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Abstract

We propose a numerical method for computing all eigenvalues (and
the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue
problem that lie within a given contour in the complex plane. The
method uses complex integrals of the resolvent operator, applied to
at least k column vectors, where k is the number of eigenvalues inside
the contour. The theorem of Keldysh is employed to show that the
original nonlinear eigenvalue problem reduces to a linear eigenvalue
problem of dimension k. No initial approximations of eigenvalues and
eigenvectors are needed. The method is particularly suitable for mod-
erately large eigenvalue problems where k is much smaller than the
matrix dimension. We also give an extension of the method to the
case where k is larger than the matrix dimension. The quadrature
errors caused by the trapezoid sum are discussed for the case of an-
alytic closed contours. Using well known techniques it is shown that
the error decays exponentially with an exponent given by the product
of the number of quadrature points and the minimal distance of the
eigenvalues to the contour.
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1 Introduction

We consider nonlinear eigenvalue problems of the form

T (z)v = 0, v ∈ C
m, v 6= 0, z ∈ Ω, (1)

where T : Ω → Cm,m is assumed to be holomorphic in some domain Ω ⊂ C.
The computation of all eigenvalues and eigenvectors inside Ω usually requires
the solution of two problems (see [23],[4] for recent reviews) :

1. Approximate localization and separation of eigenvalues in suitable do-
mains resp. intervals,

2. accurate computation of eigenvalues and associated eigenvectors by an
iterative method.

The global problem of localization can be substantially simplified if minimum-
maximum characterizations similar to the linear symmetric case hold [35],[32].
Voss and co-workers have combined these principles with locally convergent
methods of Arnoldi or Jacobi-Davidson type (see [33],[6],[34]), and in this
way provided an effective means for computing all eigenvalues.

Another case where both problems can be solved, is for polynomials

T (z) =

p
∑

j=0

Tj(z − z0)
j, Tj ∈ C

m,m.

This eigenvalue problem can be reduced to a linear eigenvalue problem of
dimension pm, and this is the path taken by the MATLAB routine polyeig.
Quite a few papers in the literature pursue and analyze this linearization
approach, see for a survey . Another approach is to generalize methods
for linear eigenvalue problems directly to polynomial problems by using its
internal structure. An example of this type is the SOAR (Second Order
ARnoldi) for quadratic eigenvalue problems [3],[22].

In the general holomorphic case we just have a power series near each
z0 ∈ Ω

T (z) =
∞

∑

j=0

Tj(z − z0)
j , |z − z0| small, Tj ∈ C

m,m.

One may then use polynomial truncation and a polynomial eigenvalue solver
for getting good initial estimates of the eigenvalues (see e.g. [19]). However,
the success of this method strongly depends on the radius of convergence
and on the decay of the coefficient matrices. Also, it may be necessary to
compute power series at many different points in Ω.
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Finally, we refer to the recent approach of Kressner [20], who uses the
fact that any holomorphic matrix function can be written as

T (z) =

p
∑

j=1

fj(z)Tj , Tj ∈ C
m,m

with holomorphic functions fj : Ω 7→ C (such a representation always exists
for some p ≤ m2). Then a Newton-type iteration is devised in [20] that
allows one to compute a group of eigenvalues and an associated subspace.
By construction the method has local convergence properties.

In this paper we tackle the global problem by using contour integrals,
which seem to be the only available tool in the general holomorphic case. The
idea is to use the theorem of Keldysh [17],[18], which provides an expansion
of T (z)−1 in a neighborhood U ⊂ Ω of an eigenvalue λ ∈ Ω as follows:

T (z)−1 =

∞
∑

j=−κ

Sj(z − λ)j, z ∈ U \ {λ}, Sj ∈ C
m,m, S−κ 6= 0. (2)

More specifically, Keldysh’ theorem gives a representation of the singular part
in (2) in terms of generalized eigenvectors of T (z) and its adjoint TH(z). A
good reference for the underlying theory is [25] which we briefly review in
Section 2.

Numerical methods based on contour integrals seem not to have attracted
much attention in the past. Notable exceptions are exponential integrators
and, more recently, approaches for computing analytic functions of matrices
via suitably transformed contour integrals ([15],[16, 13.3.2]). An application
of computing spectral projectors via contour integrals appears in [27].

Our goal is to compute all eigenvalues and the associated eigenvectors that
lie within a given closed contour Γ in Ω. The main algorithm is described
in Section 3. Suppose that k ≤ m eigenvalues of (1) lie inside Γ. Then our
method reduces the nonlinear eigenvalue problem to a linear one of dimension
k by evaluating the contour integrals

Ap =
1

2πi

∫

Γ

zpT (z)−1V̂ dz, p = 0, 1. (3)

Here V̂ ∈ Cm,k is generally taken as a random matrix. The contour integrals
in (3) are calculated approximately by the trapezoid sum. If N quadra-
ture points are used, this requires one to compute N LU-decompositions
and to solve Nk linear systems, which is the main numerical effort. As a
consequence, our method is limited to moderately large nonlinear eigenvalue
problems for which a fast (sparse) direct solver is available.
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In Section 4 we apply the algorithm to several examples, showing that a
moderate number of quadrature nodes (N ≈ 25) is usually sufficient to get
good estimates of eigenvalues and eigenvectors. Based on [9], we prove in
Section 4 that the quadrature error decays exponentially with an exponent
that depends on the product of the number of quadrature nodes and the
smallest distance of the eigenvalues to the contour.

In the final Section 5 we deal with two problems that are typical for non-
linear eigenvalue problems and that do not occur in the linear case: First,
there can be many more eigenvalues than the matrix dimension (e.g. char-
acteristic functions for delay equations) and, second, eigenvectors belonging
to different eigenvalues can be linearly dependent, even if the number of
eigenvalues is less than the matrix dimension. In Section 5 we extend our
integral method such that it applies to the case k > m and that it can also
handle rank defects of eigenspaces. For the extended integral method it is
necessary to evaluate Ap from (3) for indices 0 ≤ p ≤ 2⌈ k

m
⌉ − 1. Numerical

examples show that this extension is suitable for solving both aforementioned
problems.

Note added in proof: One of the referees called my attention to the inte-
gral method of Asakura, Sakurai, Tadano, Ikegami and Kimura [2],[1] that
extended earlier work of Sakurai and Sugiura [28] on the generalized eigen-
value problem. The block method in [2] differs only slightly from ours in
premultiplying the matrices Ap in (3) by another random matrix ÛH ∈ Ck,m

before taking singular values.
The theoretical approach of [1],[2], however, is quite different since it uses

the Smith normal form rather than Keldysh’ Theorem. So far, the results in
[1],[2] assume the eigenvalues inside the contour to be simple and nondegen-
erate (note that linear independence of eigenvectors for different eigenvalues
is not automatic in the nonlinear case). Also the effect of quadrature errors
on the eigenvalue computations is not considered in [1],[2].
Acknowledgements: The author thanks Ingwar Petersen for the support
with the numerical experiments. He is also grateful to the referees for several
constructive criticisms and further references that improved the first version
of the paper.

2 Nonlinear eigenvalues and Keldysh’ Theo-

rem

The material in this section is largely based on the monograph [25]. It
contains a general study of meromorphic operator functions that have values
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in spaces of Fredholm operators of index 0. For our purposes it is sufficient
to consider matrix valued mappings

T : Ω ⊂ C → C
m,m,

that are holomorphic in some open domain Ω. We write this as T ∈ H(Ω, Cm,m).
For a matrix A we denote by R(A) and N(A) its range and nullspace, re-
spectively.

