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Abstract We apply Newton’s method in perturbed
non-autonomous differential equations to determine

heteroclinic connections which do not exist for the un-

derlying unperturbed system. This approach is particu-

larly useful in a higher dimensional context, where the
numerical computation of invariant manifolds is very

expensive. A detailed discussion of a four-dimensional

model is presented, which describes a pendulum cou-

pled to a harmonic oscillator.
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1 Introduction

The determination of connecting orbits in dynamical

systems has found widespread interest in numerical

analysis and various engineering disciplines. It is the

purpose of the present note to show how a Newton
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method can be applied for the computation of hete-

roclinic orbits for perturbed non-autonomous ordinary

differential equations.

We consider families of ordinary differential equa-

tions of the form

ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)) , u ∈ U , (1)

where fi : R
d → R

d, i = 0, 1, . . . , m, are smooth vector

fields and the functions u ∈ U are defined on R with

values in a fixed set U ⊂ R
m with 0 ∈ U . The solutions

corresponding to initial conditions x(0) = ξ and func-
tions u ∈ U are denoted by ϕ(·, ξ, u), and we assume

that the solutions exist for all t ∈ R.

We are interested in finding orbits of the perturbed

system (1) which connect points near equilibria ξ− and

ξ+ of the system with ui ≡ 0 for i = 0, 1, . . . , m. We
assume here that such an orbit does not exist for the

unperturbed differential equation ẋ = f0(x), and via

continuation techniques, we also analyze the domain of

perturbations which admit such an orbit.

Problems of this type occur in various contexts: In

control theory, for instance, the functions u are inter-
preted as control functions which can be chosen in order

to steer the system from ξ− to ξ+. If one interprets u

as realizations of random processes, the existence of a

connecting orbit implies that the system moves with

positive probability from a neighborhood of ξ− to a
neighborhood of ξ+. Often, this precedes loss of stabil-

ity for a stable equilibrium between ξ− and ξ+, which

was observed, e.g., in Colonius, Kreuzer, Marquardt &

Sichermann [6].

If system (1) is a perturbation from a Hamiltonian
system, the existence of connecting orbits can be de-

termined by analyzing the zeros of Melnikov functions

(see Melnikov [17], Guckenheimer & Holmes [11], and

in a stochastic context, we refer to Wiggins [21], Frey &

Simiu [8], Simiu [19] and Zhu & Liu [22]). This theory
has applications to many mechanical systems, in par-

ticular, roll motion in the analysis of ship stability has

been analyzed using these arguments.

In [6], connecting orbits for control systems in di-

mension d = 2 have been determined by either com-
puting reachable sets in positive and negative time and

then taking their intersection, or alternatively, by com-

puting stable and unstable manifolds and then taking

their intersection. Both methods are computationally

expensive, and it appears difficult to apply them in
higher dimensions.

On the other hand, Newton methods for computing

homoclinic and heteroclinic orbits of maps have been

developed in Beyn, Hüls, Kleinkauf & Zou [2] and Beyn
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& Hüls [1], with a view toward nonhyperbolic equilib-

ria. These numerical methods have been applied to a

number of examples given by maps. It is the purpose of

the present paper to show that these methods can also

be applied to control problems and to show that they
can successfully be used in higher dimensional problems

arising from time-T maps of ordinary differential equa-

tions. We illustrate this in a four dimensional system

that has been analyzed in Zhu & Liu [22] via Melnikov’s
method.

We remark that the problem to connect two points

in the state space by a finite time trajectory is a stan-

dard controllability problem in control theory. Analyt-

ically, it may be treated by applying fixed point theo-
rems, and numerically, it can by embedded into an opti-

mal control problem: If two points can be connected by

a controlled trajectory, they can (under mild assump-

tions) also be connected by a time or energy optimal
trajectory. The resulting optimal control problem leads

to two-point boundary value problems, which then are

solved numerically. In the context of computer assisted

proofs and interval arithmetics (see, e.g., Jaulin, Kiefer,

Didrit & Walter [14]), where errors of floating point
numerics are taken into account, the paper Colonius

& Kapela [3] approached this problem by computing

switching times for piecewise constant controls. This

can be reformulated as the problem to find a zero of
a function and an interval Newton method is applied.

