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Abstract

We consider parameter-dependent, continuous-time dynamical systems under
discretizations. It is shown that fold-Hopf singularities are O(hp)-shifted and turned
into fold-Neimark-Sacker points by one-step methods of order p. Then we analyze
the effect of discretizations methods on the local bifurcation diagram near Bogdanov-
Takens and fold-Hopf singularities. In particular we prove that the discretized
codimension one curves intersect at the singularities in a generic manner. The
results are illustrated by a numerical example.

1 Introduction

Consider a continuous-time dynamical system depending on parameters

ẋ(t) = f(x(t), α), (1.1)

where f ∈ Ck(Ω × Λ,RN) with open sets 0 ∈ Ω ⊂ RN , 0 ∈ Λ ⊂ R2, k ≥ 1 sufficiently
large, N ≥ 2. The first and commonly used tool for exploring the dynamics generated by
the vector field (1.1) is numerical time-integration. To accomplish this, we can appeal to
one-step methods, which consists in approximating the evolution operator by a discrete-
time system

x 7→ g(x, α), (1.2)

with g ∈ Ck(Ω×Λ,RN ), where the step-size were assumed to be previously fixed. It then
becomes evident the importance of establishing theoretical results that allow us to make
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Fig. 1.1: Local bifurcation diagram near a BT2 point.

conclusions about the real behavior of system (1.1) starting from the numerical observa-
tions obtained via (1.2). The situation turns out to be more involved if we additionally
consider singularities under variation of parameters. A rigorous analysis concerning topo-
logical conjugacies of continuous-time systems and their discretizations can be found in
[18]. There, elementary codimension one bifurcations are considered.

In this article we suppose that system (1.1) undergoes one of the following codimension
two singularities: Bogdanov-Takens or fold-Hopf (see [15]). Further we assume that (1.1)
is discretized via general one-step methods, see Section 2. Conjugacy results are not
expected in this case, since e.g. homoclinic connections are turned into exponentially small
sectors of transversal homoclinic orbits by one-step methods, see [4]. We do not consider
such global phenomena occurring near the mentioned codimension two singularities.

In the setting described above, two main questions are tackled, i.e., does a one-step
method applied to the continuous-time system reproduce by a “discrete version” the
codimension two singularity? If this is so, does the discrete point remain at the same
position in both, state space, as well as parameter space? The second major question
is a natural consequence of a positive answer to the first one, namely, is the bifurcation
picture also reproduced (and maybe shifted) by the discretization method? For cusp and
Bogdanov-Takens bifurcations, it is already known that they persist at the same position
under general Runge-Kutta methods, see [19]. Results in this direction for the remaining
codimension two singularities seem not to be available.

As for the second major question outlined above, we have some useful results at hand.
Consider for instance the local bifurcation diagram around a Bogdanov-Takens point, see
Figure 1.1. In this picture, the curves labeled by F , H correspond to paths of fold and
Hopf points, respectively. By [19], it is known that a fold point persists at the same
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position under general Runge-Kutta methods, thus the emanating curve of fold points
is not affected by those one-step methods. Note that this result, together with the fact
that cusp points persist under Runge-Kutta methods, lead us to the conclusion that the
local bifurcation diagram near cusp points remains unaffected under those discretization
methods.

On the other hand, the analysis of the path of discretized Hopf points requires more
attention. Discretization of systems with Hopf singularities has been addressed to a large
extent (cf. [2, 5, 6, 12, 13, 20, 24]). It has been proven that Hopf points are O(hp)-shifted
and turned into Neimark-Sacker points by general one-step methods of order p ≥ 1.
Approximation of regular periodic orbits originated at the Hopf bifurcation has been con-
sidered too. Nevertheless, these results strictly apply when dealing with one-dimensional
sections in Figure 1.1, thus the analysis of the discretized Hopf curve has to be carried
out in a codimension two context.

The present article summarizes the analysis of bifurcating dynamical systems under
discretizations that appears in [21].

2 Basic setup

Let us first formally define the singularities we will deal with.

Definition 2.1. A point (x0, α0) ∈ Ω×Λ is referred to as a Bogdanov-Takens singularity
of codimension two (in short BT2 point) of (1.1) if:

• f(x0, α0) = 0,

• The only Jordan block of fx(x0, α0) corresponding to the eigenvalue 0 is

(

0 1
0 0

)

,

and there are no other eigenvalues on the imaginary axis.

Definition 2.2. A point (x0, α0) ∈ Ω×Λ is referred to as a fold-Hopf point (in short FH
point1) of (1.1) if:

• f(x0, α0) = 0,

• fx(x0, α0) has the only critical, simple eigenvalues {0,±iω0}, 0 < ω0 ∈ R.

For our purposes it is useful to introduce minimally augmented systems for the con-
tinuation of fold and Hopf points of system (1.1). The jacobian of the systems:

{

f(x, α) = 0,
det(fx(x, α)) = 0,

(2.1)

{

f(x, α) = 0,
det(2fx(x, α) ⊙ IN ) = 0,

(2.2)

1Also called zero-Hopf, zero-pair, Hopf-saddle-node, Hopf-steady-state, Gavrilov-Guckenheimer,
among others.
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have full rank at any generic fold, Hopf point of (1.1), respectively (cf. [3, Theorem 5.1]).
The symbol IN stands for the identity matrix in RN,N and ⊙ for the bialternate product
of matrices (cf. [9, 11, 15]). These systems allow us to formalize the notion of genericity
of BT2 and FH points. A BT2 or FH point (x0, α0) of (1.1) is said to be generic if the
system







f(x, α) = 0,
det(2fx(x, α) ⊙ IN) = 0,

det(fx(x, α)) = 0,
(2.3)

is regular at (x0, α0). It follows immediately that the genericity of a BT2 or FH point
implies that the jacobian of systems (2.1) and (2.2) have full rank at (x0, α0), and hence
the existence of emanating paths of fold and Hopf singularities is guaranteed. Genericity
conditions are often also referred to as transversality conditions, and they guarantee that
the parameters unfold the singularities in a generic manner (cf. [15, Section 2.4]).

