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Abstract

We construct a theory-based numerical method for starting the continuation of

homoclinic tangencies near 1 : 1 resonances, for systems with arbitrary dimension

≥ 2. The core of the method is numerical center manifold reduction and flow ap-

proximation. The reduction is implemented by means of the homological equation.

The starting procedure is applied in numerical examples.

1 Introduction

A typical problem in the numerical analysis of homoclinic orbits is the choice of an ap-
propriate initial guess that could lead us, via e.g. Newton iterations, to the homoclinic
connection we want to analyze. In our case we have a well-posed problem given in terms
of a suitably defined operator (see Section 2), whose solutions correspond to the numerical
approximation of the homoclinic tangencies we are interested in. Thus we will construct
a theory-based starting procedure, by means of which we can obtain an “educated” initial
guess of the solution of the underlying well-posed problem.

What is commonly done is to set a first approximating orbit to

(. . . , ξ, . . . , ξ, x1, . . . , xr, ξ, . . . , ξ, . . .),

where ξ represents an equilibrium point and xi, i = 1, . . . , r, r ∈ N are, basically, randomly
chosen vectors on the state space. This method is successfully applied, e.g., in [14, 15].
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University.
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This is of course a purely trial-and-error-based method, where the user relies entirely on
“luck” or brute force. Therefore, the user has essentially no control over the outcome
of the Newton iterations, and it can easily happens that a spurious solution is obtained,
which is a significant disadvantage.

Another approach consists of finding the intersections of the stable and unstable man-
ifolds and using these intersections as an initial guess (see Figure 2.2). By doing this, a
transversal homoclinic orbit is generically obtained via Newton iterations. Once this is
done, the transversal orbit is continued with respect to one parameter until a turning point
of the defining system is found. Finally, this turning point is used as initial guess of the
homoclinic tangency (cf. [12]). However, the disadvantage of this method is that in order
to find an approximation of the transversal orbits, the stable and unstable manifolds of
the system need to be numerically approximated, which is itself a problem. Furthermore,
this technique is reasonably applicable only when working with planar systems. Moreover,
since the systems we deal with depend on parameters, we have to at least approximately
know at which parameter-values the homoclinic connection occurs, so that the manifolds
intersect at all.

Thus, our main concern throughout this article will be the construction of a theory-
based method that allows us to start the continuation of tangential homoclinic orbits near
1 : 1 resonances, with no restriction of the dimension of the system. The basic idea is
the following. We assume we are given a parameter-dependent, discrete-time dynamical
system which undergoes a 1 : 1 resonance at the origin. By means of the homological
equation (cf. Section 3), we perform a quantitative center manifold reduction, so that, up
to a certain order, we can transform orbits of the normal form to orbits of the original
system. Then we approximate the normal form by the 1-flow of a vector field which
undergoes a generic Bogdanov-Takens singularity at the origin (cf. Lemma 2.5). By
doing this, we merely transform the original discrete-time problem into a continuous
one. Consequently, we just need to apply any of the known techniques for starting the
continuation of homoclinic orbits near a Bogdanov-Takens point. In our implementation
we will apply the method described in Section 4 (cf. [3]). Then we need to transform the
thus obtained approximating orbit back to the normal form, via Lemma 2.5, and finally
to the original system, by means of the quantitative center manifold reduction. Once this
is achieved, the so obtained initial guess can be used for starting the Newton iterations
in order to obtain the approximation of a homoclinic tangency, and thereby we will be
able to quantitatively explore the homoclinic structure in various interesting examples,
since homoclinic orbits are one of the most fascinating objects of study in the theory of
dynamical systems, because their presence leads to nontrivial dynamics.

2 Basic Setup

Let f(·, α), f ∈ Ck(RN ×Rp,RN), k ≥ 1, be a diffeomorphism for all α ∈ Rp. Through-
out this section we consider the discrete-time system

x 7→ f(x, α). (2.1)
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Definition 2.1. Suppose that ξ ∈ RN is a hyperbolic equilibrium of (2.1) at α = α0.

An orbit xZ ∈
(RN

)Z
of (2.1) is referred to as homoclinic with respect to ξ (in short

homoclinic) if
lim

n→±∞
xn = ξ.

