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Abstract

It is shown how stochastic Itô-Taylor schemes for stochastic ordinary
differential equations can be embedded into standard concepts of
consistency, stability and convergence. An appropriate choice of function
spaces and norms, in particular a stochastic generalization of Spijker’s
norm (1968), leads to two-sided estimates for the strong error of
convergence under the usual assumptions.
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1 Introduction

The invention of Itô-Taylor schemes was a major breakthrough in numerical
analysis of stochastic ordinary differential equations (SODEs). We refer to the
pioneering book [7] and the influential monographs [9] and [10].

In this paper we show how the strong convergence theory of these schemes
can be embedded into the standard framework of consistency, stability and
convergence as it is formulated in abstract terms in the theory of discrete
approximations (see [14]). Moreover, by a special choice of norms, namely a
stochastic version of the deterministic Spijker norm (see [12],[13],[6, Ch.III.8]),
we are able to derive two-sided estimates for the strong convergence error.

While our notion of consistency and (numerical) stability goes back to the
work of F. Stummel [14] there already exist other concepts in the literature.
One can find notions of consistency and local truncation errors in the books
[7, 9, 10]. We refer to [3] for a discussion. Other authors, who have considered
the question of stability, are for instance [2, 4].
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2 R. Kruse

To be more precise, we deal with the numerical approximation of R
d-valued

stochastic processes X, which satisfy an ordinary Itô stochastic differential
equation of the form

dX(t) = b0(t,X(t))dt +

m
∑

k=1

bk(t,X(t))dW k(t), t ∈ [0, T ],

X(0) = X0.

(1)

We assume that the initial value X0 has finite second moment. By W k,
k = 1, . . . ,m, we denote real and pairwise independent standard Brownian
motions and we also assume that the drift and diffusion coefficient functions
bk : [0, T ] × R

d → R
d fulfill the usual global Lipschitz and linear growth

conditions such that (1) has a unique solution [1].
Note that the corresponding integral form of the SODE (1) has the

representation

X(t) = X0 +

∫ t

0

b0(s,X(s))ds +
m

∑

k=1

∫ t

0

bk(s,X(s))dW k(s), t ∈ [0, T ]. (2)

Itô-Taylor schemes are based on an iterated application of Itô’s formula on
the integrands of (2), provided that all appearing integrals and derivatives exist.
Again, we refer to the books [7, 9, 10] for a rigorous derivation.

Let M be the set of all multi-indices α = (j1, . . . , jl), l ∈ N, ji ∈ {0, . . . ,m},
i = 1, . . . , l. By ℓ(α) ∈ N and n(α) ∈ N we denote the length of α ∈ M and
the number of zeros in α ∈ M respectively. For γ ∈ {n

2 : n ∈ N} consider the
finite set of multi-indices (c.f. [7])

Aγ =

{

α ∈ M : 1 ≤ ℓ(α) + n(α) ≤ 2γ or ℓ(α) = n(α) = γ +
1

2

}

.

For a time grid 0 = t0 < t1 < . . . < tN = T with (for simplicity) equidistant
step size h = T

N
, N ∈ N, the Itô-Taylor scheme of order γ is given by

Xh(t0) = X0,

Xh(tk) = Xh(tk−1) +
∑

α∈Aγ
fα(tk−1,Xh(tk−1))Iα,k, k ≥ 1,

(3)

with the iterated (stochastic) integrals

Iα,k :=

∫ tk

tk−1

∫ s1

tk−1

· · ·

∫ sl−1

tk−1

dW j1(sl) . . . dW jl(s1), (4)

where α = (j1, . . . , jl) and dW 0(s) = ds. For the same α the coefficient function
fα : [0, T ] × R

d → R
d is defined by

fα(t, x) = (Lj1 · · ·Ljj f)(t, x), (5)
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where f : [0, T ] × R
d → R

d is the projection with respect to the second
coordinate, i.e. f(t, x) = x, and the Lk are differential operators of the form

L0 =
∂

∂t
+

d
∑

i=1

b0,i ∂

∂xi

+
1

2

d
∑

i,j=1

m
∑

k=1

bk,ibk,j ∂2

∂xi∂xj

,

Lk =

d
∑

j=1

bk,j ∂

∂xj

, k = 1, . . . ,m.