Now let us introduce the singularities and minimally augmented systems in the discrete-
time sense.

Definition 2.3. A point (x0, α0) ∈ Ω × Λ is referred to as a fold-Neimark-Sacker point
(in short FN point) of (1.2) if:

• g(x0, α0) − x0 = 0,

• gx(x0, α0) has the only critical, simple eigenvalues {1, e±iθ0}, 0 < θ0 ∈ R, eikθ0 6= 1,
k = 1, 2, 3, 4.

Minimally augmented systems for the continuation of fold and Neimark-Sacker points
of (1.2) are given by (cf. [15]):

{

g(x, α) − x = 0,
det(gx(x, α) − IN) = 0,

(2.4)

{

g(x, α) − x = 0,
det(gx(x, α) ⊙ gx(x, α) − Im) = 0,

(2.5)

respectively, with m := 1
2
N(N − 1).

As described in the Introduction, our main concern is to describe the effect of dis-
cretization methods on the bifurcation diagram of dynamical systems with singularities.
In this sense we consider general one-step methods of order p ≥ 1 applied to (1.1), given
by

x 7→ ψh(x, α) := x+ hΦ(h, x, α), (2.6)

with ψ,Φ : [−h∗, h∗] × Ω̃ × Λ̃ → RN sufficiently smooth, h∗ > 0, where 0 ∈ Ω̃ ⊂ Ω,
0 ∈ Λ̃ ⊂ Λ are compact sets. That the method is of order p means that there exists a
positive constant C0 (depending only on f), such that it holds

||ϕh(x, α) − ψh(x, α)|| ≤ C0|h|
p+1,
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for all (h, x, α) ∈ [−h∗, h∗] × Ω̃ × Λ̃, where ϕt(·, α) stands for the t-flow of (1.1) and
|| · || denotes any norm2 in RN . In this setting, there exist smooth functions Υ,Ξ :
[−h0, h0] × Ω̃ × Λ̃ → RN such that:

ψh(x, α) = ϕh(x, α) + Υ(h, x, α)hp+1,

ψh
w(x, α) = ϕh

w(x, α) + Υw(h, x, α)hp+1,

Φ(h, x, α) = f(x, α) + Ξ(h, x, α)h,
Φw(h, x, α) = fw(x, α) + Ξw(h, x, α)h,

(2.7)

hold for all (h, x, α) ∈ [−h0, h0] × Ω̃× Λ̃, where 0 < h0 < h∗, and w stands for any of the
variables of f(·, ·), see [4, 8, 22].

Moreover, the following two lemmata will be used in our analysis:

Lemma 2.4 (Banach). Let M ∈ RN,N and || · || denote any matrix norm in RN,N for
which ||IN || = 1. If ||M || < 1, then (IN +M)−1 exists, and it holds

||(IN +M)−1|| ≤
1

1 − ||M ||
.

Proof. See [17].

Theorem 2.5 (Local Inverse Lipschitz Mapping Theorem). Let V , W be Banach spaces
and H ∈ C1(V,W ). Let y0 ∈ V , and assume H ′(y0) to be a homeomorphism. Suppose
that there exists positive constants δ, κ, σ, such that

||H ′(y) −H ′(y0)|| ≤ κ < σ ≤
1

||(H ′(y0))−1||
, ∀y ∈ Bδ(y0),

||H(y0)|| ≤ (σ − κ)δ,

where Bδ(y0) denotes a closed ball of radius δ and centered at y0. Then, H has a unique
zero in Bδ(y0), and it holds

||y1 − y2|| ≤
1

σ − κ
||H(y1) −H(y2)||, ∀y1, y2 ∈ Bδ(y0).

Proof. See [23].

With the technical framework above introduced, we have all the necessary machinery
at hand for presenting the main results of the present work.

2Throughout this article, the symbol || · || will be used to denote norms in different spaces. From the
context, no confusion should arise.
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3 Fold-Hopf singularities under discretization

In this section we will study the effect of one-step methods applied to systems having
an FH point. More precisely, we will suppose we are given a continuous-time dynamical
system (1.1), which undergoes an FH singularity. We assume that this system is dis-
cretized via general, p-th order one-step methods. Under these conditions, we will show
that the FH point is O(hp)-shifted and turned into an FN point by the one-step map, for
all sufficiently small step-size. Formally speaking, we have the following:

Theorem 3.1. Let a general one-step method of order p ≥ 1 applied to (1.1) be given by
(2.6). Assume that system (1.1) has a generic FH point at (xFH , αFH) ∈ Ω̃ × Λ̃. Then,
there exists a positive constant ρ ≤ h0 and a neighborhood Ω′×Λ′ ⊂ Ω̃× Λ̃ of (xFH , αFH),
in which (2.6) has a unique FN point (xFN(h), αFN(h)) that depends smoothly on h, for
all h ∈ (−ρ, ρ). Furthermore, the following estimate holds

||(xFN(h), αFN(h)) − (xFH , αFH)|| ≤ C|h|p, (3.1)

for some C > 0 and all h ∈ (−ρ, ρ).

