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Abstract. Two-sided error estimates are derived for the strong error of con-

vergence of the stochastic theta method. The main result is based on two

ingredients. The first one shows how the theory of convergence can be em-

bedded into standard concepts of consistency, stability and convergence by an

appropriate choice of norms and function spaces. The second one is a suitable

stochastic generalization of Spijker’s norm (1968) that is known to lead to

two-sided error estimates for deterministic one-step methods. We show that

the stochastic theta method is bistable with respect to this norm and that

well-known results on the optimal O(
√

h) order of convergence follow from

this property in a natural way.

1. Introduction

There is a well established theory for the strong convergence of one-step methods

for stochastic ordinary equations (SODEs), cf. [6],[10],[5]. The purpose of this paper

is to add two new aspects to this theory.

The first one is of conceptual type. By a proper choice of norms and functions

spaces we show that strong convergence results can be embedded into the standard

framework of consistency, stability and convergence as it is formulated in abstract

terms in the theory of discrete approximations (see [15, 16, 17, 18], [14]). In Section

3 we will discuss why and in which sense our notions deviate from those used in

[6], [10].

Our second contribution is concerned with a special choice of norms that allows

to prove bistability in the sense of [18] and, as a consequence, to derive two-sided

estimates for the convergence error. We show that this can be achieved by a suit-

able stochastic version of the deterministic Spijker norm (see [13], [14, Ch.2.2],

[4, Ch.III.8]). It also turns out that well-known results on the optimal order of

convergence [3] follow in a natural way from these two-sided estimates.

In order to present the basic ideas in a simplified technical framework we consider

only the semi-implicit Euler method [6] or stochastic theta method (STM) [5].

Extensions of the results to other methods (in particular higher order methods)

will be published in a subsequent paper. In the following we give a more technical

outline of the paper.
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We consider the numerical approximation of R
d-valued stochastic processes,

which satisfy an ordinary Itô stochastic differential equation [1, 9, 11] of the form

dX(t) = b0(t, X(t))dt +
m
∑

k=1

bk(t, X(t))dW k(t), t ∈ [0, T ],

X(0) = X0,

(1.1)

where W k, k = 1, . . . , m denote real and pairwise independent standard Brownian

motions, adapted to the filtration (F t)t∈[0,T ] on the underlying probability space

(Ω,F , P ). The initial value X0 is assumed to be F0-measurable and to have finite

second moment. We also assume that the drift and diffusion coefficient functions

bk : [0, T ]×R
d → R

d are measurable and fulfill the usual Lipschitz conditions such

that (1.1) has a unique solution (see Section 2 for details).

The stochastic theta method (θ ∈ [0, 1]) on a grid

(1.2) τh = {ti : i = 0, . . . , N}, 0 = t0 < t1 < · · · < tN−1 < tN = T

is given by the recursion

Xh(ti) = Xh(ti−1) + hi

(

(1 − θ)b0(ti−1, Xh(ti−1)) + θb0(ti, Xh(ti))
)

+
m
∑

k=1

bk(ti−1, Xh(ti−1))∆hW k(ti),

Xh(0) = X0,

(1.3)

where hi = ti − ti−1 is the length of the i-th interval and ∆hW k(ti) = W k(ti) −
W k(ti−1) denotes the i-th increment of the Wiener process W k. We collect step-

sizes and define

(1.4) h = (hi)
N
i=1 ∈ R

N , |h| = max
i=1,...,N

hi.

It is well-known (see for example [6, 10]) that the STM converges at least with

order γ = 1
2 in the strong sense, i.e. there exists a constant C > 0 such that

max
0≤i≤N

(

E

(

|X(ti) − Xh(ti)|2
))

1

2 ≤ C|h|γ ,(1.5)

where X is the analytic solution and Xh is the numerical solution. Moreover, it

was shown by J.M.C. Clark and R.J. Cameron [3] that, in general, γ = 1
2 is the

maximum rate of convergence for the STM (and for any method that only uses the

Brownian motion at grid points).

The strong convergence in (1.5) is written in terms of the norm

‖Yh‖0,h = max
0≤i≤N

‖Yh(ti)‖L2(Ω).(1.6)

In this paper we show that the following generalization of Spijker’s norm also plays

an important role

‖Yh‖−1,h = max
0≤i≤N

‖∑i

j=0Yh(tj)‖L2(Ω).(1.7)

Writing the equations (1.3) as Ah(Xh) = Rh with a suitable operator Ah and

right-hand side Rh, one of our main results is the following bistability inequality

(1.8) C1‖Ah(Yh) − Ah(Zh)‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖Ah(Yh) − Ah(Zh)‖−1,h.

A precise formulation and the proof will be given in Sections 3 and 5.
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In Section 2 we summarize the main assumptions and collect some prerequisites

from stochastic analysis. Then the main results on two-sided error estimates are

stated in Section 3. In Section 4 we show that the STM is consistent with respect to

the stochastic Spijker norm (1.7). We conclude the paper in Section 6 by showing

that the results on optimal convergence rates from [3] follow directly from our

two-sided error estimates.

2. Main assumptions and some results from stochastic analysis

In this section we collect the main assumptions and some useful results from

stochastic analysis.

Let (Ω,F , P ) be the underlying probability space and denote by E the expec-

tation with respect to P . As in [1, 9, 11] we assume for the SODE (1.1) that the

drift and diffusion coefficient functions bk : [0, T ] × R
d → R

d, k = 0, . . . , m, are

measurable. We also assume that the following assumptions hold:

(A1): The initial value X0 is an F0-measurable and R
d-valued random vari-

able satisfying

E(|X0|2) < ∞.

(A2): There exists a constant K > 0 such that

|bk(t, x)| ≤ K(1 + |x|)

and

|bk(t, x) − bk(t, y)| ≤ K|x − y|

for all k = 0, . . . , m, x, y ∈ R
d and t ∈ [0, T ].

(A3): There exists a constant K > 0 such that

|bk(t, x) − bk(s, x)| ≤ K(1 + |x|)
√

|t − s|

for all k = 0, . . . , m, t, s ∈ [0, T ] and x ∈ R
d.

