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Abstract

We introduce a general notion of hyperbolicity for set-valued
dynamical systems and discuss it in the framework of polytope-valued

maps.

Key words. set-valued dynamical systems, shadowing, inverse shadowing
AMS(MOS) subject classifications. 54C60, 37C50, 34A60

1 Introduction

In the context of classical dynamical systems (diffeomorphisms or flows), the
shadowing property has been extensively studied (see, for example, the mono-
graphs [9] and [10]). This property means that near approximate trajectories
there exist exact trajectories of the system.

There is another type of shadowing properties (inverse shadowing properties)
which are related to the following question: Given a family of mappings that
approximate the defining mapping of the dynamical system and an arbitrary
exact trajectory, is it possible to guarantee the existence of a pseudotrajectory
generated by the given family which is close to the exact trajectory? Such
properties were considered by various authors (see, for example, [3], [4], and
[5]).

The study of such properties is important for the theory of perturbations of
dynamical systems.

It was shown that so-called contractive set-valued dynamical systems possess
shadowing properties (see, for example, [6, 7] and [11]).

In the literature, one can find some concepts of hyperbolicity for set-valued
dynamical systems. One of the definitions was given by Akin in [1]. The author
calls a set hyperbolic if it is expansive and the system already has the shadowing
property on it.

A different approach was used by Sander in [8] and [13], where hyperbolicity
was defined for smooth relations. Due to the nature of the analyzed objects, this
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hyperbolicity condition does not allow the graph of a relation to have nonempty
interior, which is generically the case in the set-up discussed in the present
paper.

Please note that both hyperbolicity conditions of Akin and Sander imply the
uniqueness of a shadowing trajectory, which is quite unnatural for set-valued
dynamical systems.

In an earlier essay (cf. [12]) we proposed a condition which was a gener-
alization of the classical single-valued hyperbolicity concept as well as of the
set-valued contractive case discussed in [11]. The drawback of this approach is
that it imposes rigid restrictions on the behaviour of the set-valued mapping.

We hope to improve this aspect in the present paper, where we propose a
more general selection-based hyperbolicity condition for set-valued dynamical
systems and prove that every such system has the Lipschitz shadowing and
inverse shadowing property. Further we examine this condition in the special
case of polytope-valued mappings, where it is reduced to a simple criterion for
the vertices of the polytopes.

Let us pass to basic notation. Let C(Rm) be the collection of all closed
subsets and let CC(Rm) denote the set of compact and convex subsets of Rm.
The distance between two compact subsets A and B of Rm is measured by the
deviation

dev(A,B) = max
a∈A

min
b∈B
|a− b|

and by the symmetric Hausdorff distance

distH(A,B) = max(dev(A,B),dev(B,A)),

respectively. The convex hull of a set A ⊂ Rm will be denoted by co(A).
If x ∈ Rm and a > 0, we denote by Ba(x) the ball of radius a centered at x.
If x ∈ Rm and M ∈ C(Rm), Proj(x,M) is the set of elements of M that

satisfy the inequalities |x − Proj(x,M)| ≤ |x − y| for all y ∈ M . If M ∈
CC(Rm), then Proj(x,M) is a singleton; in this case, we also consider the
vector Dev(x,M) = Proj(x,M)− x.

A set-valued dynamical system on Rm is determined by a set-valued mapping
F : Rm → C(Rm)\{∅} and its iterates. In what follows, we identify the mapping
F and the corresponding dynamical system.

A sequence η = {pk} is a trajectory of the system F if

pk+1 ∈ F (pk) for any k ∈ Z. (1)

A sequence ξ = {xk} is called a d-pseudotrajectory of F if an error of size d > 0
is allowed in every step, i.e., if

dist(xk+1, F (xk)) < d for any k ∈ Z. (2)

We say that the system F has the shadowing property if given ε > 0 there
exists d > 0 such that for any d-pseudotrajectory ξ = {xk} of F there exists a
trajectory η = {pk} with

dist(xk, pk) < ε for any k ∈ Z.
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As usual, for a sequence η = {ηk} ∈ (Rm)Z,

||η||∞ = sup
k∈Z
|ηk|.

2 Shadowing

Let F : Rm → C(Rm) be a set-valued mapping. Any single-valued function
f : Rm → Rm with f(x) ∈ F (x) for all x ∈ Rm is called a selection of F .

Our definition of hyperbolicity for set-valued mappings introduced in this
paper is as follows.

