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1. Introduction. In this paper we present a unifying theory to analyse the
strong error of convergence for numerical methods applied to stochastic ordinary
differential equations (SODEs). Motivated by the theory of discrete approximation
(see [7, 8, 9, 10], [25], [26, 27, 28, 29]) we develop a notion of consistency, stability and
convergence which allows to derive sharper versions of well-known results concerning
the convergence of onestep schemes [16, 19, 20] and multistep methods [4].

The improvements are concerned with three aspects of the theory: A special
choice of norms allows us to prove bistability in the sense of [29]. Our first result
is a characterization of bistability in terms of a strong version of Dahlquist’s root
condition. Secondly, we derive a two-sided estimate of the strong error of convergence.
This can be achieved by a suitable stochastic version of the deterministic Spijker
norm (see [23, 24], [25, Ch.2.2], [11, Ch.III.8]). Finally, we use these two-sided error
estimates to prove the maximum order of convergence and extend a known result [6]
for Euler-Maruyama type methods to higher order schemes.

Our analysis applies to a wide range of stochastic onestep and multistep methods.
In this paper we are only concerned with the stochastic theta method, higher order
Itô-Taylor schemes and the BDF2-Maruyama method. But our results immediately
carry over to all stochastic linear multistep methods mentioned in [4].

For the stochastic theta method a slightly weaker version of the two-sided error
estimate was shown in [3]. The present article uses the same conceptual idea, but fol-
lows a different path in the proof of bistability. We also note that further numerical
stability concepts have been developed for multistep methods [4], for stochastic differ-
ential algebraic equations [31] and stochastic delay equations [2, 5]. In the following
we give a more technical outline of the paper.

We are interested in the numerical approximation of R
d-valued stochastic pro-

cesses X, which satisfy an ordinary Itô stochastic differential equation [1, 18, 21] of
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the form

dX(t) = b0(t,X(t))dt +
m
∑

r=1

br(t,X(t))dW r(t), t ∈ [0, T ],

X(0) = X0.

(1.1)

The drift and diffusion coefficient functions br : [0, T ] × R
d → R

d, r = 0, . . . ,m, are
assumed to be measurable. The processes W r, r = 1, . . . ,m, are real and independent
standard Brownian motions on a given complete probability space (Ω,F , P ), adapted
to the filtration (F t)t∈[0,T ] which fulfills the usual conditions (i.e. the filtration is
right-continuous and each F t contains all P -null sets).

In addition, we assume that the following usual assumptions [1, 18, 21] hold:
(A1) The initial value X0 is an F0-measurable and R

d-valued random variable sat-
isfying

E(|X0|2) < ∞.

(A2) There exists a constant K > 0 such that

|br(t, x)| ≤ K(1 + |x|) and |br(t, x) − br(t, y)| ≤ K|x − y|

for all x, y ∈ R
d, t ∈ [0, T ] and r = 0, . . . ,m.

Here we denote by E the expectation with respect to P and by | · | the Euclidean
norm in R

d. Assumptions (A1) and (A2) are sufficient to assure the existence and
uniqueness of a strong Itô solution to (1.1) (see [1, 18, 21]), i.e. there exists a unique,
P -a.s. continuous and (F t)t∈[0,T ]-adapted process X which satisfies

X(t) = X0 +

∫ t

0

b0(s,X(s))ds +
m
∑

r=1

∫ t

0

br(s,X(s))dW r(s) (1.2)

for all t ∈ [0, T ] and

E

(

∫ T

0

|X(s)|2ds

)

< ∞.

Next, we introduce a general form of a stochastic k-step method which we use
for the characterization of bistability. For simplicity we consider equidistant step size
h = T

N
for N ∈ N and the time grid

τh = {ti = ih | i = 0, . . . , N} .

Note that our analysis for onestep methods is not restricted to equidistant time grids
(c.f. [3] for the stochastic theta method).

We are concerned with stochastic k-step methods written as

Yi = X̃i, for i = 0, . . . , k − 1,

k
∑

j=0

ajYi+j−k = Φh(ti, Yi−k, . . . , Yi, (I
ti+j−k
α )

α∈A,j=1,...,k
), for i = k, . . . , N,

(1.3)

where aj ∈ R, ak 6= 0 and the initial values X̃i, i = 0, . . . , k − 1, are F ti
-measurable,

square integrable random variables. In order to compute the approximation Yi of the
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solution X(ti) the increment function Φh depends on the time ti ∈ τh, a family of

stochastic increments (I
ti+j−k
α )

α∈A,j=1,...,k
, the k predecessors of Yi and, in the case

of an implicit multistep method, it also depends on Yi itself. In the next section we
give more details on Φh.

A special case of a k-step method is the Euler-Maruyama scheme: k = 1,

Y0 = X0,

Yi − Yi−1 = hb0(ti−1, Yi−1) +

m
∑

r=1

br(ti−1, Yi−1)I
ti

(r), for i = 1, . . . , N,

with the stochastic increments Iti

(r) = W r(ti)−W r(ti−1). In [16] it is shown that the

Euler-Maruyama scheme converges at least with order γ = 1
2 in the strong sense, i.e.

there exists a constant C > 0 such that
(

E

(

max
0≤i≤N

|X(ti) − Yi|2
))

1
2

≤ Chγ ,

where X is the unique solution to (1.1). In [6] J.M.C. Clark and R.J. Cameron have
shown that, in general, γ = 1

2 is also the maximum rate of convergence for the Euler-
Maruyama scheme (and for any method which only uses the Brownian motion at grid
points).

In order to derive similar results for k-step methods we write (1.3) as an operator
equation AhXh = 0, where the operator Ah acts on the set of adapted grid functions.
This is done for the general form (1.3) and for the stochastic theta method, the Itô-
Taylor schemes and BDF2-Maruyama in Section 2. Now, the strong convergence is
written in terms of the norm

‖Yh‖0,h =
(

E
(

max0≤i≤N |Yh(ti)|2
))

1
2 . (1.4)

On the other side, the local truncation error is measured by the following stochastic
version of Spijker’s norm

‖Yh‖−1,h =
∑k−1

j=0 ‖Yh(tj)‖L2(Ω) +

(

E

(

maxk≤i≤N

∣

∣

∣

∑i
j=k Yh(tj)

∣

∣

∣

2
))

1
2

. (1.5)

In the analysis of deterministic multistep methods it is well-known that Spijker’s norm
leads to optimal stability properties [10]. In this paper we will show, that under some
conditions the following bistability inequality

C1‖AhYh − AhZh‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖AhYh − AhZh‖−1,h (1.6)

is equivalent to Dahlquist’s strong root condition. We refer to Section 3 for a precise
formulation of our results and to Section 4 for the proof of the bistability inequality.

If we apply the bistability inequality to the restriction rE
h X of the unique solution

X to the time grid τh and the grid function Xh, which is generated by the k-step
method (1.3), i.e. AhXh = 0, we obtain the two-sided error estimate

C1‖AhrE
h X‖−1,h ≤ ‖rE

h X − Xh‖0,h ≤ C2‖AhrE
h X‖−1,h.

In Section 5 we derive upper bounds for the local truncation error ‖AhrE
h X‖−1,h

of the stochastic theta method, the higher order Itô-Taylor schemes and the BDF2-
Maruyama scheme in terms of the step size h. In Section 6 we use the left-hand side
of the two-sided error estimate to discuss the maximum order of convergence for these
k-step methods.
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2. Numerical schemes. In this section we rewrite the general k-step method
(1.3) as an operator equation AhXh = 0 and introduce the corresponding spaces and
norms. The operator formulation is motivated by the discrete approximation theory
[29]. Our notion of consistency, stability and convergence will be formulated in terms
of the operator Ah. At the end of this section we present some well-known numerical
schemes, which will be analysed in more detail in the sequel of this paper.

Given a time grid τh we define the set Gh := G(τh, L2(Ω,F , Rd)) to be the space of
all adapted and L2(Ω) := L2(Ω,F , P ; Rd)-valued grid functions. That is, for Yh ∈ Gh,
the random variables Yh(ti) are square-integrable and F ti

-measurable for all ti ∈ τh.
Next, we endow Gh with the norms (1.4) and (1.5) and we denote the Banach spaces
(Gh, ‖ · ‖0,h) and (Gh, ‖ · ‖−1,h) by Eh and Fh, respectively.

Now the operator Ah : Eh → Fh representing the k-step method (1.3) is given by

[AhYh](ti) = Yh(ti) − X̃i (2.1)

for 0 ≤ i ≤ k − 1 and by

[AhYh](ti) =

k
∑

j=0

ajYh(ti+j−k)

− Φh(ti, Yh(ti−k), . . . , Yh(ti), (I
ti+j−k
α )

α∈A,j=1,...,k
)

(2.2)

for k ≤ i ≤ N and Yh ∈ Eh. Please note, that the initial values X̃i ∈ L2(Ω,F ti
, P ; Rd)

of the k-step method are incorporated into the definition of Ah. Clearly, if a grid
function Xh is generated by the k-step method (1.3) then AhXh = 0.