Definition 2.1. A number λ ∈ Ω is called an eigenvalue of T (·) if T (λ)v = 0
for some v ∈ Cm, v 6= 0. The vector v is then called a (right) eigenvector. By
σ(T ) we denote the set of all eigenvalues and by ρ(T ) = Ω \ σ(T ) we denote
the resolvent set.
The eigenvalue λ is called simple if

N(T (λ)) = span{v}, v 6= 0 T ′(λ)v /∈ R(T (λ)).

Throughout the paper we assume that the resolvent set is nonempty, i.e.
det(T (z)) does not vanish identically.

Theorem 2.2. Every eigenvalue λ ∈ σ(T ) of T ∈ H(Ω, Cm,m) is isolated,
i.e. U \ {λ} ⊂ ρ(T ) for some neigborhood U of λ.
Moreover, T (z)−1 is meromorphic at λ, i.e. there exist κ ∈ N and Sj ∈ C

m,m

for j ≥ −κ such that S−κ 6= 0 and

T (z)−1 =

∞
∑

j=−κ

Sj(z − λ)j, z ∈ U \ {λ}. (4)

Remark 2.3. The number κ is uniquely determined and called the order of
the pole at λ.
The Theorem of Keldysh (see Theorem 2.6 below) gives a representation of
the singular part

−1
∑

j=−κ

Sj(z − λ)j

in terms of (generalized) eigenvectors of T and TH . It goes back to Keldysh
[17] with a proof given in [18]. Generalizations of Keldysh’ theorem were de-
rived by Trofimov [31], who introduced the concept of root polynomials, and
by Markus and Sigal [21] and Gohberg and Sigal [12] who used factorizations
of operator functions. A simple direct proof was found by Mennicken and
Möller [24] who later gave a concise approach to the whole theory in [25].

5



For the motivation of the algorithm in the next section it is instructive
to first state Keldysh’ theorem for simple eigenvalues. In this case Definition
2.1 implies for the adjoint TH(z)

N(TH(λ)) = span{w} for some w ∈ C
m, w 6= 0,

wHT ′(λ)v 6= 0.

Without loss of generality we can normalize v and w such that

wHT ′(λ)v = 1. (5)

Then we are still free to further normalize either |w| = 1 or |v| = 1.

Theorem 2.4. Assume λ ∈ Ω is a simple eigenvalue of T ∈ H(Ω, Cm,m)
with eigenvectors normalized as in (5). Then there is a neighborhood U ⊂ Ω
of λ and a holomorphic function R ∈ H(U , Cm,m) such that

T (z)−1 =
1

z − λ
vwH + R(z), z ∈ U \ {λ}. (6)

Moreover, let C ⊂ Ω be a compact subset that contains only simple eigenval-
ues λn, n = 1, . . . , k with eigenvectors vn, wn satisfying

T (λn)vn = 0, wH
n T (λn) = 0, wH

n T ′(λn)vn = 1. (7)

Then there is a neighborhood U of C in Ω and a holomorphic function R ∈
H(U , Cm,m) such that

T (z)−1 =

k
∑

n=1

1

z − λn

vnw
H
n + R(z), z ∈ U \ {λ1, . . . , λk}. (8)

Proof. The first part is a special case of Theorem 2.6 below. For the second
part, note that eigenvalues are isolated and hence we can choose a neighbor-
hood C ⊂ U ⊂ Ω such that σ(T ) ∩ U = {λ1, . . . , λk}. Then the function

R(z) = T (z)−1 −
k

∑

n=1

1

z − λn

vnwH
n

is holomorphic in U ∩ ρ(T ) and by the first part it is also holomorphic in
suitable neighborhoods of λn, n = 1, . . . , k.

Definition 2.5. Let T ∈ H(Ω, Cm,m) and λ ∈ Ω.
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(i) A function v ∈ H(Ω, Cm) is called a root function of T at λ if

v(λ) 6= 0, T (λ)v(λ) = 0.

The order of the zero z = λ of T (z)v(z) is called the multiplicity of v
at λ and denoted by s(v).

(ii) A tuple (v0, . . . , vn−1) ∈ (Cm)n, n ≥ 1 is called a chain of generalized
eigenvectors (CGE) of T at λ if v(z) =

∑n−1
j=0 (z−λ)jvj is a root function

of T at λ of multiplicity s(v) ≥ n.

(iii) For a given v0 ∈ N(T (λ)), v0 6= 0 the number

r(v0) = max{s(v) : v is a root function of T at λ with v(λ) = v0}

is finite and called the rank of v0.

(iv) A system of vectors in Cm

V =
(

vℓ
j , 0 ≤ j ≤ mℓ − 1, 1 ≤ ℓ ≤ L

)

is called a canonical system of generalized eigenvectors (CSGE) of T at
λ if the following conditions hold:

(a) The vectors v1
0 , . . . , v

L
0 form a basis of N(T (λ)),

(b) The tuple (vℓ
0, . . . , v

ℓ
mℓ−1) is a CGE of T at λ for ℓ = 1, . . . , L,

(c) mℓ = max{r(v0) : v0 ∈ N(T (λ)) \ span{vν
0 : 0 ≤ ν < ℓ}}

for ℓ = 1, . . . , L.

One can show that a CSGE always exists and that the numbers mℓ are
ordered according to

m1 ≥ m2 ≥ . . . ≥ mL. (9)

They are called the partial multiplicities of T at λ. As an example take
v(z) = v0 + zv1 + 1

2
z2v2 and note that this is a root function of order 3 at

λ = 0 if the equalities

T (0)v0 = T ′(0)v0 + T (0)v1 = T ′′(0)v0 + 2T ′(0)v1 + T (0)v2 = 0

and the inequality T ′′′(0)v0 + 3T ′′(0)v1 + 3T ′(0)v2 6= 0 hold.
With the notions from the above definition we can state the following

general theorem, see [25, Theorem 1.6.5].
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Theorem 2.6 (Keldysh). Let T ∈ H(Ω, Cm,m) be given with ρ(T ) 6= ∅. For
λ ∈ σ(T ) let

V =
(

vℓ
j , 0 ≤ j ≤ mℓ − 1, 1 ≤ ℓ ≤ L

)

be a CSGE of T at λ. Then there exists a CSGE

W =
(

wℓ
j , 0 ≤ j ≤ mℓ − 1, 1 ≤ ℓ ≤ L

)

of TH at λ, a neighborhood U of λ and a function R ∈ H(U , Cm,m) such that

T (z)−1 =
L

∑

ℓ=1

mℓ
∑

j=1

(z − λ)−j

mℓ−j
∑

ν=0

vℓ
νw

ℓH
mℓ−j−ν + R(z), z ∈ U \ {λ}. (10)

The system W , for which (10) holds, is the unique CSGE of TH at λ that
satisfies the following conditions

r(wℓ
0) = mℓ

j
∑

α=0

mν
∑

β=1

wℓH
j−αTα+β vν

mν−β = δνℓδ0j , 0 ≤ j ≤ mℓ − 1, 1 ≤ ℓ, ν ≤ L, (11)

where

Tj =
1

j!
T (j)(λ), j ≥ 0. (12)

Remark 2.7. Rather than using generalized eigenvectors one can also write
T (z)−1 in terms of left and right root functions, see [25, Th.1.5.4].

The representation (10) and the ordering (9) of multiplicities shows that
the order κ of the pole in (4) is given by

κ = m1 = max{mℓ : ℓ = 1, . . . , L}.

Further, the number L = dim(N(T (λ))) is the geometric multiplicity while
∑L

ℓ=1 mℓ is the algebraic multiplicity of λ. In the semi-simple case mℓ =
1, l = 1, . . . , L, equations (10) and (11) simplify to

T (z)−1 = (z − λ)−1

L
∑

ℓ=1

vℓ
0w

ℓH
0 + R(z),

wℓH
0 T ′(λ)vν

0 = δνℓ, 1 ≤ ℓ, ν ≤ L,

which in case L = 1 further simplify to (6) and (5).