The main objects of study of the present work are tangential homoclinic orbits, which
are formally defined as follows:

Definition 2.2. A homoclinic orbit xZ ∈
(RN

)Z
of (2.1) is referred to as r-tangential,

r some nonnegative integer, if the homogeneous difference equation

un+1 = fx(xn, α0)un, n ∈ Z
has r linearly independent bounded solutions. Furthermore, an r-tangential homoclinic

orbit xZ ∈
(RN

)Z
is called nondegenerate with respect to the parameter α ∈ Rp, if p = r

and every bounded solution (uZ, µ) ∈
(RN

)Z
×Rp of the difference equation

un+1 = fx(xn, α0)un + fα(xn, α0)µ, n ∈ Z
satisfies µ = 0.

In particular we will deal with 1-tangential (in short tangential) and transversal ho-
moclinic orbits (i.e. 0-tangential homoclinic orbits).

Before introducing the already known numerical methods for the computation of ho-
moclinic orbits, it is worth presenting a theorem that characterizes these objects as so-
lutions of a suitably defined operator. In fact, the numerical methods we will work with
can be seen as truncated versions of the underlying operator. For this purpose we first
need to define some Banach spaces over which the (truncated) operator will act. Let
N+, N− ∈ Z∪{±∞}, N− < 0 < N+. Define the discrete intervals

J := [N−, N+] ∩ Z,
and

Ĵ := [N−, N+ − 1] ∩ Z,
if N+ <∞. Define the space of bounded sequences

SN
J :=

{
xJ ∈

(RN
)J

: sup
n∈J

||xn|| <∞

}
,

where || · || is any norm in RN . It is well known that SN
J equipped with the norm

||xJ ||∞ := sup
n∈J

||xn||,

xJ ∈ SN
J , is a Banach space. Furthermore we allow J = Z, and thus we obtain the Banach

space SNZ . With this basic setup we can now define the operator

Γ :
SNZ ×Rp → SNZ

(xZ, α) 7→ (xn+1 − f(xn, α))n∈Z .
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By means of this operator, a homoclinic orbit (in the sense of Definition 2.1) can be
regarded as the solution of the infinite boundary value problem

{
Γ(xZ, α0) = 0,

limn→±∞ xn = ξ.
(2.2)

The following theorem characterizes tangential and transversal homoclinic orbits in terms
of the operator Γ:

Theorem 2.3. Let p = 1 and xZ ∈ SNZ be a homoclinic orbit of (2.1) at α = α0. Then,
the following assertions hold:

(i) xZ is transversal, if and only if xZ is a regular zero of Γ(·, α0),

(ii) xZ is tangential and nondegenerate with respect to α, if and only if (xZ, α0) is a
turning point of Γ in α.

Proof. See [14, Theorem 3.4] and [15, Proposition 2.1.3].

Now that we have formally introduced the objects we want to work with, we can start
with the numerical part of this section, i.e., the numerical computation of transversal and
tangential homoclinic orbits. Let us then begin with the approximation of transversal
homoclinic orbits. The main idea is to replace the infinite boundary value problem (2.2)
by a finite, truncated one. To do so, define the operator

Γ̂ :
SN

J ×Rp → SN
J

(xJ , α) 7→ ((xn+1 − f(xn, α))n∈Ĵ , b(xN−
, xN+

, α))
,

where b : R2N ×Rp → RN represents a boundary condition. In particular we will consider
periodic and projection boundary conditions. Let x̄Z ∈ SNZ be a transversal homoclinic
orbit of (2.1) at α = α0 with respect to the equilibrium ξ ∈ RN . Let −N−, N+ be
sufficiently large. Then, under certain assumptions, the operator Γ̂(·, α0) has a unique
zero xJ ∈ SN

J close to x̄|J , and the following estimate holds (cf. [15, Theorem 3.1.2])

||x̄|J − xJ ||∞ ≤ C(||x̄N−
− ξ||s + ||x̄N+

− ξ||s), (2.3)

where C is a positive constant, and s = 1, 2, provided b is a periodic, projection boundary
condition, respectively.