Here we denote by | · | the Euclidean norm in R
d. Assumptions (A1) and (A2)

are sufficient to assure the existence and uniqueness of a strong Itô solution to (1.1)

(see [1, 9, 11]), i.e. there exists a unique, P -a.s. continuous and (F t)t∈[0,T ]-adapted

process X which satisfies

X(t) = X0 +

∫ t

0

b0(s, X(s))ds +

m
∑

k=1

∫ t

0

bk(s, X(s))dW k(s)(2.1)

for all t ∈ [0, T ] and

E

(

∫ T

0

|X(s)|2ds

)

< ∞.(2.2)

Assumption (A3) is used in [6] to prove convergence of the Euler-Maruyama scheme.

We will use it here to prove consistency of the STM. We note that assumption

(A3) can be replaced by an L2-condition on the second order Itô-Taylor coefficient

function (see [8] for further details).

From Theorem 7.1.2 and Remark 7.1.5 in [1] we have the following estimates for

the second moment of the strong solution.
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Theorem 2.1. Under the assumptions (A1) and (A2) the solution X to (1.1)

satisfies

E
(

|X(t)|2
)

≤
(

1 + E(|X0|2)
)

eCt

and

E
(

|X(t) − X0|2
)

≤ C
(

1 + E(|X0|2)
)

teDt

for all 0 ≤ t ≤ T and some constants C, D > 0 depending only on K and T .

In particular, using the semigroup property of X, one can prove the estimate

E
(

|X(t) − X(s)|2
)

≤ C|t − s|

for all t, s ∈ [0, T ] and some constant C > 0 depending only on K, T and E(|X0|2).

3. Definitions and main result

In this section we rewrite the STM as an operator equation and introduce the

corresponding spaces and norms. We give precise definitions of our notions of

consistency and (numerical) stability and compare them to related notions in the

literature. Finally, the main convergence theorem and the two-sided error estimate

are stated and proved. We note that our notions are largely motivated by the work

of Stummel [18]. It will not be necessary to directly invoke results from [18], but

in the remark following Definition 3.2 (see also [7]) we will indicate how a formal

embedding of our approach into the abstract framework can be achieved.

3.1. Basic notions. We introduce an operator that represents the SODE (1.1).

Since a unique solution X to (1.1) is guaranteed by assumptions (A1) and (A2) we

consider the trivial operator

A :
E → F

X 7→ AX
(3.1)

where E := {X} and F := {Y = (X0, 0)} are singletons (with the second compo-

nent of Y being the stochastic process which is P -a.s. equal to 0 ∈ R
d) and the

operator A is given by

AX =

(

X(0),

(

X(t) − X(0)−
∫ t

0 b0(s, X(s))ds −
∑m

k=1

∫ t

0 bk(s, X(s))dW k(s)
)

0≤t≤T

)

.

With each grid τh as in (1.2) we associate the space Gh := G(τh, L2(Ω,F , P ; Rd))

of all adapted and L2(Ω)-valued grid functions. That is, for Zh ∈ Gh the random

variables Zh(ti) are F ti
-measurable and lie in L2(Ω,F ti

, P ; Rd) for all ti ∈ τh, i =

0, . . . , N . Note that Gh is a Banach space with respect to the norm (1.6).

Next we define two sequences of restriction operators on the spaces E and F

rE
h :

E → Gh

X 7→ rE
h X, [rE

h X ](ti) = X(ti) for ti ∈ τh,
(3.2)

rF
h :

F → Gh

Y 7→ rF
h Y

[rF
h Y ](ti) =

{

X0 i = 0,

0 i = 1, . . .N.
(3.3)



TWO-SIDED ERROR ESTIMATES FOR THE STOCHASTIC THETA METHOD 5

In this and the next section we consider three real parameters L, ρ, σ > 0 that

are arbitrary. They will be given specific values later in Section 5 when we prove

stability. The first parameter occurs in the norm for grid functions Zh ∈ Gh given

by

‖Zh‖0,h,L := max
0≤i≤N

(

E
(

|Zh(ti)|2
))

1

2 e−Lti

= max
0≤i≤N

‖Zh(ti)‖L2(Ω) e−Lti ,
(3.4)

where ‖·‖L2(Ω) denotes the norm in L2(Ω,F , P ; Rd). As usual the exponential

weight is needed for the proof of stability via a contraction argument for the Pi-

card iteration. The weight plays no role in the proof of consistency of the STM.

Whenever appropriate we abbreviate ‖ · ‖0 = ‖ · ‖0,h,L.

Our underlying complete metric space is the closed ball

(3.5) Eh := Bρ,L(rE
h X) =

{

Zh ∈ Gh : ‖Zh − rE
h X‖0,h,L ≤ ρ

}

⊂ Gh.

Note also that the norms ‖ · ‖0,h,L and (1.6) are equivalent (uniformly in h).

We also introduce a second norm for Zh ∈ Gh by

‖Zh‖−1,h,L := max
0≤i≤N

(

E

(

∣

∣

∣

∑i
j=0Zh(tj)

∣

∣

∣

2
))

1

2

e−Lti

= max
0≤i≤N

∥

∥

∥

∑i

j=0Zh(tj)
∥

∥

∥

L2(Ω)
e−Lti .

(3.6)

Let us write ‖ · ‖−1,h,L = ‖ · ‖−1 for short and note that ‖ · ‖−1,h,L is uniformly

in h equivalent to the norm (1.7). From the introduction we also recall that these

norms are stochastic versions of Spijker’s norm [12, 14]. Then our second complete

metric space is the closed ball

(3.7) Fh := Bσ,L(rF
h Y ) =

{

Zh ∈ Gh : ‖Zh − rF
h Y ‖−1,h,L ≤ σ

}

⊂ Gh.

In the next step we introduce the residual mapping resh : Gh → Gh of the

stochastic theta method (1.3) as follows:

resh(Zh)(t0) = Zh(t0) − X0,

resh(Zh)(ti) = Zh(ti) − Zh(ti−1) − hi

(

(1 − θ)b0(ti−1, Zh(ti−1)) + θb0(ti, Zh(ti))
)

−
m
∑

k=1

bk(ti−1, Zh(ti−1))∆hW k(ti), 1 ≤ i ≤ N.