Consider now all eigenvalues inside a compact set C ⊂ Ω. In the same way
as (8) followed from (6), we obtain from Theorem 2.6 the following corollary.
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Corollary 2.8. Let C ⊂ Ω be compact and T ∈ H(Ω, Cm,m). Then C
contains at most finitely many eigenvalues λn, n = 1, . . . , n(C) with corre-
sponding CSGEs

Vn =
(

vℓ,n
j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln

)

, n = 1, . . . , n(C).

Let

Wn =
(

wℓ,n
j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln

)

, n = 1, . . . , n(C)

be the corresponding CSGEs of TH such that

r(wℓ,n
0 ) = mℓ,n

and with Tj,n = 1
j!
T (j)(λn)

j
∑

α=0

mν,n
∑

β=1

wℓ,nH
j−α Tα+β,n vν,n

mν,n−β = δνℓδ0j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ, ν ≤ Ln.

Then there exists a neighborhood C ⊂ U ⊂ Ω and a function R ∈ H(U , Cm,m)
such that for all z ∈ U \ {λ1, . . . , λn(C)}

T (z)−1 =

n(C)
∑

n=1

Ln
∑

ℓ=1

mℓ,n
∑

j=1

(z − λn)−j

mℓ,n−j
∑

ν=0

vℓ,n
ν wℓ,nH

mℓ,n−j−ν + R(z).

Consider now a contour Γ ⊂ Ω, i.e. a simple closed curve that has its
interior int(Γ) in Ω. An easy consequence of the residue theorem is the
following result.

Theorem 2.9. Let T ∈ H(Ω, Cm,m) have no eigenvalues on the contour
Γ ⊂ Ω and denote by λn, n = 1, . . . , n(Γ) the eigenvalues in the interior
int(Γ) ⊂ Ω. Then with the CSGEs from Corollary 2.8 we have for any
f ∈ H(Ω, C)

1

2πi

∫

Γ

f(z)T (z)−1dz =

n(Γ)
∑

n=1

Ln
∑

ℓ=1

mℓ,n
∑

j=1

f (j−1)(λn)

(j − 1)!

mℓ,n−j
∑

ν=0

vℓ,n
ν wℓ,nH

mℓ,n−ν−j. (13)

If all eigenvalues are simple the formula reads

1

2πi

∫

Γ

f(z)T (z)−1dz =

n(Γ)
∑

n=1

f(λn)vnw
H
n , (14)

where vn, wn are left and right eigenvectors corresponding to λn and normal-
ized according to

wH
n T ′(λn)vn = 1, n = 1, . . . , n(Γ). (15)
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Proof. Corollary 2.8 applies to C = int(Γ)∪Γ, where the function f(z)T (z)−1

has residues at λj given by the right-hand side of (13). The special case
Ln = 1, m0n = 1, n = 1, . . . , n(Γ) yields equation (14).

3 The algorithm for a few eigenvalues

In the following we set up an algorithm for computing all eigenvalues of
T ∈ H(Ω, Cm,m) inside a given contour Γ in Ω. We assume that the sum of
all algebraic multiplicities

k =

n(Γ)
∑

n=1

Ln
∑

ℓ=1

mℓ,n (16)

is not larger than the system dimension m. For the opposite case we refer to
Section 5. In large-scale problems we actually expect to have k ≪ m.

3.1 Simple eigenvalues inside the contour

As in the second part of Theorem 2.9, let us assume that all eigenvalues
λ1, . . . , λn(Γ) in int(Γ) are simple so that k = n(Γ). We introduce the matrices

V =
(

v1 . . . vk

)

, W =
(

w1 . . . wk

)

∈ C
m,k.

We assume that we have chosen a matrix

V̂ ∈ C
m,l, k ≤ l ≤ m,

such that
W H V̂ ∈ C

k,l has rank k. (17)

Note that this requires rank(W ) = k. In applications we choose V̂ at random
(see Section 4), so that (17) can be expected to hold in a generic sense if
rank(W ) = k. We note that (in contrast to linear eigenvalue problems) it is
easy to construct nonlinear eigenvalue problems for which W is rank deficient.
However, this seems to be a nongeneric situation for typical applications. In
addition to (17) we assume

rank(V ) = k, (18)

which again is expected to hold in generic cases.
Next we compute the two integrals

A0 =
1

2πi

∫

Γ

T (z)−1V̂ dz ∈ C
m,l (19)
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A1 =
1

2πi

∫

Γ

zT (z)−1V̂ dz ∈ C
m,l. (20)

The evaluation of these integrals by quadrature rules is by far the most
expensive part of the algorithm and will be discussed below. Note also, that
in the linear case T (z) = zI −A the matrix A0 is obtained by applying to V̂
the Riesz projector onto the invariant subspace associated with all eigenvalues
inside Γ.

By (14) we obtain

A0 =
k

∑

n=1

vnw
H
n V̂ = V W H V̂ . (21)

Similarly,

A1 =

k
∑

n=1

λnvnwT
n V̂ = V ΛW HV̂ , Λ = diag(λn, n = 1, . . . , k). (22)

In the next step we compute the singular value decomposition (SVD) of
A0 ∈ Cm,l in reduced form

V W H V̂ = A0 = V0Σ0W
H
0 (23)

where V0 ∈ C
m,k, Σ0 = diag(σ1, . . . , σk), W0 ∈ C

l,k, V H
0 V0 = Ik, W

H
0 W0 = Ik.

Note that the rank conditions (17),(18) show that rank(A0) = k, hence A0

has singular values

σ1 ≥ . . . ≥ σk > 0 = σk+1 = . . . = σl.

By the rank condition (18) we have

R(A0) = R(V ) = R(V0).

Since both, V0 and V are m × k matrices and V0 has orthonormal columns,
we obtain

V = V0S, S = V H
0 V ∈ C

k,k nonsingular. (24)

With (21), (24) we find V0SW H V̂ = V0Σ0W
H
0 and thus

W H V̂ = S−1Σ0W
H
0 .

This relation is used to eliminate W HV̂ from A1 = V0SΛW HV̂ . We obtain

V H
0 A1 = SΛW H V̂ = SΛS−1Σ0W

H
0 ,
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which upon multiplication by W0Σ
−1
0 from the right finally gives

SΛS−1 = V H
0 A1W0Σ

−1
0 . (25)

Note that the matrix on the right-hand side can be computed from the inte-
grals A0, A1 without a priori information about eigenvalues and eigenvectors.
The matrix is diagonalizable and has as eigenvalues exactly the eigenvalues
of T inside the contour. We summarize the result in a theorem.

Theorem 3.1. Suppose that T ∈ H(Ω, Cm,m) has only simple eigenvalues
λ1, . . . , λk inside the contour Γ in Ω with left and right eigenvectors normal-
ized as in (15). Moreover, let a matrix V̂ ∈ Cm,l be given such that k ≤ l ≤ m
and the rank conditions (17),(18) are satisfied. Then the matrix

B = V H
0 A1W0Σ

−1
0 ∈ C

k.k, (26)

given by (19),(20) and the SVD (23), is diagonalizable with eigenvalues
λ1, . . . , λk. From the eigenvectors s1, . . . , sk ∈ Ck of B one obtains the eigen-
vectors of T through

vn = V0sn, n = 1, . . . , k.

Remarks 3.2. (a) The method proposed here is very close to the method
of [2]. In their block method the authors of [2] premultiply A0 and A1 by
another test matrix UH ∈ Ck,m and then perform an SVD and solve an
eigenvalue problem. The derivation of the algorithm is quite different and
uses the Smith normal form [11],[10].