Next, we turn to the increment function Φh and to the stochastic increments
(I

ti+j−k
α )

α∈A,j=1,...,k
. Let A be a nonempty, finite set of multi-indices α = (j1, . . . , jℓ),

where ji ∈ {0, . . . ,m} for i = 1, . . . , ℓ. By ℓ = ℓ(α) ∈ N we denote the length of α.
For α = (j1, . . . , jℓ) ∈ A the stochastic increment Iti

α is given by the ℓ-fold iterated
stochastic Itô-integral

Iti
α =

∫ ti

ti−1

∫ s1

ti−1

· · ·
∫ sℓ−1

ti−1

dW j1(sℓ) · · · dW jℓ(s1),

with dW 0(s) = ds. For example, we have Iti

(0) = ti − ti−1 = h and Iti

(r) = W r(ti) −
W r(ti−1) ∈ F ti

for r > 0.
For Ah to be well-defined the increment function Φh needs to satisfy

Φh(ti, Yh(ti−k), . . . , Yh(ti), (I
ti+j−k
α )

α∈A,j=1,...,k
) ∈ L2(Ω,F ti

, P ; Rd) (2.3)

for all Yh ∈ Eh and ti ∈ τh. In the following we will introduce three different numerical
schemes and show that (2.3) is fulfilled in each case.

Example (Stochastic theta method). Let θ ∈ [0, 1]. For a time grid τh the stochas-
tic theta method (STM) is given by the recursion

Y0 = X̃0,

Yi − Yi−1 = h
(

(1 − θ)b0(ti−1, Yi−1) + θb0(ti, Yi)
)

+

m
∑

r=1

br(ti−1, Yi−1)I
ti

(r),
(2.4)

for 1 ≤ i ≤ N .
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Obviously, the STM is a onestep method (k = 1) and one can choose A :=
{(r) | r = 0, . . . ,m}. For a given grid function Yh ∈ Eh the corresponding increment
function ΦSTM

h is defined by

ΦSTM
h (ti, Yh(ti−1), Yh(ti), (I

ti
α )

α∈A)

= h
(

(1 − θ)b0(ti−1, Yh(ti−1)) + θb0(ti, Yh(ti))
)

+

m
∑

r=1

br(ti−1, Yh(ti−1))I
ti

(r).

By assumption (A2) the random variable ΦSTM
h (ti, Yh(ti−1), Yh(ti), (I

ti
α )

α∈A) is square-
integrable and F ti

-measurable.
For the choice θ = 0 one gets the classic Euler-Maruyama scheme. Unlike the

deterministic case, the STM converges in general for every choice of θ with the order
γ = 1

2 (see the next section). An important application of the STM is the approxi-
mation of stiff stochastic differential equations (see [12]).

Example (BDF2-Maruyama). As a prototype for drift-linear k-step methods we
consider the BDF2-Maruyama scheme [4] which is given by

Y0 = X̃0, Y1 = X̃1,

Yi −
4

3
Yi−1 +

1

3
Yi−2 = h

2

3
b0(ti, Yi) +

m
∑

r=1

br(ti−1, Yi−1)I
ti

(r)

− 1

3

m
∑

r=1

br(ti−2, Yi−2)I
ti−1

(r) , 2 ≤ i ≤ N.

(2.5)

As before, one can choose A := {(r) | r = 0, . . . ,m}. The increment function ΦBDF
h

of the 2-step method takes the form

ΦBDF
h (ti, Yh(ti−2), Yh(ti−1), Yh(ti), (I

ti+j−2

α )
α∈A,j=1,2)

= h
2

3
b0(ti, Yh(ti)) +

m
∑

r=1

br(ti−1, Yh(ti−1))I
ti

(r) −
1

3

m
∑

r=1

br(ti−2, Yh(ti−2))I
ti−1

(r)

for grid functions Yh ∈ Eh and all ti ∈ τh. Again, by the linear growth condition (A2),

the random variable ΦBDF
h (ti, Yh(ti−2), Yh(ti−1), Yh(ti), (I

ti+j−2

α )
α∈A,j=1,2) is square-

integrable and F ti
-measurable. Hence, the associated operator ABDF

h : Eh → Fh is
well-defined.

It turns out that the BDF2-Maruyama scheme also converges with the strong
order γ = 1

2 . In the deterministic case, linear multistep methods usually are of higher
order than the Euler method. Therefore, one expects a better approximation of the
dominating drift term in systems with small noise and the approximation error is
significantly smaller than the error of the Euler-Maruyama scheme. We refer to [4]
for a detailed discussion.

Now we turn to the higher order Itô-Taylor schemes which are based on an iterated
application of Itô’s formula to the integrands of (1.2), provided that all appearing
integrals and derivatives exist. We refer to the books [16, 19, 20] for a rigorous
derivation.

Example (Itô-Taylor scheme). As in [16], for γ ∈ {n
2 |n ∈ N}, we consider the

finite set of multi-indices

Aγ =

{

α = (j1, . . . , jℓ) | 1 ≤ ℓ(α) + n(α) ≤ 2γ or ℓ(α) = n(α) = γ +
1

2

}

,
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where we write n(α) ∈ N for the number of components of α which are equal to 0.
The Itô-Taylor scheme of order γ is given by

Y0 = X̃0,

Yi − Yi−1 =
∑

α∈Aγ
fα(ti−1, Yi−1)I

ti
α , 1 ≤ i ≤ N.

(2.6)

Here, for α = (j1, . . . , jℓ), the coefficient functions fα : [0, T ] × R
d → R

d are defined
by

fα(t, x) = (Lj1 · · ·Ljℓf)(t, x),

where f : [0, T ] × R
d → R

d is the projection with respect to the second coordinate,
i.e. f(t, x) = x. The Lr are differential operators of the form

L0 =
∂

∂t
+

d
∑

i=1

b0,i ∂

∂xi

+
1

2

d
∑

i,j=1

m
∑

r=1

br,ibr,j ∂2

∂xi∂xj

,

Lr =

d
∑

i=1

br,i ∂

∂xi

, r = 1, . . . ,m,

where br,i denotes the i-th component of the coefficient function br for i = 1, . . . , d
and r = 0, . . . ,m.

If we choose γ = 1
2 then the set A 1

2
consists of all multi-indices of length 1, i.e.

A 1
2

= {(0), (1), . . . , (m)}, and the coefficient functions fα simplify to the drift and

diffusion coefficient functions of the SODE (1.1). Thus the Itô-Taylor scheme of order
1
2 is the well-known Euler-Maruyama scheme. One also easily checks that the choice
γ = 1 leads to the Milstein method.

The associated increment function ΦITS
h is given by

ΦITS
h (ti, Yh(ti−1), Yh(ti), (I

ti
α )

α∈Aγ
) =

∑

α∈Aγ
fα(ti−1, Yh(ti−1))I

ti
α

where Yh ∈ Eh. Under the following additional assumption the increment function is
well-defined:

(A3) The assumptions of Theorem 5.5.1 in [16], (i.e. the coefficient functions br of
the SODE (1.1) are sufficiently smooth such that the functions fα and the
Itô-Taylor expansion exists up to the order γ) are satisfied and for all α ∈ Aγ

there exists a constant Lα > 0 such that

|fα(t, x) − fα(t, y)| ≤ Lα|x − y| and |fα(t, x)| ≤ Lα(1 + |x|)

for all x, y ∈ R
d and t ∈ [0, T ].

In practice it can be costly to simulate the iterated stochastic increments Iti
α . This

may outweight the advantage of the higher order of convergence. However, in many
important applications the diffusion coefficients have some special properties which
allow to simplify the Itô-Taylor schemes in a way that the use of iterated stochastic
integrals can be avoided. We refer to the corresponding discussions in [16] and [22, 30].
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3. Definitions and main results. In this section we introduce our notions of
consistency and (numerical) bistability of a multistep method which are motivated by
the work of Stummel [29]. For a comparison to related notions in the literature and
for a more detailed embedding into the abstract theory of discrete approximations we
refer to [3] and [17], respectively. In the second part of this section we give a precise
formulation of our assumptions, the characterization of the bistability of a multistep
method and the two-sided error estimates. We start with the definition of a consistent
multistep method.

Definition 3.1. The multistep method (Ah)h>0 is called consistent of order
γ > 0, if there exist a constant C > 0 and an upper step size bound h > 0, such that
the estimate

‖AhrE
h X‖−1,h ≤ Chγ (3.1)

holds for all grids τh with h ≤ h, where rE
h X denotes the restriction of the analytic

solution X of (1.1) to the time grid τh.

The left-hand side of (3.1) is called local truncation error or consistency error
and uses our stochastic version of Spijker’s norm (1.5). The standard procedure of
eliminating convergence errors by successive triangle inequalities from local errors (see
”Lady Windemere’s fan” diagram in [11]) is not sharp enough to produce two-sided
error estimates. Next, we come to the definition of bistability.

