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Abstract

In this paper we develop two boundary value methods for detecting Sacker-

Sell spectra in discrete time dynamical systems. The algorithms are advance-

ments of earlier methods for computing projectors of exponential dichotomies.

The first method is based on the projector residual PP − P . If this residual

is large, then the difference equation has no exponential dichotomy. A sec-

ond criterion for detecting Sacker-Sell spectral intervals is the norm of end

points of the solution of a specific boundary value problem. Refined error

estimates for the underlying approximation process are given and the result-

ing algorithms are applied to an example with known continuous Sacker-Sell

spectrum, as well as to the variational equation along orbits of Hénon’s map.

Keywords: Sacker-Sell spectrum, Boundary value problem, Exponential dichotomy,
Dichotomy projectors.

1 Introduction

For non-autonomous difference equations of the form

un+1 = Anun, n ∈ Z
several characterizations of spectra have been developed in the literature cf. Dieci
& Van Vleck (2007) for continuous time systems. In discrete time, a generalization
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to non-invertible systems in given in Aulbach & Siegmund (2001). Our focus lies
on the so called Sacker-Sell spectrum, which is introduced in Sacker & Sell (1978).
Its construction is based on the notion of exponential dichotomies, see Appendix A.
This spectrum is the set of values γ > 0, for which the scaled equation

un+1 =
1

γ
Anun, n ∈ Z (1)

possesses no exponential dichotomy on Z. The complementary set R+\σED is called
the resolvent set.

In Dieci & Van Vleck (2002) initial value methods, based on the QR-algorithm
and the SVD-decomposition are applied for computing spectral intervals in contin-
uous time.

We apply boundary value techniques for computing Sacker-Sell spectral intervals
in discrete time. Two tests are proposed; the first one is based on computing the
projector residual, while the second one allows, roughly speaking, to read off from
the solution of the specific boundary value problem

un+1 =
1

γ
Anun + δn,N−1r, n = n−, . . . , n+ − 1, δ Kronecker symbol (2)

whether γ lies in a spectral interval or in the resolvent set. Note that the boundary
value approach captures in certain respects the global behavior. The solution of (2)
sensitively depends on γ, whereas a change of γ leads in the QR-method to a simple
shift of intervals.

The algorithms in this paper are based on a direct approach for the numerical
verification of exponential dichotomies and for computing dichotomy projectors from
Hüls (2008). An extension to the Sacker-Sell spectrum requires pointwise estimates
for the approximation error of the solution of (2) that are stated in Section 2,
particularly in case of periodic boundary conditions.

In Section 3, our algorithms for the detection of Sacker-Sell spectral intervals are
introduced. In a given interval L we choose a grid Lg and compute for each γ ∈ Lg

a quantity that indicates, whether (1) possesses an exponential dichotomy.
The basis of the first test are approximate dichotomy projectors. We prove that

the projector residual ‖PP − P‖ is exponentially small in case of an exponential
dichotomy and thus, if this expression is large, then the difference equation cannot
have an exponential dichotomy. Note that it is computationally expensive to find
dichotomy projectors.

A second and much cheaper test is constructed as follows. Solve (2) with bound-
ary condition

un−
− un+

= x,

where x is a fixed vector, ‖x‖ = 1, and take the norm of the end points vn±
:=

‖un−
‖+ ‖un+

‖ as an indicator. If γ lies in the resolvent set, then vn±
= O(1), while

vn±
is expected to be large if γ is in the spectrum.
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Continuous Sacker-Sell spectrum occurs, for example, if the difference equation
possesses half-sided dichotomies on Z− and Z+ that cannot be continued to an
exponential dichotomy on Z. In spectral intervals of this type, we prove that vn±

increases exponentially fast with n+, −n−, provided the trivial solution is the only
bounded solution of the homogeneous equation. The latter condition is satisfied
generically either by the original or by the adjoint equation. Thus exponential
growth of vn±

corresponds to spectral intervals.
We apply these algorithms to a linear test example with known continuous

Sacker-Sell spectrum. In Section 4, a more realistic example is considered. Spec-
tral intervals of the variational equation along heteroclinic and homoclinic Hénon
orbits are computed. For these examples, the variational equation is asymptotically
constant. In the heteroclinic case, spectral intervals are caused by half-sided di-
chotomies that cannot be continued to Z. The homoclinic case exhibits only point
spectrum. Finally, our algorithms are applied to a variational equation, obtained
from a chaotic trajectory on the Hénon attractor.