Applications in [3] of this (numerically very expensive)

method are also restricted to two dimensional systems

where delicate controllability problems occur: a Takens-

Bogdanov system from Häckl & Schneider [12] concern-
ing the existence of control-homoclinic orbits and the

escape equation from Gayer [9] related to bifurcation

problems for control sets. We remark that the results

in the present paper might also be used in order to find
starting values for the methods from [3]; here good ini-

tial guesses are of primary importance.

This paper is organized as follows. In the ensuing

section, we briefly recapitulate the method from [1] for

computing connecting orbits. In Section 3, we demon-
strate this method for the study of a differential equa-

tion which models ship roll motion. Section 4 presents

our results on a four dimensional system, which de-

scribes a pendulum coupled to a harmonic oscillator
under deterministic or random perturbations and, fi-

nally, Section 5 draws some conclusions.

2 A Newton method for computing connecting

orbits

In this section, we adapt an algorithm for the ap-

proximation of connecting orbits, which was intro-

duced in Hüls [13], to our situation of perturbed non-

autonomous ordinary differential equations. More pre-

cisely, we are not dealing directly with the differential

equation (1) but with a suitable discretization, given

by a time-T map, resulting in a discrete system of the
form

xn+1 = f(xn, un) , n ∈ Z , (2)

where f : R
d × R → R

d is a sufficiently smooth diffeo-

morphism and (un)n∈Z is a sequence of control param-
eters. We choose constant control on Z

− and on Z
+

0 ,

i.e.,

un =

{

−u for n ∈ Z
− ,

u for n ∈ Z
+

0 .
(3)

Let ξ−(−u) and ξ+(u) be fixed points of f(·,−u) and

f(·, u), respectively, and assume that there exists a het-
eroclinic orbit x̄Z = (x̄n)n∈Z which connects these fixed

points, i.e.,

x̄n+1 = f(x̄n, un) for n ∈ Z and lim
n→±∞

x̄n = ξ±(±u),

(4)

cf. Figure 1.

x̄1x̄−1 x̄0
ξ−(−u) ξ+(u)

f(x̄−1,−u)
f(x̄0, u)

Fig. 1 Sketch of a heteroclinic orbit of (2).

We obtain a finite approximation of the heteroclinic

orbit x̄Z on the interval J = [n−, n+]∩Z by computing
a zero of the operator ΓJ : (Rd)J → (Rd)J , where

ΓJ(xJ ) =

(

xn+1 − f(xn, un), n = n−, . . . , n+ − 1
b(xn

− , xn+)

)

.

(5)

Here b : R
d×R

d → R
d is the so-called projection bound-

ary operator, defined as

b(xn
− , xn+) =

(

Y T
s xn

−

Y T
u xn+

)

,

where Ys is a basis of the stable subspace of

Dxf
(

ξ−(−u),−u
)T

and Yu forms a basis of the unsta-

ble subspace of Dxf
(

ξ+(u), u
)T

.

For finding a zero of the non-linear operator ΓJ , we

apply Newton’s method, i.e., we choose a good initial

guess (xJ )0, for example,

(xJ )0 =
(

ξ−(−u), . . . , ξ−(−u), r, ξ+(u), . . . , ξ+(u)
)T
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with a suitable r, calculate in the n-th step (xJ )n+1 via

DxΓJ

(

(xJ )n, uJ

)(

(xJ )n+1 − (xJ )n

)

= −ΓJ

(

(xJ )n, uJ

)

(6)

and stop this iteration if ‖(xJ )n+1−(xJ)n‖∞ is less than
a given tolerance. Note that DxΓJ is a sparse matrix,

and thus, one can solve the linear system (6) efficiently.