The definition shows that resh(Zh) is adapted to the filtration (F ti
)ti∈τh

and as-

sumption (A2) implies that resh(Zh)(ti) is square-integrable. Therefore, resh maps

Gh into Gh.

A direct comparison shows that the stochastic theta method (1.3) and the resid-

ual condition resh(Xh) = 0 ∈ Gh are equivalent. This leads to the idea of taking

the residual resh(rE
h X), where X is the solution of (2.1), as a measure of the local

truncation error.

We are now in the position to define the sequence of operators which represent

the stochastic theta method. Define the operator

Ah :
D(Ah) ⊂ Eh → Fh

Zh 7→ AhZh

(3.8)
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on its domain of definition

(3.9) D(Ah) =
{

Zh ∈ Eh : ‖resh(Zh)‖−1 ≤ σ
}

by the relation

AhZh = resh(Zh) + rF
h Y.(3.10)

We recall that rF
h Y = (X0, 0, . . . , 0) by (3.3). Thus AhZh and resh(Zh) differ only

at the first grid point.

Using the operators Ah, the stochastic theta method (1.3) can equivalently be

written as the equation AhXh = rF
h Y . Still we have to prove solvability of this

equation and to estimate the global error ‖rE
h (X) − Xh‖0. This motivates the

following definitions.

Definition 3.1. Consider a one-step method given by a sequence of operators

(Ah)h. The method is called consistent of order γ > 0, if there exists a constant

C > 0 and an upper step size bound h > 0, such that the estimate
∥

∥AhrE
h X − rF

h AX
∥

∥

−1,h,L
≤ C|h|γ(3.11)

holds for all grids τh with |h| ≤ h, where X denotes the analytic solution of (1.1).

Note that
∥

∥AhrE
h X − rF

h AX
∥

∥

−1
=
∥

∥resh(rE
h X)

∥

∥

−1
,

and, therefore, we refer to the left hand side of (3.11) as the local truncation error

or the consistency error. The local truncation error is meaningful even if rE
h X /∈

D(Ah), but for a consistent one-step method we know that ‖resh(rE
h X)‖−1 → 0 as

|h| → 0 and hence rE
h X ∈ D(Ah) for |h| sufficiently small.

The second ingredient in a convergence theory for numerical methods is the

concept of (numerical) stability. We use here the stronger notion of bistability.

Definition 3.2. A one-step method defined by operators (Ah)h is called bistable, if

there exist constants C1, C2 > 0 and an upper step size bound h > 0 such that the

operators Ah : D(Ah) → Fh are bijective and the estimate

C1

∥

∥

∥AhZh − AhZ̃h

∥

∥

∥

−1,h,L
≤
∥

∥

∥Zh − Z̃h

∥

∥

∥

0,h,L
≤ C2

∥

∥

∥AhZh − AhZ̃h

∥

∥

∥

−1,h,L
(3.12)

holds for all Zh, Z̃h ∈ D(Ah) and for all grids τh with |h| ≤ h.

Remarks. 1. Our notions of consistency and stability are directly related to the

abstract framework invented by F. Stummel [18]. In the general theory of discrete

approximations he proves that bistability of a numerical method can be character-

ized by the equicontinuity of the operators (Ah)h and the equicontinuity of (A−1
h )h.

It is easy to see that our definition of bistability is a sufficient condition for bista-

bility in the sense of [18]. The same is true for the consistency error: Our definition

of consistency appears in [18, §2, (6)] as a sufficient condition for Stummel’s notion

of consistency. We refer to [7] for a derivation of the results of this paper from the

theory of discrete approximations. Our current definitions turn out to be conve-

nient for providing a direct approach to the convergence of numerical methods for

stochastic differential equations.

2. Note that the definition of bistability depends on the three constants L, ρ, σ

which appear in the norms in (3.12) and in the domain of definition D(Ah) via

(3.5), (3.9).
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3. One obtains an equivalent version of our notions when dividing equation (1.3) by

hi and defining the operators resh and Ah accordingly. Then the stochastic Spijker

norm (3.6) is replaced by

‖Zh‖−1,h,L = max

(

‖Zh(0)‖L2(Ω) , max
1≤i≤N

∥

∥

∥

∑i
j=1hjZh(tj)

∥

∥

∥

L2(Ω)
e−Lti

)

.

This form shows that the norm is of W−1,∞ Sobolev type.

3.2. Main results. Now we formulate the main results. The proofs of the first

two theorems will be deferred to the following two sections.

Theorem 3.3. Under the assumptions (A1)-(A3) the stochastic theta method (1.3)

is consistent with order γ = 1
2 .

Theorem 3.4. Under the assumptions (A1)-(A3) there exist parameter values

L, ρ, σ > 0 such that the stochastic theta method (1.3) is bistable.

Theorem 3.5. Let the assumptions (A1)-(A3) hold and choose parameter values

L, ρ, σ > 0 such that the stochastic theta method is bistable. Then the two-sided

error estimate

C1

∥

∥AhrE
h X − rF

h AX
∥

∥

−1
≤
∥

∥rE
h X − Xh

∥

∥

0
≤ C2

∥

∥AhrE
h X − rF

h AX
∥

∥

−1
(3.13)

holds for all grids τh with |h| ≤ h. In particular, the numerical solution Xh of the

stochastic theta method converges uniformly with order γ = 1
2 at each grid point to

the restriction of the analytic solution X to (1.1).

Proof. By theorem 3.4 we know that there exists an upper step size bound h > 0

such that the operators Ah : D(Ah) → Fh are bijective for |h| ≤ h. Thus the

equation AhXh = rF
h AX = rF

h Y has a unique solution for |h| ≤ h. After possibly

reducing h further, the consistency of the STM shows that rE
h X ∈ D(Ah) for all

|h| ≤ h. Then the two-sided error estimate (3.13) follows directly from (3.12) by

setting Zh = rE
h X and Z̃h = Xh. �

Remark. In our approach we avoid any interpolation and work with grid functions

only. Therefore, our estimates of the mean-square error

E
(

|X(ti) − Xh(ti)|2
)

, ti ∈ τh

are also restricted to grid points. According to [6, Ch.10.2 (2.16)] one can in-

terpolate the numerical approximation to an adapted, right-continuous stochastic

process with existing left limits on the interval [0, T ] by

Xh(t) = Xh(ti) +

∫ t

ti

b0(ti, Xh(ti))ds +

m
∑

k=1

∫ t

ti

bk(ti, Xh(ti))dW k(s), t ∈ (ti, ti+1).