We say that F is hyperbolic if it is locally parametrized by a family of
hyperbolic selections:

(P1) For every x ∈ Rm there exist linear subspaces U(x), S(x) ⊂ Rm such that

U(x)⊕ S(x) = Rm. (3)

If P (x) and Q(x) are the corresponding complementary projections from
Rm to U(x) and S(x), then there exists an N ≥ 1 such that

|P (x)|, |Q(x)| ≤ N (4)

for all x ∈ Rm.

(P2) There exist constants λ ∈ (0, 1), κ > 0, l > 0, and a > 0 such that for
every point (x, z) ∈ graph(F ) there exists a local selection fz of F , which is
a single-valued function fz : Ba(x) → Rm with fz(x) = z, fz(x′) ∈ F (x′)
for all x′ ∈ Ba(x), and such that the following property holds: For any
y, v ∈ Rm with |v| ≤ a and |z − y| ≤ a we have

fz(x+ v) = z +Az(x)v + bz(x, v), (5)

where the Az(x) : Rm → Rm is a linear map, the restriction

P (y)Az(x)|U(x)
: U(x)→ U(y) (6)

is an isomorphism such that

|P (y)Az(x)P (x)v| ≥ λ−1|P (x)v|, (7)

|P (y)Az(x)Q(x)v| ≤ κ|Q(x)v|, (8)

|Q(y)Az(x)P (x)v| ≤ κ|P (x)v|, (9)

|Q(y)Az(x)Q(x)v| ≤ λ|Q(x)v|, (10)

and bz(x, ·) is a small perturbation continuous in v and bounded by

|bz(x, v)| ≤ l|v|. (11)

Formula (5) and the above condition on bz imply that fz is continuous for
|v| ≤ a.

Remark 1.
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Let us note that the definition of hyperbolicity of a set-valued mapping
suggested in [12] is a particular case of the general definition given above.

Recall that in [12], set-valued mappings of the form

F (x) = L(x) +M(x) (12)

were considered, where L : Rm → Rm is a continuous single-valued mapping,
and M : Rm → CC(Rm) is a set-valued mapping with compact and convex
images.

It was assumed that there exist constants N ≥ 1, λ ∈ (0, 1), κ > 0, l > 0,
and a > 0 such that
• condition (P1) above is satisfied;
• if x, y, v ∈ Rm satisfy the inequalities |v| ≤ a and dist(y, F (x)) ≤ a, then

we can represent L(x+ v) as

L(x+ v) = L(x) +A(x)v + b(x, v),

where A(x) : Rm → Rm is a linear map that is continuous in x and such
that (after the replacement of Az(x) by A(x) in (P2)) the restriction (6) is an
isomorphism that satisfies estimate (7), and inequalities (8)-(10) hold;
• |b(x, v)| ≤ l|v|;
• distH(M(x+ v),M(x)) ≤ l|v|.
Now let us take a mapping F of the form (12) that satisfies the above con-

ditions, a point z ∈ F (x), and define the corresponding local selection fz by

fz(x+ v) = z +A(x)v + Dev(z +A(x)v, F (x+ v));

thus, we take A(x) az Az(x) and set

bz(x+ v) = Dev(z +A(x)v, F (x+ v)).

Clearly, fz(x) = z, fz(x + v) ∈ F (x + v), and Az(x) = A(x) satisfies the
corresponding properties formulated in (P2). Since F is convex and continuous,
bz is continuous.

The inclusion z ∈ F (x) implies that

dist(z +A(x)v, F (x+ v)) ≤ dev(F (x) +A(x)v, F (x+ v))

= dev(L(x) +A(x)v +M(x), L(x) +A(x)v + b(x, v) +M(x+ v))

= dev(M(x), b(x, v) +M(x+ v))

≤ |b(x, v)|+ distH(M(x),M(x+ v)) ≤ 2l|v|,

and inequality (11) is verified (with l replaced by 2l).
We show that the set-valued dynamical system

x 7→ F (x) (13)

has the Lipschitz shadowing property if F is hyperbolic in the above sense.

Theorem 1. Let F : Rm → C(Rm) be a hyperbolic set-valued mapping such
that

λ+ κ+ 2lN < 1.
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If ξ = {xk}k∈Z is a d-pseudotrajectory of (13) for some d < a/L, there exists a
trajectory η = {pk}k∈Z of (13) with

‖ξ − η‖ ≤ Ld,

where
L−1 =

1
2N

(1− λ− κ− 2lN).

