this ansatz is that one cannot be sure to fetch all information of the long time behavior by
this simulation technique. For example think of almost invariant sets in which trajectories
are captured for long time scales.

The second approach is to make a global statistical analysis of the underlying system, for
example the computation of invariant measures of the system. Denote by My = M(RRY) the
set of probability measures on RY and recall that a measure € My is called F-invariant
iff

w(A) = u(F~1(A)) for all A B(RY).
The Frobenius-Perron Operator P : My — My is defined by

P(u)(A) = p(F~Y(A)) forall Ac B,

such that fixed points of P are invariant measures.
For numerical computations one approximates the Frobenius-Perron operator by large
matrices and computes eigenvectors to the eigenvalue 1 which lead to approximate invariant
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measures. In recent years a promising approach was developped by Dellnitz, Junge and
co-workers. ([DFJO1], [DJ98], [DJ99]) This ansatz uses Ulam’s method ([Ula60]) which
basically means, that the state space is discretized into a box covering, from which one
computes transition probabilities that represent the discretized version of the Frobenius-
Perron operator. By rather efficient storing algorithms for the boxes and using an adaptive
way of bisecting boxes this technique is a powerful tool to compute invariant measures in
systems of low dimension. Details of this algorithm will be explained later.

However, when used in higher dimension this subdivision algorithm, called 'Adaptive
Invariant Measure (AIM) algorithm’, suffers from the ’curse of dimension’. Even when
the support of the invariant measure is low-dimensional, the subdivision algorithm has to
deal with an exponentially increasing number of boxes in the first recursion steps. If the
state space is N-dimensional 2V boxes are created to derive the first discretization in every
coordinate. Since no relevant reduction can be expected before this step, the number of
boxes quickly exceeds a computable amount even though the relevant dynamics is embedded
in a low dimensional manifold.

There are several ways to approach this problem. We briefly discuss three of them.

e One can simplify the computation of invariant measures by using structure proper-
ties of the underlying system. Dellnitz and co-workers have presented an ansatz us-
ing symmetries of the dynamical system ([MHvMDO06], [Jun01b]). They showed, that
the symmetries of the system are linked to the symmetries of eigenmeasures of the
Perron-Frobenius operator. This observation can in principle be used to derive these
eigenmeasures with less computational costs.

e A new ansatz by Junge and Koltai [JK]| uses so-called sparse hierarchical grids which
are based on a tensor product construction. Using the Haar basis of L2([0,1]") finite
dimensional approximation spaces (given by a sparse basis) are derived which have the
largest benefit to cost ratio. It can be shown that by this ansatz the computational
effort is of significantly lower order than for the standard Ulam basis to achieve a
comparable accuracy of the approximation.

e Another ansatz, that we follow here, is based on model reduction methods. We focus on
the so-called Proper Orthogonal Decomposition (POD). This method is described for
instance in [HLB96]. There are many promising results when using this method for the
computation of single trajectories mainly in control theory (see [KVO01], [KV02]). For
linear systems they can also be combined with a balanced truncation ansatz ([Ant05],
[ASGO1], [RCMO04]). In this paper we will use POD to approximate the global dynamics
of a high-dimensional system.

The outline of this paper is as follows. In section 2 we briefly recall the subdivision algorithm,
called Adaptive Invariant Measure algorithm, described in [DFJ01], [DJ98] and implemented
in the Software Package GAIO. In section 3 we introduce the model reduction method of
Proper Orthogonal Decomposition and explain how we combine this technique with the
subdivision algorithm.

Since the approximate invariant measures that are computed by this algorithm live on a
lower dimensional subspace of the original state space, given by the POD basis, it is nontrivial
to represent and compare measures for different POD bases and the approximative invariant
measure of the original subdivision algorithm respectively. Therefore we develop a proper
representation of these discrete measures in section 4. Then in section 5 we discuss the
Prohorov metric, that generates the weak-* topology. We will set up a numerical method
for computing the distance of two measures in the Prohorov metric, which even works when
the measures are supported on different POD spaces.

We develop in section 6 a more sophisticated version of our algorithm where the POD
basis is adaptively changed during the subdivision process.

In section 7 we will present some numerical results concerning the approximation of
invariant measures in a Chaffee-Infante problem and a more academic example where the



Lorenz system is embedded into a high dimensional system.

2 Adaptive invariant measure algorithm

We recall some basic steps of the set-oriented methods developed by Dellnitz, Junge et al.
([DFJ01], [DJ98]). The Adaptive Invariant Measure algorithm (AIM algorithm) adaptively
refines box coverings of a positive invariant starting box. On these box collections discrete
measures are computed as fixed points of discretized Perron-Frobenius operators. For later
reference in section 3 we present a simple version of this algorithm.

The AIM algorithm

e Initialization: Let By be a positive invariant box with center ¢ € RY and radius
re RN
By :=Ble,r):i={x € RN : |z —¢;| <rgi=1...,N}.

The initial box collection is By = {Bp} and the initial discrete measure pug :
B(RY) — [0,1] is defined by

. /\N(AQB)
UO(A) - )\N(BQ)O )

where Ay is the N-dimensional Lebesgue measure.

A€ B(RY),

e Recursion step: Assume that a partition By_; of a subset of By is given with a
discrete measure pg—1 : B(RY) — [0, 1].

1. Choose a subset B of By_; where the actual measure is above average
BW = {B € Br_1: Nk—l(B) > 1/|Bk_1|}.

Subdivide boxes in B in coordinate (k mod N) into a refined box collection
B® and continue with

Bi = (Be_1 \ BM)YUB® K := |By|.