2 Error analysis for approximations of dichotomy

projectors

An algorithm for computing dichotomy projectors numerically is introduced in Hüls
(2008). These results are summarized in this section and refined as well as extended
error estimates are developed.

Consider the linear difference equation

un+1 = Anun, n ∈ Z, (3)

and denote by Φ its solution operator. For the forthcoming analysis, we assume that
this difference equation possesses an exponential dichotomy on Z, see Appendix A.

A1 The difference equation (3) with matrices An ∈ Rk,k, having a uniformly
bounded inverse, possesses an exponential dichotomy on Z with data
(K, αs, αu, P̄

s
n, P̄ u

n ).

The computation of dichotomy projectors is based on solving inhomogeneous
linear systems of the form

ui
n+1 = Anui

n + δn,N−1ei, n ∈ Z, ei i-th unit vector. (4)

Using Green’s function, cf. Palmer (1988), the unique bounded solution ūZ of (4)
has the explicit form

ūi
n = G(n, N)ei, n ∈ Z, where G(n, m) =

{

Φ(n, m)P̄ s
m, n ≥ m,

−Φ(n, m)P̄ u
m, n < m,
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and consequently
P̄ s

N =
(

ū1
N , . . . ūk

N

)

. (5)

In numerical computations, one restricts equation (4) to a finite interval J =
[n−, n+] ∩ Z. In Hüls (2008) the following approaches are discussed:

• A boundary value ansatz

un+1 = Anun + δn,N−1r, n = n−, . . . , n+ − 1, (6)

b(un−
, un+

) = 0,

with periodic or projection boundary conditions b, defined as

bper(x, y) := x − y, (7)

bproj(x, y) :=

(

Y T
s x

Y T
u y

)

, (8)

where the columns of Ys and Yu form a basis of R(Qu)⊥ and R(Qs)⊥. Qs

and Qu are two complementary projectors, having the same rank as the stable
and unstable dichotomy projectors P̄ s

n and P̄ u
n , respectively. Well posedness

requires the angle condition

∡(R(P̄ s
n−

),R(Qu)) > σ, ∡(R(P̄ u
n+

),R(Qs)) > σ, (9)

with 0 < σ ≤ π
2

for sufficiently large −n−, n+. Note that the angle between
two subspaces A and B is defined as, see Golub & Van Loan (1996),

∡(A, B) = θ ∈
[

0,
π

2

]

, where cos θ = max
u∈A,‖u‖=1

max
v∈B,‖v‖=1

uTv.

• Computation of the least squares solution of (4) on J .

The question, whether the numerically computed matrix P s
N is indeed a projector

can be answered by calculating ‖P s
NP s

N − P s
N‖. This projector residual is analyzed

in the following proposition with subsequent results for boundary value and least
squares approximations.

Proposition 1 Let ui
n be an approximation of ūi

n on the intervals J = [n−, n+],
such that

‖ui
n − ūi

n‖ ≤ Cεn(n±), i ∈ 1, . . . , k, n ∈ J

and let P s
N :=

(

u1
N , . . . uk

N

)

. Then

‖P s
NP s

N − P s
N‖ ≤ C̃εN(n±),

with an n± independent constant C̃.
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Proof: Due to (5) the estimate ‖P̄ s
N − P s

N‖ ≤ C1εN(n±) holds.
Let P s

N = P̄ s
N + R, ‖R‖ ≤ C1εN(n±). It follows that

‖P s
NP s

N − P s
N‖ = ‖(P̄ s

N + R)(P̄ s
N + R) − (P̄ s

N + R)‖

= ‖P̄ s
N P̄ s

N − P̄ s
N + P̄ s

NR + RP̄ s
N + RR − R‖

= ‖P̄ s
NR + RP̄ s

N + RR − R‖ ≤ C̃εN(n±).

�

On the one hand ‖P s
NP s

N − P s
N‖ is a lower bound for the approximation error,

which one can compute without knowing the exact solution. One the other hand,
the error may be large even if ‖P s

NP s
N − P s

N‖ is small. Error estimates are given in
the forthcoming theorems.

2.1 Projection boundary conditions

Theorem 2 Assume A1 and let P s,u
N (n±) be approximations on J = [n−, n+] of the

dichotomy projectors P̄ s,u
N , computed using the approach (6) with projection boundary

conditions (8). Further assume that the boundary operator is defined with respect to
projectors Qs, Qu that satisfy (9) and

Φ(N, n−)R(Qu) ∩ Φ(N, n+)R(Qs) = {0}. (10)

Then
P s,u

N (n±)P s,u
N (n±) − P s,u

N (n±) = 0 (11)

and
‖P s,u

N (n±) − P̄ s,u
N ‖ ≤ C

(

e−(αs+αu)(N−n−) + e−(αs+αu)(n+−N)
)

.

