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Abstract

We consider parameter-dependent, continuous-time dynamical systems under
discretizations. It is shown that Hopf-Hopf bifurcations are O(hp)-shifted and
turned into double Neimark-Sacker points by general one-step methods of order
p. Then we discuss the effect of discretization methods on the emanating Hopf
curves. The numerical approximation of the critical eigenvalues is analyzed too.
The results are illustrated by a numerical example.

1 Introduction

Consider a continuous-time dynamical system depending on parameters, given by

ẋ(t) = f(x(t), α), (1.1)

where f ∈ Ck(Ω×Λ,RN) with open sets 0 ∈ Ω ⊂ RN , 0 ∈ Λ ⊂ R2, k ≥ 1 sufficiently large,
N ≥ 4. The first and commonly used tool for exploring the dynamical behavior of system
(1.1) is numerical time-integration. For this purpose we can employ one-step methods,
which consists in approximating the evolution operator by a discrete-time system

x 7→ g(x, α), (1.2)

with g ∈ Ck(Ω × Λ,RN), where the step-size were assumed to be previously chosen. It
then becomes clear the importance of establishing theoretical results that allow us to
make conclusions about the real behavior of system (1.1) starting from the numerical
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Fig. 1.1: Local bifurcation diagram near a double Hopf point.

observations obtained via (1.2). The situation turns out to be more involved if the system
undergoes bifurcations under variation of parameters. In this sense, we can find in [18]
rigorous results at the level of topological conjugacies of continuous-time systems and
their discretizations. There, elementary codimension one bifurcations are analyzed.

In the present article we suppose that system (1.1) undergoes Hopf-Hopf bifurcations,
which occur when the system presents an equilibrium with two pairs of Hopf eigenvalues,
see [16]. Further we assume that (1.1) is approximated via general one-step methods, see
Section 2.

Under these conditions, we will first investigate whether one-step methods applied to
the continuous-time system reproduce by a “discrete version” the underlying codimension
two point. When dealing with cusp and Bogdanov-Takens bifurcations, it is already
known that they persist at the same position under general Runge-Kutta methods, see
[19]. The fold-Hopf singularity and its discretized bifurcation picture are analyzed in
[21]. Discretizations of generalized Hopf points are dealt in [22]. There, the numerical
approximation of the first Lyapunov coefficient along the Hopf branches is discussed too.
Results in this direction for the Hopf-Hopf bifurcation seem not to be available.

Then we analyze the effect of discretization methods on the local bifurcation picture
of the Hopf-Hopf bifurcation, see Figure 1.1. In this picture, the curves labeled by H1,2

represent paths of Hopf points which intersect at the codimension two point. The local
bifurcation diagram near a Hopf-Hopf point is known to present other phenomena such
as Neimark-Sacker bifurcation of cycles, and homoclinic and heteroclinic bifurcations.
These objects are not considered in our discussion. Our efforts will be rather dedicated to
understanding the effect of discretization methods on the emanating Hopf curves, whose
intersection is, strictly speaking, what gives rise to the Hopf-Hopf bifurcation.
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Discretization of systems with Hopf points has been addressed to a large extent (cf. [2,
5, 6, 14, 15, 20, 26]). It has been shown that Hopf points are O(hp)-shifted and turned into
Neimark-Sacker points by general one-step methods of order p ≥ 1. The approximation
of regular periodic orbits originated at the Hopf bifurcation has been addressed too.
However, these results strictly apply when dealing with one-dimensional sections in Figure
1.1. The problem of discretizing the emanating Hopf curves must be then tackled in a
codimension two setting. To achieve this we will appeal to the techniques employed in
[21, 22]. There, suitably modified defining systems of the underlying bifurcations are
manipulated in order to obtain existence and closeness results. Such defining systems
for the computation of Hopf points are studied in [2, 3, 10, 12, 24, 27], and for Hopf-
Hopf bifurcations in [1, 9, 29]. A broad overview of defining systems for various types of
bifurcations can be found in [8].

In particular, the work of [1] constitutes the cornerstone of the present article. There,
the genericity of a double Hopf point is associated to the regularity of a defining system
at the point. Thereby, the approach employed in [21] for analyzing fold-Hopf bifurcations
can be applied to our case too.