2. Calculate a normalized fixed point u € R, ||ull; = 1 of the Frobenius-Perron
matrix P, = (pij)ij € RFK defined by

1<ij<K. (1)

where B\k:{Bl,...,BK}.
3. Set -
Bk:{BiEBk:i:1,...,Kandui>0}CBk

A new discrete measure uy : B(RY) — [0, 1] is defined by

K
Nk(A) = Zui%, Ae B(IRN).

i=1

It is easy to see, that the Frobenius-Perron matrix defined by (1) is column stochastic in



the sense

Zpig:l, forall j=1,...,K

since we assume By to be positive invariant under F'. Then the following theorem ensures the
existence of a fixed point - or in other words the existence of an eigenvector to the eigenvalue
1 = p(P) with nonnegative entries.

Theorem 2.1 ([Min88|). Let A be a real matriz with nonnegative entries. Then the following
statements hold:

e The spectral radius v := max{|\| : X is eigenvalue of A} is an eigenvalue of A.
e There is an eigenvector to the eigenvalue r with nonnegative entries.

o The estimate min; Zj a;; < r < max; Zj ai; holds

The discrete measure ju, is absolutely continuous with density u : RY — [0, 1] defined

by
K .
T
k= ~— 5 1B
2 X ()
where 14 is the characteristic function of the set A ¢ RY:

1, z€A
La(z) = { 0, otherwise

Together with
K
S
i=1

this shows, that uj is a probability measure.

A convergence result based on the theory of small random perturbations can be found
in [JunOla]. Roughly speaking, the result states that the AIM algorithm, when applied to
a system with sufficiently small noise, generates an approximate invariant measure that is
close to the SRB measure of the deterministic system. For details on such small random
perturbations see [Kif86].

3 Proper Orthogonal Decomposition

The concept of Proper Orthogonal Decomposition is used to produce reduced-order models
mainly in problems arising in control theory. The idea is to determine a nested family
of subspaces in the original state space that optimally span the data consisting of given
snapshots. Usually these snapshots are derived from trajectories of the system.

3.1 Formulation of POD

The formal definition of the Proper Orthogonal Decomposition can be formulated in an
arbitrary Hilbert space H, see [HLB96]

Definition 3.1. Letyi,...,y, € H be a collection of snapshots. An l-dimensional orthonor-
mal system {wy }x=1,. ;1 is called proper orthogonal decomposition basis of rank I if it solves
the minimization problem

E({¢}=1) Z ly; — Z (y;, V) k|| 5 minimized over orthonormal bases.
k=1



Theorem 3.2. Let W := span{y1,...,yp} C H. Let oy > ... > 0.y, > 0, m = dim W, be the
singular values and let wy, ..., w, € W be the corresponding singular vectors of the linear

map U € L(RP, W) defined by

UBJ

H'M»s

1 is a POD basis of rank

.....

where e; are the Cartesian basis vectors of RP. Then {wg}r=1
L < m with error

(see [KVO01], [HLBY6])
In our context we take H = R and therefore, U € R™? is just the matrix with the
snapshots y1,...,y, € RY as columns.

3.2 The AIM algorithm in reduced space

The easiest way to combine POD as a reduction method with invariant measure algorithms
is to compute a basis in the first step and apply the algorithm in the reduced system. We
will propose this ansatz in the following algorithm

The PODAIM algorithm

e Snapshots For randomly chosen points ugo), .. (O) € By compute short trajecto-

ries to get test points
uj=Fiw”), j=1...p.

e POD computation By a singular value decomposition of U € R™? with columns
ULy . .., Up WE get

(s 0)=wruv

with
S:diag(al,...,crN)EIRN’N, o1>...>20on >0

where W € RMN,V € RPP are orthogonal. We choose [ < N e.g. by finding
the smallest | with Ufj—tl < e and split W = (W1 Wz) with W7 € RM! and
Wy € RNN-!

e AIM algorithm in POD space A vector v € RY in the subspace defined by W;
is representated by o € R! via u = Wia. We define a lower dimensional discrete
dynamical system by

Qi1 = WlTF(Wlal) € Rl

For this dynamical system we choose a proper positive invariant starting box and
apply the AIM algorithm described in 2 to obtain a discrete measure p; : B(R') —

[0, 1] defined by
K

Z AﬂB), AeB[RY )

where {B;}X | is the box collection in the reduced space obtained by the AIM
algorithm.




e Embedding A box B = B(c,r) C R! can be embedded into the set BV ¢ RY in
the original space by the matrix Wi:

B = =Wz ecR" :2eBy={s=Wiz e R" : |z; —¢;| <riyi=1,...,1}

These embedded boxes form the support of the extended measure py : B(RY) —
[0, 1] defined by

K

(AN B
, AecB(RY). (3)
Zl BWl)
Remark 3.3. 1. In (3) we denote by \; the Lebesgue measure on the l-dimensional sub-

space span{ws, ..., w;} of RN. We have \;(B}"*) = X\i(B;) and
MANBY) = N({z € B : Wiz € A} = \(B; n W H(A))
where Wl_l(A) = {z € R': Wiz € A} denotes the preimage of A under Wy. Therefore,
un can also be expressed as
i (B0 o H(4))
(Bi) '

2. Observe that in contrast to the measure p; in the reduced system given by (2), the
extended measure pyn is not absolutely continuous. This is revealed by an alternative
definition of puy that also shows the measure property of pun. Therefore let 6o : B(R) —
[0,1] denote the onedimensional Dirac measure (cf. [Bau92/, §25). Define

N

AN = @ ® do
J=l+1

where p1 @ po denotes the product measure of 1, pe according to [Bau92], Def. 23.4.
Then an alternative definition of pun is given by the transformation of uyn via the
orthogonal matrizx W € RNV :

un(A) = an(WT(A)), Ae BRY).