Proof: Assumption (10) enables the construction of the projector P s
N(n±) with

range Φ(N, n+)R(Qs) and nullspace Φ(N, n−)R(Qu). Define P u
N(n±) := I−P s

N(n±)
and P s,u

n (n±) := Φ(n, N)P s,u
N (n±)Φ(N, n) for n ∈ J , then the cocycle property (29)

is satisfied.
The boundary condition (8) requires

un+
∈ R(Qs) = Φ(n+, N)Φ(N, n+)R(Qs) = Φ(n+, N)R(P s

N (n±)) = R(P s
n+

(n±))

and similarly un−
∈ R(P u

n−
(n±)). The solution of the boundary value problem is

given explicitly, using Green’s function

un = G(n, N)r, n ∈ J, G(n, N) =

{

Φ(n, N)P s
N (n±), for n+ ≥ n ≥ N,

−Φ(n, N)P u
N (n±), for n− ≤ n < N,

in particular uN = P s
N(n±)r. With r = ei, i = 1, . . . , k this yields an exact projector

and consequently (11) holds.
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Applying (Hüls 2008, Proposition 4), we obtain the estimate

‖ūN − uN‖ ≤ C
(

e−(αs+αu)(N−n−) + e−(αs+αu)(n+−N)
)

,

and the same estimate holds, due to Proposition 1, for the approximate dichotomy
projectors.

�

Note that (11) also holds, if the rank of the reference projectors Qu and Qs do
not equal the rank of the dichotomy projectors. Since the boundary value problem
considers only finite intervals, equation (11) is even satisfied, if (3) possesses no
exponential dichotomy on Z.

2.2 Periodic boundary conditions

Errors that occur when solving (6) with generalized periodic boundary conditions

b(un−
, un+

) = un−
− un+

− x, x ∈ Rk fixed (12)

are discussed in the following theorem.

Theorem 3 Assume A1 and denote by ūZ the unique bounded solution of (4).
Then the boundary value problem (6) with boundary operator (12) has a unique

solution uJ fulfilling for n ∈ J = [n−, n+]:

‖ūn − un‖ ≤ C
(

e−αu(n+−n) + e−αs(n−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

(13)

Proof: Using Green’s function, the general solution of the inhomogeneous equation
(6) has the form

un = G(n, N)r + Φ(n, n−)v− + Φ(n, n+)v+, v− ∈ R(P̄ s
n−

), v+ ∈ R(P̄ u
n+

).

We choose v−, v+ such that the boundary condition is satisfied:

0 = un−
− un+

− x = G(n−, N)r + Φ(n−, n−)v− + Φ(n−, n+)v+

−G(n+, N)r − Φ(n+, n−)v− − Φ(n+, n+)v+ − x.

Thus

v− − v+ + Φ(n−, n+)v+ − Φ(n+, n−)v− = −G(n−, N)r + G(n+, N)r + x. (14)

Since ‖Φ(n+, n−)v− + Φ(n−, n+)v+‖ converges to 0 exponentially fast, we obtain a
unique solution v−, v+ of (14) with

‖v±‖ ≤ C
(

‖G(n−, N)‖ + ‖G(n+, N)‖
)

‖r‖ + ‖x‖

≤ CK
(

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖.

6



As a consequence it holds for n ∈ J with a generic constant C > 0

‖ūn − un‖ = ‖Φ(n, n+)v+ + Φ(n, n−)v−‖

≤ Ke−αu(n+−n)‖v+‖ + Ke−αs(n−n−)‖v−‖

≤ C
(

e−αu(n+−n) + e−αs(n−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

.

�

When computing dichotomy projectors, using periodic boundary conditions (7),
we apply (12) with x = 0 and get from Proposition 1 and (13) with n = N

‖PN(n±)PN(n±) − PN(n±)‖ ≤ C
(

e−αu(n+−N) + e−αs(N−n−)
)

·
(

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖.

2.3 Least squares approach

We develop a pointwise estimate by combining Theorem 3 with a uniform estimate
from Hüls (2008) of the least squares solution on J .