Before proving this theorem, some comments are in order. A generic FH point can
be seen as a regular zero of the defining system (2.3). Likewise, such a system can be
constructed, so that an FN point is a regular zero of it (e.g. by combining (2.4) and
(2.5)). The basic idea here is then to suitably modify the defining systems of FH and
FN points, in such a way that we can establish closeness relations between them. Once
this is done, the estimate of the distance between the FH and FN points (see (3.1)), and
the smooth dependence of the latter on h, will follow from application of Theorem 2.5
and the Implicit Function Theorem. This technique has been applied in several contexts,
e.g., for discretizations of hyperbolic equilibria of continuous-time systems (cf. [2, Section
5.5.2]), and in a much more elaborated context in [4], where the authors study the effect
of one-step methods applied to systems having connecting orbits. With these remarks,
we are ready to present:

Proof of Theorem 3.1. As explained before, a generic FH point of (1.1) is a regular zero
of

F̃ (x, α) :=





f(x, α)
det(2fx(x, α) ⊙ IN )

det(fx(x, α))



 = 0. (3.2)

We will try to rewrite the above equation in terms of the h-flow ϕh(·, α) of (1.1). By
a straightforward analysis of the variational equation of (1.1) at an equilibrium (x0, α0),
the following relation holds (cf. [10, Section 1.3])

Sp(ϕh
x(x0, α0)) = eh Sp(fx(x0,α0)), (3.3)

where Sp(A) denotes the spectrum of a matrix A ∈ RN,N . Thus, we can conclude that
ϕh

x(x0, α0) has a pair of eigenvalues on the unit circle (resp. an eigenvalue equal to 1), if
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and only if fx(x0, α0) has a pair of purely imaginary eigenvalues (resp. an eigenvalue equal
to 0), for h 6= 0. Therefore, (3.2) can be written in terms of the h-flow ϕh(·, α) as follows:







ϕh(x, α) − x = 0,
det(ϕh

x(x, α) ⊙ ϕh
x(x, α) − Im) = 0,

det(ϕh
x(x, α) − IN) = 0.

However, note that this system becomes trivial at h = 0, which is inconvenient for our
approach, as we want to perform our analysis for h small. Therefore, we will rather
consider the following system:

F (h, x, α) :=





1
h
(ϕh(x, α) − x)

det
(

1
h
(ϕh

x(x, α) ⊙ ϕh
x(x, α) − Im)

)

det
(

1
h
(ϕh

x(x, α) − IN)
)



 = 0,

which will be later shown not to be trivial at h = 0. Similarly, an FN point of (2.6) is a
solution of (cf. (2.4), (2.5)):

G(h, x, α) :=





1
h
(ψh(x, α) − x)

det
(

1
h
(ψh

x(x, α) ⊙ ψh
x(x, α) − Im)

)

det
(

1
h
(ψh

x(x, α) − IN )
)



 = 0. (3.4)

The next step is to establish relations between F̃ , F , and G, which will be crucial for our
analysis. Let us begin with G and F̃ . With the expansions in (2.7) we obtain:

G(h, x, α) =





f(x, α) + Ξ(h, x, α)h
det(2fx(x, α) ⊙ IN + Θ1(h, x, α)h)

det(fx(x, α) + Ξx(h, x, α)h)



 ,

= F̃ (x, α) + Θ(h, x, α)h, (3.5)

where Θ1(h, x, α) := Φx(h, x, α) ⊙ Φx(h, x, α) + 2Ξx(h, x, α) ⊙ IN , and Θ is some smooth
function3. As for F and G, we obtain again by (2.7):

G(h, x, α) =





1
h
(ϕh(x, α) − x) + Υ(h, x, α)hp

det
(

1
h
(ϕh

x(x, α) ⊙ ϕh
x(x, α) − Im) + Ψ1(h, x, α)hp

)

det
(

1
h
(ϕh

x(x, α) − IN ) + Υx(h, x, α)hp
)



 ,

= F (h, x, α) + Ψ(h, x, α)hp, (3.6)

where Ψ1(h, x, α) := 2ϕh
x(x, α)⊙Υx(h, x, α)+Υx(h, x, α)⊙Υx(h, x, α)hp+1, and Ψ is some

smooth function. The next step is to apply Theorem 2.5 to H := G(h, ·, ·), for all h in
some interval. Consequently, we need first to show that the assumptions of that theorem
are fulfilled for h small. Let us then define y := (x, α), and take y0 := (xFH , αFH). We

3In what follows, by the term “(some smooth function) · wk”, k ≥ 1, w some real variable, we mean
the integral remainder of a Taylor series.
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will show that Gy(h, y0) is nonsingular for all h near zero. Indeed, assume h ∈ (−h0, h0),
then by (3.5), and recalling the genericity of the FH point, it holds

Gy(h, y0) = F̃y(y0) + Θy(h, y0)h = F̃y(y0)(IN + (F̃y(y0))
−1Θy(h, y0)h).

Choose 0 < ρ1 < h0, so that

||(F̃y(y0))
−1Θy(h, y0)h|| < ||(F̃y(y0))

−1||

(

sup
h∈(−h0,h0)

||Θy(h, y0)||

)

|h| < 1,

for all h ∈ (−ρ1, ρ1). Then, Lemma 2.4 ensures the invertibility of Gy(h, y0) in (−ρ1, ρ1),
and furthermore the following estimate holds

||(Gy(h, y0))
−1|| <

||(F̃y(y0))
−1||

1 − ||(F̃y(y0))−1|| suph∈(−h0,h0) ||Θy(h, y0)||ρ1

=:
1

σ
.