Definition 3.2. The multistep method (Ah)h>0 is called bistable with respect to
the norms ‖ · ‖0,h, ‖ · ‖−1,h, if there exist constants C1, C2 > 0 and an upper step size
bound h > 0, such that the operators Ah : Eh → Fh are bijective and the estimate

C1‖AhYh − AhZh‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖AhYh − AhZh‖−1,h (3.2)

holds for all Yh, Zh ∈ Eh and all grids τh with h ≤ h.

If only the right-hand side inequality in (3.2) is true we say that the multistep
method is stable. As we will see below, consistency and stability are sufficient for the
convergence of the multistep method (Ah)h>0.

Definition 3.3. The multistep method (Ah)h>0 is called convergent of order
γ > 0, if there exist a constant C > 0 and an upper step size bound h > 0, such that
the operators Ah : Eh → Fh are bijective and the estimate

‖Xh − rE
h X‖0,h ≤ Chγ

holds for all time grids τh with h ≤ h. Here Xh and rE
h X denote the solution to

AhXh = 0 and the restriction of the analytic solution X to the time grid τh, respec-
tively.

A bistable multistep method can be characterized by Dahlquist’s strong root
condition. The characteristic polynomial ρ of the k-step method (1.3) is given by

ρ(z) =

k
∑

j=0

ajz
j , z ∈ C.

The strong root condition reads as follows:

Strong root condition If z ∈ C with ρ(z) = 0, then either |z| < 1 or z = 1 is a
simple root of ρ.
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In [4] the authors showed for a different pair of norms that the usual root condition
(all roots of ρ lie within the unit circle and all roots with modulus 1 are of multiplicity
1) is necessary and sufficient for the stability of a stochastic multistep method. But,
as we will see in the next section, the usual root condition is not sharp enough to
characterize bistability.

For our stability theorem we also need the following Lipschitz-type assumptions
on the increment function Φh.
(S1) There exists L > 0 such that for all j = k, . . . , N , Yh ∈ Gh and Z ∈ L2(Ω,F tj

, P ; Rd)

∥

∥

∥
Φh(tj , Yh(tj−k), . . . , Yh(tj−1), Yh(tj), (I

tj+i−k
α )

α∈A,i=1,...,k
)

−Φh(tj , Yh(tj−k), . . . , Yh(tj−1), Yh(tj) + Z, (I
tj+i−k
α )

α∈A,i=1,...,k
)
∥

∥

∥

L2(Ω)

≤ Lh‖Z‖L2(Ω).

(S2) There exists L > 0 such that for all j = k, . . . , N , Yh, Zh ∈ Gh

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k

[

Φh(tη, Yh(tη−k), . . . , Yh(tη), (I
tη+l−k
α )

α∈A,l=1,...,k
)

−Φh(tη, Zh(tη−k), . . . , Zh(tη), (I
tη+l−k
α )

α∈A,l=1,...,k
)
]∣

∣

∣

2
)

≤ Lh

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

Now we are in the position to formulate our first main result.
Theorem 3.4 (Characterization of bistability). Assume that the multistep method

(Ah)h>0 satisfies ρ(1) = 0, ak 6= 0 and the Lipschitz assumptions (S1), (S2). Then

(Ah)h>0 is bistable

if and only if

(Ah)h>0 satisfies the strong root condition.

The proof of theorem 3.4 is deferred to Section 4. The next theorem makes use of
the bistability inequality (3.2).

Theorem 3.5. Assume that the multistep method (Ah)h>0 is bistable. Then for
γ > 0

(Ah)h>0 is consistent of order γ

if and only if

(Ah)h>0 is convergent of order γ.

Moreover, there exist constants C1, C2 > 0 and an upper step size bound h > 0 such
that the two-sided error estimate

C1‖AhrE
h X‖−1,h ≤ ‖Xh − rE

h X‖0,h ≤ C2‖AhrE
h X‖−1,h (3.3)

holds for all h < h, where Xh ∈ Eh solves AhXh = 0 and rE
h X denotes the restriction

of the analytic solution X to the time grid τh.
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Proof. Since (Ah)h>0 is bistable there exist an upper step size bound h > 0
such that the operators Ah : Eh → Fh are bijective for all h < h. Thus, there
exists a unique grid function Xh ∈ Eh such that AhXh = 0. Applying the bistability
inequality (3.2) to Xh and the restriction rE

h X yields the two-sided error estimate
(3.3). The first statement of the theorem is now evident.

The rest of this section is devoted to the three approximation schemes which were
introduced in Section 2. The first theorem is concerned with the bistability of these
methods and will also be proved in the next section.

Theorem 3.6.
(i) Under the assumptions (A1) and (A2) the stochastic theta method and the

BDF2-Maruyama scheme are bistable.
(ii) Under the assumptions (A1), (A2) and (A3) the Itô-Taylor schemes are

bistable.
The next theorem deals with the consistency of the approximation schemes and

is based on the following additional assumptions. Here we use the notation of the
remainder set B(Aγ) of the Itô-Taylor expansion (c.f. [16]) which is given by

B(Aγ) = {α = (j1, j2, . . . , jℓ) | j1 = 0, . . . ,m, α /∈ Aγ , (j2, . . . , jℓ) ∈ Aγ}.

(C1) The initial values are consistent of order γ, i.e. there exist a constant C > 0
and h > 0 such that for all h ≤ h

max
0≤i≤k−1

‖X(ti) − X̃i‖L2(Ω) ≤ Chγ .

(C2) There exists a constant K > 0 such that

|br(t, x) − br(s, x)| ≤ K(1 + |x|)
√

|t − s|

for all x ∈ R
d, t, s ∈ [0, T ].

(C3) For all α ∈ B(Aγ) we have

∫ T

0

E
(

|fα(s,X(s))|2
)

ds < ∞.

The assumption (C2) is already used in [16] to prove convergence of the Euler-
Maruyama scheme. The assumption (C3) is fulfilled if all coefficient functions fα,
α ∈ B(Aγ), satisfy a linear growth condition. Now we formulate the consistency
theorem.

Theorem 3.7.
(i) Under the assumptions (A1), (A2), (C1) and (C2) the stochastic theta

method and BDF2-Maruyama are consistent of order γ = 1
2 .

(ii) Under the assumptions (A1), (A2), (A3), (C1) and (C3) the Itô-Taylor
scheme of order γ is consistent of order γ.

The proof is deferred to Section 5. From theorems 3.5, 3.6 and 3.7 one immediately
obtains the following result:

Corollary 3.8.
(i) Under the assumptions (A1), (A2), (C1) and (C2) the stochastic theta

method and BDF2-Maruyama are convergent of order γ = 1
2 .

(ii) Under the assumptions (A1), (A2), (A3), (C1) and (C3) the Itô-Taylor
scheme of order γ is convergent of order γ.
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Moreover, in both cases, the two-sided error estimate (3.3) is valid.
We close this section with the following remarks.

1. We remark that by our choice of the norm (1.4) the convergence in definition
3.3 and corollary 3.8 is understood in the L2-sense. In particular, the numerical
solution Xh of the equation AhXh = 0 converges uniformly at each grid point to the
restriction of the analytic solution X. The L2-convergence implies a good pathwise
approximation for each sample path ω ∈ Ω. In addition to this notion of strong
convergence we mention the concepts of (numerical) weak convergence (see [16, 19, 20])
and of pathwise convergence (see [13, 14, 15]) which. however, are not considered in
this paper.

2. One can use a slightly different pair of norms where the maximum occurs
outside the expectation, i.e. |||Vh|||0,h := maxti∈τh

‖Xh(ti)−X(ti)‖L2(Ω), and obtains
similar results. For the stochastic theta method a proof is given in [3].

3. In our approach we work with grid functions only. According to [16, Ch.10.6]
one can interpolate the numerical approximation to an adapted, right-continuous
stochastic procress Xh : [0, T ] → R

d with existing left limits (cadlag) such that Xh(t)
converges uniformly in t to the analytic solution X(t) with the same order that holds
at the grids points.

4. Characterization of bistability. In this section we prove the Theorems
3.4 and 3.6. The proofs are done in several steps, each in an own subsection. First
we show that the numerical schemes form Section 2 fulfill the strong root condition
and the stability assumptions (S1), (S2). Hence Theorem 3.6 directly follows from
Theorem 3.4.

Next we show that the operator Ah of the general k-step method (1.3) is invertible
under assumption (S1). In the third subsection we write the k-step method as a sum
of a linear operator and the increment function. We show that the k-step method is
bistable if and only if the linear operator is bistable. Finally, in the last subsection,
we show that the linear operator is bistable if and only if Dahlquist’s strong root
condition is satisfied.

In the last two subsections we apply techniques used by R.D. Grigorieff [10] for a
similar analysis of deterministic multistep methods.

4.1. Proof of Theorem 3.6. In this subsection we show that under the given
assumptions the stochastic theta method, the BDF2-Maruyama scheme and the Itô-
Taylor scheme of order γ satisfy the stability assumptions (S1), (S2) and the strong
root condition. Thus Theorem 3.6 follows from Theorem 3.4.

By the definitions of the operators ASTM
h , ABDF

h and AITS
h the conditions ρ(1) =

0, ak 6= 0 and the strong root condition are satisfied in each case (the roots of the
characteristic polynomial of the BDF2-Maruyama scheme are z1 = 1, z2 = 1

3 ). Thus
it remains to prove the stability assumptions (S1),(S2).