If both fixed points are hyperbolic, and the corre-

sponding fiber bundles intersect transversally, it turns

out that ΓJ (xJ ) = 0 has, for sufficiently large in-
tervals J , a unique bounded solution xJ in some δ-

neighborhood of the restricted exact solution x̄|J . The

approximation error can be estimated as

‖xJ − x̄|J‖∞ ≤ C‖b(x̄n
− , x̄n+)‖

≤ C(‖x̄n
− − ξ−(−u)‖2

+‖x̄n+ − ξ+(u)‖2),

cf. Hüls [13].

In a second step, we continue this orbit with respect
to the control u and determine in this way the range

of controls for which heteroclinic orbits exist. For this

task, the algorithm of pseudo arclength continuation is

applied (see Keller [15] and Govaerts [10]).

3 A model for ship roll motion

We discuss the differential equation

ẋ1 = x2 , (7)

ẋ2 = −β1x2 − β3x
3
2 − x1 + αx3

1 + F cos(ωt) + u(t) ,

which is used as a model for ship roll motion. This

system was first studied in Kreuzer & Sichermann [16]

without control (u ≡ 0). We use their parameter values

α = 0.674 , β1 = 0.0231 , β3 = 0.0375 (8)

(see Colonius, Kreuzer, Marquardt & Sichermann [6],
and we refer also to Wichtrey [20] for the periodically

forced model). Without damping (β1 = β3 = 0), the

system is Hamiltonian, and the potential

V (x) :=
x2

2
− α

x4

4

is M -shaped (see Figure 2).

In this case, the system has three equilibria, given by
the asymptotically stable origin ξ1 and two hyperbolic

equilibria on the negative and positive x1-axis, given

by ξ2 and ξ3, respectively. The hyperbolic equilibria are

connected by two heteroclinic orbits (see Figure 3).
It is clear that in case of damping (β1, β3 6= 0), these

heteroclinic orbits do not persist. In the following, we

will assume throughout that we have a periodic forcing

Fig. 2 The M -shaped potential

Fig. 3 The heteroclinic orbits of the associated Hamiltonian sys-
tem on the right

of the system (F 6= 0). As discussed in Wichtrey [20,

Korollar 5.3], in case of damping, there exists a FC > 0

such that for all F ≥ FC , there is a heteroclinic con-
nection from ξ̃2 to ξ̃3, where ξ̃2 and ξ̃3 are the fixed

points of the time- 2π
ω

map, which correspond to ξ2 and

ξ3, respectively. Basically, this means that the unsta-

ble manifold of ξ̃2 intersects with the stable manifold

ξ̃3 and vice versa. The main tool to prove this is Mel-
nikov’s method, and in [20], it is also shown that small

forcing does not lead to a heteroclinic connection. We

now want to demonstrate Newton’s method from Sec-

tion 2 to show that in this case, a suitably chosen con-
trol function u yields connecting orbits between ξ̃2 and

ξ̃3.

In addition to (8), we choose

ω =
5

2
and F = 0.55 .

For these parameters the uncontrolled system has no

heteroclinic connection [20]. We then applied Newton’s
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method from Section 2 successfully for a control func-

tion

u(t) :=

{

−0.02 for t ≤ 0,

0.02 for t > 0.

The corresponding fixed points of the time- 2π
ω

map of

(7) are given by

ξ̃2 =

(

−1.2914

0.0012

)

and ξ̃3 =

(

1.1587

0.0012

)

,

and a finite approximation of length 10 of the corre-

sponding orbit is given by

(

1.1587

0.0012

)

u≡−0.02
7−→

(

1.1587

0.0012

)

u≡−0.02
7−→

(

1.1585

0.0009

)

u≡−0.02
7−→

(

1.1509
−0.0093

)

u≡−0.02
7−→

(

0.9127
−0.2963

)

u≡−0.02
7−→

(

−0.8254

−0.5719

)

u≡0.02
7−→

(

−1.2761

−0.0218

)

u≡0.02
7−→

(

−1.2910

0.0005

)

u≡0.02
7−→

(

−1.2914

0.0012

)

u≡0.02
7−→

(

−1.2914

0.0012

)

(see also Figure 4).

x1

x2

u ≡ −0.02

u ≡ −0.02

u ≡ 0.02

Fig. 4 Finite approximation of the heteroclinic orbit

It is also interesting to know if the heteroclinic orbit

persists if we make changes in the control function. In
the next section, we will use continuation methods for

a four dimensional system in order to follow the path

of a heteroclinic orbit for different control functions u.