As for the numerical computation of tangential homoclinic orbits, Theorem 2.3 allows
us to intuitively deduce that tangential homoclinic orbits can be approximated by turning
points of the operator Γ̂, with p = 1 (see [15, Chapter 7] for a rigorous discussion). Thus,
we will approximate tangential homoclinic orbits by zeroes of the following operator

Υ̂ :

SN
J × SN

J ×Rp → SN
J × SN

J ×R
(xJ , uJ , α) 7→




Γ̂(xJ , α)

Γ̂xJ
(xJ , α)uJ∑N+

i=N−

||ui||
2 − 1


 ,
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where || · || represents the Euclidean norm in RN . In what follows we write Γ̂T , Υ̂T

(resp. Γ̂P , Υ̂P ) to denote the use of periodic (resp. projection) boundary conditions. For
a detailed discussion about the numerical approximation of transversal, tangential, and
other degenerate types of discrete homoclinic orbits we refer to [5, 7, 13, 14, 15].

Let us now focus on a particular case where tangential homoclinic orbits are well
known to appear, i.e. near 1 : 1 resonances. In order to formally define this type of
singularity, we consider the discrete-time system

x 7→ g(x, α), (2.4)

where g ∈ Ck(Ω × Λ,RN) with open sets 0 ∈ Ω ⊂ RN , 0 ∈ Λ ⊂ R2, k ≥ 1 sufficiently
large.

Definition 2.4. A point (x0, α0) ∈ Ω×Λ is referred to as a nondegenerate 1 : 1 resonance
of codimension two (in short R12 point) of (2.4) if:

1d g(x0, α0) − x0 = 0,

2d The only Jordan block of gx(x0, α0) corresponding to the eigenvalue 1 is

(
1 1
0 1

)
,

and there are no other eigenvalues on the unit circle,

3d ab 6= 0, where a := 1
2
pT

0Bg(v0, v0) and b := pT
1Bg(v0, v0) + pT

0Bg(v0, v1). The bilinear
form Bg(·, ·) is given by

Bg(v, w) := gxx(x0, α0)[v, w] =

N∑

i=1

N∑

j=1

∂g(x0, α0)

∂xj∂xi

viwj,

v, w ∈ RN and the vectors v0, v1, p0, p1 ∈ RN satisfy the set of equations:

(gx(x0, α0) − IN)v0 = 0, (gx(x0, α0) − IN)v1 = v0,

(gx(x0, α0) − IN)Tp0 = 0, (gx(x0, α0) − IN)Tp1 = p0,
(2.5)

with vT
0 p1 = vT

1 p0 = 1 and vT
0 p0 = vT

1 p1 = 0 (biorthogonality).

Assume system (2.4) to be planar, i.e. N = 2, and that it undergoes an R12 bifurcation
at the origin. Then, under certain transversality conditions, there exists a smooth invert-
ible change of coordinates, smoothly depending on parameters, that transforms (2.4) for
all sufficiently small ||α|| into (cf. [17, Lemma 9.7])

(
ξ1
ξ2

)
7→ Nν(ξ) :=

(
ξ1 + ξ2

ξ2 + ν1 + ν2ξ2 + A(ν)ξ2
1 +B(ν)ξ1ξ2

)
+O(||ξ||3), (2.6)

where A(·), B(·) depend smoothly on ν, and A(0) = a, B(0) = b. The above map is the
normal form of the 1 : 1 resonance. Global bifurcations are known to occur in system
(2.6), however, the theoretical prediction of such phenomena is rather complicated, if
we work with the discrete system. The technique of interpolating a discrete map by a
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flow (cf. [9, Takens’s Theorem]) is used. The idea is to approximate the discrete system
up to a certain order by a 1-flow of a differential equation, and then the already known
information about the local bifurcation diagram of the underlying vector field is used
for predicting both local, as well as global phenomena that occur in the original discrete
system. Thus, in the following lemma Nν is approximated by a flow(cf. [17, Lemma 9.8]):

Lemma 2.5. The map (2.6) can be represented for all sufficiently small ||ν|| in the form

Nν(ξ) = ϕ1
ν(ξ) +O(||ν||2) +O(||ξ||2||ν||) +O(||ξ||3),

where ϕt
ν is the flow of a smooth planar system

ξ̇ = F (ξ, ν),

with F (ξ, ν) := F0(ν) + F1(ξ, ν) + F2(ξ), where:

F0(ν) :=

(
−1

2
ν1

ν1

)
,

F1(ξ, ν) :=

(
ξ2 +

(
1
3
b− 1

2
a
)
ν1ξ1 +

((
1
5
a− 5

12
b
)
ν1 −

1
2
ν2

)
ξ2(

2
3
a− 1

2
b
)
ν1ξ1 +

((
1
2
b− 1

6
a
)
ν1 + ν2

)
ξ2

)
,

and

F2(ξ) :=

(
−1

2
aξ2

1 +
(

2
3
a− 1

2
b
)
ξ1ξ2 +

(
1
3
b− 1

6
a
)
ξ2
2

aξ2
1 + (b− a)ξ1ξ2 +

(
1
6
a− 1

2
b
)
ξ2
2

)
.

The dynamics of the above vector field are described by the Bogdanov-Takens theory.
Thereby we can predict the existence of a homoclinic structure near the R12 singularity.
However, some other dynamical phenomena of the original map, e.g. phase-locking Arnold
Tongues (cf. [2]), are not present in the approximating flow.

We want to finish this section by pointing out some interesting facts about the ho-
moclinic structure of the normal form of the 1 : 1 resonance. Consider the following
system (

x1

x2

)
7→

(
x1 + x2

x2 + β + αx2 + x2
1 + x1x2

)
, (2.7)

where (x1, x2) ∈ R2, (β, α) ∈ R2, which is a particular, truncated version of the normal
form (2.6). The local bifurcation diagram is shown in Figure 2.1. In this picture, the
curves labeled by F , NS correspond to paths of fold, Neimark-Sacker points, respectively.
Moreover, the curves labeled by T1, T2 represent homoclinic tangencies, which meet,
together with NS and F , tangentially at the origin. Between T1 and T2 system (2.7)
exhibits a transversal homoclinic structure which is limited by the homoclinic tangencies.
This structure is schematically represented in Figure 2.2, for α = α0 fixed (see Figure
2.1). In this picture ξ stands for an equilibrium of (2.7), and W s

ξ , W u
ξ stand for the stable

and unstable manifolds with respect to ξ, respectively.
In Figure 2.1 the distance between T1 and T2 is somewhat exaggerated. Actually, this

distance is exponentially bounded with respect to one parameter, that is

|T1(α) − T2(α)| < c1e
−

c2
α ,
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α

β

NS

FT1 T2

β1 β2

α0

Fig. 2.1: Local bifurcation diagram of system (2.7).

ξ
ξ ξ

W s
ξW s

ξW s
ξ

W u
ξ

W u
ξ

W u
ξ

β=β1 β1<β<β2 β=β2

Fig. 2.2: Behavior of stable and unstable manifolds of system (2.7) for α = α0 fixed.

for all 0 < α < c3, where c1,2,3 > 0 are some real constants (cf. [8, 17]). This means
that the complete homoclinic structure of system (2.7) survives in an exponentially small
sector of the parameter space. This sector is precisely what we want to study numerically.

3 Parameter-dependent Center Manifold Reduction

An important task in the numerical analysis of dynamical systems is the verification of
nondegeneracy conditions at bifurcation points, which amounts to computing the coef-
ficients of the normal form of the underlying singularity. In this way, very useful in-
formation about the local behavior of a system can be obtained (see e.g. system (2.6)).
To accomplish this task, several techniques may be employed, however, the homological-
equation-approach has proven to be an efficient and direct method which allows not only
the derivation of compact formulae for the computation of normal form coefficients but
also the Taylor expansion of the center manifold up to a certain order, in an iterative
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manner. The order the center manifold can be expanded up to depends directly on the
order of expansion of the underlying normal form. In this section we will use the homo-
logical equation for deriving quantitative relations between orbits of the normal form of
the 1 : 1 resonance and of the original system, where the normal form comes from.