Theorem 4 Assume A1 and denote by ūZ the unique bounded solution of (4).
Then the least squares solution vJ of (6) satisfies the following inequality:

‖ūn − vn‖ ≤ C‖r‖
(

e−αu(n+−n) + e−αs(n−n−)
)

· (15)

(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

,

where α = min{αs, αu}.

Proof: From (Hüls 2008, Theorem 4.1) we obtain that equation (6) has a unique
least squares solution vJ , fulfilling the error estimate

sup
n∈J

‖ūn − vn‖ ≤ C‖r‖(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

. (16)

Note that (Hüls 2008, Theorem 4.1) gives an estimate at N = 0 with factor (n+−n−)

instead of (n+ − n−)
1

2 . But a simple inspection of the proof leads to the improved
result (16).

For getting a point-wise estimate, we consider the boundary value problem (6)
with boundary operator

b(un−
, un+

) = un−
− un+

− x, where x = vn−
− vn+

.

By Theorem 3, this boundary value problem has a unique solution uJ that therefore
coincides with the least squares solution vJ .

Thus ‖ūn − vn‖ satisfies the inequality (13) with

‖x‖ = ‖vn−
− vn+

‖ ≤ ‖vn−
− ūn−

‖ + ‖ūn−
‖ + ‖ūn+

‖ + ‖ūn+
− vn+

‖

≤ C‖r‖(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

+Ke−αu(N−n−)‖r‖ + Ke−αs(n+−N)‖r‖.
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This gives the estimate (15) with a generic constant C > 0.
�

The corresponding estimate for dichotomy projectors, computed via the least
squares approach, follows from (15) with n = N .

3 Sacker-Sell spectrum

The Sacker-Sell spectrum, cf. Sacker & Sell (1978), Aulbach & Siegmund (2001),
Dieci & Van Vleck (2007) also called dichotomy spectrum is for discrete time dy-
namical systems defined as

σED = {γ ∈ R+ : (17) possesses no exponential dichotomy on Z},
where

un+1 =
1

γ
Anun, n ∈ Z, (17)

and the resolvent set is R+ \ σED. It is well known that the Sacker-Sell spectrum
consists of at most k disjoint, closed intervals, where k denotes the dimension of the
space, cf. Sacker & Sell (1978).

The following characterization of exponential dichotomies, see (Palmer 1988,
Proposition 2.6) gives in case of half-sided dichotomies a criterion for analyzing
whether γ lies in the spectrum or in the resolvent set.

Proposition 5 The following statements are equivalent:

• The difference equation (3) possesses an exponential dichotomy on Z.

• (3) has exponential dichotomies on Z− and Z+ with projectors of equal rank,
and (3) has no bounded, non-trivial solution on Z.

Denote by Φ(n, m) the solution operator of (3). Then the solution operator of
the scaled equation (17) is

Φγ(n, m) = γm−nΦ(n, m).

Let L be an interval in the resolvent set, i.e. L ∩ σED = ∅. For γ ∈ L one has

‖Φγ(n, m)P s
m‖ = γm−n‖Φ(n, m)P s

m‖ ≤ Ke−αs(n−m)γm−n = Ke−(αs+lnγ)(n−m),

and similarly, the corresponding estimate in the unstable direction follows. Thus, the
scaled equation possesses in the resolvent-interval containing 1, the same dichotomy
projectors as the original equation (3). Furthermore, the dichotomy projectors as
well as the constant K are in a resolvent-interval independent of γ.
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Example 6 The difference equation

un+1 = Anun, where An =

{

A−, for n ≤ 0,
A+, for n ≥ 1,

with

A− =





1
4

6



 and A+ =





2
3

5



 (18)

possesses an exponential dichotomy on Z− for γ /∈ {1, 4, 6} and on Z+ for γ /∈
{2, 3, 5}. Due to Proposition 5, these dichotomies cannot be extended to Z for values
of γ from the union of intervals σ := [1, 2] ∪ [3, 4] ∪ [5, 6].