4 A pendulum coupled with a harmonic

oscillator under perturbations

We consider the following system from Zhu & Liu [22]:

ẋ1 = x2 ,

ẋ2 = − sinx1 + ε(x3 − x1) − εβx2 + εu(t) ,

ẋ3 = x4 , (9)

ẋ4 = −ω2x3 + ε(x1 − x3) − εγx4 ,

where we have chosen the parameters

ω = 1 , ε = 0.05 , β = 2 , γ = 2 (10)

as in [22]. This system consists of a pendulum equation

ẍ = − sinx, which for positive ε includes a damping

term εβẋ, and an harmonic oscillator z̈ = −ω2z, which

for positive ε also includes a damping term εγż. For

ε 6= 0, these systems are coupled by the terms ε(z − x)
and ε(x−z), respectively. The pendulum is also subject

to a bounded perturbation εu(t), where u takes values

in a compact interval U = [−ρ, ρ], ρ > 0.

The pendulum has the hyperbolic equilibria ξ± with

coordinates (x1, x2) = (±π, 0). Together with the equi-
librium x3 = x4 = 0 of the harmonic oscillator, they

constitute two nonhyperbolic equilibria of the four di-

mensional system. For constant u and small ε 6= 0, there

are unique equilibria ξε
±(u) near ξ±. They are obtained

by setting

x2 = x4 = 0 ,

and then from the last equation one obtains

0 = −ω2x3 + ε(x1 − x3) ,

and hence

x3 =
εx1

ε + ω2
. (11)

Thus, by the second equation, the x1-component is the

unique solution near x1 = 0 of

sinx1 = εx1

(

ε

ε + ω2
− 1

)

+ εu . (12)

The continuation of equilibria of (9) with respect to u

is shown in Figure 5.

Note the following symmetry relation: For every so-

lution x(t) in R
4, one finds that y(t) := −x(t) solves

ẏ1 = y2 ,

ẏ2 = − sin y1 + ε(y3 − y1) − εβy2 − εu(t) ,

ẏ3 = y4 ,

ẏ4 = −ω2y3 + ε(y1 − y3) − εγy4 .
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−30 −20 −10 0 10 20 30
−10

−5

0

5

10

u

x1

ξ+(u)

ξ−(−u)

Fig. 5 Continuation of equilibria w.r.t. the control u, computed
using the bifurcation and continuation toolbox MatCont, cf.
[7]. The arrow indicates the existence of a heteroclinic orbit of
the time-2π map (2) with control (3), and the small diagrams
show the eigenvalues of the linearization indicating the stability
of these equilibria.

Thus, the solutions satisfy the symmetry relation

ϕ(t, x, u) = −ϕ(t,−x,−u) . (13)

Denote the time-T map by f and choose T = 2π. This
results in a discrete-time control system of the form

(2). We assume that for the parameter values (10) and

for constant control u ∈ U , there exists an equilibrium

ξ+(u) near ξ+ with nontrivial stable subspace and an
equilibrium ξ−(−u) near ξ− with nontrivial unstable

subspace, such that the sum of the dimensions of these

two subspaces is 4, see Figure 5. Our goal is to compute

a connecting orbit between ξ−(−u) and ξ+(u), using the

algorithm, introduced in Section 2.