2 Basic Setup

Let us first formally define the bifurcations we will work with.

Definition 2.1. A point (x0, α0) ∈ Ω × Λ is referred to as a Hopf-Hopf bifurcation (in
short HH point1) of (1.1) if:

• f(x0, α0) = 0,

• fx(x0, α0) has the only critical eigenvalues2 {±iω1,±iω2}, 0 < ω1,2 ∈ R, ω1 6= ω2.

Definition 2.2. A point (x0, α0) ∈ Ω × Λ is referred to as a double Neimark-Sacker
bifurcation (in short DN point) of (1.2) if:

• g(x0, α0) − x0 = 0,

• gx(x0, α0) has the only critical eigenvalues
{
e±iθ1 , e±iθ2

}
, 0 < θ1,2 < π, θ1 6= θ2.

Note that since the eigenvalues ±iω1,±iω2 of the matrix fx(x0, α0) are simple, there
exist smooth eigenvalue-continuations µ1,2(α) ± iσ1,2(α), such that µ1,2(α0) = 0 and
σ1,2(α0) = ω1,2, for ||α − α0|| small, where || · || represents any norm3 in R2. This al-
lows us to introduce the notion of genericity (transversality). An HH point (x0, α0) of

1Also called double Hopf, Hopf/Hopf mode interaction, and multiple Hopf in case that more than two
pairs of Hopf eigenvalues are present.

2In our study we do not consider 1 : 1 resonances, however, other n1 : n2 resonances are covered by
our approach.

3Throughout this article, the symbol || · || will be used to denote norms in different spaces. From the
context, no confusion should arise.
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(1.1) is said to be generic, if the map α 7→ (µ1(α), µ2(α)) is regular at α = α0, that is

det

(
∂µ1

∂α1

∂µ1

∂α2

∂µ2

∂α1

∂µ2

∂α2

)∣∣∣∣∣
α=α0

6= 0. (2.1)

The above condition guarantees (cf. [16]) that two curves of Hopf points intersect at the
HH bifurcation (see Figure 1.1), and furthermore, that the HH point can be computed as
a regular zero of a defining system which will be presented later.

For our analysis it is useful to introduce standard augmented systems for the continu-
ation of Hopf points. Assume that (x0, α0) ∈ Ω × Λ is a generic Hopf point of (1.1) with
critical eigenvalues ±iω0 and eigenvectors φ0 := v0 ± iw0 ∈ CN . Consider the following
system of 3n+2 scalar equations for the variables (x, α, v, w, ω) ∈ Ω×Λ×RN ×RN ×R
(cf. [10]): 





f(x, α) = 0,
fx(x, α)v + ωw = 0,
fx(x, α)w − ωv = 0,

lTw − 1 = 0,
lTv = 0,

(2.2)

which is the real form of the complex system defining the Hopf bifurcation:





f(x, α) = 0,
fx(x, α)φ− iωφ = 0,

〈l, φ〉 − i = 0,
(2.3)

where 〈v1, v2〉 = v1
Tv2, v1,2 ∈ CN , φ := v + iw, and l ∈ RN is a reference vector that

is not orthogonal to the critical eigenspace spanned by {v0, w0}. In this setting we have
that system (2.2) has full rank at the Hopf point, cf. [10, Theorem 3.1].

Similarly, a standard augmented system for the continuation of Neimark-Sacker points
of (1.2) is given by (cf. [16, Section 10.3.1]):





g(x, α) − x = 0,
gx(x, α)v − cos(ω)v + sin(ω)w = 0,
gx(x, α)w − cos(ω)w − sin(ω)v = 0,

lTw − 1 = 0,
lTv = 0,

which is the real form of the complex system defining the Neimark-Sacker bifurcation
bifurcation: 




g(x, α) − x = 0,
gx(x, α)φ− eiωφ = 0,

〈l, φ〉 − i = 0,
(2.4)

where l ∈ RN is again a suitably chosen reference vector.
Following the ideas of [21, 22], we now present a defining system for HH bifurcations,

which will enable us to translate the genericity condition (2.1) into the regularity of the
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underlying system. This fact will be very helpful in our approach, as we will see in the
forthcoming sections. Thus, an HH point of (1.1) is generic, if and only if the real form
of the system: 