First we do this for the stochastic theta method (2.4). Let Yh ∈ Gh, j = 1, . . . , N
and Z ∈ L2(Ω,F tj

, P ; Rd), then by the Lipschitz-assumption (A2)

∥

∥

∥
ΦSTM

h (tj , Yh(tj−1), Yh(tj), (I
tj

(r))r=0,...,m)

−ΦSTM
h (tj , Yh(tj−1), Yh(tj) + Z, (I

tj

(r))r=0,...,m)
∥

∥

∥

L2(Ω)

=
∥

∥hθ
(

b0(tj , Yh(tj)) − b0(tj , Yh(tj) + Z)
)∥

∥

L2(Ω)

≤ Lh‖Z‖L2(Ω),
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where L = θK. This proves (S1) for the stochastic theta method. By the inequality
(a + b + c)2 ≤ 3(a2 + b2 + c2) we obtain for (S2)

E

(

max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

(

ΦSTM
h (tη, Yh(tη−1), Yh(tη), (I

tη

(r))r=0,...,m)

−ΦSTM
h (tη, Zh(tη−1), Zh(tη), (I

tη

(r))r=0,...,m)
)∣

∣

∣

2
)

≤ 3E



max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

h(1 − θ)
(

b0(tη−1, Yh(tη−1)) − b0(tη−1, Zh(tη−1))
)

∣

∣

∣

∣

∣

2




+ 3E



max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

hθ
(

b0(tη, Yh(tη)) − b0(tη, Zh(tη))
)

∣

∣

∣

∣

∣

2




+ 3E



max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

m
∑

r=1

(br(tη−1, Yh(tη−1)) − br(tη−1, Zh(tη−1))) I
tη

(r)

∣

∣

∣

∣

∣

2




=: T1 + T2 + T3.

We estimate the three summands separately. For T1 Jensen’s inequality and the
Lipschitz-assumption (A2) yield

T1 ≤ 3E

(

max
1≤i≤j

ih2(1 − θ)2
i
∑

η=1

∣

∣b0(tη−1, Yh(tη−1)) − b0(tη−1, Zh(tη−1))
∣

∣

2

)

≤ 3(1 − θ)2T

j
∑

η=1

hE

(

∣

∣b0(tη−1, Yh(tη−1)) − b0(tη−1, Zh(tη−1))
∣

∣

2
)

≤ 3(1 − θ)2TK2h

j
∑

η=1

E

(

|Yh(tη−1) − Zh(tη−1)|2
)

≤ Lh

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

,

where the constant L > 0 only depends on θ, T and K. The term T2 is estimated
analogously. By the martingale property of the stochastic Itô-integrals we are allowed

to apply Doob’s martingale inequality to term T3. Then we use E

(

∣

∣

∣I
tη

(r)

∣

∣

∣

2
)

= h and

finish the estimate by

T3 ≤ 12E





∣

∣

∣

∣

∣

j
∑

η=1

m
∑

r=1

(br(tη−1, Yh(tη−1)) − br(tη−1, Zh(tη−1))) I
tη

(r)

∣

∣

∣

∣

∣

2




≤ 12

j
∑

η=1

m
∑

r=1

hK2
E

(

|Yh(tη−1) − Zh(tη−1)|2
)

≤ Lh

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.
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Here the constant L > 0 depends on m and K. Altogether we have shown that the
stochastic theta method satisfies assumption (S2).

Since the BDF2-Maruyama scheme can be written as a sum of two stochastic
theta methods with different parameter values θ the proof of (S1), (S2) is basically
the same as above and therefore skipped.

The Itô-Taylor schemes are explicit onestep methods and (S1) is clearly satisfied.
It remains to prove (S2) for the Itô-Taylor scheme of order γ. For Yh, Zh ∈ Gh and
j = 1, . . . , N we compute

E

(

max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

(

ΦITS
h (tη, Yh(tη−1), Yh(tη), (Itη

α )
α∈Aγ

)

−ΦITS
h (tη, Zh(tη−1), Zh(tη), (Itη

α )
α∈Aγ

)
)

∣

∣

∣

∣

∣

2




= E






max
1≤i≤j

∣

∣

∣

∣

∣

∣

i
∑

η=1

∑

α∈Aγ

[fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))] I
tη
α

∣

∣

∣

∣

∣

∣

2






≤ |Aγ |
∑

α∈Aγ

E



max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

[fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))] I
tη
α

∣

∣

∣

∣

∣

2


 .

Since |Aγ | < ∞ it is sufficient to estimate each summand separately. For all multi-

indices α ∈ Aγ of the form α = (0, . . . , 0), i.e. ℓ(α) = n(α), we have I
tη
α = 1

ℓ(α)!h
ℓ(α).

In this case we apply Jensen’s inequality and the Lipschitz-assumption (A3) and
estimate the summand by

E



max
1≤i≤j

∣

∣

∣

∣

∣

i
∑

η=1

[fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))] I
tη
α

∣

∣

∣

∣

∣

2




≤ T

(ℓ(α)!)2
h2ℓ(α)−1

j
∑

η=1

E

(

|fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))|2
)

≤ T

(ℓ(α)!)2
Lαh2ℓ(α)−1

j
∑

η=1

E

(

|Yh(tη−1) − Zh(tη−1)|2
)

≤ T

(ℓ(α)!)2
Lαh2ℓ(α)−1

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

For multi-indices α ∈ Aγ with ℓ(α) 6= n(α) we have E(I
tη
α |F tη−1

) = 0 with probability

1 (c.f. Lemma 5.7.1 in [16]) and there exists a constant C such that E(|Itη
α |2) ≤

Chℓ(α)+n(α) (c.f. Lemma 5.7.2 in [16] or Lemma 5.3 below). Hence, under the given
assumptions, the stochastic process (Si)i=0,...,N with

Si :=

i
∑

η=1

(fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))) Itη
α
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is a discrete, square-integrable martingale. Once again we apply Doob’s martingale
inequality and obtain

E

(

max
1≤i≤j

|Si|2
)

≤ 4E

(

|Sj |2
)

= 4

j
∑

η=1

E

(

∣

∣[fα(tη−1, Yh(tη−1)) − fα(tη−1, Zh(tη−1))] I
tη
α

∣

∣

2
)

≤ 4CLα

j
∑

η=1

hℓ(α)+n(α)
E

(

|Yh(tη−1) − Zh(tη−1)|2
)

≤ 4CLαhℓ(α)+n(α)

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

Since ℓ(α) + n(α) ≥ 1 we have shown (S2) for the Itô-Taylor scheme of order γ.

4.2. Invertibility of Ah. In this subsection we begin the proof of Theorem 3.4
by discussing the invertibility of the operator Ah : Eh → Fh of the general k-step
method (1.3). The following lemma summarizes our result.

Lemma 4.1. Under the assumptions (S1) and ak 6= 0 there exists an upper step
size bound h > 0 such that the operators Ah : Eh → Fh are bijective for all h < h.

Proof. Let Yh ∈ Fh. The equation AhXh = Yh is written in terms of grid
functions, hence we have to solve a system of equations of the form

[AhXh](ti) = Yh(ti) (4.1)

for all ti ∈ τh. We show that this equation is uniquely solvable for ti ∈ τh if the
solution is already uniquely determined for all tj ∈ τh with j < i.

For 0 ≤ i ≤ k − 1 we have [AhXh](ti) = Xh(ti) − X̃i, where X̃i denotes the i-th
initial value of the multistep method. Hence Xh(ti) := X̃i+Yh(ti) ∈ L2(Ω,F ti

, P ; Rd)
is the unique solution of (4.1) for 0 ≤ i ≤ k − 1.

Next assume that for j ≥ k a unique and adapted grid function (Xh(ti))0≤i≤j−1 is
known such that equation (4.1) holds for all 0 ≤ i < j. Now the equation [AhXh](tj) =
Yh(tj) is equivalently written in fixed point form as

Xh(tj) = Fh(tj ,Xh(tj)),

where Fh(tj , ·) : L2(Ω,F tj
, P ; Rd) → L2(Ω,F tj

, P ; Rd) is given by

Fh(tj , Z) =
1

ak

(

Yh(tj) −
k−1
∑

i=0

aiXh(tj+i−k)

+ Φh(tj ,Xh(tj−k), . . . ,Xh(tj−1), Z, (I
tj+η−k
α )

α∈A,η=1,...,k
)

)

for Z ∈ L2(Ω,F tj
, P ; Rd). By assumption (S1) we get

∥

∥

∥
Fh(tj , Z) − Fh(tj , Z̃)

∥

∥

∥

L2(Ω)
≤ Lh

1

ak

∥

∥

∥
Z − Z̃

∥

∥

∥

L2(Ω)
.
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Hence, for h small enough, Fh(tj , ·) is a contraction in L2(Ω,F tj
, P ; Rd) and there

exists a unique fixed point, which we denote by Xh(tj).

By induction we obtain a unique and adapted grid function Xh on the whole
time grid τh which solves AhXh = Yh. Therefore the operator Ah is invertible under
assumption (S1).