We transform this equation into a more general form: Let S1 and S2 be two
non-singular matrices and define the difference equation

un+1 = Anun, where An =

{

S1A−S−1
1 , for n ≤ 0,

S2A+S−1
2 , for n ≥ 1,

(19)

with matrices A± from (18). Denote by P−s,−u
n (γ) and P+s,+u

n (γ) the corresponding
half-sided dichotomy projectors of the scaled equation (17) on Z− and Z+. By Propo-
sition 5, these dichotomies can be combined to a dichotomy on Z, if no bounded,
non-trivial solution exists. Thus

σED = σ if R(P−u
0 (γ)) ∩R(P+s

0 (γ)) = {0} for γ /∈ σ. (20)

For γ ∈ (2, 3), the half-sided dichotomy projectors are

P−u
0 (γ) = S1





0
1

1



 S−1
1 , P+s

0 (γ) = S2





1
0

0



 S−1
2

and for γ ∈ (4, 5) we obtain

P−u
0 (γ) = S1





0
0

1



S−1
1 , P+s

0 (γ) = S2





1
1

0



S−1
2 .

Thus (20) is equivalent to non-singularity of the matrices
(

S1e2 S1e3 S2e1

)

and
(

S1e3 S2e1 S2e2

)

.

We introduce two tests for detecting Sacker-Sell spectral intervals. In a given
interval L, we choose a grid Lg and compute for each γ ∈ Lg a quantity that indicates
whether (17) has an exponential dichotomy. The first test is based on computing
dichotomy projectors, while the second and more efficient one is based on solving
two boundary value problems.
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3.1 Numerical detection of Sacker-Sell spectral intervals via

dichotomy projectors

From Theorem 3 and 4 we know that the projector residual ‖PP − P‖ is small, if
an exponential dichotomy exists. But if this quantity is large, then the difference
equation has no exponential dichotomy.

As a toy model, we choose the difference equation from Example 6. We compute
for equidistantly chosen values γ ∈ [0.01, 10] the dichotomy projector P s

N(γ) and
plot ‖P s

N(γ)P s
N(γ) − P s

N(γ)‖. For these calculations, the periodic boundary value
ansatz or alternatively the least squares approach is applied. Note that this test is
not working with projection boundary conditions, since these boundary conditions
always give exact projectors, cf. Theorem 2.

When discussing the costs of boundary value and least squares approach, one
sees that the boundary value approach requires to solve k linear systems (6) with
unit vectors as right hand side.

The least squares solution of this problem is given as uJ = B+R, where B+ =
BT (BBT )−1 and

B =







−An−
I
. . .

. . .

−An+−1 I






, uJ =







un−

...
un+






, Ri =

{

0, i ∈ J, i 6= N − 1,
I, i = N − 1,

cf. Hüls (2008). For the computation of the Moore-Penrose inverse, we refer to
Shinozaki et al. (1972). The dichotomy projector is the N -th block component of the
solution uJ . As a consequence, the Moore-Penrose inverse contains approximations
of all dichotomy projectors within the finite interval. More precisely, the n-th block-
row of the (n − 1)-th block-column of B+ is an approximation of the dichotomy
projector P̄ s

n.
We apply these techniques to the example (19) and solve (6) for n− = −100,

n+ = 100 and N = 0. In Figure 1, ‖P s
N(γ)P s

N(γ) − P s
N(γ)‖ is plotted over γ. Since

the least squares approach computes all dichotomy projectors simultaneously, we
use P s

n(γ) for n = −50, . . . , 50 for our test.
As one can see, the projectors, computed via the least squares approach detect

the Sacker-Sell spectral intervals more accurately than the boundary value solution.
The occurrence of the plateaus in Figure 1 is a clear evidence that the difference
equation has no exponential dichotomy for the corresponding γ-values. On the other
hand, the computation of these projectors is quite expensive, since the computation
of the Moore-Penrose inverse requires to invert the matrix BBT . In particular for
high dimensional but sparse systems, the computation of the full matrix (BBT )−1

is, due to memory restrictions, impossible in practice. Alternatively, one can use
singular value decomposition for computing the Moore-Penrose inverse. But this
approach turns out to be numerically even more expensive.

10



0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−10

10
0

‖PP − P‖

γ

Figure 1: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6. The red curve is computed with the least squares ansatz, while
the black curve uses the boundary value approach with periodic boundary
conditions.

3.2 Numerical detection of Sacker-Sell spectral intervals via

boundary value solutions

In this section, we consider Sacker-Sell spectral intervals that occur, when the dif-
ference equation has half-sided dichotomies on Z− and Z+ with stable projectors
of different rank and therefore no exponential dichotomy on Z, see Proposition 5.
We introduce a dichotomy test for this case that is based on solving boundary value
problems

un+1 = Anun + δn,N−1r, n = n−, . . . , n+ − 1, (21)

un−
= un+

+ x. (22)

Compared to the method from Section 3.1, this approach is also feasible to high
dimensional systems.