(b) For reasons of numerical stability we may replace A1 by

Ã1 =
1

2πi

∫

Γ

(z − z0)T (z)−1V̂ dz = A1 − z0A0.

For example, in case of a circle Γ, one can take z0 as its center. Then
(22) holds with Λ − z0 instead of Λ and the matrix B̃ = V H

0 Ã1W0Σ
−1
0 has

eigenvalues λn − z0. Therefore, the eigenvalues of T are found by adding z0

to the eigenvalues of B̃. This is also proposed in [1],[2].
(c) If the rank of either V or W or both is not maximal then we have a
degenerate situation that does not occur for linear eigenvalue problems. In
principle such a case can be detected from a rank drop of Σ0 provided we
know the number k from (16) beforehand. However, this information is
usually not available. Instead, we propose to include a test of residuals in
order to detect this situation (see the algorithm in Section 3.3 for more details
and, in particular, Example 4.12 in Section 4.2). A general cure for this rank
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deficient case is provided by the generalized algorithm in Section 5 which
uses the higher order moments from (3). Finally, a rank drop of W H V̂ due
to the random choice of V̂ hardly ever occurs in practice.
(d) An alternative to solving the eigenvalue problem for B is not to invert
Σ0 but rather solve the generalized eigenvalue problem for the matrix pencil
(V H

0 A1W0, Σ0). Generally this will improve the conditioning of the eigenvalue
computations if Σ0 contains small singular values. However, it does not help
with the rank deficient case discussed in (c) above, see also Section 3.3. One
could go even further and try to avoid SVD’s completely. Note that by the
representations (21) and (22) the eigenvalue problem det(Λ − λIk) = 0 is
equivalent to the rectangular eigenvalue problem rank(A1−λA0) < k (see [7]
for the numerical treatment). However, reliable algorithms for such problems
seem not to be available.

3.2 Multiple eigenvalues inside the contour

Let us consider the general case where T ∈ H(Ω, Cm,m) has no eigenvalues on
the contour Γ but may have multiple eigenvalues inside. We apply Corollary
2.8 to the compact set C = Γ∪ int(Γ) and assume that the matrix composed
of all CSGEs that belong to eigenvalues inside Γ,

V =
(

vℓ,n
j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln, 1 ≤ n ≤ n(Γ)

)

, (27)

has rank k, cf. (16). Then, using Theorem 2.9 with f(z) = 1 shows that A0,
as defined in (19), satisfies

A0 =

n(Γ)
∑

n=1

Ln
∑

ℓ=1

mℓ,n−1
∑

ν=0

vℓ,n
ν wℓ,nH

mℓ,n−1−νV̂ .

Further, we assume that the matrix

W H V̂ ∈ C
k,l (28)

has maximum rank k, where

W =
(

wℓ,n
mℓ,n−1−ν , 0 ≤ ν ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln, 1 ≤ n ≤ n(Γ)

)

∈ C
m,k,

(29)
is normalized as in Theorem 2.6. With Theorem 2.9 we then find

A1 =

n(Γ)
∑

n=1

Ln
∑

ℓ=1

[

λn

mℓ,n−1
∑

ν=0

vℓ,n
ν wℓ,nH

mℓ,n−1−ν +

mℓ,n−2
∑

ν=0

vℓ,n
ν wℓ,nH

mℓ,n−2−ν

]

V̂ = V ΛW HV̂ ,

13



where Λ has Jordan normal form

Λ =







J1

. . .

Jn(Γ)






, Jn =







Jn,1

. . .

Jn,Ln






, Jn,ℓ =







λn 1
. . .

. . .

λn






.

(30)
As in Section 3.1 the next steps are the SVD (23) for A0 and the computation
of B = V H

0 A1W0Σ
−1
0 ∈ Ck.k. Then B has eigenvalues λ1, . . . , λn(Γ) and its

Jordan normal form has the same partial multiplicities as T (z).

Theorem 3.3. Suppose that T ∈ H(Ω, Cm,m) has no eigenvalues on the
contour Γ in Ω and pairwise distinct eigenvalues λn, n = 1, . . . , n(Γ) inside
Γ with partial multiplicities m1,n ≥ . . . ≥ mLn,n, n = 1, . . . , n(Γ). Moreover,
assume that the matrix of generalized eigenvectors from (27) and the matrix
W H V̂ from (28) have rank k with k given by (16). Then the matrix B ∈ Ck,k

from (26) has Jordan normal form (30) with the same eigenvalues λn and
partial multiplicities mℓ,n (ℓ = 1, . . . , Ln, n = 1, . . . , n(Γ)). Suitable CSGEs

for T can be obtained from corresponding CSGEs sℓ,n
j for B via

vℓ,n
j = V0s

ℓ,n
j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln, 1 ≤ n ≤ n(Γ). (31)

Remark 3.4. Essentially, the theorem reduces the nonlinear problem for
eigenvalues inside a contour to a linear eigenvalue problem for a k×k-matrix.
The linear eigenvalue problem inherits the multiplicity structure of the non-
linear problem. Note that Krylov subspace bases of the type (31) also appear
in the second order Arnold method [3],[22].

3.3 Quadrature and numerical realization

The major step in the algorithm consists in evaluating the integrals (19) and
(20) by numerical quadrature and by solving the linear systems involved in
the evaluation of the integrand. We assume that Γ has a 2π-periodic smooth
parameterization

ϕ ∈ C1(R, C), ϕ(t + 2π) = ϕ(t) ∀t ∈ R.

Of particular interest is the real analytic case ϕ ∈ Cω(R, C). Taking equidis-
tant nodes tj = 2jπ

N
, j = 0, . . . , N and using the trapezoid sum, we find the

following approximations

A0 =
1

2πi

∫ 2π

0

T (ϕ(t))−1V̂ ϕ′(t)dt ≈

A0,N =
1

iN

N−1
∑

j=0

T (ϕ(tj))
−1V̂ ϕ′(tj),

(32)
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where we used ϕ(t0) = ϕ(tN). Similarly,

A1 ≈ A1,N =
1

iN

N−1
∑

j=0

T (ϕ(tj))
−1V̂ ϕ(tj)ϕ

′(tj). (33)

In order to compute A0,N we need to solve Nl linear systems with N different
matrices T (ϕ(tj)), j = 0, . . . , N−1 and with l different right-hand sides each.
Note that we can use the solutions of these linear systems to compute A1,N

at almost no extra cost. For the special case of a circle ϕ(t) = µ + Reit we
obtain the formulas

A0,N =
R

N

N−1
∑

j=0

T (ϕ(tj))
−1V̂ exp(

2πij

N
),

A1,N =µA0,N +
R2

N

N−1
∑

j=0

T (ϕ(tj))
−1V̂ exp(

4πij

N
).

The algorithm can be summarized as follows:

Integral algorithm 1

Step 1: Choose an index l ≤ m and a matrix V̂ ∈ Cm,l at random.

Step 2: Compute A0,N ,A1,N from (32),(33).

Step 3: Compute the SVD A0,N = V ΣW H , where
V ∈ Cm,l, W ∈ Cl,l, V HV = W HW = Il, Σ = diag(σ1, σ2, . . . , σl).

Step 4: Perform a rank test for Σ, i.e. find 0 < k ≤ l such that
σ1 ≥ . . . ≥ σk > tolrank > σk+1 ≈ . . . ≈ σl ≈ 0.
If k = l then increase l and go to Step 1.
Else let V0 = V (1 : m, 1 : k), W0 = W (1 : l, 1 : k) and
Σ0 = diag(σ1, σ2, . . . , σk).

Step 5: Compute B = V H
0 A1,NW0Σ

−1
0 ∈ Ck,k.