Proof. For every k ∈ Z, we fix y = xk+1 and a point z ∈ Proj(xk+1, F (xk)).
Clearly, L > 1 and d < a. Then |y − z| < a, and there exists a continuous

hyperbolic selection fz of F (denoted below fk) such that

fk(xk + v) = fk(xk) +Ak(xk)v + bk(xk, v) ∈ F (xk + v), |v| ≤ a,

according to (P2).
Thus, to find a shadowing trajectory, it is enough to find a sequence vk with

|vk| ≤ Ld such that
xk+1 + vk+1 = fk(xk + vk).

Take b = d/(2L) and define

Hk := {v ∈ Rm : |P (xk)v|, |Q(xk)v| ≤ b}

and H :=
∏
k∈Z Hk.

Note that if v ∈ Hk, then |v| ≤ 2b = Ld.
Since each Hk is compact and convex, so is H w.r.t. the Tikhonov topology.

The mapping Gk : U(xk)→ U(xk+1) given by

Gk(w) := −P (xk+1)Ak(xk)w (14)

satisfies Gk(0) = 0,

|Gk(w)| ≥ λ−1|w|, w ∈ U(xk), (15)

and Gk(Bbxk
) ⊃ Bb/λxk+1 , where

Bcx := {z ∈ U(x) : |z| ≤ c}, (16)

because of property (P2). Thus the inverse G−1
k of Gk is defined on Bb/λxk+1 , and

|G−1
k (z)−G−1

k (z′)| ≤ λ|z − z′|, z, z′ ∈ Bb/λxk+1
. (17)

The operator T : H → H which is given by

Q(xk+1)Tk+1(V ) := Q(xk+1) (fk(xk + vk)− xk+1) , (18)
P (xk)Tk(V ) := G−1

k (P (xk+1) {bk(xk, vk)
+Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1}) (19)

for V = {vk}k∈Z ∈ H, is well-defined. The argument in (19) satisfies

|P (xk+1) {bk(xk, vk) +Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1} |

≤ Nl|vk|+ κ|Q(xk)vk|+Nd+ b ≤ 2lNb+ κb+Nd+ b
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≤ (2lN + κ+
Nd

b
+ 1)b ≤ λ−1b

for V = {vk}k∈Z ∈ H, because

b−1 =
1
Nd

(1− λ− κ− 2lN) ≤ 1
Nd

(λ−1 − 1− κ− 2lN),

so that the argument in (19) is an element of Bb/λxk+1 . Furthermore,

|Q(xk+1)Tk+1(V )|

≤ |Q(xk+1)Ak(xk)P (xk)vk|+ |Q(xk+1)Ak(xk)Q(xk)vk|

+|Q(xk+1)bk(xk, vk)|+ |Q(xk+1)(fk(xk)− xk+1)|

≤ κ|P (xk)vk|+ λ|Q(xk)vk|+ lN |vk|+Nd ≤ κb+ λb+ 2lNb+
2N
L
b = b,

and T (V ) ∈ H. The operator T is continuous w.r.t. the Tikhonov topology,
because every component Tk depends on vk−1, vk, vk+1 only. Hence T has a
fixed point V ∈ H, which implies that

Q(xk+1)vk+1 = Q(xk+1) (fk(xk + vk)− xk+1) (20)

and

−P (xk+1)Ak(xk)P (xk)vk = Gk(P (xk)vk) (21)
= P (xk+1) {bk(xk, vk) +Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1} (22)

or
P (xk+1)vk+1 = P (xk+1)(fk(xk + vk)− xk+1). (23)

By (20) and (23), the sequence η := {pk}k∈Z with pk = xk + vk is the desired
shadowing trajectory.

3 Inverse Shadowing

As the line of argument is very similar to the previous section, we will only
highlight which elements of the setup have to be modified. Though it is pos-
sible to formulate a global result, we prefer a local version which allows the
approximating mappings to be locally defined.

Let us assume that the mapping F is hyperbolic at a given trajectory η =
{pk} in the following sense: There exist constants N ≥ 1, a, κ, l > 0, and
λ ∈ (0, 1) such that condition (P1) holds for points x = pk, and condition (P2)
holds for points x = pk, y = z = pk+1, and vectors v with |v| ≤ a.

In our theorem on inverse shadowing, we consider two classes of sequences
of mappings that approximate the set-valued mapping F . Fix a number d > 0.