Several extensions and problems of this first naive approach will be discussed in the
following sections.
We are facing two problems when we examine the results of the PODAIM algorithm.

e Representing discrete measures in a high dimensional state space. We will present an
ansatz in the following section which uses our assumption that a point in our state space
corresponds to a spatial discretized solution w : [0, 1] — R of a parabolic equation at a
fixed time. We will introduce a suitable histogram over the unit interval.

e Comparison of discrete measures embedded in a high dimensional space with lower
dimensional support. We will show in section 5, that usual discretizations of the weak
metric do not work in our context but that the Prohorov metric is a suitable distance
of measures that can be computed numerically.



4 Representing discrete measures in high dimensions

As described in the previous section the result of our algorithm is a discrete measure ppy :
B(RY) — [0,1] with support on a box collection in an I-dimensional subspace of our state
space RY given by (3).

Since we are focussing on Finite Element discretizations of scalar parabolic equations, in
our context a state u € RY corresponds to a piecewise linear function u : [0,1] — R given
by

i
N +1
This motivates the following representation.

Y=u;, i=1,...,N, wu(0)=u(l)=0.

u(

4.1 Histogram

Recall the starting box in our phase space By = B(c,r) and set ryy = maxo<i<y 7. We

divide the set
1 2N +1

Q= [2(N+1)’2(N+1)

into a collection of boxes as follows

:| X [—TM,TM] C IR2

N g
Q= U@y

i=1j=1
where

M

Qij = T

21 —1 21 +1
2

(N+1)’2(N+1)} . {(20_1)_‘1)%}”’(%_‘” } = i x 5.

Then we count those support boxes of our discrete measure whose i-th center component is
in the corresponding interval to get a function h : Q C R? — R defined by

K . K

hQij) = Zuk]]'Qij (ﬁv (Wiek)i) = Zuk]]-Sj((chk)i)
k=1 k=1

where By, = By(ck, i) C R', k = 1,...,K denote the support boxes with center ¢; and
radius 7.
We can interpret h as a histogram operator since h(Q;;) approximates

,LLN(AZ'J'), Aij =R x Sj X ]RNii

Note that
K 1%
/\I(Aij N B, )
pn(Aig) = ) up——
kz::l M(BE™)
ZK:“ N({zeBM i€ S}
= k
— N (B
K .
~> L if ((e(By™))i = (Waer)s € S;
0, otherwise
k=1
= hQij)
where ¢(B"W) denotes the center of an embedded box B < R¥. Here the approximation
process is reasonable because in general diam(B") << 2% = diam(S;) holds for the



support boxes BY ¢ RY and, therefore, most boxes either lie in A;; or in its complement
as indicated by the center.

With this discrete representation operator we visualize our results by color coding Q;;
according to the value h(Q;;). It is easy to see, that the corresponding matrix H = (h(Q;))i;
is stochastic if the support boxes are located in By

K

J
Z h(QZJ) = U Z ]]‘Qij (ia (ch)l)

j=1 k=1

=

<.

For examples we refer to section 7.

5 Comparing discrete measures: Prohorov metric

In this section we develop an algorithm for computing the distance of discrete measures
obtained by our algorithm.

Recall that the support of px in the PODAIM algorithm is given by a low dimensional
box collection B = {By, ..., Bk} embedded in an [-dimensional subspace spanW as boxes
BYY ¢ RN, k=1,...,K. With these boxes py : B(RY) — [0, 1] is defined by (3).

Our aim is to compare measures for different choices of | < N and different POD bases
W € RY! including the measure of the AIM algorithm where [ = N and W = Iy is the
identity matrix.

5.1 The weak-* topology

Recall that the space M(Q) of probability measures on a compact set () defines a compact
metric space via the weak-* metric d, : M(Q) x M(Q) — Ry defined by

/gidﬂ—/gidv

where (g;); is a dense sequence in C(Q) (see [Dud02]).
If we apply this metric in our context to approximate d.(ux, vy ), where the corresponding
discrete measures 4 and v have support on box collections {A4;};, { Bk}« in the POD spaces

di(p,v) = Z 27" ; (4)
i=0

defined by W; € RM! and W2N’l2, we have to choose a proper (finite) sequence of test
functions (g;);. Due to the shape of our discrete measures a natural choice is

{]]'AYVIV"a]]-A‘;Vla]]-BYV2a"'a]]-BIV(V2}

However, one easily shows that the approximate weak-* distance is 1 as soon as the supports
of the discrete measures are disjoint. Therefore we avoid using the definition (4) directly.

5.2 The concept of blowing up boxes

A more promising ansatz is given by the Prohorov metric which plays a role in theoretical
aspects of probability theory. ([Dud02], [Bil68]). This metric is oriented geometrically.

Definition 5.1. Let

M(S) :={p:B—10,1] : u is a probability measure},



where S is a metric space with Borel o-algebra B. Define the Prohorov metric p by
p(p,v) =1inf{e > 0: p(A) <v(A®) + e and v(A) < u(A®) + ¢ for all A € B} (5)
where p,v € M(S) and A® is the e-neighborhood of A:
A ={z e S:d(z,A) <e}.