Step 6: Solve the eigenvalue problem for B. If all eigenvalues λj , j = 1, . . . , k
are well-conditioned with corresponding eigenvectors sj then accept λj and
the eigenvector vj = V0sj provided λj ∈ int(Γ) and ||T (λj)vj || ≤ tolres.
Otherwise compute a Schur decomposition BQ = QT with Q unitary and T
upper triangular. Reorder eigenvalues such that eigenvalues inside Γ occur
first and discard eigenvalues outside Γ and the corresponding columns of Q.
Block diagonalize T such that diagonal blocks belong to different eigenvalues.
Let λj be the diagonal entry of the j-th block and let sj ∈ Ck be the first
column vector from the corresponding block. Accept vj = V0sj as eigenvector
and λj as eigenvalue if ||T (λj)vj || ≤ tolres. For details we refer to MATLAB
routines eig,condeig,schur,ordschur and the remarks below.
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Remarks 3.5. (a) If we find k = l positive singular values in Step 4 then we
take this as an indication that there may be more than l eigenvalues (includ-
ing multiplicities) inside Γ. We then increase l until a rank drop is detected
in Step 4.
(b) Note that A1,N is computed from the same columns as A0,N , just new
coefficients appear. Therefore, it is generally not necessary to store factor-
izations of T (ϕ(tj)) if a direct solver is used. However, when l is increased

in Step 4, new columns of V̂ appear and one can take advantage of previous
factorizations for computing the new columns of A0,N , A1,N . If storage space
is crucial or iterative solvers are used or if l is increased many times it can be
advantageous to shift the computation of A1,N to Step 5 (when k has been
determined) and solve the linear systems with multiple right-hand sides in a
second pass.
(c) According to Theorem 3.3 the matrix B retains the complete multiplicity
structure of eigenvalues inside the contour. Therefore, a Schur decomposi-
tion followed by reordering and block diagonalization is used for the case of
multiple eigenvalues in Step 6 (cf. [13, Ch.7.6]) . However, currently only the
first column vector belonging to any diagonal block is taken when testing the
residual. No attempt is made to recover non-constant root functions from
the remaining columns. This is an interesting topic for further investigations.

(d) As mentioned in Remark 3.2 (d) the conditioning of the eigenvalue
problem improves if Σ0 is not inverted but a generalized eigenvalue problem
is solved instead. In the examples below this did not make a noticeable
difference, probably due to a conservative choice of the rank tolerance in
Step 4.

4 Error analysis and numerical examples

4.1 Error analysis

Standard results on the trapezoid sum for holomorphic periodic integrands
imply exponential convergence at a rate that depends on the number of nodes
times the width of the horizontal strip of holomorphy, see [8],[9, 4.6.5]. Ap-
plications of these results to the computation of matrix functions via contour
integrals appear in [15].

Theorem 4.1. Let f ∈ H(S(d−, d+), C) be 2π-periodic on the strip

S(d−, d+) = {z ∈ C : −d− < Im z < d+}, d± > 0.
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Then the error of the trapezoid sum

EN(f) =
1

2π

∫ 2π

0

f(x)dx −
1

N

N−1
∑

j=0

f(
2πj

N
)

satisfies for all 0 < r− < d−, 0 < r+ < d+

|EN(f)| ≤ max
Im(z)=r+

|f(z)| G(e−Nr+) + max
Im(z)=r−

|f(z)| G(e−Nr−),

where G(x) = x
1−x

, x 6= 1.

Remark 4.2. Note that Theorem 4.1 is a slight variation of [9, 4.6.5] since
f is not assumed to be real on [0, 2π] and the strip S(d−, d+) can be unsym-
metric, in general.

In the proof of [9, 4.6.5] the real line is transformed into a closed circle
via the exponential function and then a Laurent expansion is used. Since
we need such a result for closed contours in the sequel, we give an explicit
formulation and, for better readability, include the rather short proof.

Theorem 4.3. Let f ∈ H(A(a−, a+), C) be holomorphic on the annulus

A(a−, a+) = {z ∈ C :
1

a−

<
|z|

R
< a+}, a± > 1,

for some R > 0. Then the error of the trapezoid sum

EN (f) =
1

2πi

∫

|z|=R

f(z)dz −
R

N

N−1
∑

j=0

f(Rωj
N)ωj

N , ωN = exp(
2πi

N
), (34)

satisfies for all 1 < ρ− < a−, 1 < ρ+ < a+

|EN(f)| ≤ max
|z|=ρ+R

|f(z)| G(ρ−N
+ )) + max

ρ−|z|=R
|f(z)| G(ρ−N

− ). (35)

Proof. We use the Laurent expansion of f (see e.g. [14])

f(z) =
∞

∑

k=−∞

fkz
k, fk =

1

2πi

∫

|z|=R

f(z)z−k−1dz, (36)

which converges uniformly on compact subdomains of the annulus. By a
simple computation,

EN (zk) =

{

−RℓN , k + 1 = ℓN, ℓ ∈ Z \ {0},
0 otherwise.
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Applying EN to (36) leads to

EN(f) = −
∞

∑

ℓ=1

(fℓNRℓN + f−ℓNR−ℓN). (37)

From Cauchy’s Theorem and a standard estimate we obtain

|fℓNRℓN | =
∣

∣

∣

RℓN

2πi

∫

|z|=R
f(z)z−ℓN−1dz

∣

∣

∣

= RℓN

∣

∣

∣

1
2πi

∫

|z|=ρ+R
f(z)z−ℓN−1dz

∣

∣

∣

≤ RℓN

2π
2πρ+R max|z|=ρ+R |f(z)| (ρ+R)−ℓN−1

= max|z|=ρ+R |f(z)| ρ−ℓN
+ .

In a similar way,
|f−ℓNR−ℓN | ≤ max

ρ−|z|=R
|f(z)| ρ−ℓN

− .

Using these estimates in (37) completes the proof.

The proof shows that the ρ−-term can be discarded in (35) if the principal
term in the Laurent expansion vanishes (i.e. fk = 0 for k ≤ −1). Likewise,
the ρ+-term disappears when fk = 0 for k ≥ 0. For the function

f(z) = (z − λ)−j, j ≥ 1, (38)

the principal term vanishes for |λ| > R while the secondary term vanishes
for |λ| < R. Example (38) is crucial for the application to the meromorphic
functions from Section 3. Therefore, we note the following explicit formula.

Lemma 4.4. The error of the trapezoid sum (34) for the function (38) in
case N ≥ j is given as follows,

EN ((z − λ)−j) =
(−1)j−1λ−j

(j − 1)!

{

dj−1

dxj−1 (x
j−1G(x−N))|x= R

λ
, |λ| < R,

dj−1

dxj−1 (x
j−1G(xN))|x= R

λ
, |λ| > R.

(39)

In particular,

EN((z − λ)−j) =















O

(

|λ|−j
(

|λ|
R

)N−j+1
)

, |λ| < R,

O

(

|λ|−j
(

R
|λ|

)N+j−1
)

, |λ| > R.
(40)
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Remark 4.5. If f ∈ H(A(a−, a+), C) is meromorphic on an open neigh-
borhood of the closed annulus A(a−, a+)c, then the estimate (35) can be
sharpened as follows

EN(f) = O(a−N
+ + a−N

− ).

In order to see this, first consider the singular part that belongs to poles on
the boundary of A(a−, a+), and use Lemma 4.4. Then apply Theorem 4.3 to
the remaining part on a slightly larger annulus.

Consider a general contour Γ in Ω with 2π-periodic parametrization ϕ(t), t ∈
[0, 2π]. Moreover, assume that ϕ has a 2π-periodic holomorphic extension to
a strip

ϕ ∈ H(S(d−, d+), Ω), ϕ(z + 2π) = ϕ(z). (41)

For definiteness, we also assume that

ϕ(z)

{

∈ int(Γ), 0 < Im(z) < d+,
/∈ int(Γ), −d− < Im(z) < 0.