f(x, α) = 0,
fx(x, α)φ1 − iω1φ1 = 0,

〈l1, φ1〉 − i = 0,
fx(x, α)φ2 − iω2φ2 = 0,

〈l2, φ2〉 − i = 0,

(2.5)

is regular at the HH point, see [1, Theorem 3.1]. Few remarks about the above presented
system are in order. Note that it combines (2.3) twice in order to define the double
Hopf condition. As already mentioned in the Introduction, the analysis presented in
[1] constitutes the cornerstone of the present article, since there the genericity of an
HH point is associated to the regularity of the real form of system (2.5). However, it
is important to point out that in [1] the author considers dynamical systems with Z2-
symmetry. Nevertheless, by carefully following the proof of [1, Theorem 3.1], we can
conclude that the result is valid for general systems too. Thereby, system (2.5) will allow
us to adapt the approach employed in [21, 22] to the Hopf-Hopf case.

As mentioned before, our main goal is to describe the effect of discretization methods
on the local bifurcation diagram of dynamical systems near an HH point. In this sense
we consider general one-step methods of order p ≥ 1 applied to (1.1), given by

x 7→ ψh(x, α) := x+ hΦ(h, x, α), (2.6)

with ψ,Φ : [−h∗, h∗] × Ω̃ × Λ̃ → RN sufficiently smooth, h∗ > 0, where 0 ∈ Ω̃ ⊂ Ω,

0 ∈ Λ̃ ⊂ Λ are compact sets. That the method is of order p means that there exists a
positive constant C0 (depending only on f), such that it holds

||ϕh(x, α) − ψh(x, α)|| ≤ C0|h|
p+1,

for all (h, x, α) ∈ [−h∗, h∗] × Ω̃ × Λ̃, where ϕt(·, α) stands for the t-flow of (1.1). In this

setting, there exist smooth functions Υ,Ξ : [−h0, h0] × Ω̃ × Λ̃ → RN such that:

ψh(x, α) = ϕh(x, α) + Υ(h, x, α)hp+1,

Φ(h, x, α) = f(x, α) + Ξ(h, x, α)h,
(2.7)

hold for all (h, x, α) ∈ [−h0, h0] × Ω̃ × Λ̃, where 0 < h0 < h∗, see [4, 7, 25].
With the technical framework above introduced, we have all the necessary machinery

at hand for showing the main results of the present work.

3 Hopf-Hopf Bifurcations under Discretization

In this section we will suppose we are given a continuous-time dynamical system (1.1)
which undergoes an HH bifurcation. We assume that the system is discretized via general
one-step methods of order p. Under these conditions, we will show that the HH point is
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O(hp)-shifted and turned into a DN point by the one-step map, for all sufficiently small
step-size. For this purpose, the arguments employed in [21, 22] will be adapted to our
case. For this reason we only present a sketch of the proof of the main result. Formally
speaking, we have the following:

Theorem 3.1. Let a general one-step method of order p ≥ 1 applied to (1.1) be given

by (2.6). Assume that system (1.1) has a generic HH point at (xHH , αHH) ∈ Ω̃ × Λ̃,
with critical eigenvalues ±iωHH

1,2 and eigenvectors φHH
1,2 := vHH

1,2 ± iwHH
1,2 . Then, there

exists a positive constant ρ ≤ h0 and a neighborhood Ω′ × Λ′ ⊂ Ω̃ × Λ̃ of (xHH , αHH), in

which (2.6) has a unique DN point (xDN (h), αDN(h)), with critical eigenvalues e±ihωDN
1,2 (h)

and eigenvectors φDN
1,2 (h) := vDN

1,2 (h) ± iwDN
1,2 (h), which all depend smoothly on h, for all

h ∈ (−ρ, ρ). Furthermore, the following estimate holds

||(xDN(h), αDN(h), zDN(h)) − (xHH , αHH , zHH)|| ≤ C|h|p, (3.1)

for some C > 0 and all h ∈ (−ρ, ρ), where zHH := (vHH
1,2 , w

HH
1,2 , ω

HH
1,2 ) and zDN (h) :=

(vDN
1,2 (h), wDN

1,2 (h), ωDN
1,2 (h)).