Denote by P−s,−u
n and P+s,+u

n half-sided dichotomy projectors on Z− and Z+,
respectively. In the resolvent set, one has

rank(P−u
N ) + rank(P+s

N ) = k,

while the following cases may occur in spectral intervals:

(i) rank(P−u
N ) + rank(P+s

N ) ≥ k + 1. Then, the inhomogeneous equation (21)
generically has infinitely many bounded solutions.
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(ii) rank(P−u
N ) + rank(P+s

N ) ≤ k − 1. In this case (21) generically has no bounded
solution. Formally, we assume the generic condition (24).

The first case (i) can be reduced to (ii) by considering the adjoint equation

vn+1 = (A−1
n+1)

T vn, (23)

cf. Palmer (1988). If (3) possesses half-sided dichotomies with data (K±, α±
s , α±

u ,
P±s

n , P±u
n ), then the adjoint equation (23) also has half-sided dichotomies with data

(K̃±, α±
u , α±

s , (P±u
n+1)

T , (P±s
n+1)

T ). Obviously, the sets of γ-values coincide, in which
the scaled equations

un+1 =
1

γ
Anun and vn+1 = γ(A−1

n+1)
T vn

have an exponential dichotomy. If the adjoint equation has infinitely many bounded
solutions on Z, then (2) generically has no bounded solution. As a consequence, it
suffices to construct a test that distinguishes (ii) from the resolvent case.

The norm of the end points un−
and un+

is an indicator for detecting spectral
intervals. First, we show that in the resolvent set, this expression is bounded from
above.

Assume A1 and denote by ūZ the unique bounded solution of (21) on Z. Then
Theorem 3 applies and we obtain with a generic constant C > 0

‖un+
‖ ≤ ‖un+

− ūn+
‖ + ‖ūn+

‖ = ‖un+
− ūn+

‖ + ‖G(n+, N)r‖

≤ C
(

1 + e−αs(n+−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

+Ke−αs(n+−N)‖r‖

≤ C‖x‖,

and similarly it holds that
‖un−

‖ ≤ C‖x‖.

The test is based on this estimate. Roughly speaking, the difference equation (3)
has no exponential dichotomy on Z, if ‖un±

‖ is noticeably larger than ‖x‖.
An existence result for the solution of the boundary value problem as well as es-

timates of ‖un±
‖ in case of half-sided dichotomies are given in the following theorem.

Assume Rk = R(P−u
N ) ⊕R(P+s

N ) ⊕ (R(P−s
N ) ∩R(P+u

N )) (24)

and note that generic systems, fulfilling (ii) also satisfy this assumption.

Theorem 7 Let n− < N < n+ and assume that 1 is not an eigenvalue of Φ(n−, n+).

(i) Then the boundary value problem (21), (22) has a unique solution.

12



(ii) Further assume that (3) possesses exponential dichotomies on Z− and Z+ with
data (K±, α±

s , α±
u , P±s

n , P±u
n ), such thatRk = X ⊕ Y, X = R(P−u
N ) ⊕R(P+s

N ), Y = R(P−s
N ) ∩R(P+u

N ), dim Y ≥ 1.
(25)

Let r = rX + rY , rX ∈ X, 0 6= rY ∈ Y . Then

‖un−
‖ + ‖un+

‖ ≥ ‖rY ‖
C

e−α−
s (N−n−) + e−α+

u (n+−N)
. (26)

Proof:

(i) Two half-sided solutions of the homogeneous equation are

u−
n = Φ(n, n−)v−, for n ≤ N,

u+
n = Φ(n, n+)v+, for n ≥ N.

These half-sided solutions form a solution of the inhomogeneous equation, if

u+
N = AN−1u

−
N−1 + r ⇔ Φ(N, n+)v+ = Φ(N, n−)v− + r. (27)

Further, the boundary condition (22) requires that v− = v+ + x.

Therefore, we get

Φ(N, n−)v+ + Φ(N, n−)x + r = Φ(N, n+)v+

⇔ (Φ(N, n+) − Φ(N, n−))v+ = Φ(N, n−)x + r

⇔ (Φ(n−, n+) − I)v+ = x + Φ(n−, N)r.

By assumption, Φ(n+, n−) − I is invertible, and we obtain a unique solution
v+, v− = v+ + x.