Class 1.
Consider a sequence of mappings

Φ = {Φk : Rm → CC(Rm)}
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such that each Φk is continuous w.r.t. distH and

dev(F (pk + v),Φk(pk + v)) ≤ d for k ∈ Z and |v| ≤ a. (24)

Class 2.
Let

CS(Ψ, x, a) = {ψ ∈ C(Ba(x),Rm) : ψ(y) ∈ Ψ(y), y ∈ Ba(x)}

be the set of all local continuous selections of a set-valued mapping Ψ; we equip
C(Ba(x),Rm) with the supremum norm.

Consider a sequence of mappings

Φ = {Φk : Rm → C(Rm)}

such that
dev(CS(F, pk, a), CS(Φk, pk, a)) ≤ d, k ∈ Z. (25)

For both classes, we say that a sequence of points xk ∈ Rm is a trajectory
of the sequence Φ if xk+1 ∈ Φk(xk).

Remark 2.
Though we have seen that it is not necessary to assume convexity of the

values of F for proving that it has the shadowing property, we are not able to
dispense with convexity of the approximating mappings Φk of Class 1 for the
inverse shadowing property.

Theorem 2. Assume that a trajectory η = {pk} of F is hyperbolic in the above
sense. If

λ+ κ+ 2lN < 1, (26)

then F has the inverse Lipschitz shadowing property: Whenever a family Φ of
mappings is defined as above with d < a/L, there exists a trajectory ξ = {xk}
of Φ such that

‖ξ − η‖∞ ≤ Ld,

where
L−1 =

1
2N

(1− λ− κ− 2lN).

Proof. By assumption, there exist hyperbolic selections fk of F such that fk(pk) =
pk+1,

fk(pk + v) = fk(pk) +Ak(pk)v + bk(pk, v),

|P (pk+1)Ak(pk)P (pk)v| ≥ λ−1|P (pk)v|,

and so on.
Case 1. Because of (24), φk(pk + v) := Proj(fk(pk + v),Φk(pk + v)) is a

selection of Φk such that |fk(pk + v)− φk(pk + v)| ≤ d for all |v| ≤ a. Since Φk
is continuous w.r.t. the Hausdorff distance and has convex values, the φk are
also continuous according to Theorem 1.7.1 of [2].

Case 2. Assumption (25) implies the existence of continuous selections φk
of Φk such that

|fk(pk + v)− φk(pk + v)| ≤ d, |v| ≤ a.
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In both cases, we search for a sequence vk with |vk| ≤ Ld such that

pk+1 + vk+1 = φk(pk + vk) ∈ Φk(pk + vk).

As before, b = d/(2L), Hk := {v ∈ Rm : |P (pk)v|, |Q(pk)v| ≤ b}, and
H :=

∏
k∈Z Hk. Here,

Gk(w) := −P (pk+1)Ak(pk)w, (27)

and the operator T : H → H is defined by

Q(pk+1)Tk+1(V ) := Q(pk+1) (φk(pk + vk)− pk+1) , (28)
P (pk)Tk(V ) := G−1

k (P (pk+1){bk(pk, vk) +Ak(pk)Q(pk)vk (29)
−(fk − φk)(pk + vk) + fk(pk)− pk+1 − vk+1}) .

The estimates are essentially unchanged, merely the error Nd is now caused
by the term P (·)(φk − fk)(·) instead of P (·)(fk(xk)− xk+1) as before.

4 Polytope-valued Mappings

Let F : Rm → CC(Rm) be a polytope-valued mapping, i.e. a set-valued map-
ping which is characterized by its vertices s1, . . . , sn : Rm → Rm via

F (x) = co{s1(x), . . . , sn(x)} for all x ∈ Rm. (30)

Assume that there exist N ≥ 1, a, κ, l > 0, and λ ∈ [0, 1] such that

(P1′) condition (P1) of Sec. 2 holds, and the dimensions of the spaces U(x) are
the same for x ∈ Rm.

(P2′) For any x, y, v ∈ Rm with |v| ≤ a and |si(x)− y| ≤ a, we can represent

si(x+ v) = si(x) +Ai(x)v + bi(x, v) (31)

for 1 ≤ i ≤ n, where any Ai(x) : Rm → Rm is a linear map such that for
each v there exists a direction of expansion p(x, v) ∈ Rm with |p(x, v)| = 1
and

〈p(x, v), P (y)Ai(x)P (x)v〉 ≥ λ−1|P (x)v|, (32)

analogs of conditions (8)-(10) hold (with Az(x) replaced by Ai(x)), and
bi(x, ·) are small continuous perturbations for which analog of condition
(11) is valid.

Remark 2. From the geometric point of view, inequality (32) ensures that
the unstable perturbations P (y)Ai(x)P (x)v drive all the vertices in the same
direction, so that their movements cannot cancel each other when combined.