Take κ := 1
2
σ. Then, by the continuity of Gy, we can find a closed ball Bδ(y0), δ > 0, and

a positive constant ρ′1, such that

||Gy(h, y) −Gy(h, y0)|| ≤ κ,

for all y ∈ Bδ(y0), h ∈ [−ρ′1, ρ
′
1]. Likewise, by the continuity of G, and noticing that

G(0, y0) = 0 (see (3.5)), we can find a positive constant ρ′′1, such that

||G(h, y0)|| ≤ (σ − κ)δ,

for all h ∈ [−ρ′′1 , ρ
′′
1]. Finally, take ρ2 := min(ρ1, ρ

′
1, ρ

′′
1). Then, the assumptions of Theorem

2.5 hold for H := G(h, ·), and for all h ∈ (−ρ2, ρ2). Moreover, since G(0, y0) = 0 and
Gy(0, y0) = F̃y(y0) is nonsingular, the Implicit Function Theorem guarantees the existence
of a function yFN := (xFN , αFN) : (−ρ′2, ρ

′
2) → RN+2, such that

G(h, yFN(h)) = 0, yFN(0) = (xFN(0), αFN(0)) = (xFH , αFH),

h ∈ (−ρ′2, ρ
′
2). This shows the existence, uniqueness, and smooth dependence on h of

an FN point of (2.6). It is left to show the Estimate (3.1). To achieve this, choose
0 < ρ′′2 ≤ ρ′2, so that yFN(h) ∈ Bδ(y0) for all h ∈ (−ρ′′2, ρ

′′
2). Define ρ3 := min(ρ2, ρ

′′
2), then

Theorem 2.5 applied to G(h, ·), h ∈ (−ρ3, ρ3), combined with (3.6) yields:

||(xFN(h), αFN(h)) − (xFH , αFH)|| ≤
1

σ − κ
||G(h, yFN(h)) −G(h, y0)||,

=
2

σ
||Ψ(h, y0)|||h

p|,

<
2

σ

(

sup
h∈(−ρ3,ρ3)

||Ψ(h, y0)||

)

|h|p.

To conclude, choose 0 < ρ < ρ3, and C := 2
σ

(

suph∈(−ρ3,ρ3) ||Ψ(h, y0)||
)

.
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As already mentioned in the Introduction, it has been shown that BT2 bifurcations
persist at the same position under Runge-Kutta methods (see [19]). However, in a more
general framework, the following theorem holds:

Theorem 3.2. Let a general one-step method of order p ≥ 1 applied to (1.1) be given by
(2.6). Assume that system (1.1) has a generic BT2 point at (xBT2

, αBT2
) ∈ Ω̃× Λ̃. Then,

there exists a positive constant ρ ≤ h0 and a neighborhood Ω′×Λ′ ⊂ Ω̃×Λ̃ of (xBT2
, αBT2

),
in which (2.6) has a unique 1 : 1 resonance (xR1(h), αR1(h)) that depends smoothly on h,
for all h ∈ (−ρ, ρ). Furthermore, the following estimate holds

||(xR1(h), αR1(h)) − (xBT2
, αBT2

)|| ≤ C|h|p,

for some C > 0 and all h ∈ (−ρ, ρ).

Sketch of the proof. The approach employed to analyze FH points under discretization
can be applied. A generic BT2 point of (1.1) is a regular zero of (cf. Section 2):

F̃ (x, α) :=





f(x, α)
det(2fx(x, α) ⊙ IN )

det(fx(x, α))



 = 0.

As before, this system can be replaced by

F (h, x, α) :=





1
h
(ϕh(x, α) − x)

det
(

1
h
(ϕh

x(x, α) ⊙ ϕh
x(x, α) − Im)

)

det
(

1
h
(ϕh

x(x, α) − IN)
)



 = 0.

Recall that a 1 : 1 resonance (in short R12 point) is a fixed point of (1.2) with a double
eigenvalue equal to 1, and with geometric multiplicity equal to one. Thus, an R12 point
of the one-step map (2.6) is a solution of:

G(h, x, α) :=





1
h
(ψh(x, α) − x)

det
(

1
h
(ψh

x(x, α) ⊙ ψh
x(x, α) − Im)

)

det
(

1
h
(ψh

x(x, α) − IN )
)



 = 0.

Consequently, the statements of the theorem follow from the previous discussion (see
Theorem 3.1).

4 Emanating Hopf curve under discretization

In the previous section we saw that FH and BT2 points persist under one-step methods.
As we mentioned in the Introduction, we are interested to know whether the local bifur-
cation diagram near these codimension two singularities is “well” reproduced by one-step
methods. In this sense, the first part of this task has been achieved, namely, the organizing
centers were shown to be preserved by one-step methods.

Now we tackle the problem of analyzing the discretization of the Hopf curve of system
(1.1) that emanates from BT2 and FH points. Throughout this section we denote by
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O(hp)

NS H

BT2

Fig. 4.1: Discretized path of Hopf points near a BT2 singularity.

α = (α1, α2) ∈ R2 the parameters of the system. The result we are after is illustrated
in Figure 4.1. The curves labeled by H , NS represent paths of Hopf, Neimark-Sacker
points, respectively.