(ii) Let W be the projector with R(W ) = Y , N (W ) = X. Using equation (27) it
follows that

rY := Wr = W (−Φ(N, n−)v− + Φ(N, n+)v+)

= −WP−s
N Φ(N, n−)v− + WP +u

N Φ(N, n+)v+

= W
(

−Φ(N, n−)P−s
n−

v− + Φ(N, n+)P+u
n+

v+

)

.

From the half-sided dichotomies, we obtain

‖rY ‖ ≤ ‖W‖
(

‖Φ(N, n−)P−s
n−

‖‖v−‖ + ‖Φ(N, n+)P+u
n+

‖‖v+‖
)

≤ ‖W‖
(

K−e−α−
s (N−n−)‖v−‖ + K+e−α+

u (n+−N)‖v+‖
)

≤ C̃
(

e−α−
s (N−n−) + e−α+

u (n+−N)
)

(‖v−‖ + ‖v+‖)

and with u−
n−

= v−, u+
n+

= v+ this proves (26).

�
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If the difference equation possesses for all γ ∈ σ◦
ED half-sided dichotomies, then ei-

ther the original or the adjoint equation generically meets assumption (25) from The-
orem 7 and consequently, the corresponding solution exhibits exponential growth in
the end points. This exponential growth enables the numerical detection of Sacker-
Sell spectral intervals. Note that the half-sided dichotomy rates also depend on
γ. At the boundary of a spectral interval α−

s or α+
u is zero, while these quantities

increase towards the middle of the spectral interval.

For Example 6, Figure 2 shows ‖un−
(γ)‖+ ‖un+

(γ)‖ for the original and for the
adjoint equation. We solve the boundary value problem for n− = −100, n+ = 100,
N = 0 and for two random vectors x, r, normalized to length 1.

0 1 2 3 4 5 6 7

10
0

10
5

10
10

10
15

‖un−
‖ + ‖un+

‖

γ

Figure 2: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6. The black curve is computed for the original equation, while
the red curve shows the result for the adjoint equation.

4 Sacker-Sell spectrum along Hénon orbits

We apply the two algorithms from the previous section to the variational equation
along orbits of the well known Hénon map, cf. Hénon (1976), Mira (1987), Devaney
(1989), Hale & Koçak (1991) defined as

f(x) =

(

1 + x2 − ax2
1

bx1

)

with parameters a = 1.4, b = 0.4.
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4.1 Heteroclinic orbits

First, a heteroclinic orbit

x̄n+1 = f(x̄n), n ∈ Z, lim
n→±∞

x̄n = ξ±

with respect to the fixed points

ξ± =

(

z
bz

)

where z =
b − 1 ∓

√

(b − 1)2 + 4a

2a

is computed, using the techniques, introduced in Beyn et al. (2004), Hüls (2005).
Note that an exponential dichotomy on Z of the variational equation

un+1 = Df(x̄n)un, n ∈ Z,

is equivalent to transversal intersections of the unstable manifold of ξ− with the
stable manifold of ξ+. The Sacker-Sell spectrum and especially its distance from 1
gives information about the closeness to tangential heteroclinic orbits. The results
of the algorithms from the previous section are given in Figures 3 and 4.
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10
0

‖PP − P‖

γ

Figure 3: Detection of Sacker-Sell spectral intervals via dichotomy projec-
tors, for the variational equation along a heteroclinic Hénon orbit. Least
squares ansatz in red and boundary value approach in black.

Note that Df(ξ−) possesses the eigenvalues σ1 ≈ −2.0376 and σ2 ≈ 0.1963 while
the eigenvalues of Df(ξ+) are σ3 ≈ 3.1676 and σ4 ≈ −0.1263. The Sacker-Sell
spectrum in this example is σED = [−σ4, σ2] ∪ [−σ1, σ3].
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Figure 4: Detection of Sacker-Sell spectral intervals for the variational
equation along a heteroclinic Hénon orbit, via the second approach, ap-
plied to the original equation (black) and the adjoint equation (red).

4.2 Homoclinic orbits

We apply our algorithm to the variational equation along a homoclinic orbit

x̄n+1 = f(x̄n), n ∈ Z, lim
n→±∞

x̄n = ξ−.

In this example, the Sacker-Sell spectrum is

σED = {−σ1, σ2}.

Figures 5 and 6 show the resulting output of our algorithms.
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Figure 5: Detection of Sacker-Sell spectrum via dichotomy projectors, for
the variational equation along a homoclinic Hénon orbit. Least squares
ansatz in red and boundary value approach in black.
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Figure 6: Detection of Sacker-Sell spectrum for the variational equation
along a homoclinic Hénon orbit, via the second approach, applied to the
original equation (black) and the adjoint equation (red).