(3.14)

In the case θ = 0 this interpolation is continuous. In [6, Ch.10.2] it is also shown

that this interpolation converges uniformly to X(t), t ∈ [0, T ] with the same order

that holds at the grid points. The interpolation above can be considered as an

a-posteriori process and formula (3.14) may be called a method for dense output,

see [4].
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3.3. Comparison with other consistency concepts. In this subsection we

compare, for the case of constant step-size h, our notion of consistency to other

approaches in the literature. First, we consider the concept of consistency intro-

duced by G.N. Milstein [10] that was used later, for example, by C.T.H. Baker and

E. Buckwar [2] for stochastic delay equations. Then we compare with the approach

from the book of P.E. Kloeden and E. Platen [6, Ch.9.6].

The use of a stochastic version of Spijker’s norm (3.6) in our definition of the

local truncation error is the key to the two-sided error estimate. But apart from

this technical issue there is also a more fundamental difference between our notion

of local truncation error and the concepts used in the literature.

By Definition 3.1 a one-step method is consistent if the restriction of the analytic

solution X to the grid points produces a small residual for the discrete operator

equation AhXh = rF
h Y . Then a stability estimate allows to measure the distance

between rE
h X and Xh in terms of the residual resh(rE

h X) = AhrE
h X − rF

h Y .

For a comparison with G.N. Milstein’s notion of consistency we have to extend

the notation. By X(·; τ0, x0), where τ0 ∈ [0, T ] and x0 ∈ R
d, we denote the solution

of (1.1) with initial condition X(τ0; τ0, x0) = x0. Similarly, X̄h,ti,x0
, 0 ≤ i ≤ N ,

denotes the solution to the discrete system

X̄h(ti) = x0,

X̄h(tj+1) = X̄h(tj) + h
(

(1 − θ)b0(tj , X̄h(tj)) + θb0(tj+1, X̄h(tj+1))
)

+

m
∑

k=1

bk(tj , X̄h(tj))∆hW k(tj+1), i ≤ j ≤ N − 1.

(3.15)

Then the convergence theorem in [10, Ch.1] assumes the following conditions

∣

∣E
(

X(ti+1; ti, x0) − X̄h,ti,x0
(ti+1)

)∣

∣ ≤ K(1 + |x0|2)
1

2 hp1

[

E

(

∣

∣X(ti+1; ti, x0) − X̄h,ti,x0
(ti+1)

∣

∣

2
)]

1

2 ≤ K(1 + |x0|2)
1

2 hp2

(3.16)

for some constant K > 0 and for all x0 ∈ R
d, 0 ≤ i ≤ N − 1. In addition, the

exponents p1, p2 have to satisfy the constraints

p2 ≥ 1

2
, p1 ≥ p2 +

1

2
.

Under this assumption G.N. Milstein proves that the one-step method converges

with order p = p2 − 1
2 . The idea behind (3.16) is that the one-step method causes

a small error ( in the mean and in the mean-square) after exactly one step when

compared to the analytic solution at every grid point ti and for every initial value

x0.

The main difference between our local truncation error (3.11) and assumption

(3.16) lies in the meaning of the word ’local’. While G.N. Milstein localizes the

convergence error in time but considers the whole phase space, we localize along

the trajectory of the analytic solution X to (1.1) but consider the error over the

whole time interval at once. We also emphasize that we do not solve a discrete

equation of the form (3.15) in order to define consistency. Rather, our notions of

consistency and solvability are separated in the case of implicit methods (θ > 0).
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However, for explicit one-step methods this difference is only minor. In [7,

App.A] it is shown, that if the Euler-Maruyama method (θ = 0) satisfies assump-

tion (3.16) (which is true for p2 = 1, p1 = 2 [10, Ch.1]) then it is also consistent in

the sense of definition 3.1 with order γ = 1
2 .

In [6, Ch.9.6] the authors P.E. Kloeden and E. Platen use another concept of

consistency. They call a one-step method “strongly consistent” if there exists a

nonnegative function c = c(h) with

lim
hց0

c(h) = 0

such that

E

(

∣

∣

∣

∣

E

(

X̄h,ti,x0
(ti+1) − X̄h,ti,x0

(ti)

h

∣

∣

∣

∣

F ti

)

− b0
(

ti, X̄h,ti,x0
(ti)
)

∣

∣

∣

∣

2
)

≤ c(h)

and

E





1

h

∣

∣

∣

∣

∣

∣

X̄h,ti,x0
(ti+1) − X̄h,ti,x0

(ti) − E
(

X̄h,ti,x0
(ti+1) − X̄h,ti,x0

(ti)
∣

∣F ti

)

−
m
∑

k=1

bk
(

ti, X̄h,ti,x0
(ti)
)

∆hW k(ti+1)

∣

∣

∣

∣

∣

2


 ≤ c(h)

for all initial values x0 ∈ R
d and 0 ≤ i ≤ N − 1. Again, this notion focuses on

the one-step method (3.15) started at arbitrary vectors rather than at the specific

solution X as in definition 3.1.

In a sense, strong consistency of a method requires that it does not differ too

much from one step of the Euler-Maruyama scheme which is taken as a prototype

of a strongly consistent scheme. Consequently, the Euler-Maruyama method itself

is strongly consistent with c ≡ 0. This interpretation also shows that the function

c is of limited use when estimating the order of convergence. Contrary to this,

our notion of consistency provides a strong link to the order of convergence. As

Theorem 3.5 shows, the local truncation error (3.11) lies in the class O(hγ) if and

only if the strong error of convergence does.