4.3. Reduction to the linear part. An important step for the characterization
of a bistable multistep method is to realize that the bistability only depends on the
linear part of the operator Ah as long as the remainder part satisfies a Lipschitz
condition. By the linear part we mean the operator Lh : Eh → Fh which is given by

[LhYh](ti) =

{

Yh(ti), for 0 ≤ i ≤ k − 1,
∑k

j=0 ajYh(ti+j−k), for k ≤ i ≤ N.
(4.2)

The residual operator is denoted by Th := Ah − Lh. The goal of this subsection is
to prove the following lemma which is a generalization of a corresponding result for
deterministic multistep methods [10].

Lemma 4.2. Under the assumptions (S1), (S2) and ak 6= 0 the multistep method
(Ah)h>0 is bistable if and only if the sequence of operators (Lh)h>0 is bistable.

For the proof we need the following discrete Gronwall-lemma.

Lemma 4.3. Consider constants γ1, γ2 ≥ 0 and a real sequence (xj)j=0,...,N ,
N ∈ N, with

xj ≤ γ1 + γ2

∑j−1
η=0 xη

for all j = 0, . . . , N . Then xj ≤ γ1e
jγ2 for all j = 0, . . . , N .

Proof of Lemma 4.2. Note that by assumption ak 6= 0 and Lemma 4.1 it is clear
that there exists an upper step size bound h > 0 such that the operators Ah and Lh

are both bijective for all h < h. Hence we only have to show that (3.2) holds for one
operator if and only if it holds for the other one.

First we assume that the bistability inequality (3.2) holds for the operator Lh.
As a start we prove that the estimate

(

E

(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
))

1
2

≤ C2

[

k−1
∑

i=0

‖Yh(ti) − Zh(ti)‖L2(Ω)

+

(

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k (LhYh(tη) − LhZh(tη))

∣

∣

∣

2
))

1
2

]
(4.3)

is valid for all h < h, Yh, Zh ∈ Eh and all 0 ≤ j ≤ N . For the proof we fix a step size
h < h, a grid function Yh ∈ Eh and 0 ≤ j ≤ N arbitrary. For every Zh ∈ Eh there
exists a unique solution Xh ∈ Eh to the difference equation

[LhXh](ti) =

{

[LhZh](ti), for 0 ≤ i ≤ j,
[LhYh](ti), for j + 1 ≤ i ≤ N,

since Lh is bijective for all h < h. As in Subsection 4.2 one shows that Xh(ti) = Zh(ti)
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for all i ≤ j. By (3.2) we obtain

(

E

(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
))

1
2

=

(

E

(

max
0≤i≤j

|Yh(ti) − Xh(ti)|2
))

1
2

≤ ‖Yh − Xh‖0,h

≤ C2 ‖LhYh − LhXh‖−1,h

= C2

[

k−1
∑

i=0

‖Yh(ti) − Zh(ti)‖L2 +

(

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k (LhYh(tη) − LhZh(tη))

∣

∣

∣

2
))

1
2

]

which proves the estimate (4.3). By inserting Lh = Ah − Th into (4.3) we get

(

E

(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
))

1
2

≤ C2

[

k−1
∑

i=0

‖Yh(ti) − Zh(ti)‖L2

+

(

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k (AhYh(tη) − ThYh(tη) − AhZh(tη) + ThZh(tη))

∣

∣

∣

2
))

1
2

]

≤ C2

[

‖AhYh − AhZh‖−1,h +

(

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k (ThYh(tη) − ThZh(tη))

∣

∣

∣

2
))

1
2

]

.

For the second summand assumption (S2) yields

E

(

max
k≤i≤j

∣

∣

∣

∑i
η=k (ThYh(tη) − ThZh(tη))

∣

∣

∣

2
)

= E



max
k≤i≤j

∣

∣

∣

∣

∣

∣

i
∑

η=k

(

Φh(tη, Yh(tη−k), . . . , Yh(tη), (I
tη+l−k
α )

α∈A,l=1,...,k
)

−Φh(tη, Zh(tη−k), . . . , Zh(tη), (I
tη+l−k
α )

α∈A,l=1,...,k
)
)∣

∣

∣

2
)

≤ Lh

j
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

(4.4)

Thus

(1 − 2C2Lh)E

(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)

≤ 2C2

[

‖AhYh − AhZh‖2
−1,h + Lh

j−1
∑

η=0

E

(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

]

.
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From Lemma 4.3 and for all h < min(h, 1
4C2L

) we derive the estimate

E

(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)

≤ 2C2

1 − 2C2Lh
‖AhYh − AhZh‖2

−1,h e
j2C2Lh

1−2C2Lh

≤ 4C2 ‖AhYh − AhZh‖2
−1,h e4TC2L.

Since Yh ∈ Eh and 0 ≤ j ≤ N were chosen arbitrary the operator Ah is stable for all
h < min(h, 1

4C2L
), i.e. there exists a constant C̃2 independent of h such that

‖Yh − Zh‖0,h ≤ C̃2‖AhYh − AhZh‖−1,h

holds for all Yh, Zh ∈ Eh. Further we compute

‖AhYh − AhZh‖−1,h

≤ ‖LhYh − LhZh‖−1,h +

(

E

(

max
k≤j≤N

∣

∣

∣

∑j
i=k [ThYh(ti) − ThZh(ti)]

∣

∣

∣

2
))

1
2

≤
(

1

C1
+
√

L(T + 1)

)

‖Yh − Zh‖0,h,

where we used Ah = Lh + Th, the left-hand side of the bistablity inequality (3.2) for
Lh and the estimate (4.4). Altogether we have shown the bistability of the operators
(Ah)h>0.

By interchanging the role of the operators (Ah)h>0 and (Lh)h>0 appropriately
one proves the bistability of (Lh)h>0 analogously.

4.4. Bistability of the linear part. In this subsection we deal with the missing
link between Lemma 4.2 and Theorem 3.4. Thus we have to show the following result:

Lemma 4.4. Under the assumptions ρ(1) = 0, ak 6= 0 the sequence of operators
(Lh)h>0 is bistable if and only if Dahlquist’s strong root condition is satisfied.

By the assumption ρ(1) = 0 we can write

ρ(z) = ρ∗(z)(z − 1),

where ρ∗(z) =
∑k−1

j=0 a∗
jz

j is a polynomial of degree k−1 with a∗
k−1 6= 0. We introduce

the operator L∗
h : Eh → Fh defined by

[L∗
hYh](ti) =

{

Yh(ti), for 0 ≤ i ≤ k − 2,
∑k−1

j=0 a∗
jYh(ti+j−k+1), for k − 1 ≤ i ≤ N.

(4.5)

Note that ρ∗ is the characteristic polynomial of the multistep method (L∗
h)h<0. More-

over, we have

LhYh(ti) = L∗
hYh(ti) − L∗

hYh(ti−1) (4.6)

for all i = k, . . . , N . The following result will be useful for the proof of Lemma 4.4:
Lemma 4.5. Under the assumptions ρ(1) = 0, ak 6= 0 the sequence of linear

operators (Lh)h>0 is bistable if and only if there exist constants λ1, λ2 > 0 such that
the inequalities

λ1‖Yh‖0,h ≤
k−1
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤j≤N

|L∗
hYh(tj)|2

))
1
2

≤ λ2‖Yh‖0,h (4.7)
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hold for all h > 0 and Yh ∈ Eh.
Proof. By the linearity of the operators (Lh)h>0 the bistability inequality (3.2) is

written as

C1‖Yh‖0,h ≤ ‖LhYh‖−1,h ≤ C2‖Yh‖0,h

for Yh ∈ Eh. The relationship (4.6) gives

‖LhYh‖−1,h =

k−1
∑

j=0

‖Yh(tj)‖L2 +



E



 max
k≤j≤N

∣

∣

∣

∣

∣

j
∑

i=k

LhYh(ti)

∣

∣

∣

∣

∣

2








1
2

=

k−1
∑

j=0

‖Yh(tj)‖L2 +

(

E

(

max
k≤j≤N

|L∗
hYh(tj) − L∗

hYh(tk−1)|2
))

1
2

≤
k−1
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤j≤N

|L∗
hYh(tj)|2

))
1
2

.

Conversely, we have

L∗
hYh(tj) =

j
∑

i=k

LhYh(ti) + L∗
hYh(tk−1),

which we use to obtain

k−1
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤j≤N

|L∗
hYh(tj)|2

))
1
2

=

k−1
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤j≤N

∣

∣

∣

∑j
i=k LhYh(ti) + L∗

hYh(tk−1)
∣

∣

∣

2
))

1
2

≤ 2

(

E

(

max
k≤j≤N

∣

∣

∣

∑j
i=k LhYh(ti)

∣

∣

∣

2
))

1
2

+
k−1
∑

j=0

(1 + 2|a∗
j |)‖Yh(tj)‖L2

≤ 2
(

1 +
∑k−1

j=0 |a∗
j |
)

‖LhYh‖−1,h.