Note the following well known result.

Theorem 5.2 ([Dud02]). The mapping p : M(S) x M(S) — Ry defines a metric on the
space of probability measures M(S). Moreover, p is equivalent to the weak-* metric.

We show that the Prohorov metric is well suited for numerical discretizations.

5.3 Implementation

Again we take the boxes of the supports as test sets for the discretized version of the Prohorov
metric. Let py,vy : B(IRN) — [0,1] be two discrete measures on box collections A =

{Aj}J 1,...0 C Rll = {Bk}k=1,..k C R’ embedded by Wi € RN’ll,Wg € RN into
RN (cf. (3))
J W- K
by, AﬂA ) AL ( AﬂBWl)
= U 3 AW1 : =Y up k= A e BRY).
=1 lz( ) k=1 >‘l2 B )

Remember the definition BW = {Wxz € RY : z € B}. We discretize the analytic Prohorov
distance p(uy,vx) in two steps to get a computable version pl (jun, vy). In the first step,
we replace A € B by our boxes of the supports in definition (5) and get

1

P (pn, vn) = max{p (un, vn), Py (uw, v ) }

with
P (v, vn) = inf{e > 02y (AY) < un (A1) +e)
The distance p[zl] is defined analogous via the box collection {B,L%}kK:l. We will focus on p[ll]

in the following, all implications will be the same for p[zl].

By definition it holds

J w w
A (AT N AN
AW1 ull—:u-, =1,...,J
Z A, ( AWI) i
and similarly VN(BZ[/2) =g, k=1,..., K. This allows us to write p[ll] as

p[ll] (un,vNn) =inf{e > 0: jgaxJ(uj — VN((A;_/Vl)E) —¢) <0}

In the next step we explain how to approximate

K AL(BY 0 (A7)

W1
A kz >\l2 BW2 )

By a Monte-Carlo ansatz with P test points b’f, e b’I% € By we get

N, (B2 N (A]7)F)
)‘lz (BIIC/V2)

1 1
~ 5 #{b) : Wby € (A1)} = F{b’; Ld(Waby, A1) < e}



Now we approximate

K
o (AV)E) m wi(e) ==Y %#{bf L d(Wabk, A1) < e}
k=1

We will see below, that d(ng’;,A}/Vl) can be computed analytically. Then we approximate
the Prohorov distance by

P o) = o (v, o) ::{ Bnin{5>0:f1(5):0}’ £1(0) >0

otherwise
where f1; Ry — R is defined by
hie) = max (a; —w;j(e) ).
Since wyj is isotone for every j =1,...,J, fi is antitone and we can compute the root of

f e.g. by Newton’s method to get p[lz] (LN, VN).

The second value p[22] (un,vN) can be computed in an analogous way by approximating

Py (v, o).
Computation of the distances
Now we face the problem to compute
d(Wot, A1)

where W; € RM!, i = 1,2 are orthogonal matrices, t € R'? and a box A = B(c,r) with
center and radius ¢,r € R" is projected to A™* ¢ RY via W;.

We set t; = W{f(Wat) € R, Because Wyt — Wity is orthogonal to the hyperplane
containing Wit; and A"' we get for the Euclidean distance

d(Wot, AV1)2 = d(Wity, AV)2 4 ||Wot — Wity
Now on the one hand we have
d(Wity, A")? = d(t1, A)* = ||d]|2
where d € R" is given by
d; =max(0,|(t1); —ci| —ri), i=1,...,1.
On the other hand we use orthogonality to get
[Wat — Wita||* = [Wat|]? — [Wita]|* = [[t]|* — [[£a]|.

Altogether we obtain
d(Wat, AY)? = [|d||” + [1¢]? — [|ta |

Observe that only the lengths of low dimensional vectors ¢ € R',d,t; € R" are used for the
computation.
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Figure 1: Illustration of the Euclidean distance computation needed for
the approximation of the Prohorov distance. Here the spatial dimensions
are given by N =1, 11 =1ls = 1.

6 Adaptive POD algorithm

Looking closer at the original subdivision algorithm it is an obvious idea to compute the
POD modes adaptively during the recursion steps of the AIM algorithm. Since the algorithm
computes short time trajectories to build the transfer matrix, this data can be used to derive
an adapted POD basis during the algorithm.

The algorithm PODADAPT works as follows. Instead of computing discrete measures
in a fixed state space, also the POD subspace will be changed dynamically. Therefore we
manage not only a box collection and a corresponding discrete measure but also the POD
basis throughout the algorithm. We start with the original state space or in other words
the canonical basis of R as the first POD basis. Ofter some recursion steps the computed
trajectories are used to compute a new POD basis. Now the system is transformed into the
new state space and a new box collection of comparable complexity is built in the new state
space. Then the algorithm continues to work in the new state space.