4.1 Numerical computations

In the numerical experiments, we chose n+ = −n− =

10, and it turned out that the computation of hetero-

clinic orbits is easier for large control values. Hence,
the solution of ΓJ (xJ ) = 0 is first computed for u = 9,

and then it was possible via parameter continuation to

detect all controls for which heteroclinic orbits exist.

The first orbit, computed for u = 9, is shown in Fig-
ure 6; black circles denote the points of this orbit. These

points are connected by the solution of (9). Dotted and

dashed lines indicate the extension of the solutions for

t > 0 and t < 0, if the control has constant value u and
−u, respectively. Note that min±{‖x

n− ξ±(±u)‖} con-

verges exponentially fast towards to 0 as n → ±∞, see

Figure 7. Due to this rapid convergence, only the point

x0 is visible in Figure 6, while all other points practi-

cally coincide with the fixed points ξ−(−u) or ξ+(u).

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2 ❶

x1

x2

ξ−(−u) ξ+(u)

x0

co
ntr

ol
−u

control u

Fig. 6 Heteroclinic orbits of (2) for u = 9.

−10 −5 0 5 10
10

−20

10
−15

10
−10

10
−5

10
0

10
5

n

m
in

±
{
‖
x

n
−

ξ
±

(±
u
)‖
} 0.061

x0

Fig. 7 Distance of the orbit from Figure 6 to the fixed points in
a logarithmic scale.

A continuation diagram of this orbit with respect

to u is given in Figure 8. Starting at the initial orbit

at u = 9 (symbol ❶) the algorithm of pseudo arclength

continuation (see Keller [15] and Govaerts [10]) is ap-
plied in both directions (u < 9, u > 9).

The continuation of orbit ❶ in the direction u > 9

exhibits a turning point at u ≈ 15.7, denoted by ❷.

There, the control parameter u returns, while the center

point x0 of the orbit follows a spiralling curve, cf. orbit
❷ in Figure 9. As a consequence, the continuation of (2)

in this direction exhibits an infinite number of turning

points, see Figure 9, and x0 approaches the stable fixed

point in the center of the spiral.
Characteristic orbits that occur, when continuing

the initial orbit ❶ for u < 9 are shown in Figure 10.

For u = 2.701, there exists a heteroclinic orbit x̃Z of
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12.5
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13.5
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‖xJ‖∞

u

Figure 9

Figure 10

❶

❷

❸

❹

❺

❻

❼

Fig. 8 Continuation of heteroclinic orbits of (2) w.r.t. the control
u. The numbers refer to the corresponding orbits from Figures 6,
9, 10.

the system with constant control, i.e.,

x̃n+1 = f(x̃n, ũ) , lim
n→±∞

x̃n = ξ±(ũ) .

Note that this autonomous heteroclinic connection of

ξ−(u) to ξ+(u) can only be found in a small neighbor-

hood of ũ. Our controlled systems (2), (3) possesses
for u close to ũ a heteroclinic connection from ξ−(−u)

to ξ+(u) with an intermediate visit of the fixed point

ξ−(u) after switching control (see Figure 10, ❼). From

then on, the branch stays in the ũ-neighborhood with
more and more points accumulating near ξ−(u).

These computations show that heteroclinic orbits of

our controlled system exist for u ∈ [2.701, 15.7].

4.2 Controllability

The following discussion clarifies the controllability be-

havior of system (9). The reachable set from x ∈ R
4 is

defined by

Oε,+(x) = {ϕε(t, x, u) : t ≥ 0 and u ∈ U}.

Observe that for ε = 0, the system then does not de-

pend on the control function, and hence, the reachable

set O0,+(x) has void interior in R
4. In order to discuss

the controllability behavior for ε 6= 0, we recall the fol-

lowing results from Colonius & Kliemann [5]. Let X

and Y be vector fields on R
d. In the canonical local

coordinates X(x) = α(x) = (α1(x), . . . , αd(x))T and

Y (x) = β(x) = (β1(x), . . . , βd(x))T , the Lie bracket is
given by

[X, Y ] = Dβ(x)α(x) − Dα(x)β(x),

where Dα(x) and Dβ(x) denote the Jacobians. We use

the notation

ad0
XY := Y, adk+1

X Y := [X, adkY ] for all k ≥ 0.