The analysis is formulated as follows. Suppose we are given a continuous-time dy-
namical system (1.1) which undergoes a BT2 or an FH bifurcation at the origin. We
assume that this system is discretized via general one-step methods, as in Section 3. Un-
der these conditions, we will show that there exists a step-size-independent neighborhood
(the dashed square in Figure 4.1) of a BT2 (resp. FH) point, such that the discretized
path of Hopf points (NS in Figure 4.1) approximates the original curve (H in Figure 4.1)
with the order of the method. For this purpose, we do not reduce the systems, e.g. via
center manifold theory, but we rather work with them in full dimension. To do so, the
approach employed for the study of FH points under discretizations will be applied. In
fact, the arguments are very close to those used in the proof of Theorem 3.1. For this
reason we will only present a sketch of the proof of the main result. With these remarks
we are ready to formulate:

Theorem 4.1. Let a general one-step discretization method of order p ≥ 1 applied to
(1.1) be given by (2.6). Assume that system (1.1) has a generic BT2 or FH point at the
origin. Further consider the system:

F̃ (x, α) :=

(

f(x, α)
det(2fx(x, α) ⊙ IN )

)

= 0, (4.1)
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and assume that F̃y(0, 0), y := (x, α1) is nonsingular4. Then, there exist positive constants
ρ ≤ h0, δ and curves of Hopf and Neimark-Sacker points of systems (1.1) and (2.6),
respectively, defined by:

CH(α2) := (xH(α2), α1H(α2), α2),

CNS(h, α2) := (xNS(h, α2), α1NS(h, α2), α2),

with xH : (−δ, δ) → RN , xNS : (−ρ, ρ) × (−δ, δ) → RN , α1H : (−δ, δ) → R, α1NS :
(−ρ, ρ)×(−δ, δ) → R smooth5. Furthermore, the following estimate holds for all (h, α2) ∈
(−ρ, ρ) × (−δ, δ) and uniformly in α2

||dNS(h, α2) − dH(α2)|| ≤ C|h|p, (4.2)

where dH(·) := (xH(·), α1H(·)) and dNS(·, ·) := (xNS(·, ·), α1NS(·, ·)), C > 0.

Sketch of the proof. Since F̃y(0, 0) is nonsingular, the Implicit Function Theorem guaran-
tees the existence of the function dH := (xH , α1H) : (−δ1, δ1) → RN ×R, such that

F̃ (dH(α2), α2) = 0, dH(0) = (xH(0), α1H(0)) = (0, 0),

α2 ∈ (−δ1, δ1). As in the proof of Theorem 3.1, we will rewrite (4.1) in terms of the h-flow
ϕh(·, α) of (1.1). Thus, we obtain the system:

F (h, x, α) :=

(

1
h
(ϕh(x, α) − x)

det
(

1
h
(ϕh

x(x, α) ⊙ ϕh
x(x, α) − Im)

)

)

= 0,

and it holds (see (3.3))
F (h, dH(α2), α2) = 0,

for all (h, α2) ∈ (−h0, h0) × (−δ1, δ1). Likewise, a system whose zeroes describe a curve
of Neimark-Sacker points of (2.6) is given by (see (2.5), (3.4)):

G(h, x, α) :=

(

1
h
(ψh(x, α) − x)

det
(

1
h
(ψh

x(x, α) ⊙ ψh
x(x, α) − Im)

)

)

= 0.

Hence, we will show the existence of a curve of Neimark-Sacker points of (2.6). By
truncation of (3.5), the following relation holds locally

G(h, x, α) = F̃ (x, α) + Θ(h, x, α)h, (4.3)

where Θ is some smooth function. Thus, since F̃y(0, 0) is nonsingular, we have that
Gy(0, 0, 0) = F̃y(0, 0) (see above) is nonsingular, thereby the Implicit Function Theorem

4This assumption is imposed only for assuring that α2 can be used as parametrization variable. This
is allowed due to the genericity of the codimension two points (see comments after system (2.3)).

5By the term “Neimark-Sacker curve”, we mean the graph of the function CNS(h∗, ·), for h∗ ∈ (−ρ, ρ)
fixed.
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guarantees the existence of a smooth function dNS := (xNS, α1NS) : (−ρ′1, ρ
′
1)×(−δ′1, δ

′
1) →RN ×R, such that

G(h, dNS(h, α2), α2) = 0, dNS(0, 0) = (xNS(0, 0), α1NS(0, 0)) = (0, 0),

(h, α2) ∈ (−ρ′1, ρ
′
1) × (−δ′1, δ

′
1). We have thus shown the existence and smoothness of the

curves CH , CNS. Now we will show the O(hp)-closeness part. Similarly as before, by
truncation of (3.6), the following relation holds locally

G(h, x, α) = F (h, x, α) + Ψ(h, x, α)hp, (4.4)

where Ψ is some smooth function. The next step is to apply Theorem 2.5. By carefully
doing estimates similar to those of Theorem 3.1, we can guarantee that the assump-
tions of the Local Inverse Lipschitz Theorem applied to H := G(h, ·, α2) hold for all
(h, α2) ∈ (−ρ2, ρ2) × (−δ2, δ2), where ρ2, δ2 are some positive constants. Thus, Theorem
2.5 combined with (4.4) yields:

||dNS(h, α2) − dH(α2)|| ≤
1

σ − κ
||G(h, dNS(h, α2), α2) −G(h, dH(α2), α2)||,

=
1

σ − κ
||Ψ(h, dH(α2), α2)|||h

p|, (4.5)

<
1

σ − κ

(

sup
(h,α2)∈(−ρ2,ρ2)×(−δ2,δ2)

||Ψ(h, dH(α2), α2)||

)

|h|p.

To conclude, take ρ := ρ2, δ := δ2, and

C :=
1

σ − κ

(

sup
(h,α2)∈(−ρ,ρ)×(−δ,δ)

||Ψ(h, dH(α2), α2)||

)

.