In detail we suggest the following algorithm

The PODADAPT algorithm

e Initialization: Start with W = Iy, [ = N. By = {Q}, Q@ C R" positive invariant,
ug : Bo — [0, 1] defined by uo(Q) = 1.

e Recursion step k: Let Bi_; a collection of boxes in the POD space given by
W e RN

1. New box collection: As in the original AIM algorithm calculate a new box
collection By, of J = |By| boxes.

11



2. Test points: As in the AIM algorithm choose P random points in each box
B € By, ) )
W e B cRY j=1,... 0

and evaluate the modified right hand side for these vectors
of) = F(Wul)) € RN

3. AIM algorithm: Compute an approximation uj of an invariant measure as
in the POD algorithm from the fixed point of the Perron-Frobenius matrix
P = (pij)ij with

1 . .
pij = FHWTUZ()J) €Bi:ip=1,....,P}, i,j=1,....J
4. POD transformation: After a fixed number of recursion steps compute a
new POD basis in the following way:

— POD snapshots In each box choose image points the number of which is
determined by the discrete measure uy:

Vi={u{):j=1,...,J, p=1,..., [ux(B;) P}

where [x] is the smallest natural number above x.

— POD basis: Calculate a new POD basis W e RN by a singular value
decomposition of V. Choose | < N in a reasonable way, e.g. such that the
I + 1 largest singular value is smaller than a given tolerance.

— Transformation: After a given number of recursion steps (e.g. one in
each space dimension) we transfer the system to a new I dimensional POD
space given by 1% using the following steps

(a) Determine the box B = B(c,r) € By with the smallest diameter of the

current collection and set 7, := min{r; : i =1,...,1}.
(b) Create a box collection B = {§1, e EM} as a covering of WTQ where
all boxes B; = B;(c,r) have the same radius 7 = (ryn, ..., 7m) 7.

(c¢) Eliminate all boxes not containing embedded test points:
g:{BEB\: Bﬂ{sz(,j) cg=1,...,J, p=1,...,P} £ 0}.

Continue with the new POD basis W = W of dimension [ = [ and the
box collection B = B.

We will analyze this algorithm and compare with the results from the PODAIM algorithm
in the following section.

7 Numerical results
We analyze our algorithms for two discrete dynamical systems. The first one is given by

a generalization of the well-known Lorenz system. We will embed this system into a high
dimensional space to see how the POD approximation process works.
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In the second example we apply our algorithms to space-time discretizations of a parabolic
equation. We choose the scalar Chafee-Infante problem which has a cubic nonlinearity. The
discretization uses the Finite Element Method (FEM).

7.1 Embedded Lorenz system

We derive a discrete dynamical system from the following system of ODEs

u/l U(Ug — ul)
u/2 pUL — U — ULUS
U3 uUs — Pu
’ _ 1U2 3 .
W=l | =] e | = W ©)
UN —QUuUN

The first three equations of the system are just given by the Lorenz system ([Lor63]). We
will use the ’standard’ parameters o = 10, p = 28, § = 8/3 in the following.

We take o > 0 so that the remaining equations define exponentially decreasing compo-
nents. A discrete dynamical system is derived from (6) by Euler discretization.

Uit1 = Fp(w;), Fp(v) =v+ hFL(v)
Now we embed the system into a quadratic manifold. Therefore we define ¢, : R — R by
t-(z) = (1 —e)x + ez’
g

Some analysis shows, that ¢. is a one-to-one mapping of D, := (_12;5700) onto R, =

(— (—e)® , oo). The inverse function ¢Z! : R. — D, is given by

4e2

y (1—-¢)?2 1-¢

—1 o
W=yt T

With these scalar functions we can formulate a quadratic perturbation in higher systems via
T. : DY — RY defined by

Teps(v); =t (v;), i1=1,...,N

with 7! defined in an analogue way via ¢t . To randomize the orientation of the perturba-
tion we transform the state space with some randomly chosen orthogonal matrix Q € RV,
Altogether we get a discrete dynamical system

vis1 = Gpe(vi) = To(QFL(QTT  (vy))), i=1,...,N. (7)

In Figure 2 we present the result of the PODAIM algorithm for the system (7) in dimen-
sion N = 10. The following parameter values have been used.

o =10,p=28,3=8/3
Q € RVN with QTQ = Io and Q has random entries
e =0.001,a=10.9,h =0.01

The largest singular values computed in step 2 were
o1 = T742.0957, 02 = 333.8305, o3 = 75.0522, 04 = 2.3911

Due to the gap in magnitude between o3 and o4 the POD dimension [ = 3 was chosen.

13



It is reasonable that the resulting POD space, given by W € R!%:3, is located near the
subspace spanned by the first three columns Q3 € R'%3 of the linear transformation @, since
only a small quadratic perturbation was added to the state space. To measure the distance
we compute the principal angles as defined in [GvL96] (Algorithm 12.4-3 and corresponding
definition):

For general subspaces defined by A € R™4, B € R"™P, ¢ > p, the cosine of the principle
angles i, k = 1,...,q are given by the singular values of C' = Q¥ Qs where A = Q1 R; and
B = (Q2Rs are the QR decompositions of A and B respectively with Q1 € R%%, Qo € RPP
orthonormal.

Since W and Q3 are orthonormal in our case the principal angles are given by cos™! (%),
k =1,2,3, where o, are the singular values of W7 Q3. As expected the principal angles are
small:

6 = (0.0009,0.0034,0.0111)T.

The Figure 2 shows the resulting box collection in the POD space after k& = 27 recursion
steps.

Figure 2: Resulting box collection of PODAIM algorithm for the embed-
ded Lorenz system in N = 10 dimensions.

7.2 Scalar Chafee-Infante problem

We apply our algorithm to a dynamical system arrising from the discretization of the scalar
Chafee-Infante problem with a cubic nonlinearity

Up = Uge — N —u), 0<z<1,t>0, (8)
u(0,t) = u(1,t) =0,t >0 (9)

Before we can apply our algorithms we have to fully discretize the parabolic system.