The homological equation has been employed in several applications, e.g., in [17,
Section 9.7], [19, Section 3.1 and 3.3.2], [11], [18], for maps, and in [16] for vector fields.
The basic idea can be explained as follows. Suppose we are given a discrete-time system

x 7→ f(x, α), (3.1)

where f ∈ Ck(Ωf ×Λf ,RN), k ≥ 1 sufficiently large, and 0 ∈ Ωf ⊂ RN , 0 ∈ Λf ⊂ Rp are
open sets. Assume that:

A1 f 0
x has N0 ≥ 1 eigenvalues on the unit circle, and

A2 the system obtained by restriction of (3.1) to a center manifold can be smoothly
transformed near the origin to some normal form

w 7→ G(w, β), (3.2)

where G : RN0 ×Rp → RN0 is a smooth map.

The shape of G (but not its coefficients) is supposed to be known up to a certain order.
Finally, the parameter-dependent center manifold is assumed to be locally parametrized
by (w, β) ∈ RN0 ×Rp, by means of a smooth function

Q : RN0 ×Rp → RN .

Thus, the invariance of the center manifold allows us to presume the existence of a smooth,
invertible parameter transformation K : Rp → Rp, such that the equation

f(Q(w, β), K(β)) = Q(G(w, β), β) (3.3)

holds locally. The above equation is the so-called homological equation. The use and
applications related to this equation are largely explained in the references cited above.
A formal statement which actually guarantees the existence of the maps Q, K, so that
(3.3) holds, is available in [20]. With these comments about the homological equation we
are ready to make use of it in order to perform the numerical center manifold reduction.

Assume that system (3.1), with p = 2, has an R12 point at the origin. Consider the
homological equation given in the following way

f(H(u, δ), K(δ)) = H(G(u, δ), δ), (3.4)

with:

G(u, δ) :=

(
u1 + u2

u2 + δ1 + δ2u2 + au2
1 + bu1u2 +OG((u2

1 + |u1u2|)||δ||)

)
+OG(||u||3),

K(δ) := K1δ +OK(||δ||2),

H(u, δ) :=
(
v0 v1

)
u+Dδ +OH(||u||2 + ||u||||δ||+ ||δ||2),
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where u := (u1, u2) ∈ R2, δ := (δ1, δ2) ∈ R2, the Oi-symbol, i = G,K,H , stands for
higher order terms, a, b are the normal form coefficients, and v0, v1, p0, p1 denote critical
right and left generalized eigenvectors of f 0

x , respectively (cf. Definition 2.4). Moreover,
K1 ∈ R2,2 and D ∈ RN,2 are quantities to be computed by means of the homological
equation. Throughout the computations we consider the Taylor expansion of f

f(x, α) = f 0
xx+ f 0

αα +
1

2
B(x, x) +Of(||x||

3 + ||α||2 + ||x||||α||),

where B(·, ·) := f 0
xx[·, ·] (cf. Definition 2.4).

With this basic setup we are ready to perform the numerical center manifold reduction.
Replace G, K, H , and f , as explicitly given above, in the homological equation. By doing
this, we obtain

f 0
xH(u, δ) + f 0

αK(δ) +
1

2
B(H(u, δ), H(u, δ)) +Of(||H(u, δ)||3 + ||K(δ)||2

+||H(u, δ)||||K(δ)||) =
(
v0 v1

)
G(u, δ) +Dδ +OH(||G(u, δ)||2

+ ||G(u, δ)||||δ||+ ||δ||2).

By collecting the linear terms in δ of the equation above, we arrive at

f 0
xDδ + f 0

αK1δ =
(
v1 0

)
δ +Dδ,

and hence it follows
(f 0

x − IN)D =
(
v1 0

)
− f 0

αK1. (3.5)

Next, the biorthogonality of the critical eigenvectors can be used in order to simplify the
above relation. Let us then multiply both sides of the last equation from the left by pT

0 .
In this way we obtain the following relation

(
1 0

)
=

(
β1 β2

)
K1, (3.6)

where
0 6=

(
β1 β2

)
:= pT

0 f
0
α

is a transversality condition that must be satisfied. The equation (3.6) does not determine
K1 uniquely, however, a possible choice is readily given by

K1 =
1

β2
1 + β2

2

(
β1 σβ2

β2 −σβ1

)
,

where σ ∈ {1,−1}. Once we have determined K1, D is immediately obtained from
(3.5) by, e.g., bordering techniques (cf. [4]). It is only left to compute the normal form
coefficients a, b. These coefficients are well known and given by (cf. [19]):

a =
1

2
pT

0B(v0, v0), b = pT
1B(v0, v0) + pT

0B(v0, v1),
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(see also Definition 2.4). At this point, an explicit, linear approximation of the center
manifold, as well as of the parameter transformation are ready to be used for the compu-
tation of orbits of the original system (3.1) from orbits of the normal form.