4. Consistency

The aim of this section is to prove Theorem 3.3. To this end we estimate the

local truncation error (3.11)

‖AhrE
h X − rF

h AX‖−1

= max
0≤i≤N

∥

∥

∥

∥

∥

∥

i
∑

j=1

[

X(tj) − X(tj−1) − hj

(

(1 − θ)b0(tj−1, X(tj−1)) + θb0(tj , X(tj))
)

−
m
∑

k=1

bk(tj−1, X(tj−1))∆hW k(tj)

]∥

∥

∥

∥

∥

L2(Ω)

e−Lti .

Note that the terms for i = 0 vanish and that the exponential weight is bounded

by 1. Then from the representation (2.1) and the triangle inequality we obtain the
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estimate

≤ (1 − θ) max
0≤i≤N

∥

∥

∥

∥

∥

∥

i
∑

j=1

[

∫ tj

tj−1

[

b0(s, X(s)) − b0(tj−1, X(tj−1))
]

ds

]

∥

∥

∥

∥

∥

∥

L2(Ω)

(4.1)

+ θ max
0≤i≤N

∥

∥

∥

∥

∥

∥

i
∑

j=1

[

∫ tj

tj−1

[

b0(s, X(s)) − b0(tj , X(tj))
]

ds

]

∥

∥

∥

∥

∥

∥

L2(Ω)

(4.2)

+ max
0≤i≤N

m
∑

k=1

∥

∥

∥

∥

∥

∥

i
∑

j=1

[

∫ tj

tj−1

[

bk(s, X(s)) − bk(tj−1, X(tj−1))
]

dW k(s)

]

∥

∥

∥

∥

∥

∥

L2(Ω)

.(4.3)

We estimate the terms separately. The square of the first term (4.1) has the form

S1(i) := E







∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

[

b0(s, X(s)) − b0(tj−1, X(tj−1))
]

ds

∣

∣

∣

∣

∣

∣

2





, i = 1, . . . , N.

Now Jensen’s inequality yields

S1(i) = E






t2i

∣

∣

∣

∣

∣

∣

i
∑

j=1

hj

ti

∫ tj

tj−1

1

hj

[

b0(s, X(s)) − b0(tj−1, X(tj−1))
]

ds

∣

∣

∣

∣

∣

∣

2






≤ E



ti

i
∑

j=1

∫ tj

tj−1

∣

∣b0(s, X(s)) − b0(tj−1, X(tj−1))
∣

∣

2
ds





= ti

i
∑

j=1

∫ tj

tj−1

E

(

∣

∣b0(s, X(s)) − b0(tj−1, X(tj−1))
∣

∣

2
)

ds.

Using the assumptions (A2) and (A3) we find for k = 0, . . . , m
∣

∣bk(s, X(s)) − bk(tj−1, X(tj−1))
∣

∣

2

≤
(∣

∣bk(s, X(s)) − bk(s, X(tj−1))
∣

∣+
∣

∣bk(s, X(tj−1)) − bk(tj−1, X(tj−1))
∣

∣

)2

≤
(

K |X(s) − X(tj−1)| + K (1 + |X(tj−1)|)
√

|s − tj−1|
)2

≤ 2K2 |X(s) − X(tj−1)|2 + 2K2 (1 + |X(tj−1)|)2 |s − tj−1| .
Applying Theorem 2.1 leads to the estimate

E

(

∣

∣bk(s, X(s)) − bk(tj−1, X(tj−1))
∣

∣

2
)

≤ 2K2
E

(

|X(s) − X(tj−1)|2
)

+ 4K2
(

1 + E

(

|X(tj−1)|2
))

|s − tj−1|
≤ C |s − tj−1| ,

(4.4)

where the constant C only depends on K, T and E(|X0|2). Hence we complete our

estimate of S1(i) as follows

S1(i) ≤ ti

i
∑

j=1

∫ tj

tj−1

C|s − tj−1|ds

= Cti

i
∑

j=1

1

2
h2

j ≤ 1

2
CT 2|h|.

(4.5)
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Replacing tj−1 by tj in (4.4) one gets the analogous result for the term in (4.2), i.e.

S2(i) := E







∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

[

b0(s, X(s)) − b0(tj , X(tj))
]

ds

∣

∣

∣

∣

∣

∣

2





≤ 1

2
CT 2|h|.(4.6)

Thus it remains to estimate the third term from (4.3)

S3(i, k) :=

∥

∥

∥

∥

∥

∥

i
∑

j=1

∫ tj

tj−1

[

bk(s, X(s)) − bk(tj−1, X(tj−1))
]

dW k(s)

∥

∥

∥

∥

∥

∥

2

L2(Ω)

, k = 1, . . . , m.

By the martingale property of the stochastic Itô integral (c.f. Corollary (5.2.1) in

[1]) we find for all indices j, ℓ = 1, . . . , i with j 6= ℓ

〈

∫ tj

tj−1

[

bk(s, X(s)) − bk(tj−1, X(tj−1))
]

dW k(s),

∫ tℓ

tℓ−1

[

bk(s, X(s)) − bk(tℓ−1, X(tℓ−1))
]

dW k(s)

〉

L2(Ω)

= 0.

Hence, by the Pythagoras theorem we get

S3(i, k) =

i
∑

j=1

∥

∥

∥

∥

∥

∫ tj

tj−1

[

bk(s, X(s)) − bk(tj−1, X(tj−1))
]

dW k(s)

∥

∥

∥

∥

∥

2

L2(Ω)

=

i
∑

j=1

E





∣

∣

∣

∣

∣

∫ tj

tj−1

[

bk(s, X(s)) − bk(tj−1, X(tj−1))
]

dW k(s)

∣

∣

∣

∣

∣

2




=

i
∑

j=1

∫ tj

tj−1

E

(

∣

∣bk(s, X(s)) − bk(tj−1, X(tj−1))
∣

∣

2
)

ds,

where we used the Itô isometry in the last step. Again we apply (4.4) and obtain

S3(i, k) ≤
i
∑

j=1

∫ tj

tj−1

C|s − tj−1|ds

≤ 1

2
CT |h|.

(4.7)

Combining the estimates (4.5), (4.6) and (4.7) we arrive at the final estimate

∥

∥AhrE
h X − rF

h AX
∥

∥

−1
≤ (1 − θ)

√

1

2
CT 2|h| + θ

√

1

2
CT 2|h| +

m
∑

k=1

√

1

2
CT |h|

= C̄|h| 12 ,

where the constant C̄ only depends on K, T , E(|X0|2) and m. Thus the proof of

theorem 3.3 is complete.