(42)

Common examples are circles ϕ(z) = z0 + Reiz with z ∈ C and ellipses
ϕ(z) = a cos(z) + ib sin(z) with | Im(z)| < artanh(min(a

b
, b

a
)).

Let g ∈ H(Ω, C), then the error of the trapezoid sum for f(z) = g(ϕ(z))ϕ′(z),
z ∈ S(d−, d+) is

EN (g) =
1

2πi

∫

Γ

g(z)dz −
1

iN

N−1
∑

j=0

g(ϕ(
2πj

N
))ϕ′(

2πj

N
). (43)

From Theorem 4.1 we obtain an estimate

|EN(g)| ≤ Φ(r+)G(e−Nr+) + Φ(r−)G(e−Nr−), (44)

where 0 < r− < d−, 0 < r+ < d+ and Φ(r) = maxIm(z)=r |ϕ
′(z)||g(ϕ(z))|.

The following lemma gives a rough estimate of the right-hand sides for the
pole function g(z) = (z − λ)−j, λ ∈ Ω.

Lemma 4.6. Let Ω be bounded and let ϕ satisfy conditions (41), (42).
Then there exist constants C1, C2, C3 > 0 (depending on ϕ, j but not on N
or λ ∈ Ω) such that for dist(λ, Γ) ≤ C3,

|EN((· − λ)−j)| ≤ C1dist(λ, Γ)−j exp (−C2Ndist(λ, Γ)) . (45)

Proof. For a fixed 0 < q < 1 there are bounds |ϕ′(z)| ≤ M+ for 0 ≤ Im(z) ≤
qd+ and |ϕ′(z)| ≤ M− for 0 ≤ − Im(z) ≤ qd−. Let C3 = max(M+d+, M−d−)
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and define r+ = qdist(λ,Γ)
M+

. Then there exists some z+ = s+ + ir+, 0 ≤ s+ < 2π
such that

min
Im(z)=r+

|λ − ϕ(z)| = |λ − ϕ(z+)| ≥ |λ − ϕ(s+)| − |ϕ(s+) − ϕ(z+)|

≥ dist(λ, Γ) − M+r+ = (1 − q)dist(λ, Γ).

The first term in (44) can be estimated as follows

|Φ(r+)|G(e−Nr+) ≤ M+ maxIm z=r+
|(ϕ(z) − λ)−j |G(e−Nr+)

≤ C(1 − q)−jM+dist(λ, Γ)−j exp
(

−Ndist(λ, Γ) q

M+

)

.

The second term is treated analogously.

As a consequence of Lemmas 4.4 and 4.6 we obtain an exponential esti-
mate for the errors in (32) and (33).

Theorem 4.7. Let T ∈ H(Ω, C) have maximum order κ of poles for the
inverse in Ω, cf. Theorem 2.2. Further, let Γ be a simple closed contour in
Ω with σ(T ) ∩ Γ = ∅ and such that the parametrization ϕ satisfies (41) and
(42). Then there exist constants C1, C2 > 0 (depending on T and V̂ but not
on N) such that the matrices from (32),(33) satisfy

||Ap − Ap,N || ≤ C1d(T )−κe−C2Nd(T ), p = 0, 1,

where d(T ) = minλ∈σ(T ) dist(λ, Γ) and d(T ) = 1 if σ(T ) = ∅. If Γ is a circle
with parametrization ϕ(t) = z0 + Reit, then the following estimate holds

||Ap − Ap,N || ≤ C1

[

ρN−κ+1
− + ρN+κ−1

+

]

, p = 0, 1,

where

ρ− = max
λ∈σ(T ),|λ−z0|<R

|λ − z0|

R
, ρ+ = max

λ∈σ(T ),|λ−z0|>R

R

|λ − z0|
.

Combining these estimates with the well-known perturbation theory for
singular value decompositions [30] we find that the integral algorithm detects
the correct rank k of A0,N if N is sufficiently large. Further, the perturbation
theory for simple eigenvalues [30] leads to the following corollary.

Corollary 4.8. Let the assumptions of Theorem 3.1 and of Theorem 4.7 be
satisfied. Let λ1, . . . , λk be the eigenvalues of T inside Γ and let λ1,N , . . . , λk,N

be the eigenvalues from step 6 of the integral algorithm. With the notation
from Theorem 4.7 we then have the error estimates

max
j=1,...,n(Γ)

|λj − λj,N | ≤ C1d(T )−κe−C2Nd(T ),
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in case of a general curve satisfying (41),(42), and

max
j=1,...,n(Γ)

|λj − λj,N | ≤ C
[

ρN−κ+1
− + ρN+κ−1

+

]

in case of a circle with radius R and center z0.

4.2 Numerical examples

Example 4.9. For the first test we choose a real quadratic polynomial

T (z) = T0 + zT1 + z2T2, Tj ∈ R
60,60, j = 0, 1, 2, (46)

where T0, T1, T2 are taken at random (rand from MATLAB). In this case we
can compare with the spectrum σpolyeig resulting from MATLAB’s polyeig.

Figure 1(left) shows the result from polyeig (open circles) and the eigen-
values from Integral algorithm 1 (filled boxes) for the data

ϕ(t) = Reit, t ∈ [0, 2π] , R = 0.33, tolrank = 10−4, tolres = 10−1. (47)

The eight eigenvalues inside the circle are detected and well approximated
by the integral algorithm. Figure 1 (right) shows the errors

e(λj) = min{|λj − µ| : µ ∈ σpolyeig}

for two characteristic eigenvalues inside the circle. Both show exponential
decay with respect to N at approximately the same rate.

While Figure 1 (left) results from the integral algorithm with an adaptive
number l of columns (which yields l = 8 at N = 150), the computations in
Figure 1(right) are done with a fixed number of l = 11 columns. For this
case we show the behavior of the 11 largest singular values of A0,N in Figure
2 (left). Sufficient separation of singular values already occurs at values
N ≈ 25, much smaller than 150. Figure 2 (right) shows how the adaptive
algorithm reduces the number of singular values from l = 23 at N = 20 to
l = 8 for N ≥ 95.

Example 4.10. For the next experiment we take random complex entries
in (46), a fixed number l = 10 of columns, and the same circle as in (47).
Again, the 6 eigenvalues inside the circle from polyeig are well approximated
by the integral algorithm, see Figure 3 (left).

But this time the singular values do not separate as well as in Figure 2
(left). Two of them decay rather slowly, while two others, due to eigenval-
ues very close but outside the contour, remain of order one. However, this
behavior does not result in spurious eigenvalues. On the contrary, if we keep
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Figure 1: Example 4.9.Eigenvalues of a quadratic eigenvalue problem from
polyeig (open circles) and Integral algorithm 1 (filled squares) with N = 150
(left). Difference e(λj) of eigenvalues λ1 ≈ 0.30578 (filled circles) and λ2 ≈
0.0961 − 0.1315i (open circles) between polyeig and the integral algorithm
versus the number of nodes N (right).

l = 10 for the eigenvalue computation, then this yields the 6 eigenvalues
inside and in addition the four eigenvalues lying closest to the contour, but
outside. Such a behavior is also suggested by our error analyis in Section
4.1 according to which the principle error term depends on the distance of
eigenvalues to the contour, both for eigenvalues inside and outside. Compu-
tational experience shows that only very small singular values (≈ 10−10) lead
to spurious eigenvalues and these can be easily avoided by the residual test
in Step 6. Another

Example 4.11. This example, taken from [29] and [20], is a finite element
discretization of a nonlinear boundary eigenvalue problem

−u′′(x) = λu(x), 0 ≤ x ≤ 1, u(0) = 0 = u′(1) +
λ

λ − 1
u(1).