Finite Elements

For the spatial discretization we choose a Standard Finite-Elements ansatz (cf. [LT03]) with
linear basis functions. Therefore let x; = ih, ¢ = 1,..., N be the equally distributed grid
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ﬁ. We choose piecewise linear basis functions

points in the unit interval with step size h =
A;:[0,1] — R given by
., An} one gets the condition for the finite

By the weak formulation in V}, := span{Aj,

element solution uy € Vj, by
d .
(Euh(t)v Aj)2 + a(’dh(f), A]) = )‘(uh(t)g - uh(t)v Aj)27 (1 <j< N)

with the elliptic form

1
a(u,v) :/ u' v dz,  (u,v € Vy).
0
Using the representation upy(t) = sz\il a;(t)A; € V" one gets a system of ODEs
BhO/(t) + Apa = )\Gh(a(t)) (10)

where B, = ((Aj,A;)2);; € RV is the mass matrix and A, = (a(A;,A;))i;; € RYY the

stiffness matrix. Further on, the nonlinear function G : RY — RY is defined by
(11)

Gh(a)j :/0 AJ(LL') {(Z O(Ai(;[;))g — ZaAl(:E)} dx

We derive an explicit formula from (10) by inserting the formulas for the basis functions A;.

Then we get
h 1
Bh = EB, Ah = EA, Gh(a) = hG(O&)
with
4 1 2 -1
B=|! coa=|! ,
1 -1
1 4 -1 2
3 3
i1 2 iyl sy 2c o
a _ 9 205 VR S e e R
@i== T3 "% w5
@ ja;  3ay07 3ajajp ajady
10 20 20 10
This leads to the following explicit ODE (note + = N + 1)
(12)

o/ (t) = 6B H(—(N +1)*Aa(t) — A\G(a(t)).

For the time discretization we take the explicit Euler method and derive from (12) a discrete
dynamical system that we will analyze with our algorithms described above:
(0785 =F(ai), 1= 1,2,...7 (13)

where F : RV — RY is defined by
1
Fla) =a+ 1 (6B™(—(N +1)*Aa — AG(a))) .

A1t<1 — At < !
h? = 2 T 2(N+1)2

Note that we have to satisfy the stability restriction
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The dynamical behavior of the continuous problem is well-analyzed, see for instance
[Hen81], [Rob01]. Depending on the parameter A > 0 the fixed-points of (8) are described
by the following theorem.

Theorem 7.1. Let n € N be given with n?m? < X\ < (n+ 1)?x%. Then the following holds

e The continuous Chaffee-Infante problem (8) possesses 2n + 1 fized points ¢o, (bli, e
¢i
e ¢q s just the trivial solution and qﬁz and ¢, are symmetric with d%qﬁz > 0 and %@: <
0 respectively. Moreover ¢+ has k — 1 zeros in (0,1) at
k—1

12
Kk’ k
e For n =0 the only fized point ¢g is stable. For n > 1 we have 2 stable fized points gbli
and 2n — 1 unstable fized points ¢o and (bf, 2<k<n.

One can also construct an absorbing set for the Chafee-Infante problem. By that the
existence of a global attractor A in the Sobolev space Hg ([0, 1]) is guaranteed. Further on,
the existence of a Lyapunov function on the global attractor gives a detailed description of
the global attractor.

Theorem 7.2 ([Rob01]). The global attractor A of the Chafee-Infante problem is given by
the union of the unstable manifolds of its fived points:

A=JIW“(): ¢ € {d0,07,..., 6 }}-

where gbzi are the fized points defined in theorem 7.1 and W*(v) denotes the unstable manifold
of v.

The convergence theory of Finite Element discretizations of semilinear parabolic equa-
tions ([LSS94], [Lar99]) leads to the same shape of the attractor for the spatially discretization
because the existence of a Lyapunov function and an absorbing set transfers with slightly
perturbed bifurcation points.

It is known that the support of all invariant measures is a subset of the global attractor, see
[CKRO8], where this result is shown for modified Navier-Stokes equations. More precisely we
will see below, that the support sets of the discrete measures we obtain from the set-oriented
algorithms consist of small neighborhoods of the non-trivial fixed points. This is due to the
fact that the unstable manifolds between the fixed points are not part of the support of SRB
measures approximated by the AIM algorithm.

Multiple eigenvalue 1 of the Perron-Frobenius matrix

Recall that the Perron-Frobenius theorem 2.1 for nonnegative matrices guarantees the exis-
tence of the eigenvalue 1 of the Perron-Frobenius matrix and of a corresponding nonnegative
eigenvector.

In the context of the transfer operator each Dirac measure of a fixed point corresponds
to an eigenvector to the eigenvalue 1 of the Perron-Frobenius matrix P. That means that we
have to face the problem of a geometrically multiple eigenvalue 1 of P. In order to obtain as
much as possible of the dynamics of our system we are interested in a equally weighted linear
combination of the eigenvectors corresponding to the Dirac measures as a representation of
the discrete measure.

Recall that the Perron-Frobenius theorem 2.1 for nonnegative matrices guarantees the ex-
istence of the eigenvalue 1 of the Perron-Frobenius matrix and of a corresponding nonnegative
eigenvector. Typical eigenproblem solvers (e.g. eigs in MATLAB) will give us an orthonormal
basis {v1,...,v;} of the eigenspace to the eigenvalue 1. But in general these vectors may
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have negative entries although there exists a basis of nonnegative vectors corresponding to
the Dirac measures.