Theorem 1 Consider a control-affine system of the

form

ẋ = X(x) + u(t)Y (x), u(t) ∈ U, (14)

where X and Y are smooth vector fields on R
d and U is

an interval containing the origin in its interior. Suppose

that

span
{

(adk
XY )(x) : k ∈ N0

}

= R
d for all x ∈ R

d. (15)

Then every equilibrium of the uncontrolled system ẋ =

X(x) is an interior point of a control set D, i.e., a

maximal subset D of R
d such that D ⊂ clO+(x) for

all x ∈ D. Furthermore, one has intD ⊂ O+(x) for all

x ∈ D.

Proof Hypothesis (15) implies that the system without

control constraints is strongly locally accessible (cp. Ni-

jmeier & van der Schaft [18, Theorem 3.21]). Hence,

by [5, Proposition 4.5.17], the system with control con-

straints satisfies the so-called inner-pair condition guar-

anteeing by [5, Corollary 4.5.11] that every equilibrium

of the uncontrolled system is contained in the interior
of a control set. The second assertion follows from [5,

Lemma 3.2.13 (ii)], since the inner-pair condition im-

plies local accessibility.

System (9) is a special case of (14) with d = 4 and

vector fields

X(x) =









x2

− sinx1 + ε(x3 − x1) − εβx2

x4

−ω2x3 + ε(x1 − x3) − εγx4









and

Y (x) =









0

−ε

0
0









.

Since the vector field Y is constant, its Jacobian van-

ishes, and the Jacobian of X is given by









0 1 0 0

− cosx1 − ε −εβ ε 0

0 0 0 1
ε 0 −ω2 − ε −εγ









.
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0
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1

1.5

2

❷ ❸

❹ ❺

u ≈ 15.7 u ≈ 12

u ≈ 7.3 u ≈ 14.3

x1

x1

x1

x1

x2

x2

x2

x2

x0

x0

x0

x0

ξ−(−u) ξ+(u)

Fig. 9 A sequence of heteroclinic orbits, computed using parameter continuation, cf. Figure 8.
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❻ ❼
u ≈ 3.6 u ≈ 2.701

x1

x1 x1

x2

x2x2

x0

x0

ξ+(u)

ξ−(u)

ξ−(−u)

Fig. 10 A sequence of heteroclinic orbits, computed using parameter continuation, cf. Figure 8.
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One computes the Lie bracket as

ad1

XY =









0 1 0 0

− cosx1 − ε −εβ ε 0
0 0 0 1

ε 0 −ω2 − ε −εγ

















0

ε

0

0









= ε









1

−εβ

0

0









.

Similarly, one computes

ad2

XY = −ε









−εβ

− cosx1 − ε + ε2β2

0

ε









and

ad3

XY = ε









cosx1 + ε − ε2β2

x2 sin x1 − εβ(2 cosx1 + 2ε − ε2β2)

−ε

ε2(β + γ)









.

For ε 6= 0, the four vector fields Y, ad1

XY, ad2

XY, ad3

XY

are linearly independent for all points x ∈ R
4, since

det
(

Y, ad1
XY, ad2

XY, ad3
XY

)

= ε3.

This shows that the assumptions of Theorem 1 are

satisfied. It follows that the equilibria ξε
+(0) and ξε

−(0)

of the uncontrolled system are contained in the interiors

of control sets, which we denote by Dε
+ and Dε

−, respec-
tively. The equilibria ξε

+(u) and ξε
−(u) given by (11) and

(12) depend continuously on u and ε. By applying The-

orem 1 again, one finds that, for u ∈ intU , they are con-

tained in the interiors of Dε
+ and Dε

−, respectively. The

constructed heteroclinic orbit approaches for t → ∞ the
equilibrium ξε

+(u) ∈ intDε
+ and for t → −∞ the equi-

librium ξε
−(−u) ∈ intDε

− connecting the control sets

Dε
+ and Dε

− by a finite time controlled trajectory. By

local accessibility and the second part of Theorem 1,
one can connect any two points in the interior of the