The matrix function is T (z) = T1 + 1
1−z

emeT
m − zT3, where

T1 = m











2 −1

−1
. . .

. . .
. . . 2 −1

−1 1











, T3 =
1

6m











4 1

1
. . .

. . .
. . . 4 1

1 2











.
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Figure 2: Example 4.9. Singular values versus N for a fixed number of l = 11
columns in the integral algorithm (left), reduction of the number of singular
values by the rank test of the adaptive algorithm versus N (right).

We use m = 400 and compute five eigenvalues in the interval [2, 298].
Again Figure 4 (left) shows the real eigenvalues in the circle which agree with
those from [20]. Note that we avoided the singularity of T at z = 1. The
residuals of the computed eigenvectors and eigenvalues decay exponentially
as expected, see Figure 4, but not as smooth as in the previous examples.

Example 4.12. Consider the quadratic polynomial

T (z) = T0 + (z − a)(b − z)T1, a < b ∈ R, T0, T1 ∈ R
15,15, (48)

where T0 has zeroes in the first column. All other entries of T0, T1 are chosen
at random. Then T (z) has different eigenvalues a and b with the same
eigenvector e1 ∈ Rm. This is a critical case since the rank condition (18) is
violated. In Figure 5 (left) we show the results of polyeig and of the integral
algorithm (with l = 5 and the data from (47)). There are three eigenvalues
inside the circle. Both eigenvalues a = −0.2 and b = 0.1 are missed by the
integral method, while the third one is found, though at lower accuracy than
in the previous examples. Figure 5 shows that only one singular value stays
of order one when N is increased. Solving the generalized eigenvalue problem
in this case (see Remark 3.2 (d)) produces extra eigenvalues of size ≈ 10−5

which are then discarded since they lie outside the circle. This example will
be reconsidered in Section 5.
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Figure 3: Example 4.10. Eigenvalues from polyeig (open circles) and eigen-
values from the integral algorithm for a random quadratic complex matrix
polynomial (left), singular values of integral algorithm with l = 10 columns
versus the number N of quadrature nodes for the same example (right).

5 The algorithm for many eigenvalues

In this section we show how the method from Section 3 can be extended to
nonlinear eigenvalue problems with more eigenvalues than the dimension of
the system, i.e. m < k, and to the rank deficient cases, see Remark 3.2 and
Example 4.12. Similar to Section 3 the approach in [1],[2] differs from ours
by multiplying the block Hankel matrices below with suitable test matrices
from the left and then taking singular values.

5.1 Construction of algorithm

In case m < k condition (18) is always violated and there is no matrix
V̂ satisfying (17). Therefore, we compute more integrals of type (19),(20),
namely

Ap =
1

2πi

∫

Γ

zpT (z)−1V̂ dz ∈ C
m,l, p ∈ N.

Here we assume that V̂ ∈ Cm,l with l ≤ m. In fact, in case k > m we set
V̂ = Im instead of making a random choice.

From Theorem 2.9 we obtain

Ap = V ΛpW H V̂ , p ∈ N, (49)
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Figure 4: Example 4.11. Eigenvalues from the integral algorithm for the finite
element discretization of a nonlinear boundary eigenvalue problem (left),
decay of residuals res(λj) = ||T (λj)(vj)|| for λ1 ≈ 24 (open circles), λ2 ≈ 123
(filled circles) versus the number N of quadrature nodes for the same example
(right).

where V, W ∈ Cm,k are given by (27) and (29) and Λ has the normal form
(30).

Now we choose K ∈ N, K ≥ 1 and form the Km × Kl matrices

B0 =







A0 · · · AK−1
...

...
AK−1 · · · A2K−2






, B1 =







A1 · · · AK

...
...

AK · · · A2K−1






. (50)

From (49) we find the representations

B0 =







V
...

V ΛK−1







(

W H V̂ · · · ΛK−1W H V̂
)

, (51)

and

B1 =







V
...

V ΛK−1






Λ

(

W H V̂ · · · ΛK−1W H V̂
)

. (52)

We assume that K has been chosen such that the following rank condition

25



−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

Re

Im

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

10
10

N

σj

Figure 5: Example 4.12. Eigenvalues from polyeig (open circles) and eigen-
values from the integral algorithm for a quadratic matrix polynomial with
rank defect (left), singular values of integral algorithm with l = 5 columns
versus the number N of quadrature nodes for the same example (right).

holds

rank







V
...

V ΛK−1






= k. (53)

The smallest index having this property is called the minimality index in
[20]. In case k > m this can be expected to hold if we choose

(K − 1)m < k ≤ Km.

In case k ≤ m with rank(V ) < k (see Remark 3.2(b)) the following lemma
shows that (53) holds for K larger than the sum of the maximal ranks at all
eigenvalues.

Lemma 5.1. Let the assumptions of Corollary 2.8 be satisfied. Then the
rank conditon (53) holds with k as defined in (16) for

K ≥

n(C)
∑

n=1

max
1≤ℓ≤Ln

mℓ,n. (54)

Proof. By the ordering (9) we have m1,n = max1≤ℓ≤Ln
mℓ,n for all n. Assume

that V Λjx = 0, j = 0, . . . , K − 1 for K satisfying (54) and for some x ∈ Ck.
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For any n ∈ {1, . . . , n(C)} and 0 ≤ β ≤ m1,n − 1 define the polynomial

Pn,β(z) = (z − λn)β

n(C)
∏

r=1,r 6=n

(z − λr)
m1,r .

By our assumption these polynomials have at most degree K − 1 and, there-
fore, satisfy 0 = V Pn,β(Λ)x. We partition V into columns and x into blocks
compatible with the Jordan structure (30)

V =
(

V1 · · · Vn(C)

)

, Vn =
(

Vn,1 · · · Vn,Ln

)

, Vn,ℓ =
(

vℓ,n
0 · · · vℓ,n

mℓ,n−1

)

x =







x1
...

xn(C)






, xn =







x1,n

...
xLn,n






, xℓ,n =







xℓ,n
0
...

xℓ,n
mℓ,n−1






.

Using this in 0 = V Pn,β(Λ)x leads to

0 =

n(C)
∑

j=1

Vj(Jj − λn)β

n(C)
∏

r=1,r 6=n

(Jj − λr)
m1,rxj .

Since (Jr − λr)
m1,r = 0 we obtain

0 = Vn(Jn − λn)β

n(C)
∏

r=1,r 6=n

(Jn − λr)
m1,rxn.

Expanding into columns again and using (Jn,ℓ−λn)β = 0 for indices mℓ,n ≤ β
gives

0 =

Ln
∑

ℓ=1

β≤mℓ,n−1

Vn,ℓ

n(C)
∏

r 6=n

(Jn,ℓ − λr)
m1,r(Jn,ℓ − λn)βxℓ,n. (55)

We use this equation to prove for any given n and by induction on β =
m1,n − 1, . . . , 0 the following

xn,ℓ
ν = 0, for indices β ≤ ν ≤ mℓ,n − 1, ℓ ∈ {1, . . . , Ln}. (56)

For β = m1,n − 1, equation (55) reads

0 =

Ln
∑

ℓ=1

mℓ,n=m1,n

(

vℓ,n
0 · · · vℓ,n

mℓ,n−1

)

n(C)
∏

r=1

r 6=n

(Jn,ℓ − λr)
m1,r







0 · · · 1
...