Before finishing this section, it is worth deriving a particular result from the above
discussion. Under assumptions and notation of the previous theorem, suppose additionally
that the one step method (2.6) preserves the BT2 point at the origin. This assumption is
quite reasonable, as this is the case when dealing with general Runge-Kutta methods (cf.
[19]). This means that for all sufficiently small step-size, the map (2.6) undergoes a 1 : 1
resonance at the origin, and therefore it holds

G(h, 0, 0) = 0,

for all h in some interval, say (−ρ, ρ). Consider the following expansion (see (4.4))

G(h, dH(α2), α2) = F (h, dH(α2), α2) + Ψ(h, dH(α2), α2)h
p = Ψ(h, dH(α2), α2)h

p,

therefore we must have

G(h, dH(0), 0) = G(h, 0, 0) = Ψ(h, dH(0), 0)hp = 0,
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for all h ∈ (−ρ, ρ), and hence Ψ(h, dH(0), 0) = 0 in this interval. This means, that if we
expand Ψ(h, dH(·), ·) with respect to α2, we obtain

Ψ(h, dH(α2), α2) = Γ(h, α2)α2,

where Γ is some smooth function. By taking this into account in (4.5), we obtain the
improved estimate

||dNS(h, α2) − dH(α2)|| ≤ C|α2||h|
p, (4.6)

for all (h, α2) ∈ (−ρ, ρ) × (−δ, δ), where

C :=
1

σ − κ

(

sup
(h,α2)∈(−ρ,ρ)×(−δ,δ)

||Γ(h, α2)||

)

.

Note that such an improved estimate can only be obtained when dealing with BT2 sin-
gularities. The reason is that FH points are always shifted by one-step methods due to
the Hopf eigenvalues, therefore the estimate given by Theorem 4.1 is, for FH singularities,
already optimal.

5 Intersection of the discretized fold and Hopf curves

We conclude the theoretical part of this article with the analysis of the intersection of the
discretized paths of fold and Hopf points. It is assumed that the continuous-time system
(1.1) undergoes a generic BT2 or FH point at the origin and that the system is discretized
via general one-step methods.

Curves of fold and Hopf points are known to emanate from the mentioned codimension
two singularities (see Section 2). Denote these curves by CF , CH : (−ǫ, ǫ) → RN+2,
respectively. Generically, it is expected that the projections of CF and CH onto the
parameter space intersect tangentially at the codimension two singularity, see Figure
1.1. Likewise, CF and CH are known to intersect transversally (in full space RN+2) at
the bifurcation. Thus, the question we are to take up is whether this generic behavior
persists under general one-step methods, i.e., whether the discretized fold and Hopf curves
intersect tangentially (resp. transversally) in parameter space (resp. in full space). In this
sense, the genericity of the BT2 and FH point (as explicitly defined in Section 2) will
be shown to induce a generic intersection of the discretized curves. For the sake of
completeness of our discussion, we will first prove that the defined genericity conditions
indeed imply the expected generic intersection of CF and CH at the codimension two
point. We accomplish this task in the following:

Theorem 5.1. Let system (1.1) undergo a generic BT2 or FH singularity at the origin.
Then, there exist paths of fold and Hopf points of (1.1) which intersect transversally (resp.
tangentially) at the codimension two point in full space (resp. parameter space).

Proof. Recall that the genericity of the codimension two points, i.e., the invertibility of
the matrix

A0 :=





f 0
x f 0

α

g0
x g0

α

h0
x h0

α



 ,
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where g := det(2fx ⊙ IN), h := det(fx), implies that the jacobian of system (2.2) has
full rank at the origin (see comments after system (2.3)). Hence, we proved the existence
of an emanating path of Hopf points (cf. Theorem 4.1). Similarly, since the jacobian of
system (2.1) has also full rank at the origin, the existence of a fold curve is guaranteed.

Thus, consider regular, smooth parametrizations of the fold and Hopf curves denoted
by CF := (xF , αF ) : (−ǫ, ǫ) → RN ×R2, CH := (xH , αH) : (−ǫ, ǫ) → RN ×R2, ǫ > 0,
respectively. The intersection of these curves can be found as the solution of the system







f(x, α) = 0,
det(2fx(x, α) ⊙ IN) = 0,

det(fx(x, α)) = 0,

which is, by assumption, regular at the origin, i.e., it possesses the isolated solution
(x, α) = (0, 0). Thus, CF and CH intersect at the origin, and without loss of generality
we assume CF (0) = CH(0) = 0. The next step is to show that these curves intersect
tangentially in parameter space. First, note that A0 has full rank, i.e. rank(A0) = N + 2,
thereby we must have rank

((

f 0
x f 0

α

))

= N . Recall that due to the codimension two
point, f 0

x has rank defect equal to 1, thus it holds

(a, b) := pT
0 f

0
α 6= 0,

where p0 is a left eigenvector of f 0
x corresponding to the eigenvalue equal to 0. Since CF

and CH represent equilibria of (1.1), we conclude that:

f(xF (s), αF (s)) = 0,

⇒ fx(xF (s), αF (s))x′F (s) + fα(xF (s), αF (s))α′

F (s) = 0,

for s ∈ (−ǫ, ǫ), and by evaluating the above expression at s = 0, we arrive at

f 0
xx

′

F (0) + f 0
αα

′

F (0) = 0.

Likewise, we can show
f 0

xx
′

H(0) + f 0
αα

′

H(0) = 0.

By multiplying both sides of the above equations from the left by pT
0 , we obtain

(a, b)α′

F (0) = (a, b)α′

H(0) = 0,

which implies that αF , αH are tangential at the origin, and furthermore a common tangent
vector is given by (−b, a)T = (−pT

0 f
0
α2
, pT

0 f
0
α1

)T . It is left to show that CF and CH intersect
transversally in full space. Suppose the contrary, namely, that there exists a nonzero
constant K, such that

C ′

F (0) = KC ′

H(0).