In the next step we collect results on difference equations written in terms of
L2-valued grid functions. For Zh ∈ Gh the unique solution Yh ∈ Gh to the equation
L∗

hYh = Zh is given by

Yh(ti) =
k−2
∑

η=0

vη
i Zh(tη) +

N
∑

η=k−1

wη
i Zh(tη), (4.8)

where for η = 0, . . . , k − 2 the real sequence (vη
i )i=0,...,N solves the homogeneous

difference equations

k−1
∑

j=0

a∗
jv

η
i−k+1+j = 0, i = k − 1, . . . , N,

vη
i = δi,η, i = 0, . . . , k − 2,

(4.9)
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for η = 0, . . . , k − 2 and the real sequence (wη
i )i=0,...,N solves the inhomogeneous

difference equations

k−1
∑

j=0

a∗
jw

η
i−k+1+j = δi,η, i = k − 1, . . . , N,

wη
i = 0, i = 0, . . . , k − 2,

(4.10)

for η = k − 1, . . . , N with δi,j = 0 for i 6= j and δi,i = 1. It is well-known how the
solutions to the linear difference equations (4.9), (4.10) can be expressed by the roots

of the characteristic polynomial ρ∗(z) =
∑k−1

j=0 a∗
jz

j :
Let ζi ∈ C, i = 1, . . . , s, be the pairwise distinct roots of ρ∗ with multiplicity

ki ≥ 1 (k1 + · · ·+ks = k−1). A fundamental system of solutions to the homogeneous
difference equation (4.9) is given by

ui,κ
j =





j
∏

ν=j−κ+1

ν



 ζj−κ
i , i = 1, . . . , s, κ = 1, . . . , ki, j = 0, . . . , N,

where
∏

∅ = 1. All solutions (vη
j )j=0,...,N to (4.9) can be written as

vη
j =

s
∑

i=1

ki
∑

κ=1

cη
i,κui,κ

j ,

where the coefficients cη
i,κ ∈ C are uniquely determined by the initial values (in par-

ticular, they are independent of N).
Now consider the real-valued solution (xi)i=0,...,N to the homogeneous difference

equation

k−1
∑

j=0

a∗
jxi−k+1+j = 0, i = k − 1, . . . , N,

xi = 0, xk−2 =
1

a∗
k−1

, i = 0, . . . , k − 3.

For i < 0 we define xi := 0. Then we have

wη
i = xi−η+k−2 (4.11)

for the solution to (4.10), since

k−1
∑

j=0

a∗
jw

η
i−k+1+j =

k−1
∑

j=0

a∗
jxi+j−η−1 = δi,η.

Note that (xi)i=0,...,N solves a homogeneous difference equation. Hence it also has a

representation as a linear combination of the fundamental solutions (ui,κ
j )j=1,...,N .

Remark. Under the usual root condition one can prove that the fundamental
solutions to the homogeneous difference equation (4.9) are uniformly bounded for all
N ∈ N. This is sufficient to show that the solution Yh ∈ Gh to LhYh = Zh satisfies

‖Yh‖0,h ≤ C‖Zh‖0,h
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for a constant C > 0 which is independent of h. From this result one derives the
stability of the operators (Lh)h>0 but for a different pair of norms (c.f. [10] for
deterministic multistep methods).

Proof of Lemma 4.4. By Lemma 4.5 it remains to show that the inequalities (4.7)
hold if and only if the strong version of Dahlquist’s root condition holds.

We first prove that the strong root condition is sufficient for the inequalities
(4.7) to be true. Let Yh ∈ Eh denote the solution to L∗

hYh = Zh ∈ Fh. Using the
representation (4.8) gives

‖Yh‖0,h ≤
k−2
∑

η=0

(

E

(

max
0≤i≤N

|vη
i Zh(tη)|2

))
1
2

+

(

E

(

max
0≤i≤N

∣

∣

∣

∑N
η=k−1 wη

i Zh(tη)
∣

∣

∣

2
))

1
2

≤
k−2
∑

η=0

max
0≤i≤N

|vη
i |‖Zh(tη)‖L2 +

(

E

(

max
0≤i≤N

[

∑N
η=k−1 |w

η
i | |Zh(tη)|

]2
))

1
2

≤
(

max
0≤η≤k−2

max
0≤i≤N

|vη
i |
) k−2
∑

j=0

‖Zh(tj)‖L2

+ max
0≤i≤N

(

∑N
η=k−1 |w

η
i |
)

(

E

(

max
k−1≤η≤N

|Zh(tη)|2
))

1
2

≤ CN





k−2
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤η≤N

|L∗
hYh(tη)|2

))
1
2



 ,

where the constant CN is given by

CN := max
0≤η≤k−2

max
0≤i≤N

|vη
i | +

1

2
max

0≤i≤N

N
∑

η=k−1

|wη
i |.

The first part of the inequalities (4.7) is proved if we can show

sup
N∈N

CN < ∞. (4.12)

But under the strong root condition all roots of ρ∗ satisfy |ζi| ≤ r0 < 1 for i = 1, . . . , s.
Hence there exists a constant C > 0 such that

|ui,κ
j | ≤ Crj

0, j = 0, . . . , N, (4.13)

for all i = 1, . . . , s and κ = 1, . . . , ki. Since (vη
j )j=0,...,N and (xj)j=0,...,N are finite

linear combinations of the fundamental system (ui,κ
j )j=0,...,N the estimate (4.13) is

also valid for these sequences. By the relation (4.11) we compute

N
∑

η=k−1

|wη
i | =

N
∑

η=k−1

|xi−η+k−2| =

i+k−1
∑

η=k−1

|xi−η+k−1| ≤ C

i
∑

η=0

rη
0 < C

1

1 − r0
< ∞,

where we used xi = 0 for i < 0. Altogether this proves (4.12).
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The right hand side of (4.7) follows directly from

k−2
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤η≤N

|L∗
hYh(tη)|2

))
1
2

≤ (k − 1)‖Yh‖0,h + 2

(

E

(

max
k−1≤η≤N

[

∑k−1
j=0 |a∗

j | |Yh(tη−k+1+j)|
]2
))

1
2

≤
(

k − 1 + 2
∑k−1

j=0 |a∗
j |
)

‖Yh‖0,h .

Consequently, the strong root condition is sufficient for the inequalities (4.7) and for
the bistability of the operators Lh.

Conversely, assume that the inequalities (4.7) hold for all h > 0 and Yh ∈ Eh

and that ρ does not satisfy the strong root condition, i.e. there exists ζ ∈ C with
ρ∗(ζ) = 0 and |ζ| ≥ 1.

First, we focus on the case |ζ| = 1. Define zj = j(ζj + ζ
j
) ∈ R and let Yh(tj) :=

zjY for Y ∈ L2(Ω,F t0 , P ; Rd). Then Yh ∈ Eh and if we apply L∗
h to Yh we get

L∗
hYh(tj) =

k−1
∑

η=0

a∗
ηYh(tη+j−k+1) =

k−1
∑

η=0

a∗
η(η + j − k + 1)

(

ζη+j−k+1 + ζ
η+j−k+1

)

= −ζj−k+1ρ∗(ζ) + ζj−k+2 d

dz
ρ∗(ζ) − ζ

j−k+1
ρ∗(ζ) + ζ

j−k+2 d

dz
ρ∗(ζ).

Since ρ∗ is a real polynomial we also have ρ∗(ζ) = 0 and thus

max
k−1≤j≤N

|L∗
hYh(tj)| ≤

∣

∣

∣

∣

d

dz
ρ∗(ζ)

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dz
ρ∗(ζ)

∣

∣

∣

∣

< ∞.

Combining this with (4.7) gives us

λ1‖Yh‖0,h ≤
k−1
∑

j=0

‖Yh(tj)‖L2 + 2

(

E

(

max
k−1≤j≤N

|L∗
hYh(tj)|2

))
1
2

< ∞

for λ1 > 0. On the other hand we have

lim
h→0

‖Yh‖0,h = ∞

which contradicts (4.7).

The case |ζ| > 1 also contradicts (4.7) by using zj = ζj + ζ
j ∈ R for j ∈ N0.

5. Consistency. The aim of this section is to prove Theorem 3.7. We deal with
each numerical scheme in a separate subsection.

5.1. Consistency of the stochastic theta method. Before we start with the
estimate of the local truncation error we quote the following useful result from [1, 18]:

Theorem 5.1. Under the assumptions (A1) and (A2) the solution X to (1.1)
satisfies

E
(

|X(t)|2
)

≤
(

1 + E(|X0|2)
)

eCt
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and

E
(

|X(t) − X0|2
)

≤ C
(

1 + E(|X0|2)
)

teDt

for all 0 ≤ t ≤ T and some constants C,D > 0 depending only on K and T .
In particular, using the semigroup property of X, one can prove the estimate

E
(

|X(t) − X(s)|2
)

≤ C|t − s|
for all t, s ∈ [0, T ] and some constant C > 0 depending only on K, T and E(|X0|2).

By the definition of our stochastic version of Spijker’s norm the local truncation
error of the stochastic theta method can be written as

‖ASTM
h rE

h X‖−1,h = ‖X(0) − X̃0‖L2(Ω) +






E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

[ASTM
h rE

h X](tj)

∣

∣

∣

∣

∣

∣

2












1
2

.