We want to conclude this section by showing how the homological equation and the
numerical center manifold reduction we just derived above will actually help us to con-
struct the starting procedure for the continuation of homoclinic tangencies near an R12

point. We have the following:

Proposition 3.1. Let system (3.1) (with p = 2) have an R12 point at the origin. Let
0 ∈ ΩH ⊂ R2, 0 ∈ ΛH ⊂ R2 be open sets, such that the homological equation (3.4) holds
for all (u, δ) ∈ ΩH × ΛH . Let uZ ∈ S2Z be a tangential homoclinic orbit of the normal
form u 7→ G(u, δ) at δ = δ0 ∈ ΛH , so that ui ∈ ΩH , for all i ∈ Z. Furthermore, denote by
UZ ∈ S2Z a nontrivial solution of the discrete variational equation

Un+1 = Gu(un, δ0)Un, n ∈ Z . (3.7)

Then, system (3.1) has a tangential homoclinic orbit xZ ∈ SNZ at α = α0 := K(δ0), which
is explicitly given by

xi := H(ui, δ0), i ∈ Z . (3.8)

Furthermore, the sequence XZ ∈ SNZ defined as

Xi := Hu(ui, δ0)Ui, i ∈ Z (3.9)

satisfies the variational equation

Xn+1 = fx(xn, α0)Xn, n ∈ Z . (3.10)

Proof. Let us begin by showing that xZ is a homoclinic orbit of (3.1). We then must first
verify that xZ is an orbit of (3.1). For this purpose, let n ∈ Z arbitrary. It follows

xn+1 = H(un+1, δ0) = H(G(un, δ0), δ0).

By taking into account the homological equation, we arrive at

xn+1 = H(G(un, δ0), δ0) = f(H(un, δ0), K(δ0)) = f(xn, α0),

hence xZ is indeed an orbit of (3.1). Now we will see that this orbit is homoclinic. Note
that

lim
n→±∞

un = ueq,

where ueq ∈ ΩH is an equilibrium of the normal form. Consequently, we have that

lim
n→±∞

xn = lim
n→±∞

H(un, δ0) = H(ueq, δ0) =: xeq ∈ Ωf .

Thus, it remains to show that xeq is an equilibrium of (3.1). By the homological equation,
it follows

f(xeq, α0) = f(H(ueq, δ0), K(δ0)) = H(G(ueq, δ0), δ0) = H(ueq, δ0) = xeq.
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Therefore, xZ is a homoclinic orbit of (3.1). Now we have to show that xZ is tangential,
which amounts to proving that XZ satisfies (3.10). To achieve this, we need the following
relation

fx(H(u, δ), K(δ))Hu(u, δ) = Hu(G(u, δ), δ)Gu(u, δ), (3.11)

(u, δ) ∈ ΩH ×ΛH , which is obtained by differentiating with respect to u of the homological
equation. Let n ∈ Z arbitrary. We have that

Xn+1 = Hu(un+1, δ0)Un+1 = Hu(G(un, δ0), δ0)Un+1.

By combining (3.7) and (3.11), it follows:

Xn+1 = Hu(G(un, δ0), δ0)Un+1,

= Hu(G(un, δ0), δ0)Gu(un, δ0)Un,

= fx(H(un, δ0), K(δ0))Hu(un, δ0)Un,

= fx(xn, α0)Xn.

4 Flow Approximation

In the past section, the homological equation played the central role both in the center
manifold reduction, as well as in the transformation of homoclinic orbits of the normal
form to homoclinic orbits of the original system (3.1). In fact, Proposition 3.1 provides
us formulae (3.8), (3.9), which allow the construction of tangential homoclinic orbits
of system (3.1), provided a tangential homoclinic orbit of the normal form is available.
In numerical applications we will of course be only able to approximate the homoclinic
orbits of the original system, since the center manifold and the parameter transformation
are only known up to a certain order. In other words, the problem of obtaining a first
approximation of a tangential homoclinic orbit of an arbitrary N -dimensional system has
been translated into approximating such orbits, but of the normal form, i.e., the dimension
of the problem has been reduced.