Remark. For a given stochastic process f the norm of the deterministic integral
∥

∥

∥

∥

∥

∫ tj

tj−1

f(s)ds

∥

∥

∥

∥

∥

L2(Ω)
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converges to 0 as hj = tj − tj−1 → 0 faster than the norm of the stochastic integral
∥

∥

∥

∥

∥

∫ tj

tj−1

f(s)dW k(s)

∥

∥

∥

∥

∥

L2(Ω)

.

However, as we have shown, for the stochastic Spijker-norm (3.6) both types of

integrals give the same order of convergence. This is the key property of the sto-

chastic Spijker-norm that facilitates the proof of the two-sided error estimate with

maximum rate of convergence.

5. Stability

This section is devoted to the proof of bistability for the STM. The main idea is

to rewrite the STM as a fixed point problem that is a discrete analog of the integral

equation (2.1). Then we choose appropriate parameter values L, ρ, σ > 0 such that

the Banach fixed point theorem applies.

We define the mapping

Φh :
Eh × Fh → Gh

(Yh, Zh) 7→ Φh(Yh, Zh)
(5.1)

by

[Φh(Yh, Zh)] (ti) =

i
∑

j=0

Zh(tj) +

i
∑

j=1

hj

[

(1 − θ)b0(tj−1, Yh(tj−1)) + θb0(tj , Yh(tj))
]

+

i
∑

j=1

m
∑

k=1

[

bk(tj−1, Yh(tj−1))∆hW k(tj)
]

, i = 0, . . . , N.

By induction on i one readily proves the following equivalence for all Yh ∈ D(Ah)

and Zh ∈ Fh

Φh(Yh, Zh) = Yh ⇐⇒ AhYh = Zh.(5.2)

Since the inhomogeneities Zh(tj) appear as sums in Φh we have the following norm

relation for Yh ∈ Eh and Zh, Z̃h ∈ Fh

(5.3)
∥

∥

∥Φh(Yh, Zh) − Φh(Yh, Z̃h)
∥

∥

∥

0
=
∥

∥

∥Zh − Z̃h

∥

∥

∥

−1
.

The following lemma is a generalization of a similar assertion proved in [18, §6,

(19)] for the case of deterministic ordinary differential equations.

Lemma 5.1. For every ρ > 0 and L ≥ 2K2(e
√

T + m)2 there exists an hρ,L > 0

such that the following properties hold with the settings

(5.4) σρ =
ρ

4
, Eh := Bρ,L(rE

h X), Fh := Bσρ,L(rF
h Y )

for all grids with |h| ≤ hρ,L

(i)
∥

∥resh(rE
h X)

∥

∥

−1
≤ σρ,

(ii) Φh(Eh × Fh) ⊂ Eh,

(iii) The inequality
∥

∥

∥Φh(Yh, Zh) − Φh(Ỹh, Zh)
∥

∥

∥

0
≤ 1

2

∥

∥

∥Yh − Ỹh

∥

∥

∥

0
(5.5)

is satisfied for all Yh, Ỹh ∈ Eh, Zh ∈ Fh.
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Proof. Let us first prove (5.5). For Yh, Ỹh ∈ Eh and Zh ∈ Fh consider the term

(5.6)
∥

∥

∥Φh(Yh, Zh) − Φh(Ỹh, Zh)
∥

∥

∥

0

= max
0≤i≤N

∥

∥

∥[Φh(Yh, Zh)] (ti) − [Φh(Ỹh, Zh)](ti)
∥

∥

∥

L2(Ω)
e−Lti .

For 0 ≤ i ≤ N we estimate as follows

∥

∥

∥[Φh(Yh, Zh)] (ti) − [Φh(Ỹh, Zh)](ti)
∥

∥

∥

L2(Ω)

≤ (1 − θ)
∥

∥

∥

∑i

j=1hj

[

b0(tj−1, Yh(tj−1)) − b0(tj−1, Ỹh(tj−1))
]∥

∥

∥

L2(Ω)
(5.7)

+ θ
∥

∥

∥

∑i

j=1hj

[

b0(tj , Yh(tj)) − b0(tj , Ỹh(tj))
]∥

∥

∥

L2(Ω)
(5.8)

+

m
∑

k=1

∥

∥

∥

∑i

j=1

[

bk(tj−1, Yh(tj−1)) − bk(tj−1, Ỹh(tj−1))
]

∆hW k(tj)
∥

∥

∥

L2(Ω)
.(5.9)

Note that this estimate does not depend on Zh. In the following we treat the terms

separately. We apply Jensen’s inequality to the square of the term (5.7) and then

use assumption (A2) to obtain

E

(

∣

∣

∣

∑i

j=1hj

[

b0(tj−1, Yh(tj−1)) − b0(tj−1, Ỹh(tj−1))
]∣

∣

∣

2
)

≤ ti

i
∑

j=1

hjE

(

∣

∣

∣b0(tj−1, Yh(tj−1)) − b0(tj−1, Ỹh(tj−1))
∣

∣

∣

2
)

≤ K2ti

i
∑

j=1

hjE

(

∣

∣

∣Yh(tj−1) − Ỹh(tj−1)
∣

∣

∣

2
)

.