Example 1 If we choose γ = 1
2 then the set A 1

2

just consists of all multi-

indices of length 1, i.e. A 1

2

= {(0), (1), . . . (m)}, and the coefficient functions

fα simplify to the drift and diffusion coefficient functions of the SODE (1), i.e.
f(k) = bk for k = 0, . . . ,m. Since I(0),k = h and I(j),k = W j(tk)−W j(tk−1), the

Itô-Taylor scheme of order γ = 1
2 is the well-known Euler-Maruyama scheme.

One also easily checks that the choice γ = 1 leads to the Milstein method.

It is well-known (see for example [7, 9, 10]) that the Itô-Taylor scheme of
order γ converges at least with order γ in the strong sense, i.e. there exists a
constant C > 0, independent of the step size h, such that

max
0≤i≤N

(

E
(

|X(ti) − Xh(ti)|
2
))

1

2 ≤ Chγ , (6)

where X is the analytic solution to (1) and Xh denotes the numerical solution.
Note that [7, 9, 10] use an even stronger norm, where max occurs inside the
expectation. It is an open problem whether our approach can handle this norm
as well.

In order to embed the Itô-Taylor scheme into the discrete approximation
framework, we will write the equations (3) as Ah(Xh) = Rh with a suitable
operator Ah and right-hand side Rh. We use the norm

‖Yh‖0,h = max
0≤i≤N

‖Yh(ti)‖L2(Ω), (7)

and the following generalization of Spijker’s norm

‖Yh‖−1,h = max
0≤i≤N

‖
∑i

j=0Yh(tj)‖L2(Ω). (8)

Here ‖ · ‖L2(Ω) denotes the L2-norm of random variables.
The key to our two-sided error estimate is the following bistability inequality

C1‖Ah(Yh) − Ah(Zh)‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖Ah(Yh) − Ah(Zh)‖−1,h. (9)

In the following section we show how the Itô-Taylor scheme fits into the
discrete approximation theory. In Section 3 we give a precise formulation of our
main result together with all assumptions.



4 R. Kruse

2 Writing Itô-Taylor schemes as discrete approximations

In the discrete approximation theory the concepts of consistency, (numerical)
stability and convergence are defined in a very general way. Our notions of
bistability and of the local truncation error are directly related to the abstract
framework invented by F. Stummel [14]. We present the basic ideas behind
Stummel’s theory in this section. Simultaneously we embed the Itô-Taylor
scheme into the framework.

The starting point of the discrete approximation theory is an equation of
the form A(X) = Y . Here, the operator A : E → F is a mapping between two
sets E and F . For a given Y ∈ F our aim is to find a discrete approximation of
the solution X. To this end we assume the existence of two sequences of metric
spaces (Eh)h∈I and (Fh)h∈I and operators Ah : Eh → Fh, h ∈ I, for some index
set I. With the help of two sequences of restriction operators rE

h : E → Eh and
rF
h : F → Fh, for h ∈ I, the discrete spaces Eh and Fh are connected to the

original spaces E and F respectively. Figure 1 visualizes the setting.

Y

A

Ah

E

Eh

F

Fh

X

Xh rE
h X rF

h Y

Figure 1: Visualisation of the discrete approximation theory

By solving equations of the form Ah(Xh) = rF
h Y we obtain a sequence of

discrete approximations (Xh)h∈I . Now, the theory of F. Stummel answers the
questions, in which sense and under which conditions the sequence (Xh)h∈I

converges to the solution X. Let us first show how the SODE (1) and the
Itô-Taylor scheme (3) can be embedded into figure 1.