In this section our efforts will be then dedicated to approximating tangential homo-
clinic orbits of the normal form of the 1 : 1 resonance. For this purpose Lemma 2.5 will
be of a great help, since it allows us to approximate the normal form by the 1-flow of a
vector field (see Section 2), i.e., we transform the discrete-time problem into a continuous
one. The advantage of doing so is that the dynamics of the approximating vector field
is described by the well-known Bogdanov-Takens theory, and, in particular, the starting
procedure for the continuation of homoclinic orbits near a Bogdanov-Takens point is avail-
able (cf. [3] and algorithms below). It would remain to know how to actually construct an
approximating, discrete, tangential homoclinic orbit from a homoclinic orbit of the vector
field. Once this construction is done, our starting procedure will be ready for numerical
implementation.

Let φt(·, δ) be the t-flow of
u̇(t) = g(u(t), δ), (4.1)

11



where g is the vector field given by Lemma 2.5. Then, according to this lemma, the
discrete system

u 7→ ψ(u, δ) := φ1(u, δ) (4.2)

is an approximation of the normal form of the 1 : 1 resonance. Suppose that system (4.1)
has a homoclinic orbit at δ = δ0 ∈ R2, and let u0 ∈ R2 be a point on this homoclinic
orbit, so that u0 is not an equilibrium. Let uZ ∈ S2Z be given by

ui := φi(u0, δ0), i ∈ Z .
Then, it immediately follows that uZ is a homoclinic orbit of system (4.2), and conse-
quently, by Lemma 2.5, uZ is an approximation of a homoclinic orbit of the normal form.
Thus, it is left to construct a solution of the variational equation of (4.2) along the orbit
uZ. Let UZ ∈ S2Z be given by

Ui := g(ui, δ0), i ∈ Z .
Choose an arbitrary n ∈ Z. Then, it follows that:

Un+1 = g(un+1, δ0),

= g(φn+1(u0, δ0), δ0),

=
d

dt

(
φt+1(u0, δ0)

)
t=n

,

=
d

dt

(
ψ(φt(u0, δ0), δ0)

)
t=n

,

= ψu(un, δ0)
d

dt

(
φt(u0, δ0)

)
t=n

,

= ψu(un, δ0)g(φ
n(u0, δ0), δ0),

= ψu(un, δ0)Un.

Therefore, we have that UZ is indeed a solution of the variational equation of (4.2) along
the homoclinic orbit uZ. With these computations we are ready to implement the starting
procedure for the continuation of homoclinic tangencies near an R12 point. The precise
implementation of the starting method is summarized in the following Algorithm:

Starting procedure for homoclinic tangencies near an R12 point

Let system (2.4) have an R12 point at the origin. Let

A :=

(
g0

x − IN b

cT 0

)
∈ RN+1,N+1,

where b, c ∈ RN are chosen in such a way that A is nonsingular. Compute v0, v1, p0, p1 ∈RN from the systems:

A

(
v0

l

)
=

(
0
1

)
, A

(
v1

h

)
=

(
v0

0

)
,

AT

(
p0

l

)
=

(
0
1

)
, AT

(
p1

h

)
=

(
p0

0

)
.

12



Normalize

γ := pT
0 v1, p1 :=

1

γ

(
p1 −

1

γ
(pT

1 v1)p0

)
, p0 :=

1

γ
p0.

(i) Linear transformations

(
β1 β2

)
:= pT

0 g
0
α,

K1 :=
1

β2
1 + β2

2

(
β1 σβ2

β2 −σβ1

)
, σ ∈ {−1, 1},

C :=
(
v1 0

)
− g0

αK1 ∈ RN,2 .

Solve the two linear systems

A

(
D

h

)
=

(
C

0

)
.

Let

K̃(δ) := K1δ,

H̃(u, δ) :=
(
v0 v1

)
u+Dδ.