4.3 An orbit on the attractor

We construct a chaotic orbit on the Hénon attractor for parameters a = 1.4, b =
0.3 by iterating a suitable initial point. Then our algorithms are applied to the
corresponding variational equation.

In this example, the linearization is not asymptotically constant. It is not known,
whether the assumptions from Section 3.2 are satisfied. Nevertheless, both ap-
proaches detect the same point spectrum, see Figures 7 and 8.
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Figure 7: Detection of Sacker-Sell spectrum via dichotomy projectors, for
the variational equation along a trajectory on the attractor. Least squares
ansatz in red and boundary value approach in black.
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Figure 8: Detection of Sacker-Sell spectrum for the variational equation
along a trajectory on the attractor, via the second approach, applied to
the original equation (black) and the adjoint equation (red).

4.4 Conclusion

The computations indicate that the second approach via solutions of boundary value
problems gives better results. It is numerically much more efficient than the com-
putation of projector residuals, since it requires to solve for each γ only two linear
inhomogeneous systems; one for the original and one for the adjoint equation. Fur-
thermore, spectral intervals can be read off more accurately. Finally, note that
Theorem 7 guarantees for the second approach in case of half-sided dichotomies ex-
ponential growth towards the middle of the spectral interval. The first approach is
valuable, if additional information on the projector is needed.

A Exponential dichotomy

In this appendix, we briefly introduce the notion of an exponential dichotomy, cf.
Coppel (1978), Palmer (1988). Consider the linear difference equation

un+1 = Anun, n ∈ Z, An invertible, (28)

and its solution operator Φ, defined as

Φ(n, m) :=







An−1 . . . Am, for n > m,
I, for n = m,

A−1
n . . . A−1

m−1, for n < m.

Definition 8 The linear difference equation (28) possesses an exponential di-

chotomy with data (K, αs, αu, P
s
n, P u

n ) on J ⊂ Z, if there exist two families of pro-
jectors P s

n and P u
n = I − P s

n and constants K, αs, αu > 0, such that the following
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statements hold:
P s

nΦ(n, m) = Φ(n, m)P s
m ∀n, m ∈ J, (29)

‖Φ(n, m)P s
m‖ ≤ Ke−αs(n−m)

‖Φ(m, n)P u
n ‖ ≤ Ke−αu(n−m)

∀n ≥ m, n, m ∈ J.

Exponential dichotomies widely apply in dynamical systems theory. For example
when considering connecting orbits of fixed points or homoclinic trajectories, cf. Hüls
(2007), of autonomous and non-autonomous difference equations

xn+1 = fn(xn), n ∈ Z,

exponential dichotomies of the variational equation

un+1 = Dfn(xn)un, n ∈ Z
have a geometric interpretation. In the autonomous case stable and unstable man-
ifolds intersect transversally cf. Palmer (1988), while in non-autonomous systems,
the same holds true for the corresponding stable and unstable fiber bundles, see
Hüls (2006).
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Beyn, W.-J., Hüls, T., Kleinkauf, J.-M. & Zou, Y. (2004), ‘Numerical analysis of
degenerate connecting orbits for maps’, Internat. J. Bifur. Chaos Appl. Sci. Engrg.
14(10), 3385–3407.

Coppel, W. A. (1978), Dichotomies in Stability Theory, Springer-Verlag, Berlin.
Lecture Notes in Mathematics, Vol. 629.

Devaney, R. L. (1989), An Introduction to Chaotic Dynamical Systems, Addison-
Wesley Studies in Nonlinearity, second edn, Addison-Wesley Publishing Company
Advanced Book Program, Redwood City, CA.

Dieci, L. & Van Vleck, E. S. (2002), ‘Lyapunov spectral intervals: theory and
computation’, SIAM J. Numer. Anal. 40(2), 516–542 (electronic).

19



Dieci, L. & Van Vleck, E. S. (2007), ‘Lyapunov and Sacker-Sell spectral intervals’,
J. Dynam. Differential Equations 19(2), 265–293.

Golub, G. H. & Van Loan, C. F. (1996), Matrix computations, Johns Hopkins
Studies in the Mathematical Sciences, third edn, Johns Hopkins University Press,
Baltimore, MD.

Hale, J. K. & Koçak, H. (1991), Dynamics and Bifurcations, Vol. 3 of Texts in
Applied Mathematics, Springer-Verlag, New York.
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