The assumption (C1) assures the consistency of the initial value X̃0 with the order
γ = 1

2 . Thus it remains to estimate the second summand

(

E

(

max1≤i≤N |∑i
j=1[A

STM
h rE

h X](tj)|2
))

1
2

=
(

E

(

max1≤i≤N

∣

∣

∣

∑i
j=1

[

X(tj) − X(tj−1) − h(1 − θ)b0(tj−1,X(tj−1))

−hθb0(tj ,X(tj)) −
∑m

r=1 br(tj−1,X(tj−1))I
tj

(r)

]∣

∣

∣

2
))

1
2

.

From the representation (1.2) and the triangle inequality we obtain the estimate

≤ (1 − θ)






E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

b0(s,X(s)) − b0(tj−1,X(tj−1))ds

∣

∣

∣

∣

∣

∣

2












1
2

(5.1)

+ θ






E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

b0(s,X(s)) − b0(tj ,X(tj))ds

∣

∣

∣

∣

∣

∣

2












1
2

(5.2)

+






E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

m
∑

r=1

∫ tj

tj−1

br(s,X(s)) − br(tj−1,X(tj−1))dW r(s)

∣

∣

∣

∣

∣

∣

2












1
2

. (5.3)

We estimate the terms separately. Jensen’s inequality yields for the square of the first
term (5.1)

T1 := E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i

i
∑

j=1

1

i
h

∫ tj

tj−1

1

h
(b0(s,X(s)) − b0(tj−1,X(tj−1)))ds

∣

∣

∣

∣

∣

∣

2






≤ E



 max
1≤i≤N



ih

i
∑

j=1

∫ tj

tj−1

∣

∣b0(s,X(s)) − b0(tj−1,X(tj−1))
∣

∣

2
ds









= T

N
∑

j=1

∫ tj

tj−1

E

(

∣

∣b0(s,X(s)) − b0(tj−1,X(tj−1))
∣

∣

2
)

ds.
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Using the assumptions (A2) and (C2) we find for r = 0, . . . ,m

|br(s,X(s)) − br(tj−1,X(tj−1))|2

≤ (|br(s,X(s)) − br(s,X(tj−1))| + |br(s,X(tj−1)) − br(tj−1,X(tj−1))|)2

≤
(

K|X(s) − X(tj−1)| + K(1 + |X(tj−1)|)
√

|s − tj−1

)2

≤ 2K2|X(s) − X(tj−1)|2 + 2K2 (1 + |X(tj−1)|)2 |s − tj−1|.

Applying Theorem 5.1 leads to the estimate

E

(

|br(s,X(s)) − br(tj−1,X(tj−1))|2
)

≤ 2K2
E
(

|X(s) − X(tj−1)|2
)

+ 4K2
(

1 + E
(

|X(tj−1)|2
))

|s − tj−1|
≤ C|s − tj−1|,

(5.4)

where the constant C only depends on K, T and E
(

|X0|2
)

. Hence we complete our
estimate of the term T1 as follows

T1 ≤ T
N
∑

j=1

∫ tj

tj−1

C|s − tj−1|ds =
1

2
CT 2h. (5.5)

Replacing tj−1 by tj in (5.4) leads to the analogous result for the term in (5.2), i.e.

T2 := E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

∫ tj

tj−1

b0(s,X(s)) − b0(tj ,X(tj))ds

∣

∣

∣

∣

∣

∣

2





≤ 1

2
CT 2h. (5.6)

Thus, it remains to estimate the third term (5.3)

T3 := E






max

1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

m
∑

r=1

∫ tj

tj−1

br(s,X(s)) − br(tj−1,X(tj−1))dW r(s)

∣

∣

∣

∣

∣

∣

2





.

By the martingale property of the stochastic Itô-integral (c.f. Theorem 1.5.12 in
[18]) we are able to apply Doob’s martingale inequality. Then we use the martingale
property and the independence of the Wiener processes to interchange the sums and
the expectation (c.f. Theorem 1.5.21 and Lemma 1.5.22 in [18]). This yields

T3 ≤ 4E







∣

∣

∣

∣

∣

∣

N
∑

j=1

m
∑

r=1

∫ tj

tj−1

br(s,X(s)) − br(tj−1,X(tj−1))dW r(s)

∣

∣

∣

∣

∣

∣

2






= 4

N
∑

j=1

m
∑

r=1

E





∣

∣

∣

∣

∣

∫ tj

tj−1

br(s,X(s)) − br(tj−1,X(tj−1))dW r(s)

∣

∣

∣

∣

∣

2




= 4

N
∑

j=1

m
∑

r=1

∫ tj

tj−1

E

(

|br(s,X(s)) − br(tj−1,X(tj−1))|2
)

ds,
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where we used the Itô-isometry in the last step. Again we apply (5.4) and obtain

T3 ≤ 4

N
∑

j=1

m
∑

r=1

∫ tj

tj−1

C|s − tj−1|ds = 2CTmh. (5.7)

Combining (C1) and the estimates (5.5), (5.6) and (5.7) we arrive at the final estimate

‖AhrE
h X‖−1,h ≤ Ch

1
2 + (1 − θ)

√

1

2
CT 2h + θ

√

1

2
CT 2h +

√
2CTmh = C̃h

1
2 ,

where the constant C̃ > 0 only depends on K, T , E
(

|X0|2
)

and m. Thus, the
stochastic theta method is consistent of order γ = 1

2 .

5.2. Consistency of the BDF2-Maruyama method. In this subsection we
prove the consistency of the BDF2-Maruyama method under the assumptions (A1),
(A2), (C1) and (C2). The idea is to write BDF2-Maruyama as a sum of two stochastic
theta methods and then to use the result from the previous subsection. The local
truncation error is given by

‖ABDF
h rE

h X‖−1,h =
1
∑

j=0

‖X(tj) − X̃j‖L2 +






E






max

2≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=2

[ABDF
h rE

h X](tj)

∣

∣

∣

∣

∣

∣

2












1
2

Again, by assumption (C1), the initial values are assumed to be consistent of order
γ = 1

2 . Thus we only have to estimate the second term. But this one can be written
by the definition (2.5) of ABDF

h and the triangle inequality as follows






E






max

2≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=2

[ABDF
h rE

h X](tj)

∣

∣

∣

∣

∣

∣

2












1
2

=



E



 max
2≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=2



X(tj) −
4

3
X(tj−1) +

1

3
X(tj−2) −

2

3
hb0(tj ,X(tj))

−
m
∑

r=1
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.
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Now the two summands can be estimated as in the previous subsection. Thus the
BDF2-Maruyama scheme is also consistent of order γ = 1

2 .

5.3. Consistency of higher order Itô-Taylor schemes. In this subsection
we prove the consistency of the Itô-Taylor schemes. Choose γ ∈ {n

2 |n ∈ N} such that
assumptions (A1), (A2), (A3), (C1) and (C3) are satisfied. For the estimate we need
the following result on Itô-Taylor expansions from [16].

Theorem 5.2. Under the assumptions (A1), (A2), (A3) the Itô-Taylor expansion

X(ti) = X(ti−1) +
∑

α∈Aγ

fα(ti−1,X(ti−1))I
ti
α +

∑

α∈B(Aγ)

Iα[fα(·,X(·))]ti

ti−1
,

holds for all i = 1, . . . , N , where for α = (j1, . . . , jℓ) ∈ B(Aγ)

Iα[fα(·,X(·))]ti

ti−1
=

∫ ti

ti−1

∫ s1

ti−1

· · ·
∫ sℓ−1

ti−1

fα(sℓ,X(sℓ))dW j1(sℓ) · · · dW jℓ(s1).

For the proof we refer to Theorem 5.5.1 in [16]. Now the local truncation error of
the Itô-Taylor scheme of order γ takes the form
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∣
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.

Again, by assumption (C1), the initial value X̃0 is assumed to be sufficiently consis-
tent. Thus we are only concerned with the second summand
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,

where we applied Theorem 5.2 and the triangle inequality. Since the remainder set
B(Aγ) is finite (c.f. [16]) it is enough to estimate each summand separately. First we
consider all multi-indices α ∈ B(Aγ) with ℓ = ℓ(α) = n(α), i.e. α = (0, . . . , 0). For
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these multi-indices one computes

E
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≤
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|fα(s,X(s))|2|tj − s|2(ℓ−1)ds






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where we used Jensen’s inequality in the last step. We complete the estimate by

≤
(

1

(ℓ − 1)!

)2

T

N
∑

j=1

∫ tj

tj−1

E
(

|fα(s,X(s))|2
)

ds h2ℓ−2

=

(

1

(ℓ − 1)!

)2

T

∫ T

0

E
(

|fα(s,X(s))|2
)

ds h2ℓ−2.

By assumption (C3) the integral is finite and by the definitions of Aγ and B (Aγ) we
have α ∈ B(Aγ) with ℓ(α) = n(α) only if ℓ = ℓ(α) = γ +1 or ℓ = ℓ(α) = γ + 3

2 . Hence
h2ℓ−2 = O(hγ), which is also the order of the complete term.