...
0 · · · 0













xℓ,n
0
...

xℓ,n
mℓ,n−1







=

n(C)
∏

r=1

r 6=n

(λn − λr)
m1,r

Ln
∑

ℓ=1

mℓ,n=m1,n

vℓ,n
0 xℓ,n

mℓ,n−1.
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Thus condition (56) follows for β = m1,n from the linear independence of

the vectors vℓ,n
0 (cf. Definition 2.5 (iv)). For the induction step we use (55)

with β − 1 instead of β. Taking the hypothesis (56) into account we find in
a similar way

0 =

Ln
∑

ℓ=1

mℓ,n=m1,n

(

vℓ,n
0 · · · vℓ,n

mℓ,n−1

)

n(C)
∏

r=1

r 6=n

(Jn,ℓ − λr)
m1,r















0 · · · 1 · · · 0
... 0

. . .

0 · · · 0 · · · 1
...

...
...

0 · · · 0 · · · 0































xℓ,n
0
...

xℓ,n
β−1
...
0

















=

n(C)
∏

r 6=n

(λn − λr)
m1,r

Ln
∑

ℓ=1

mℓ,n≥β

vℓ,n
0 xℓ,n

β−1.

Therefore, condition (56) holds for β − 1. In summary, we have shown x = 0
and this finishes the proof.

The computational procedure is now a straightforward generalization of
Section 3.1. First compute B0, B1 ∈ CKm,Kl from (50). In addition to (53),
assume

rank
(

W HV̂ · · · ΛK−1W H V̂
)

= k. (57)

Let us abbreviate

V[K] =







V
...

V ΛK−1






∈ C

Km,k, W H
[K] =

(

W HV̂ · · · ΛK−1W H V̂
)

∈ C
k,Kl.

Compute the SVD
V[K]W

H
[K] = B0 = V0Σ0W

H
0 ,

where V0 ∈ C
Km,k, V H

0 V0 = Ik, Σ0 = diag(σ1, . . . , σk) ∈ C
k,k, and W0 ∈ C

Kl,k,
W H

0 W0 = Ik. From the rank conditions (53),(57),

σ1 ≥ . . . σk > 0 = σk+1 = . . . = σKl.

The rank condition (53) also implies

R(B0) = R(V[K]) = R(V0).

Thus the matrix S = V H
0 V[K] ∈ Ck,k is nonsingular and satisfies

V[K] = V0S. (58)
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With (51), (58) we find
W H

[K] = S−1Σ0W
H
0 ,

and then from (52)

B1 = V[K]ΛW H
[K] = V0SΛS−1Σ0W

H
0 .

Finally, this leads to

D := V H
0 B1W0Σ

−1
0 = SΛS−1. (59)

Therefore, the analog of Theorem 3.3 is

Theorem 5.2. Suppose that T ∈ H(Ω, Cm,m) has no eigenvalues on the
contour Γ in Ω and pairwise distinct eigenvalues λn, n = 1, . . . , n(Γ) inside
Γ with partial multiplicities m1,n ≥ . . . ≥ mLn,n, n = 1, . . . , n(Γ). Assume
that the rank conditions (53),(57) are satisfied with k given by (16). Then
the matrix D ∈ C

k,k from (59) has Jordan normal form (30) with the same
eigenvalues λn and partial multiplicities mℓ,n (ℓ = 1, . . . , Ln, n = 1, . . . , n(Γ)).

Suitable CSGEs for T can be obtained from corresponding CSGEs sℓ,n
j for D

via
vℓ,n

j = V
[1]
0 sℓ,n

j , 0 ≤ j ≤ mℓ,n − 1, 1 ≤ ℓ ≤ Ln, 1 ≤ n ≤ n(Γ),

where V
[1]
0 is the upper m × k block in

V0 =







V
[1]
0
...

V
[K]
0






. (60)

Remark 5.3. In a sense this generalization is similar to linearizing a poly-
nomial eigenvalue problem by increasing the dimension. Note, however, that
this only becomes necessary if there are too many eigenvalues inside the
contour, or if rank defects occur that are not present in linear eigenvalue
problems.

The generalization of the algorithm from Section 3.3 is the following.

Integral algorithm 2

Step 1: Choose numbers l ≤ m, K ≥ 1 and a matrix V̂ ∈ Cm,l at random.
If more than m eigenvalues are expected inside Γ, let l = m, V̂ = Im.

Step 2: Compute

Ap,N =
1

iN

N−1
∑

j=0

T (ϕ(tj))
−1V̂ ϕ(tj)

pϕ′(tj), p = 0, . . . , 2K − 1,
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and form B0,N ,B1,N as in (50).

Step 3: Compute the SVD B0,N = V ΣW H , where
V ∈ C

Km,Kl, W ∈ C
Kl,Kl, V HV = W HW = IKl, Σ = diag(σ1, σ2, . . . , σKl).

Step 4: Perform a rank test for Σ, i.e. find 0 < k ≤ Kl such that
σ1 ≥ . . . ≥ σk > σk+1 ≈ . . . ≈ σKl ≈ 0.
If k = Kl then increase l or K and go to Step 1.
Else let V0 = V (1 : Km, 1 : k), W0 = W (1 : Kl, 1 : k) and
Σ0 = diag(σ1, σ2, . . . , σk).

Step 5: Compute D = V H
0 B1,NW0Σ

−1
0 ∈ Ck,k.

Step 6: Solve the eigenvalue problem for D. If all eigenvalues λj, j = 1, . . . , k
are well-conditioned with corresponding eigenvectors sj ∈ Ck then accept λj

and the eigenvector vj = V
[1]
0 sj provided λj ∈ int(Γ) and ||T (λj)vj|| ≤ tolres.

Otherwise compute a Schur decomposition DQ = QT with Q unitary and
T upper triangular. Reorder eigenvalues such that eigenvalues inside Γ oc-
cur first and discard eigenvalues outside Γ and corresponding columns of Q.
Block diagonalize T such that diagonal blocks belong to different eigenvalues.
Let λj be the diagonal entry of the j-th block and let sj ∈ C

k be the first col-

umn vector from the corresponding block. Accept vj = V
[1]
0 sj as eigenvector

and λj as eigenvalue if ||T (λj)vj|| ≤ tolres.
Similar remarks as in Remark 3.5 apply. In particular, it would be ad-

vantageous to have an approximation of higher order root functions that
generalize the invariant pairs for matrix polynomials in [5].

5.2 Numerical Examples

Example 5.4. We apply the integral algorithm 2 to the rank deficient ex-
ample (48), where K = 2, l = 3 and the contour is the circle from (47). Now
the eigenvalues a = −0.2 and b = 1 are reproduced correctly (see Figure
6(left)), and three singular values survive as expected (Figure 6 (right)).

Example 5.5. Consider the characteristic equation of a delay system ẋ =
T0x(t) + T1x(t − τ) from [26, Sec.2.4.2],[20], given by

T (z) = zI − T0 − T1e
−zτ , T0 =

(

−5 1
2 −6

)

, T1 =

(

−2 1
4 −1

)

. (61)

In case τ = 1 there are more than two eigenvalues inside the circle ϕ(t) =
z0 + Reit, z0 = −1, R = 6 . We set l = 2, V̂ = I2 and K = 3 for the integral
algorithm 2 and obtain with N = 150 five eigenvalues inside the circle, (see
Figure 7(left)), which coincide with the computed ones in [20]. Much smaller
values than N = 150 give sufficient accuracy, since there is a good separation
of singular values and a fast decay of residuals, see Figure 7(right).
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Figure 6: Example 5.4. Eigenvalues from polyeig (open circles) and eigen-
values from the integral algorithm 2 (K = 2, filled boxes) for a quadratic
matrix polynomial with rank defect (left), singular values of integral algo-
rithm 2 with l = 3 columns versus the number N of quadrature nodes for
the same example (right).
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