Hence we setup an algorithm to transfer the orthonormal basis {v1,..., v} to another
orthonormal basis {pi,...,pr} with nonnegative vectors p;. If we arrange the vectors in
matrices V € RN* and P € RN* with columns v; and p; respectively we write

P=VO

where O € R¥X is an orthonormal matrix. For simplification we write O as a composition
of rotation matrices

O = 01(01)02(a2) - - - Op—1(ag—1)
with

Ou(@) = (0ij)ij,
cos(a) — sin(a))

O je{ll+1} = (sm(a) cos(a)

oijzéij, igZ{l,l—i—l}orjg{l,l—i—l}

In this way we rotate the basis vectors one by one into the cone of nonnegative vectors.
Therefore we minimize the following function to get the angles oy, =1,...,k — 1:

fi@) zmin(Z{piz tpa >0,i=1,...,k}, —Z{pu ipa <0,0=1,...,k})
+ min(Z{pmH 1Pil+1 > 0,i=1,..., k}, — Z{pm_;,_l D1 < 0,0=1,..., k})

where P = (p;j) = VO1(a1) - O1—1(aq—1) 0 ().
Then we expect that each column p; of

P =V Oi(a1) Oz(as) - Op—1(agr—1)

is nonnegative and therefore a good approximation to a Dirac measure in a fixed point of
the system. By summing up and normalizing the columns we get a suitable new fixed point
u of P with |Jull; =1

v k
u = W, ’U:Zpi.
vl i=1

Results

As a first test example we compare the results of the AIM and the PODAIM algorithm on
system (13) for the following parameters.

N =6
A =280
At =0.001

From the bifurcation theory we expect 5 fixed points of the system that should be detected
by the invariant measure algorithms. Due to symmetry these fixed points are located in a
twodimensional subspace of RY. Indeed the PODAIM algorithm evolves a POD dimension
of [ = 2. In Figure 3 we see a histogram representating the discrete measure computed by
the AIM algorithm after 66 subdivision steps, i.e. 11 bisections in each space dimension.
The four nontrivial fixed points are well detected.

In Figure 4 we see the promising result that also in the POD space the fixed points are
detected although their shape is slightly perturbed from the shape in the AIM algorithm. In
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Dimension N =6, A =80, At=0.001,
AIM algorithm: 66 steps (11 bisections), 665512 boxes.

T
e

-15F

Figure 3: Resulting box collection of AIM algorithm for the Chafee-
Infante problem in N = 6 dimensions with parameter A = 80 after
k = 66 subdivision steps.

Dimension N = 6, A =80, At=0.001,
PODAIM with 2 modes: 22 steps (11 bisections), 283 boxes.

151

05
—
Z L
= 0
—
05| —

|
|

Figure 4: Resulting box collection of PODAIM algorithm for the Chafee-
Infante problem in N = 6 dimensions with parameter A = 80. The POD
dimension is [ = 2 and k£ = 22 subdivision steps are computed.

this figure the discrete measure is illustrated after k& = 22 subdivision steps corresponding
also to 11 bisections in each space dimension. The most remarkable result of this example is
the number of boxes building the support of the two discrete measures. In the AIM algorithm
- despite of the simple form of the approximated invariant measure - more than 600.000 boxes
are building the support of the discrete measure while in the PODAIM algorithm only 283

boxes are needed to produce a similar result.
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We can also quantify the difference of the discrete measures obtained by the AIM and the
PODAIM algorithm using the numerical realization of the Prohorov metric described in 5.
In table 7.2 the Prohorov distances are listed after each algorithm has performed a multiple
of the space dimension N = 6 and [ = 2 respectively. The values indicate a convergence
of the two discrete measures although a quite large distance remains until the end of the
refinement process. This remainder is explained by the approximation error of the POD
basis and can also be seen in the histogram where the shape of the higher-order fixed points
differ.

(i, 1))

0.2723
0.2342
0.1547
0.0794
0.0653
0.0872
0.0798
0.1170
0.0727
0.0824

—_
DS © 00 1o Utk w3

Table 6: Prohorov distance of the discrete measures uj and /L]LP] com-

puted by the AIM and PODAIM algorithm after m/N and ml recursion
steps

We end this section with a look to the result of the PODADAPT algorithm described in
6. With the same parameters as above we start with the AIM algorithm (in other words:
W = Ig). The first computation of a new POD basis is performed after 12 recursion steps, i.e.
after bisecting two times in each coordinate. Then, after every [ recursion steps, which means
one bisecion in each coordinate, the POD basis is adapted and the state space is transformed.
In Figure 5 we see the resulting histogram after 12 bisections in each coordinate. This
corresponds to 47 recursion steps of the ATM algorithm, since the vector of POD dimensions
occuring during the algorithm is

L=(6,6,6,6,6,52,2,2,22 2)T.

The Figure shows that the discrete measure approximates only the Dirac measures of the
2 stable fixed points. Other information about the system is apparently lost in the POD
approximation process.

8 Outlook

This paper focusses on numerical aspects of computing invariant measures in high dimen-
sional spaces. Several numerical as well as theoretical problems remain open. An important
numerical goal is the improvement of the PODADAPT algorithm which is not yet very
efficient.

The long-term theoretical goal is a convergence theory for the discrete measures computed
by the PODAIM and PODADAPT algorithm respectively. This will require to generalize
POD estimates that are well-known for single trajectories to the case of approximations when
many short time trajectories. First promising results for easy systems have been established.
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Dimension N = 6, A =80, At=0.001,
PODADAPT with 2 modes: 47 steps (12 bisections), 4 boxes.