Sketch of the proof. Denote the real form of (2.5) by

F̃ (x, α, z) = 0, (3.2)

with F̃ : Ω̃ × Λ̃ × R4N+2 → R5N+4, z := (v1, v2, w1, w2, ω1, ω2). Then, system (3.2) is
regular at (xHH , αHH , zHH) (cf. Section 2). We will now rewrite system (3.2) in terms of
the h-flow ϕh(·, α) of (1.1). By following the analysis of [21, Theorem 3.1] and taking into
account system (2.4), it can be seen that (xHH , αHH , zHH) is also a solution of:





1
h

(
ϕh(x, α) − x

)
= 0,

1
h

(
ϕh

x(x, α)φ1 − eihω1φ1

)
= 0,

〈l1, φ1〉 − i = 0,
1
h

(
ϕh

x(x, α)φ2 − eihω2φ2

)
= 0,

〈l2, φ2〉 − i = 0,

(3.3)

for all h ∈ [−h0, h0]. Denote then the real form of the above system by

F (h, x, α, z) = 0,

with F : [−h0, h0] × Ω̃ × Λ̃ × R4N+2 → R5N+4. Now let us construct a similar system
that describes a DN point of the one-step map (2.6). By a similar analysis, we obtain the
following complex system:





1
h

(
ψh(x, α) − x

)
= 0,

1
h

(
ψh

x(x, α)φ1 − eihω1φ1

)
= 0,

〈l1, φ1〉 − i = 0,
1
h

(
ψh

x(x, α)φ2 − eihω2φ2

)
= 0,

〈l2, φ2〉 − i = 0,

(3.4)
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whose solutions correspond to DN points of (2.6). Write the real form of the above system
as

G(h, x, α, z) = 0,

with G : [−h0, h0] × Ω̃ × Λ̃ × R4N+2 → R5N+4. The next step is to establish relations

between F̃ , F , and G, which will be crucial for our discussion. Let us begin with G and
F̃ . For this purpose, it suffices to work with their complex forms. To begin with, consider
the first equation of (2.5) and (3.4). By (2.7), we have that

1

h

(
ψh(x, α) − x

)
= Φ(h, x, α) = f(x, α) + Ξ(h, x, α)h. (3.5)

Similarly, for the second equation it holds that:

1

h

(
ψh

x(x, α)φ1 − eihω1φ1

)
=

1

h

(
(IN + hΦx(h, x, α))φ1 − (1 + ihω1 +O(h2))φ1

)
,

= (fx(x, α) + Ξx(h, x, α)h)φ1 − (iω1 +O(h))φ1,

= fx(x, α)φ1 − iω1φ1 + Θ1(h, x, α, φ1, ω1)h, (3.6)

where Θ1 is some smooth function4. The analysis for the fourth equation follows analo-
gously. By combining the above relations, we conclude that

G(h, x, α, z) = F̃ (x, α, z) + Θ(h, x, α, z)h, (3.7)

where Θ is some smooth function.
Now let us find closeness relations between F and G. Similarly as before, for the first

equation of (3.3) and (3.4) it follows that:

1

h

(
ψh(x, α) − x

)
=

1

h

(
ϕh(x, α) − x+ Υ(h, x, α)hp+1

)
=

1

h

(
ϕh(x, α) − x

)
+ Υ(h, x, α)hp,

(3.8)
and for the second (and also fourth) equation:

1

h

(
ψh

x(x, α)φ1 − eihω1φ1

)
=

1

h

(
(ϕh

x(x, α) + Υx(h, x, α)hp+1)φ1 − eihω1φ1

)
,

=
1

h

(
ϕh

x(x, α)φ1 − eihω1φ1

)
+ Υx(h, x, α)φ1h

p. (3.9)

Thereby, it holds that

G(h, x, α, z) = F (h, x, α, z) + Ψ(h, x, α, v1, w1, v2, w2)h
p, (3.10)

where Ψ is some smooth function. With the relations (3.7) and (3.10) combined with the
techniques employed in [21, Theorem 3.1], the assertion of the Theorem follows.