Since the existence of a unique solution X to (1) is guaranteed by our
assumptions we consider the trivial operator

A :
E → F

X 7→ A(X)
(10)

where E := {X} and F := {Y = (X0, 0)} are singletons (with the second
component of Y being the stochastic process which is P -a.s. equal to 0 ∈ R

d)
and the operator A is given by

A(X) =

(

X(0),

(

X(t) − X(0) −
∫ t

0
b0(s,X(s))ds −

∑m

k=1

∫ t

0
bk(s,X(s))dW k(s)

)

0≤t≤T

)

.
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In order to define the discrete metric spaces we denote the time grid by
τh := {ti = ih | i = 0, . . . , N}. As our underlying discrete space we consider the
set Gh := G(τh, L2(Ω,F , P ; Rd)) of all adapted and L2(Ω)-valued grid functions,
that is, for Zh ∈ Gh, the random variables Zh(ti) are square-integrable and
Fti

-measurable random variables for all ti ∈ τh. Here (Ft)t∈[0,T ] denotes the

filtration which is generated by the Wiener processes W k, k = 1, . . . ,m. Now,
we choose the metric spaces Eh and Fh to be the vector space Gh endowed with
the metric induced by the norm

‖Zh‖0,h = max
0≤i≤N

‖Zh(ti)‖L2(Ω) (11)

and the stochastic version of Spijker’s norm

‖Zh‖−1,h = max
0≤i≤N

‖
∑i

j=0Zh(tj)‖L2(Ω), (12)

respectively. Note that Eh and Fh are Banach spaces.

Next, define the two sequences of restriction operators

rE
h :

E → Eh

X 7→ rE
h X, [rE

h X](ti) = X(ti) for ti ∈ τh,
(13)

rF
h :

F → Fh

Y 7→ rF
h Y

[rF
h Y ](ti) =

{

X0 i = 0,
0 i = 1, . . . N.

(14)

Finally, for h > 0, we introduce the operator

Ah :
Eh → Fh

Xh 7→ Ah(Xh)

by the relationship

[Ah(Xh)](t0) = Xh(t0),

[Ah(Xh)](ti) = Xh(ti) − Xh(ti−1) −
∑

α∈Aγ
fα(ti−1,Xh(ti−1))Iα,i,

(15)

for 1 ≤ i ≤ N . Under the assumption that all Itô-Taylor coefficient functions fα

satisfy a linear growth condition, [Ah(Xh)](ti) is an adapted and mean-square
integrable random variable. Therefore, Ah maps Eh into Fh. See Section 3 for
a complete statement of all assumptions.

Since the Itô-Taylor schemes are explicit, the operators Ah are bijective, i.e.
there exists a unique solution X̃h to the equation Ah(X̃h) = Zh for all Zh ∈ Fh.
In particular, the Itô-Taylor approximation Xh to (1) is equivalently written as
the solution to the equation Ah(Xh) = rF

h Y .

Next, we introduce our notion of consistency, bistability and convergence.
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Definition 1 Consider a one-step method given by a sequence of operators
(Ah)h. The method is called consistent of order γ > 0, if there exists a constant
C > 0 and an upper step size bound h > 0, such that the estimate

‖Ah(rE
h X) − rF

h A(X)‖−1,h ≤ Chγ (16)

holds for all grids τh with h ≤ h, where X denotes the analytic solution of (1).

The left hand side of (16) is called local truncation error or consistency error.
Therefore, a one-step method is consistent if the diagram in Figure 1 commutes
up to an error of order γ, that is rF

h ◦ A ≈ Ah ◦ rE
h for h small enough.

The second ingredient in the convergence theory is the concept of (numerical)
stability. In [14] F. Stummel introduces the stronger notion of bistability and
he proves that bistability of a numerical method can be characterized by the
equicontinuity of the operators (Ah)h and (A−1

h )h. In this sense the following
definition is a sufficient condition for Stummel’s notion of bistability.