Since CF , CH are solutions of (2.1), (2.2), respectively, it follows

(

f 0
x f 0

α

g0
x g0

α

)

C ′

H(0) = 0,
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and
(

f 0
x f 0

α

h0
x h0

α

)

C ′

F (0) = 0,

but since C ′
F (0) = KC ′

H(0) holds, we conclude that




f 0
x f 0

α

g0
x g0

α

h0
x h0

α



C ′

F (0) = 0,

which contradicts the invertibility of A0. Thus, CF and CH intersect transversally at the
origin.

It is worth having presented the above discussion, since a similar approach will be
applied for proving the main result of this section, namely, the generic intersection of the
discretized fold and Hopf curves. Roughly speaking, we will see that genericity “persists”
under general one-step methods, although we have not formally defined genericity of
codimension two points in discrete-time systems, and that topic will not be discussed in
detail in the present article. Thus, the main result of this section is presented in the
following:

Theorem 5.2. Let a general one-step discretization method of order p ≥ 1 applied to
(1.1) be given by (2.6). Assume that system (1.1) has a generic BT2 or FH point at the
origin. Further let

CF := (xF , αF ) : (−ρ, ρ) × (−ǫ, ǫ) → RN ×R2,

CNS := (xNS, αNS) : (−ρ, ρ) × (−ǫ, ǫ) → RN ×R2,

where ǫ > 0, 0 < ρ ≤ h0 (so that the conclusions of Theorems 3.1, 3.2 and 4.1 hold) be
smooth, regular parametrizations of the curves of fold and Neimark-Sacker points of (2.6),
respectively, with CF (0, 0) = CNS(0, 0) = 0. Then, CF and CNS intersect transversally
(resp. tangentially) at the discretized codimension two point in full space (resp. parameter
space) for all h ∈ (−ρ, ρ).

Some remarks before presenting the proof of this theorem are in order. The existence
of a curve of discretized fold points can be deduced as in the Hopf case (cf. Theorem 4.1).
Thus, we will not assume that this curve remains at the same position, as it happens under
general Runge-Kutta methods (see the Introduction). The reason for doing so is that in
this way we can establish our results in a general framework. Particular results, e.g. when
dealing with Runge-Kutta methods, will be of course consistent with and covered by the
approach we are to employ. With these few remarks, we are ready to present:

Proof of Theorem 5.2. We will first show that the curves CF and CNS actually intersect
at the discretized codimension two point. This point, at which the curves intersect, can
be found as a solution of the system







E(h, x, α) = 0,
H(h, x, α) = 0,
F (h, x, α) = 0,

(5.1)
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where E : (−ρ, ρ) × Ω̃ × Λ̃ → RN , H,F : (−ρ, ρ) × Ω̃ × Λ̃ → R are defined by

E(h, x, α) :=
1

h
(ψh(x, α) − x),

H(h, x, α) := det

(

1

h
(ψh

x(x, α) ⊙ ψh
x(x, α) − Im)

)

,

F (h, x, α) := det

(

1

h
(ψh

x(x, α) − IN )

)

,

(cf. (3.4)). In the proof of Theorem 3.1, we saw that system (5.1) has for every h ∈ (−ρ, ρ)
a unique solution (x0(h), α0(h)) (which in this case represent an FN point or a 1 : 1
resonance of (2.6)). Thus, it follows that CF and CNS intersect at this point, and without
loss of generality, we suppose that for every h ∈ (−ρ, ρ) there exists s̃h, s̄h ∈ (−ǫ, ǫ),
such that CF (h, s̃h) = CNS(h, s̄h) = (x0(h), α0(h)). Next, we will see that CF and CNS

intersect tangentially in parameter space.
In what follows, we carry out the analysis for h 6= 0, since at h = 0 the conclusions

of the theorem clearly hold. This is readily seen by noticing that the curves CF , CNS

converge uniformly to their continuous counterpart (see estimate (4.2)), thereby for h = 0
the conclusions of the present theorem already follow from Theorem 5.1.

Recall that the curves CF , CNS represent equilibria of (2.6), thus it holds

E(h, xF (h, s), αF (h, s)) = 0,

and hence6

Ex(h, xF (h, s), αF (h, s))x′F (h, s) + Eα(h, xF (h, s), αF (h, s))α′

F (h, s) = 0,

for all (h, s) ∈ (−ρ, ρ) × (−ǫ, ǫ), and by evaluating the above expression at s = s̃h, we
arrive at

Ex(h, x0(h), α0(h))x
′

F (h, s̃h) + Eα(h, x0(h), α0(h))α
′

F (h, s̃h) = 0. (5.2)

Likewise, we can show

Ex(h, x0(h), α0(h))x
′

NS(h, s̄h) + Eα(h, x0(h), α0(h))α
′

NS(h, s̄h) = 0. (5.3)

Note that for every 0 < |h| < ρ there exists a nonzero vector p0h ∈ RN , such that

pT
0hEx(h, x0(h), α0(h)) = 0,

since Ex(h, x0(h), α0(h)) has rank defect equal to 1 (see the third equation in (5.1)).
Furthermore, due to the invertibility of (for (x0(h), α0(h)) is a regular zero of (5.1))

A0(h) :=





Ex(h, x0(h), α0(h)) Eα(h, x0(h), α0(h))
Hx(h, x0(h), α0(h)) Hα(h, x0(h), α0(h))
Fx(h, x0(h), α0(h)) Fα(h, x0(h), α0(h))



 ,

6Throughout this discussion, the symbol ′ means derivative with respect to s.
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it follows that rank
((