4In what follows, by the term “(some smooth function) · sk”, k ≥ 1, s some real variable, we mean the
integral remainder of a Taylor series.
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Before switching to the next topic of this article, it is worth analyzing in detail some
consequences of the above discussion. First, note that by means of the variable z which
appears in the Estimate (3.1), we obtain not only closeness relations between HH points
and their discretizations but also between the critical eigenvalues and eigenvectors and
their discretized counterpart. In particular, we see that the critical eigenvectors are dis-
cretized with the order of the method5. Nevertheless, we will next see that the critical
eigenvalues are approximated with an improved order, in the following sense.

Under assumptions and notation of the previous theorem, denote by

τDN
1,2 (h) := eihωDN

1,2 (h),

the critical eigenvalues of the one-step map (2.6) at the DN point (xDN(h), αDN(h)), for
h ∈ (−ρ, ρ) (cf. Theorem 3.1). Then, by (3.1), it follows that:

∣∣∣τDN
1,2 (h) − eihωHH

1,2

∣∣∣ =
∣∣∣eihωDN

1,2 (h) − eihωHH
1,2

∣∣∣ ,

≤ L1,2

∣∣ωDN
1,2 (h) − ωHH

1,2

∣∣ |h|, (3.11)

≤ C · L|h|p+1,

where L1,2 are local Lipschitz constants of the exponential function and L := max(L1, L2).
Therefore, we conclude that

τDN
1,2 (h) = eihωHH

1,2 +O(hp+1), (3.12)

for h sufficiently small. This relation improves, for this particular case, the general ap-
proximation given in [26, Lemma 3.2].

4 Emanating Hopf Curves under Discretization

In the past section we showed that HH points persist under one-step methods. As we
mentioned in the Introduction, we are interested to know whether the local bifurcation
diagram near this bifurcation is reproduced “correctly” by general one-step methods. In
this sense, the first part of this task has been accomplished, namely, the organizing center
was shown to be preserved by discretization methods.

Now we tackle the problem of analyzing the discretization of the Hopf curves of system
(1.1) that emanate from the HH bifurcation. The result we are after is illustrated in Figure
4.1. The curves labeled by H1,2 and NS1,2 represent paths of Hopf points of (1.1) and
Neimark-Sacker points of (2.6), respectively.

The analysis is formulated as follows. Suppose we are given a continuous-time dy-
namical system (1.1) which undergoes an HH bifurcation. We assume that this system
is discretized via general one-step methods, as in the previous Section. Under these con-
ditions we will show that there exists a step-size-independent neighborhood (the dashed
square in Figure 4.1) of the HH point, such that the discretized paths of Hopf points

5Of course, this assertion makes sense only if we consider a suitable normalization condition.
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Fig. 4.1: Discretized curves of Hopf points near an HH bifurcation.

(NS1,2 in Figure 4.1) approximate the original curves (H1,2 in Figure 4.1) with the order
of the method. For this purpose, we do not reduce the systems, e.g. via center manifold
theory, but we rather work with them in full dimension. To do so, the arguments em-
ployed in [21, 22] will be applied. For this reason we will only present a sketch of the
proof of the main result. Throughout this section we denote by α = (α1, α2) ∈ R2 the
parameters of the system. With these remarks we are ready to formulate:

Theorem 4.1. Let a general one-step discretization method of order p ≥ 1 applied to
(1.1) be given by (2.6). Assume that system (1.1) has a generic HH point at the ori-
gin (x0, α0) := (0, 0), with eigenvectors φ0

1,2 := v0
1,2 ± iw0

1,2 corresponding to the critical
eigenvalues ±iω0

1,2. Further suppose that6

∂µ1

∂α1

·
∂µ2

∂α2

∣∣∣∣
(α1,α2)=(0,0)

6= 0. (4.1)

Then, there exist positive constants ρ ≤ h0, δ and curves of Hopf and Neimark-Sacker

6This assumption is imposed only for assuring that α2,1 can be used as parametrization variables for
the Hopf curves H1,2, respectively. This is allowed due to the genericity condition (2.1).
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points of systems (1.1) and (2.6), respectively, defined by:

CH1
(α2) := (xH1

(α2), α1H1
(α2), zH1

(α2), α2),

CH2
(α1) := (xH2

(α1), α2H2
(α1), zH2

(α1), α1),

CNS1
(h, α2) := (xNS1

(h, α2), α1NS1
(h, α2), zNS1

(h, α2), α2),

CNS2
(h, α1) := (xNS2

(h, α1), α2NS2
(h, α1), zNS2

(h, α1), α1),

with xH1,2
: (−δ, δ) → RN , xNS1,2

: (−ρ, ρ) × (−δ, δ) → RN , α1H1,2H2
: (−δ, δ) → R,

α1NS1,2NS2
: (−ρ, ρ) × (−δ, δ) → R, zH1,2

: (−δ, δ) → R2N+1, zNS1,2
: (−ρ, ρ) × (−δ, δ) →R2N+1 smooth7. Furthermore, the following estimates hold for all (h, α2,1) ∈ (−ρ, ρ) ×

(−δ, δ) and uniformly in α2, α1, respectively:

||dNS1
(h, α2) − dH1

(α2)|| ≤ C|h|p,
||dNS2

(h, α1) − dH2
(α1)|| ≤ C|h|p,

(4.2)

where dH1,2
:= (xH1,2

, α1H1,2H2
, zH1,2

) and dNS1,2
:= (xNS1,2

, α1NS1,2NS2
, zNS1,2

), C > 0.

Sketch of the proof. We will show the result for the curves CH1
, CNS1

. The analysis for
CH2

, CNS2
follows analogously. A curve of Hopf points of system (1.1) can be computed

as a solution of (cf. (2.3), (2.5)):




f(x, α) = 0,
fx(x, α)φ1 − iω1φ1 = 0,

〈l1, φ1〉 − i = 0.
(4.3)

Write the real form of the above system as

F̃ (x, α, z1) = 0,

with F̃ : Ω̃ × Λ̃ × R2N+1 → R3N+2, z1 := (v1, w1, ω1). By condition (4.1), it holds that
∂µ1

∂α1

6= 0, which implies that F̃(x,α1,z1)(0, 0, z
0
1), z

0
1 := (v0

1, w
0
1, ω

0
1), is nonsingular, see [10,

Theorem 3.1]. Thereby, the Implicit Function Theorem guarantees the existence (and
uniqueness) of a function dH1

= (xH1
, α1H1

, zH1
) : (−δ1, δ1) → R3N+2, such that

F̃ (dH1
(α2), α2) = 0, dH1

(0) = (0, 0, z0
1),

α2 ∈ (−δ1, δ1). Following the ideas of [21], we will express (4.3) in terms of the h-flow
ϕh(·, α) of (1.1). Thus, we arrive at the following system (cf. (2.4) and (3.3)):





1
h

(
ϕh(x, α) − x

)
= 0,

1
h

(
ϕh

x(x, α)φ1 − eihω1φ1

)
= 0,

〈l1, φ1〉 − i = 0.
(4.4)

Denote the real form of the above system by

F (h, x, α, z1) = 0,

7By the term “Neimark-Sacker curve”, we mean the graph of the function CNSi
(h∗, ·), for h∗ ∈ (−ρ, ρ)

fixed, i = 1 or 2.
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with F : [−h0, h0] × Ω̃ × Λ̃ ×R2N+1 → R3N+2. It then holds (see [21, Theorem 4.1])

F (h, dH1
(α2), α2) = 0,

for all (h, α2) ∈ (−h0, h0)×(−δ1, δ1). Analogously, a system whose zeroes describe a curve
of Neimark-Sacker points of (2.6) is given by (cf. (3.4)):






1
h

(
ψh(x, α) − x

)
= 0,

1
h

(
ψh

x(x, α)φ1 − eihω1φ1

)
= 0,

〈l1, φ1〉 − i = 0,
(4.5)

whose real form will be denoted by G(h, x, α, z1) = 0. Hence we will show the existence
of a curve of Neimark-Sacker points of (2.6). By (3.5) and (3.6), we can conclude that

G(0, x, α, z1) = F̃ (x, α, z1),

for all (x, α, z1) ∈ Ω̃ × Λ̃ × R2N+1. Therefore, we have that G(0, 0, 0, z0
1) = 0 and