Definition 2 A one-step method defined by operators (Ah)h is called bistable,
if there exist constants C1, C2 > 0 and an upper step size bound h > 0 such that
the operators Ah are bijective and the estimate

C1‖Ah(Zh) − Ah(Z̃h)‖−1,h ≤ ‖Zh − Z̃h‖0,h ≤ C2‖Ah(Zh) − Ah(Z̃h)‖−1,h

holds for all Zh, Z̃h ∈ Eh and for grids τh with h < h.

Finally, we define the error of convergence in terms of the norm ‖ · ‖0,h, the
space Eh and the restriction operators rE

h .

Definition 3 A one-step method is called convergent of order γ > 0 if there
exist an upper step size bound h > 0 and a constant C > 0 such that the
corresponding operators Ah are bijective and

‖Xh − rE
h X‖0 ≤ Chγ (17)

for all h ≤ h. Here Xh denotes the solution to Ah(Xh) = rF
h Y .

3 Main result

In this section we give a precise formulation of the underlying assumptions and
our main result.

(A1) The initial value X0 is an F0-measurable and R
d-valued random variable

satisfying E(|X0|
2) < ∞.

(A2) For all α ∈ Aγ there exists a constant Lα > 0 such that

|fα(t, x) − fα(t, y)| ≤ Lα|x − y| and |fα(t, x)| ≤ Lα(1 + |x|)

for all x, y ∈ R
d and t ∈ [0, T ].
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(A3) For a given order γ the Itô-Taylor expansion of X(t) with respect to Aγ

exists for all t ∈ [0, T ].

(A4) For all α ∈ B(Aγ) we have

∫ T

0

E
(

|fα(s,X(s))|2
)

ds < ∞.

The first two assumptions are used, for example, in [1] to assure the existence
and uniqueness of the solution X on [0, T ], such that X(t) is mean-square
integrable for all t ∈ [0, T ]. The assumption (A2) also assures that the operators
Ah are well-defined and bistable. In (A3) we assume that the Itô-Taylor
expansion exists up to a given order γ. Assumption (A4) is needed in order
to prove the consistency of the Itô-Taylor schemes. There we use the notation
of the remainder set B(Aγ) of the Itô-Taylor expansion which is given by

B(Aγ) = {α = (j1, j2, . . . , jl) ∈ M : (j2, . . . , jl) ∈ Aγ} ⊂ M

(c.f. [7]). Now we formulate our main result, which is proven in [8].

Theorem 1 Let the assumptions (A1)-(A4) hold for γ ∈ {n
2 |n ∈ N}. Then

the Itô-Taylor scheme of order γ is

(i) consistent of order γ,

(ii) bistable with respect to the norms ‖ · ‖0,h and ‖ · ‖−1,h,

(iii) convergent of order γ.

Moreover, there exists h > 0 such that the two-sided error estimate

C1‖Ah(rE
h X) − rF

h Y ‖−1,h ≤ ‖rE
h X − Xh‖0,h ≤ C2‖Ah(rE

h X) − rF
h Y ‖−1,h

holds for all grids τh with |h| ≤ h.

Remark 1 Theorem 1 also holds for implicit methods like the stochastic theta
method [3] and for stochastic multi-step methods [8].

Remark 2 The two-sided error estimate in Theorem 1 can be used to discuss
the optimal order of convergence of the Itô-Taylor methods. J. M. C. Clark and
R. J. Cameron [5] constructed the example

dX(t) =

(

1 0
0 X1(t)

)

d

(

W 1(t)
W 2(t)

)

, X(0) =

(

0
0

)

, (18)

to show that, in general, the maximum order of convergence is equal to 1
2 if the

numerical method, like the Euler-Maruyama scheme, uses only the increments
W k(ti) − W k(ti−1) of the driving Wiener processes. For this example the local

trunction error of the Euler-Maruyama is exactly computed to be
√

1
2Th. Hence,

the strong error of convergence is bounded from below by a term of order γ = 1
2 .

A suitable generalization of this example gives corresponding results for the
higher order schemes [8].
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