Ex(h, x0(h), α0(h)) Eα(h, x0(h), α0(h))
))

= N , for all h ∈ (−ρ, ρ).
Consequently, it holds

(ah, bh) := pT
0hEα(h, x0(h), α0(h)) 6= 0,

for all 0 < |h| < ρ. By multiplying both sides of (5.2) and (5.3) from the left by pT
0h, we

obtain
(ah, bh)α

′

F (h, s̃h) = (ah, bh)α
′

NS(h, s̄h) = 0,

which implies that αF and αNS meet tangentially at α = α0(h), for all 0 < |h| < ρ.
It remains to show the transversal intersection of the curves in full space. Suppose the
contrary, namely, that there exists a 0 6= hc ∈ (−ρ, ρ), and a nonzero constant K, such
that

C ′

F (hc, s̃hc
) = KC ′

NS(hc, s̄hc
).

Since CF , CH are solutions of
{

E(h, x, α) = 0,
F (h, x, α) = 0,

and
{

E(h, x, α) = 0,
H(h, x, α) = 0,

respectively, it follows
(

Ex(hc, x0(hc), α0(hc)) Eα(hc, x0(hc), α0(hc))
Fx(hc, x0(hc), α0(hc)) Fα(hc, x0(hc), α0(hc))

)

C ′

F (hc, s̃hc
) = 0,

and
(

Ex(hc, x0(hc), α0(hc)) Eα(hc, x0(hc), α0(hc))
Hx(hc, x0(hc), α0(hc)) Hα(hc, x0(hc), α0(hc))

)

C ′

NS(hc, s̄hc
) = 0,

but since C ′
F (hc, s̃hc

) = KC ′
NS(hc, s̄hc

) holds, we conclude that




Ex(hc, x0(hc), α0(hc)) Eα(hc, x0(hc), α0(hc))
Hx(hc, x0(hc), α0(hc)) Hα(hc, x0(hc), α0(hc))
Fx(hc, x0(hc), α0(hc)) Fα(hc, x0(hc), α0(hc))



C ′

F (hc, s̃hc
) = 0,

which contradicts the invertibility of A0(hc). Thus, CF and CNS intersect transversally
at (x0(h), α0(h)) for all 0 < |h| < ρ.

6 A Numerical Example

Consider the following continuous-time, dimensionless system:

ẋ = −

(

β + α

R

)

x+
α

R
y −

C

R
x3 +

D

R
(y − x)3 −

E

R
x5 +

F

R
(y − x)5,

ẏ = αx− (α +G)y − z −D(y − x)3 −Hy3 − F (y − x)5 − Iy5, (6.1)

ż = y,
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α

β

ed(h,α0)

NS H

BT2

α0

Fig. 6.1: Interpretation of the distance function on parameter space.

with state variables (x, y, z) ∈ R3 and with parameters β, α, C,D,E, F,G,H, I, R ∈ R,
R > 0. This system describes the dynamics of a modified van der Pol-Duffing oscillator.
A thorough analysis of this oscillator concerning both local, as well as global phenomena
can be found in [1], [7], and a more general discussion concerning the dynamics of this
type of circuits can be found in [14, Chapter 7].

For numerical purposes, we assume β, α to be our bifurcation parameters, and we let
C = 1, D = −5, E = 1, F = 1, G = −1.5, H = 1, I = 1, R = 3 fixed. Moreover, the
numerical computations will be done with the continuation software CONTENT, cf. [16].
Further numerical manipulations will be performed with MATLAB.

The purpose of this experiment is to observe whether the emanating path of Hopf
points is O(hp)-shifted by one-step methods, cf. Theorem 4.1. In particular, we will deal
with the Hopf curve that emanates from a BT2 point of (6.1) located at (xBT , yBT , zBT ) =
(−1, 0, −4.26794919243109), (αBT , βBT ) = (8.26794919243109,−6.26794919243109) (cf.
[19]). As for a discretization method, we will use the 3-th order method of Runge.

Under notation of Theorem 4.1, define the following distance function

DistH(h, α) := ||dNS(h, α) − dH(α)||,

for h > 0, |α − αBT | small, where || · || represents the Euclidean norm. Thus, our aim
is to investigate the behavior of DistH , as (h, α) vary. In Figure 6.1, we illustrate the
meaning of the above distance function. In this picture, ed represents the β-component
of DistH . By repeatedly fixing α from α = 7.41663851586445 to α = 9.09659824492632,
and letting h vary from h ≈ 0.05 to h = 0.3, for each α fixed, we obtained a surface
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Fig. 6.2: Behavior of DistH with respect to (h, α).

plot of DistH which is shown in Figure 6.2. In this picture, two facts draw special
attention. First recall that the singularity, i.e. the BT2 point, is located along the line
α = αBT ≈ 8.26. Thus, it is observed that DistH(h, α) tends to zero, as α tends to the
singularity, regardless h. This fact is analytically seen in (4.6), and schematically seen
in Figure 6.1. Secondly, it is also noted that DistH(h, α) tends to zero, as h tends to
zero, regardless α, which means that DistH is uniformly bounded, however, we do not
know to which order can this function be bounded. For determining the order, we will
analyze the behavior of DistH with respect to h, for several, fixed α’s. In Figure 6.3, this
behavior is shown. In this picture, we plotted the logarithm of the variables, so that we
can determine the order as the slope of the quasi-straight lines obtained. The labels on
the lines represent, approximately, the corresponding fixed value of α. Thus, it is seen
that the slope of the lines are approximately the same, that is, m ≈ 3.0029 ≈ 3, which is
consistent with Theorem 4.1.
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