G(x,α1,z1)(0, 0, 0, z
0
1) is nonsingular. Thus, the Implicit Function Theorem guarantees

the existence (and uniqueness) of a function dNS1
= (xNS1

, α1NS1
, zNS1

) : (−ρ1, ρ1) ×
(−δ2, δ2) → R3N+2, 0 < ρ1 ≤ h0, such that

G(h, dNS1
(h, α2), α2) = 0, dNS1

(0, 0) = (0, 0, z0
1),

(h, α2) ∈ (−ρ1, ρ1) × (−δ2, δ2).
It remains to establish closeness relations between the real form of the defining systems

(4.4) and (4.5). For this purpose, it suffices to analyze their complex form. By (3.8) and
(3.9), it is straightforward to see that:

G(h, x, α, z1) = F (h, x, α, z1) + Γ(h, x, α, v1, w1)h
p,

holds locally, where Γ is some smooth function. By application of the Local Inverse
Lipschitz Mapping Theorem, as in [21, Theorem 4.1], the assertion of the present Theorem
follows.

Note that the theorem above presented provides stronger results than those of [21,
Theorem 4.1]. This was possible due to the defining system for Hopf points used here.
In the underlying system we considered the additional variable z1 = (v1, w1, ω1), which
allowed us to obtain, additionally, O(hp)-estimates between the critical eigenvectors. As
in the analysis of the discretization of HH points (see Section 3), it is also possible
to establish improved closeness relations between the critical eigenvalues of the original
system and their discretizations, along the Hopf curves. Thus, under assumptions and
notation of the previous theorem, denote by

τNS
1 (h, α2) := eihωNS

1
(h,α2), τNS

2 (h, α1) := eihωNS
2

(h,α1),

the critical eigenvalues of the one-step map (2.6) along the Neimark-Sacker curves CNS1
(h,

α2), CNS2
(h, α1), respectively, for (h, α2,1) ∈ (−ρ, ρ) × (−δ, δ) (cf. Theorem 4.1). Further
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denote by iωH
1 (α2), iω

H
2 (α1) the critical eigenvalues of (1.1) along the Hopf curves CH1

(α2),
CH2

(α1), respectively, α2,1 ∈ (−δ, δ). Then, By doing estimates similar to those of (3.11),
it can be shown that

τNS
1 (h, α2) = eihωH

1
(α2) +O(hp+1), τNS

2 (h, α1) = eihωH
2

(α1) +O(hp+1),

for h sufficiently small and uniformly in α2, α1, respectively.
Before finishing this section, few remarks concerning the sofar obtained results are

in order. According to [3, Lemma 7.3], a generic HH bifurcation of (1.1) is a simple
branching point (in short SB point) of the system:

Q(x, α) :=

(
f(x, α)

det(2fx(x, α) ⊙ IN)

)
= 0, (4.6)

where the symbol ⊙ stands for the bialternate product of matrices (cf. [8, 12, 16]). In
general, any C1-perturbation of a system with an SB point destroys the connection of
the intersecting curves (see e.g. Figure 1.1). For this reason we say that an SB point is a
structurally unstable object. However, in the present work we proved that an HH point
persists as an O(hp)-shifted DN point, under one-step methods of order p. In fact, a DN
bifurcation of (2.6) is an SB point of the system:

P (h, x, α) :=

(
1
h
(ψh(x, α) − x)

det
(

1
h
(ψh

x(x, α) ⊙ ψh
x(x, α) − Im)

)
)

= 0,

where m := 1
2
N(N − 1), and P , Q are locally related as follows (cf. [21, Theorem 4.1])

P (h, x, α) = Q(x, α) +O(h).

This means that an HH point, regarded as an SB point of (4.6), is stable under smooth
O(h)-perturbations coming from a general discretization method.

5 A Numerical Example

The Hopf-Hopf bifurcation appears in many parameter-dependent systems which describe
the dynamics of various phenomena, e.g. neuron modeling (cf. [11]), nonlinear electric
circuits (cf. [23]), and mechanical systems (cf. [28]), among others. In the present article
we consider the following five-dimensional, continuous-time system:

ẋ = A− Bx+ x2y − x,

ẏ = Bx− x2y,

ż = x− zv, (5.1)

v̇ = Bx− zv + v2w − v,

ẇ = zv − v2w,

12
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Fig. 5.1: Hopf curves near an HH point of system (5.1).

with state variables (x, y, z, v, w) ∈ R5 and with parameters A,B ∈ R. This system
describes the behavior of a chemical oscillator arising from the series coupling of two
Brusselators, see [30].