Since

E

(

∣

∣

∣Yh(tj−1) − Ỹh(tj−1)
∣

∣

∣

2
)

≤
∥

∥

∥Yh − Ỹh

∥

∥

∥

2

0
e2Ltj−1(5.10)

we complete the estimate of (5.7) by

≤ K2ti

∥

∥

∥
Yh − Ỹh

∥

∥

∥

2

0

i
∑

j=1

hje
2Ltj−1

≤ K2ti

∥

∥

∥Yh − Ỹh

∥

∥

∥

2

0

1

2L

(

e2Lti − 1
)

.(5.11)

If we apply (5.10) with tj instead of tj−1 the same arguments work for the term

(5.8) and we arrive at

∥

∥

∥

∑i

j=1hj

[

b0(tj , Yh(tj)) − b0(tj , Ỹh(tj))
]∥

∥

∥

2

L2(Ω)

≤ K2ti

∥

∥

∥Yh − Ỹh

∥

∥

∥

2

0

i
∑

j=1

hje
2Ltj

≤ K2ti

∥

∥

∥Yh − Ỹh

∥

∥

∥

2

0
e2L|h| 1

2L

(

e2Lti − 1
)

.(5.12)
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It remains to estimate (5.9). As in section 4 we use the martingale property of the

Itô-integral to obtain

∥

∥

∥

∑i
j=1

[

bk(tj−1, Yh(tj−1)) − bk(tj−1, Ỹh(tj−1))
]

∆hW k(tj)
∥

∥

∥

2

L2(Ω)

=

i
∑

j=1

E

(

∣

∣

∣

[

bk(tj−1, Yh(tj−1)) − bk(tj−1, Ỹh(tj−1))
]

∆hW k(tj)
∣

∣

∣

2
)

≤
i
∑

j=1

hjE

(

∣

∣

∣bk(tj−1, Yh(tj−1)) − bk(tj−1, Ỹh(tj−1))
∣

∣

∣

2
)

≤ K2
i
∑

j=1

hjE

(

∣

∣

∣Yh(tj−1) − Ỹh(tj−1)
∣

∣

∣

2
)

≤ K2
∥

∥

∥
Yh − Ỹh

∥

∥

∥

2

0

i
∑

j=1

hje
2Ltj−1

≤ K2
∥

∥

∥Yh − Ỹh

∥

∥

∥

2

0

1

2L

(

e2Lti − 1
)

, k = 1, . . . , m.(5.13)

By inserting (5.11), (5.12) and (5.13) into (5.6) we get the estimate
∥

∥

∥Φh(Yh, Zh) − Φh(Ỹh, Zh)
∥

∥

∥

0

≤ K
∥

∥

∥Yh − Ỹh

∥

∥

∥

0
max

0≤i≤N

[

(

1

2L
(e2Lti − 1)

)
1

2 (

(1 − θ)
√

ti + θ
√

tie
L|h| + m

)

]

e−Lti

≤ K
∥

∥

∥Yh − Ỹh

∥

∥

∥

0
max

0≤i≤N

(

1

2L

(

1 − e−2Lti
)

)
1

2 (√
tie

L|h| + m
)

≤ K√
2L

∥

∥

∥Yh − Ỹh

∥

∥

∥

0

(√
TeL|h| + m

)

.

Taking hρ,L ≤ 1
L

the contraction estimate (5.5) follows by the choice of L.

By Theorem 3.3 the STM is consistent. After possibly reducing hρ,L > 0 further

we obtain

(5.14)
∥

∥rE
h X − Φh(rE

h X, rF
h Y )

∥

∥

0
=
∥

∥resh(rE
h X)

∥

∥

−1
≤ σρ =

1

4
ρ

for all |h| ≤ hρ,L.

It remains to show that Φh maps Eh × Fh into Eh. But this follows for all

|h| ≤ hρ,L from (5.3),(5.5) and (5.14)

∥

∥rE
h X − Φh(Yh, Zh)

∥

∥

0
≤
∥

∥rE
h X − Φh(rE

h X, rF
h Y )

∥

∥

0

+
∥

∥Φh(rE
h X, rF

h Y ) − Φh(Yh, rF
h Y )

∥

∥

0
+
∥

∥Φh(Yh, rF
h Y ) − Φh(Yh, Zh)

∥

∥

0

≤ σρ +
1

2
ρ + σρ = ρ.

Thus Φh(Yh, Zh) ∈ Eh = Bρ,L(rE
h X) for all Yh ∈ Eh and Zh ∈ Fh. �

Remark. One can improve the lower bound on L to L > 1
2K2

(√
T + m

)2

at the

expense of larger contraction and stability constants that depend on L and T .

We are now prepared for the proof of Theorem 3.4.
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Proof of theorem 3.4. Choose parameter values L, ρ, σρ according to Lemma 5.1.

Then for every Zh ∈ Fh the mapping Φh(·, Zh) : Eh → Eh is a contraction and the

Banach fixed point theorem yields the existence of a unique fixed point Yh in Eh,

i.e.

Φh(Yh, Zh) = Yh.

Therefore, by the relation (5.2), there also exists a unique solution Yh ∈ D(Ah)

(recall (3.9)) of the equation

AhYh = Zh.

Hence the mapping Ah : D(Ah) → Fh is bijective for |h| ≤ hρ,L. Moreover, we have

the relationship

Φh(Yh, AhYh) = Yh(5.15)

for all Yh ∈ D(Ah).

Now consider arbitrary elements Yh, Ỹh ∈ D(Ah). With the help of (5.15) and

Lemma 5.1 we obtain
∥

∥

∥
Yh − Ỹh

∥

∥

∥

0

=
∥

∥

∥Φh(Yh, AhYh) − Φh(Ỹh, AhỸh)
∥

∥

∥

0

≤
∥

∥

∥Φh(Yh, AhYh) − Φh(Ỹh, AhYh)
∥

∥

∥

0
+
∥

∥

∥Φh(Ỹh, AhYh) − Φh(Ỹh, AhỸh)
∥

∥

∥

0

≤ 1

2

∥

∥

∥Yh − Ỹh

∥

∥

∥

0
+
∥

∥

∥AhYh − AhỸh

∥

∥

∥

−1
.

Hence
∥

∥

∥
Yh − Ỹh

∥

∥

∥

0
≤ 2

∥

∥

∥
AhYh − AhỸh

∥

∥

∥

−1
,

which is one part of the bistability inequality (3.12). The second part follows from
∥

∥

∥AhYh − AhỸh

∥

∥

∥

−1

=
∥

∥

∥Φh(Yh, AhYh) − Φh(Yh, AhỸh)
∥

∥

∥

0

≤
∥

∥

∥Yh − Φh(Ỹh, AhỸh)
∥

∥

∥

0
+
∥

∥

∥Φh(Ỹh, AhỸh) − Φh(Yh, AhỸh)
∥

∥

∥

0

≤
∥

∥

∥Yh − Ỹh

∥

∥

∥

0
+

1

2

∥

∥

∥Ỹh − Yh

∥

∥

∥

0

=
3

2

∥

∥

∥Yh − Ỹh

∥

∥

∥

0
.