Dε
+; analogously in Dε

−. Hence our result shows that the

equilibria ξε
−(−u) and ξε

+(−u) are, in fact, connected by

a controlled trajectory in finite time. However, it seems

rather difficult to determine it directly instead of fol-
lowing our approach above. Taking into account the

symmetry property (13) one sees that there is also a

trajectory from Dε
+ to Dε

−. Since control sets are max-

imal sets of complete controllability, these two control
sets coincide. We conclude that there is a single control

set containing all equilibria as well as the heteroclinic

connections.

4.3 Random Perturbations

Finally, we briefly discuss consequences of our results

in the case of random perturbations. Consider, instead

of deterministic functions u(t), random perturbations

of the form

ζ(t) = ρ sin(Ωt + σw(t)),

where ρ and Ω are the amplitude and averaged fre-

quency of bounded noise and w(t) is the Wiener pro-

cess with intensity σ (essentially, this is the situa-
tion considered in Zhu & Liu [22, Section 2]). Then

η(t) := Ωt + σw(t) may be considered on the unit cir-

cle, a compact manifold parameterized by [0, 2π). Now

it follows (compare Colonius & Kliemann [4]) that for

every deterministic control function u(t) taking val-
ues in the interval U = [−ρ, ρ] and every T > 0 ev-

ery tube around a trajectory ϕ(t, x, u), t ∈ [0, T ], has

positive probability. Our numerical results show that

there is a control function u1 with values in the inter-
val [−2.702, 2.702], such that the corresponding trajec-

tories start in a neighborhood of ξ−, visit a neighbor-

hood of ξ+, and then return into the neighborhood of

ξ−. It also follows from the discussion above that there

is a control function u2 such that the corresponding
trajectory moves around two times, and similarly for

arbitrary n ∈ N. Consequently, for every n ∈ N, the

random system has positive probability that there are

trajectories moving around n times.

5 Conclusion

A Newton method for computation of connecting or-
bits in nonlinear systems with deterministic or random

perturbations is presented. A major advantage of this

approach, compared to methods based on intersections

of stable and unstable manifolds, is that it can be used
for higher dimensional systems. The efficiency of the

method is demonstrated for a two-dimensional model

of ship roll motion with sinusoidal forcing and for a

four-dimensional system consisting of a pendulum cou-

pled with a harmonic oscillator. Combining this analy-
sis with methods from control theory and random dy-

namics, one finds consequences for controllability be-

havior and for random behavior. It should be noted

that these methods only give the information, if prob-
abilities are positive, not their actual magnitude.
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Birkhäuser, Boston, 2000.

6. F. Colonius, A. Marquardt, E. Kreuzer, and W. Sichermann,
A numerical study of capsizing: comparing control set anal-

ysis and Melnikov’s method, International Journal of Bifur-
cation and Chaos 18 (2008), no. 5, 1503–1514.

7. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, MATCONT:

a MATLAB package for numerical bifurcation analysis of

ODEs, ACM Transactions on Mathematical Software 29

(2003), no. 2, 141–164.
8. M. Frey and E. Simiu, Noise-induced chaos and phase space

flux, Physica D, Nonlinear Phenomena 63 (1993), no. 3–4,
321–340.

9. T. Gayer, Control sets and their boundaries under parame-

ter variation, Journal of Differential Equations 201 (2004),
no. 1, 177–200.

10. W. J. F. Govaerts, Numerical Methods for Bifurcations of

Dynamical Equilibria, SIAM, Philadelphia, 2000.
11. J. Guckenheimer and P. Holmes, Nonlinear Oscillation, Dy-

namical Systems, and Bifurcations of Vector Fields, Applied
Mathematical Sciences, vol. 42, Springer, New York, 1983.
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