Thus it remains to estimate the summands with all indices α ∈ B(Aγ) such that

n(α) < ℓ(α). In this case note that E

(

Iα [fα(·,X(·))]tj

tj−1
| F ti

)

= 0 for all i < j

(c.f. Lemma 5.7.1 in [16]). Therefore (Si)i=1,...,N with Si =
∑i

j=1 Iα[fα(·,X(·))]tj

tj−1

is a discrete martingale. Furthermore, by Lemma 5.3 below, we have the following
estimate of the second moment:
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for all j = 1, . . . , N . Thus we are allowed to apply Doob’s martingale inequality and
obtain
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= 4
N
∑

j=1

E

(

∣

∣

∣
Iα [fα(·,X(·))]tj

tj−1

∣

∣

∣

2
)

≤ 4

∫ T

0

E

(

|fα(u,X(u))|2
)

du hℓ(α)+n(α)−1,

where we used the martingale property of the stochastic integrals and Lemma 5.3.
Also in this case we have ℓ(α) + n(α) − 1 ≥ 2γ by the definitions of Aγ and B(Aγ).
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Hence under the given assumptions the Itô-Taylor scheme of order γ is consistent of
order γ.

Lemma 5.3. Assume that the stochastic process f : [0, T ] → R
d is stochastically

integrable with respect to the iterated Itô-integral Iα. If
∫ t

s

E
(

|f(u)|2
)

du < ∞

for all 0 ≤ s < t ≤ T then

E

(

∣

∣

∣
Iα [f(·)]ts

∣

∣

∣

2
)

≤
∫ t

s

E

(

|f(u)|2
)

du (t − s)ℓ(α)+n(α)−1

for all 0 ≤ s < t ≤ T and all multi-indices α.
Proof. The proof is similar to the proofs of Lemmas 2.1 and 2.2 in [19] and done

by an inductive argument. If ℓ(α) = 1 and hence α = (j1), then the estimate holds
with equality in the case j1 6= 0 by the Itô-isometry. If j1 = 0, then the estimate is
just Jensen’s inequality.

Let ℓ(α) > 1 with α = (j1, . . . , jℓ). First consider the case jℓ = 0. Then by
Jensen’s inequality
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where α̃ = (j1, . . . , jℓ−1) with ℓ(α̃) = ℓ(α)− 1 and n(α̃) = n(α)− 1. By the induction
hypothesis we get
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If jℓ 6= 0 the Itô-isometry gives
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After applying the induction hypothesis one uses n(α̃) = n(α) to obtain the same
order.
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6. Maximum order of convergence. In this section we extend a well-known
result from J.M.C. Clark and R.J. Cameron [6]: They constructed an example to
show that, in general, a numerical scheme has the maximum order of convergence 1

2
if it only uses the increments W r(ti)−W r(ti−1) of the driving Wiener processes. We
show that this result follows in a natural way for the BDF2-Maruyama method from
the two-sided error estimate (3.3). Moreover, we present a generalization of Clark
and Cameron’s example to treat the higher order Itô-Taylor schemes. We refer to [3]
for a discussion of the stochastic theta method.

Theorem 6.1. In general, the maximum order of convergence
(i) of the BDF2-Maruyama method is equal to 1

2 ,
(ii) of the Itô-Taylor scheme of order γ is equal to γ.

Proof. For the BDF2-Maruyama method we consider the SODE

dX(t) =

(

1 0
0 X1(t)

)

d

(

W 1(t)
W 2(t)

)

, X(0) =

(

0
0

)

, (6.1)

with the analytic solution

X(t) =

(

W 1(t)
∫ t

0
W 1(s)dW 2(s)

)

, for t ∈ [0, T ]. (6.2)

Note that (6.1) satisfies the assumptions (A1), (A2) and (C2). As initial values
of the BDF2-Maruyama method we choose the corresponding analytic solution, i.e.
X̃i = X(ti), i = 0, 1. By the two-sided error estimate (3.3) it is enough to estimate
the local truncation error from below. It follows

∥

∥ABDF
h rE

h X
∥

∥

2

−1,h

= E



 max
2≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=2

[

X(tj) −
4

3
X(tj−1) +

1

3
X(tj−2) −

(

I
tj

(1)

X1(tj−1)I
tj

(2)

)

+
1

3

(

I
tj−1

(1)

X1(tj−2)I
tj−1

(2)

)]∣

∣

∣

∣

∣

2




= E

(

max
2≤i≤N

∣

∣

∣

∑i
j=2

[

∫ tj

tj−1
W 1(s)dW 2(s) − 1

3

∫ tj−1

tj−2
W 1(s)dW 2(s)

−
∫ tj

tj−1
W 1(tj−1)dW 2(s) + 1

3

∫ tj−1

tj−2
W 1(tj−2)dW 2(s)

]∣

∣

∣

2
)

≥ max
2≤i≤N

E

(

∣

∣

∣

∫ ti

ti−1
W 1(s) − W 1(ti−1)dW 2(s) − 1

3

∫ t1

t0
W 1(s) − W 1(t0)dW 2(s)

+ 2
3

∑i−1
j=2

∫ tj

tj−1
W 1(s) − W 1(tj−1)dW 2(s)

∣

∣

∣

2
)

.

As in the previous sections we use the martingale property of the stochastic Itô-
integrals and the Itô-isometry. This yields
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Th,
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which proves the assertion for the BDF2-Maruyama method.
Next, we turn to the Itô-Taylor scheme of order γ = n

2 . We consider the (n + 1)-
dimensional SODE

dX1(t) = dW 1(t), dX2(t) = X1(t)dW 2(t), . . . , dXn+1(t) = Xn(t)dWn+1(t),

X(0) = 0 ∈ R
n+1

(6.3)

which has the solution

X1(t) = W 1(t) = I(1)[1]t0,X2(t) = I(1,2)[1]t0, . . . ,Xn+1(t) = I(1,...,n+1)[1]t0, (6.4)

where we used the notation from Theorem 5.2. First, as for the BDF2-Maruyama
method, one checks that the first n components are exactly approximated by the Itô-
Taylor scheme of order n

2 . In order to keep the notation simple we only do this for
the Milstein scheme (n = 2) which is written as

Xh(0) = 0 ∈ R
3,

Xh(ti) = Xh(ti−1) +


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Iti
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(2) + Iti
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
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
.

For the first component we have

X1(tj) = I(1)[1]
tj

0 = W 1(tj) =

j
∑
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W 1(ti) − W 1(ti−1) =

j
∑

i=1

Iti

(1) = Xh,1(tj).

For the second component we have

X2(tj) = I(1,2)[1]
tj
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tj

(2) + I
tj

(1,2).

Now, an inductive arguments yields X2(tj) = Xh,2(tj) for all j = 0, . . . , N . For the
last component we compute

X3(tj) = X3(tj−1) + X2(tj−1)I
tj

(3) + X1(tj−1)I
tj

(2,3) + I
tj

(1,2,3)

which shows that the local truncation error of the Milstein method takes the form
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For the general Itô-Taylor scheme of order γ = n
2 , one can prove analogously
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By using the martingale property and the Itô-isometry we arrive at the lower bound
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h rE

h X‖−1,h ≥
(

T
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)
1
2

hγ .
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7. Conclusions. In this paper we presented a unifying theory for the conver-
gence analysis of stochastic onestep and multistep methods. We derived a two-sided
error estimate which we used to discuss the maximum order of convergence for the
stochastic theta method, BDF2-Maruyama and the higher order Itô-Taylor schemes.

One important root of this theory is our notion of consistency and bistability
which stems from the abstract framework of discrete approximations as it is for-
mulated by F. Stummel. Then, the proof of bistability relied on our choice of the
function spaces and norms, in particular on the stochastic version of Spijker’s norm.
The usefulness of this norm originates from the fact that we are allowed to inter-
change summation and expectation in the L2-norm by the martingale property of the
stochastic integrals. That is why we do not need an additional consistency condition
on the mean of the numerical methods, in contrast to a different approach in the
literature by G.N. Milstein [19]. Note that, in a sense, the Spijker norm is of W−1,∞

Sobolev type.

The characterization of the bistability uses well-known techniques for determin-
istic multistep methods. After the reduction to the linear operator Lh the same
arguments hold for every multistep method with values in an abstract Banach space.

Therefore, we hope to carry over some elements of our theory to infinite dimen-
sional problems. In particular, we are optimistic to prove similar results for stochastic
delay equations. But in Subsection 4.1 it was shown that the constant L > 0 in as-
sumption (S1) may grow with the number m of Wiener processes. It is not yet clear
how to solve this problem if our notion is applied to a numerical scheme for stochastic
partial differential equations, e.g. the stochastic heat equation on the real line with
white noise.
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[10] , Numerik gewöhnlicher Differentialgleichungen. Band 2, B. G. Teubner, Stuttgart,

1977. Mehrschrittverfahren, Unter Mitwirkung von Hans Joachim Pfeiffer, Teubner Studi-
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