Now we show that in the case of polytope-valued mappings, the general con-
dition of hyperbolicity introduced in Sec. 2 is implied by conditions on behavior
of a finite set of points.
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Theorem 3. Let F : Rm → CC(Rm) be a polytope-valued mapping such that
its vertices satisfy conditions (P1 ′) and (P2 ′). Assume that the projections P
and Q are Lipschitz continuous with Lipschitz constant K > 0 such that

K diam(F (x)) max
1≤i≤n

‖Ai(x)‖ < λ−1, x ∈ Rm. (33)

If
λ0 := sup

x∈Rm

max(λ1(x), λ2(x)) < 1,

where
λ1(x) := (λ−1 −K diam(F (x)) max

1≤i≤n
‖Ai(x)‖)−1

and
λ2(x) := λ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖,

then F is a hyperbolic set-valued mapping with constants N,λ0,

κ0 := κ+ sup
x∈Rm

K diam(F (x)) max
1≤i≤n

‖Ai(x)‖,

l, and a.

Proof. Let any point (x, z) ∈ graph(F ) be given. Because of (30), there exist
θ1, . . . , θn ∈ [0, 1] with

∑n
i=1 θi = 1 and

z =
n∑
i=1

θisi(x).

Define the selection fz : Rm → Rm as the convex combination

fz(x′) :=
n∑
i=1

θisi(x′). (34)

of the vertices of F with the above coefficients. Then

fz(x+ v) =
n∑
i=1

θisi(x+ v) =
n∑
i=1

θi (si(x) +Ai(x)v + bi(x, v))

= s(x) +
n∑
i=1

θiAi(x)v +
n∑
i=1

θibi(x, v) =: z +A(x)v + b(x, v).

Let us check condition (P2).
Take y with |y−z| ≤ a and define yi = y−z+si(x), so that |yi−si(x)| ≤ a.
Since the projections P are Lipschitz continuous with Lipschitz constant K,
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we deduce from estimates (32) that

|P (y)A(x)P (x)v|
≥ 〈p(x, v), P (y)A(x)P (x)v〉

= 〈p(x, v),
n∑
i=1

θiP (y)Ai(x)P (x)v〉

= 〈p(x, v),
n∑
i=1

θiP (yi)Ai(x)P (x)v〉

+〈p(x, v),
n∑
i=1

θi (P (y)− P (yi))Ai(x)P (x)v〉

≥ λ−1|P (x)v| −K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|P (x)v|

=
(
λ−1 −K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|P (x)v|

= λ−1
1 (x)|P (x)v|,

which implies that the restriction

P (y)A(x)|U(x)
: U(x)→ U(y)

is an isomorphism (let us recall that the dimensions of U(x) and U(y) coincide).
The same estimate proves inequality (7).

To prove inequalities (8)-(10), we note that

|P (y)A(x)Q(x)v|

= |P (y)
n∑
i=1

θiAi(x)Q(x)v|

≤ |
n∑
i=1

θiP (yi)Ai(x)Q(x)v|+ |
n∑
i=1

θi (P (y)− P (yi))Ai(x)Q(x)v|

≤ κ|Q(x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|Q(x)v|

=
(
κ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|Q(x)v|

≤ κ0|Q(x)v|,

|Q(y)A(x)P (x)v|

= |Q(y)
n∑
i=1

θiAi(x)P (x)v|

≤ |
n∑
i=1

θiQ(yi)Ai(x)P (x)v|+ |
n∑
i=1

θi (Q(y)−Q(yi))Ai(x)P (x)v|

≤ κ|P (x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|P (x)v|

=
(
κ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|P (x)v|

≤ κ0|P (x)v|,
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and

|Q(y)A(x)Q(x)v|

= |Q(y)
n∑
i=1

θiAi(x)Q(x)v|

≤ |
n∑
i=1

θiQ(yi)Ai(x)Q(x)v|+ |
n∑
i=1

θi (Q(y)−Q(yi))Ai(x)Q(x)v|

≤ λ|Q(x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|Q(x)v|

=
(
λ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|Q(x)v|

= λ2(x)|Q(x)v|.

Finally,

|b(x, v)| ≤
n∑
i=1

θi|bi(x, v)| ≤ l|v|,

which proves estimate (11).

Corollary. If
λ0 + κ0 + 2lN < 1,

then F has the Lipschitz shadowing property due to Theorem 1 and the inverse
shadowing property in the sense of Theorem 2.
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