15F
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 5: Resulting box collection of PODADAPT algorithm for the
Chafee-Infante problem in N = 6 dimensions with parameter A = 80.
The current POD dimension after 12 bisections or k = 47 recursion steps
isl=2.

References

[Ant05]

[ASGO1]

[Bau92]

[Bil68]

|CKROS|

[DF.J01]

[DJ9g]

[DJ99]

A. C. Antoulas. Approzimation of large-scale dynamical systems, Band 6 von
Advances in Design and Control. Society for Industrial and Applied Mathe-
matics (STAM), Philadelphia, PA, 2005.

A. C. Antoulas, D. C. Sorensen und S. Gugercin. A survey of model reduction
methods for large-scale systems. In Structured matrices in mathematics, com-
puter science, and engineering, I (Boulder, CO, 1999), Band 280 von Contemp.
Math., Seiten 193-219. Amer. Math. Soc., 2001.

H. Bauer. Maf$- und Integrationstheorie. de Gruyter Lehrbuch. Walter de
Gruyter & Co., Berlin, 2. Auflage, 1992.

P. Billingsley. Convergence of Probability Measures. John Wiley & Sons Inc.,
New York, 1968.

T. Caraballo, P. E. Kloeden und J. Real. Invariant measures and statistical
solutions of the globally modified Navier-Stokes equations. Discrete Contin.
Dyn. Syst. Ser. B, 10(4), Seiten 761 781, 2008.

M. Dellnitz, G. Froyland und O. Junge. The algorithms behind gaio - set
oriented numerical methods for dynamical systems. Ergodic Theory, analysis,
and efficient sumulation of dynamical systems, 7, Seiten 145 174, 805 807,
2001.

M. Dellnitz und O. Junge. An adaptive subdivision technique for the ap-
proximation of attractors and invariant measures. Comput. Visual. Sci., 1,
Seiten 63 68, 1998.

M. Dellnitz und O. Junge. On the approximation of complicated dynamical
behavior. SIAM J. Numer. Anal., 36(2), Seiten 491 515, 1999.

20



[Dud02]

[GvLI6|

[Hen81]|

[HLBY6]

[JK]

[JunO1la]

[JunO1b]
[KifS6]
[KVO01]

[KVO02]

[Lar99]

[Lor63]

[LSS94]

[LT03]

[MHvMDOG6]

[Min88]

[RCMO4]

[Rob01]

[Ula60]

R. M. Dudley. Real analysis and probability, Band 74 von Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.

G. H. Golub und C. F. van Loan. Matriz computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, 3.
Auflage, 1996.

D. Henry. Geometric theory of semilinear parabolic equations, Band 840 von
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.

P. Holmes, J. L. Lumley und G. Berkooz. Turbulence, coherent structures, dy-
namical systems and symmetry. Cambridge Monographs on Mechanics. Cam-
bridge University Press, Cambridge, 1996.

O. Junge und P. Koltai. Discretization of transfer operators using a sparse
hierarchical tensor basis - the sparse ulam method. Preprint.

O. Junge. An adaptive subdivision technique for the approximation of attrac-
tors and invariant measures: Proof of convergence. Dynamical Systems, 16(3)
Seiten 213 222, 2001.

O. Junge. Almost invariant sets in chua’s circuit. Int. J. Bif. and Chaos, 7,
Seiten 2475-2485, 2001.

Y. Kifer. General random perturbations of hyperbolic and expanding transfor-
mations. J. Analyse Math., 47, Seiten 111-150, 1986.

K. Kunisch und S. Volkwein. Galerkin proper orthogonal decomposition meth-
ods for parabolic problems. Numer. Math., 90(1), Seiten 117 148, 2001.

K. Kunisch und S. Volkwein. Galerkin proper orthogonal decomposition meth-
ods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 40(2)
Seiten 492 515 (electronic), 2002.

S. Larsson. Numerical analysis of semilinear parabolic problems. In The gradu-
ate student’s guide to numerical analysis ‘98 (Leicester), Band 26 von Springer
Ser. Comput. Math., Seiten 83-117. Springer, Berlin, 1999.

E. Lorenz. Deterministic nonperiodic flow. J. Atmos. Seci, 20, Seiten 130 141,
1963.

S. Larsson und J. M. Sanz-Serna. The behavior of finite element solutions of
semilinear parabolic problems near stationary points. SIAM J. Numer. Anal.,
31(4)7 Seiten 1000 1018, 1994.

S. Larsson und V. Thomée. Partial differential equations with numerical meth-
ods, Band 45 von Texts in Applied Mathematics. Springer-Verlag, Berlin, 2003.

P. G. Mehta, M. Hessel-von Molo und M. Dellnitz. Symmetry of attractors and
the Perron-Frobenius operator. J. Difference Equ. Appl., 12(11), Seiten 1147—
1178, 2006.

H. Minc. Nonnegative matrices. Wiley-Interscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons Inc., New York, 1988.

C. Rowley, T. Colonius und R. Murray. Model reduction for compressible flows
using pod and galerkin projection. Physica D Nonlinear Phenomena, 189(1-2)
Seiten 115-129, 2004.

J. C. Robinson. Infinite-dimensional dynamical systems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge, 2001. An
introduction to dissipative parabolic PDEs and the theory of global attractors.

3

S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure
and Applied Mathematics, no. 8. Interscience Publishers, New York-London,
1960.

21