Throughout this section, the numerical results will be computed by means of the
continuation software CONTENT, cf. [17]. Further numerical manipulations will be per-
formed with MATLAB.

The first aim of this example is to illustrate the theoretical result obtained in Theorem
3.1, namely, we want to observe whether HH points are O(hp)-shifted and turned into DN
points by one-step methods of order p. To achieve this, we need first to find an HH point of
system (5.1). Thus, choose xini = yini = zini = vini = wini = 0.1, (Aini, Bini) = (0.47, 1.22)
as initial data for the continuation of equilibria, and let A freely vary. With this procedure
we found two Hopf points which lie close to each other. The location of one of them
is (x, y, z, v, w) ≈ (0.46, 2.6, 0.81, 0.57, 1.43), (A,B) ≈ (0.46, 1.22). Next, we switch to
this point, and by continuing the Hopf curve with respect to A and B, we find an HH
point at (xHH , yHH, zHH , vHH , wHH) = (0.479012, 2.566642, 0.81337, 0.588922, 1.381115),
(AHH , BHH) = (0.479012, 1.229452). The local bifurcation diagram near this HH point is
depicted in Figure 5.1. In this picture, the curves labeled by H1,2 correspond to paths of
Hopf points which emanate from the HH bifurcation.

The next step is to discretize system (5.1) by a one-step method. For this purpose,
we choose the 3-th order method of Runge (cf. [13]) with an initial step-size h0 = 0.13.
Define the distance function

DistHH(h) := ||(xDN(h), yDN(h), zDN(h), vDN(h), wDN(h), ADN(h), BDN(h))

− (xHH , yHH , zHH , vHH , wHH , AHH , BHH)||,

for h > 0 small, where || · || represents the Euclidean norm and (xDN (h), yDN(h), zDN(h),
vDN(h), wDN(h), ADN(h), BDN(h)) stands for a DN point of the Runge map. We will then
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Fig. 5.2: Distance between HH and DN points for different values of step-size.

investigate how the distance between HH and DN points behaves with the step-size. The
result is shown in Figure 5.2. In this picture, we let h vary from 0.05 to 0.5. For several,
fixed values of h in this interval, we computed a DN point of the Runge map, and thus
we obtained the curve shown in the figure. We plotted the logarithm of the variables, so
that we can determine the order of approximation as the slope of the quasi-straight line
obtained. This slope is approximately equal to 2.99 ≈ 3, which is of course consistent
with Theorem 3.1.

For h = 0.13, the bifurcation diagram of the Runge map is shown in Figure 5.3. In
this picture, the curves labeled by NS1,2 represent paths of Neimark-Sacker points which
emanate from the discretized HH bifurcation. As we can see, the branching point HH
persists under the perturbation originated by Runge’s method, cf. final remarks of Section
4. Furthermore, it can be seen that the Neimark-Sacker curves NS1,2 lie very close to the
Hopf curves H1,2, respectively. This fact is explained by Theorem 4.1.

To finish this experiment, we will investigate how the critical eigenvalues of system
(1.1) at the HH bifurcation are approximated by Runge’s method, as the step-size varies.
Under notation of Section 3, define the distance function

Disteig(h) :=
∣∣∣τDN

1 (h) − eihωHH
1

∣∣∣ +
∣∣∣τDN

2 (h) − eihωHH
2

∣∣∣ ,

for h > 0 small, where | · | represents the absolute value of complex numbers. At the HH
point found before, we have that ωHH

1 = 0.479012075168911, ωHH
2 = 0.426596163417436.

The behavior of Disteig with respect to h is plotted in Figure 5.4. As in Figure 5.2, we let
h vary from 0.05 to 0.5, and for some fixed values of h in this interval, we computed the
critical eigenvalues of the Runge map at DN points close to the HH bifurcation of system
(1.1). In this way we obtained the curve depicted in Figure 5.4. Hence we find that the
order of approximation of the critical eigenvalues for this example is 3.94 ≈ 4, which is
consistent with the relation (3.12).
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Fig. 5.3: Neimark-Sacker branches near a DN point of the one-step method.
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Fig. 5.4: Distance between HH eigenvalues and their discretization for different values of
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