�

Remark. Note that the parameter ρ > 0 in Lemma 5.1 is arbitrary due to the

global Lipschitz condition (A2). For the proof of Lemma 5.1 we only need a Lip-

schitz condition of the form

E

(

∣

∣

∣bk(s, Yh(s)) − bk(s, Ỹh(s))
∣

∣

∣

2
)

≤ KρE

(

∣

∣

∣Yh(s) − Ỹh(s)
∣

∣

∣

2
)

.(5.16)

Thus the STM is still bistable if we weaken assumption (A2) by assuming constants

ρ, Kρ > 0 such that (5.16) holds for all s ∈ [0, T ] and all adapted random variables
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Yh(s), Ỹh(s) in the ρ-neighborhood of X(s), i.e. for all Yh(s) ∈ L2(Ω,Fs, P ; Rd)

with

‖Yh(s) − X(s)‖L2(Ω) ≤ ρ.

In this case the lower bound for the exponential weight parameter L also depends

on ρ.

6. Maximum order of convergence

In this section we discuss the maximum order of convergence for the STM.

J.M.C. Clark and R.J. Cameron [3] constructed an example to show that, in gen-

eral, the maximum order of convergence is equal to 1
2 . This extends to all one-step

methods which use only the increments W k(ti) − W k(ti−1) of the driving Wiener

processes. We will show that the same result follows in a natural way for the STM

from the two-sided error estimate (3.13).

Unlike e.g. the Milstein method [6, 10], the STM does not use information about

the Wiener processes at intermediate times s ∈ [0, T ] \ τh. Therefore, one cannot

expect the STM to give good approximations for an equation with an iterated

Wiener process, i.e. with a stochastic integral of the form

∫ t

0

W 1(s)dW 2(s).

As in [3], we consider two real and independent (F t)t≥0-Wiener processes W 1

and W 2. The two-dimensional stochastic differential equation

dX(t) =

(

1 0

0 X1(t)

)

d

(

W 1(t)

W 2(t)

)

X(0) =

(

0

0

)
(6.1)

has the analytic solution

X(t) =

(

W 1(t)
∫ t

0
W 1(s)dW 2(s)

)

, for t ∈ [0, T ].(6.2)

For this equation the local truncation error of the STM is

‖AhrE
h X − rF

h AX‖2
−1

= max
0≤i≤N

E







∣

∣

∣

∣

∣

∣

i
∑

j=1

[

X(tj) − X(tj−1) −
(

1 0

0 X1(tj−1)

)

∆hW (tj)

]

∣

∣

∣

∣

∣

∣

2






= max
0≤i≤N

E







∣

∣

∣

∣

∣

∣

i
∑

j=1

[(

0
∫ tj

tj−1

W 1(s)dW 2(s) − W 1(tj−1)
(

W 2(tj) − W 2(tj−1)
)

)]

∣

∣

∣

∣

∣

∣

2





.

As before ∆hW (tj) denotes the j-th increment of the two Wiener processes. Note

that the local truncation error is independent of the parameter θ ∈ [0, 1]. Since the
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first component is equal to zero the local truncation error equals

= max
0≤i≤N

E







∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

(

W 1(s) − W 1(tj−1)
)

dW 2(s)

∣

∣

∣

∣

∣

∣

2






= max
0≤i≤N





i
∑

j=1

E





∣

∣

∣

∣

∣

∫ tj

tj−1

(

W 1(s) − W 1(tj−1)
)

dW 2(s)

∣

∣

∣

∣

∣

2








=
N
∑

j=1

∫ tj

tj−1

E

(

∣

∣W 1(s) − W 1(tj−1)
∣

∣

2
)

ds

=
N
∑

j=1

∫ tj

tj−1

|s − tj−1| ds

=
1

2

N
∑

j=1

(tj − tj−1)
2
,

where we used the martingale property of the stochastic integral in the first step

and the Itô-isometry in the second step. Note that we have an exact expression for

the local truncation error in the Spijker norm.

The Cauchy-Schwarz inequality yields

1

2

N
∑

j=1

(tj − tj−1)
2 ≥ 1

2

T 2

N
.(6.3)

Thus the local truncation error is bounded from below by a term of order O(
(

T
N

)
1

2 ).

In case of an equidistant step size h = T
N

we have equality in (6.3). The two-sided

error estimate (3.13) then reads

C1

√

1

2
Th ≤ ‖X − Xh‖0 ≤ C2

√

1

2
Th,

which shows that the STM converges with the exact order γ = 1
2 .

7. Conclusions

The bistability of a numerical discretization method is formulated in terms of

two norms that allow to estimate differences of grid functions by differences of

residuals and vice versa. This property plays an important role in deriving two-

sided estimates for the convergence error. In this paper we have set up a pair

of norms that guarantee bistability of the stochastic theta method for an SODE

satisfying Lipschitz and Hölder conditions. One of the norms is the maximum of

the strong norm at grid points while the second norm is a stochastic generalization

of Spijker’s norm. We have also shown that upper and lower estimates of type
√

h

follow in a natural way from the corresponding two-sided error estimates. As a by-

product of our approach we succeeded in embedding the theory of convergence for

the stochastic theta method into the standard framework of consistency, stability

and convergence as developed e.g. by Stummel.

Several natural questions follow from our approach. First, it is natural to ask

whether the two-sided error estimates extend to higher methods (e.g. those in [10]).

A positive answer will be given in the forthcoming paper [8]. Second, one may

ask for other pairs of norms, either both stronger or both weaker than the ones
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considered here, that allow to prove bistability. Finally, it seems natural to ask

for bistability of discretization methods applied to infinite dimensional stochastic

equations, such as delay equations and partial differential equations.
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