(ii) Quadratic coefficients of the normal form

It assumed that gx can be evaluated explicitly. Choose a suitable s > 0 for numerical
differentiation. Compute:

a :=
1

2
s−1pT

0 (gx(sv0, 0) − g0
x)v0,

b := s−1pT
1 (gx(sv0, 0) − g0

x)v0 + s−1pT
0 (gx(sv0, 0) − g0

x)v1.

(iii) Flow approximation

Let
ξ̇ = F (ξ, ν), (4.3)

with F (ξ, ν) := F0(ν) + F1(ξ, ν) + F2(ξ), where:

F0(ν) :=

(
−1

2
ν1

ν1

)
,

F1(ξ, ν) :=

(
ξ2 +

(
1
3
b− 1

2
a
)
ν1ξ1 +

((
1
5
a− 5

12
b
)
ν1 −

1
2
ν2

)
ξ2(

2
3
a− 1

2
b
)
ν1ξ1 +

((
1
2
b− 1

6
a
)
ν1 + ν2

)
ξ2

)
,

and

F2(ξ) :=

(
−1

2
aξ2

1 +
(

2
3
a− 1

2
b
)
ξ1ξ2 +

(
1
3
b− 1

6
a
)
ξ2
2

aξ2
1 + (b− a)ξ1ξ2 +

(
1
6
a− 1

2
b
)
ξ2
2

)
.

Let ξc(t), νc be the final approximation obtained in Step (iv) of the starting proce-
dure for homoclinic orbits near a Bogdanov-Takens point (see algorithm below).
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(iv) Approximation of the homoclinic tangency of the normal form

Choose N+, N− ∈ Z, N− < 0 < N+, with −N−, N+ sufficiently large. Define the
discrete interval J := [N−, N+] ∩ Z. Compute ud

J , U
d
J ∈ S2

J :

ud
i := ξc(i),

Ud
i := F (ud

i , νc),

i ∈ J .

(v) Transformation of the homoclinic orbit of the normal form to the original

system

Compute xd
J , X

d
J ∈ SN

J , αd ∈ R2:

xd
i := H̃(ud

i , νc),

Xd
i := H̃u(u

d
i , νc)U

d
i ,

αd := K̃(νc),

i ∈ J . Normalize

Xd
J :=

1√∑N+

i=N−

||Xd
i ||

2
Xd

J .
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Starting procedure for homoclinic orbits near a Bogdanov-Takens point

Let system
ẋ(t) = f(x(t), α), (4.4)

with f : RN ×R2 → RN sufficiently smooth, have a Bogdanov-Takens point at the origin.
Let

A :=

(
f 0

x b

cT 0

)
∈ RN+1,N+1,

where b, c ∈ RN are chosen in such a way that A is nonsingular. Compute v0, v1, p0, p1 ∈RN from the systems:

A

(
v0

g

)
=

(
0
1

)
, A

(
v1

h

)
=

(
v0

0

)
,

AT

(
p0

g

)
=

(
0
1

)
, AT

(
p1

h

)
=

(
p0

0

)
.

Normalize

γ := pT
0 v1, p1 :=

1

γ

(
p1 −

1

γ
(pT

1 v1)p0

)
, p0 :=

1

γ
p0.

(i) Linear transformations

(
β1 β2

)
:= pT

0 f
0
α,

K1 :=
1

β2
1 + β2

2

(
β1 σβ2

β2 −σβ1

)
, σ ∈ {−1, 1},

C :=
(
v1 0

)
− f 0

αK1 ∈ RN,2 .

Solve the two linear systems

A

(
D

h

)
=

(
C

0

)
.

Let d2 ∈ RN+2 be the second column of

(
D

K1

)
.

(ii) Quadratic coefficients of the reduced system

It is assumed that fz =
(
fx fα

)
, z := (x, α) can be evaluated explicitly. Choose

a suitable s > 0 for numerical differentiation. Compute:

w1 := s−1(fx(sv0, 0) − f 0
x)v0, Q111 := pT

1w1,

w4 := s−1(fz(sv0, 0) − f 0
z )d2, Q211 := pT

0w1,

Q212 := s−1pT
0 (fx(sv0, 0) − f 0

x)v1, Q214 := pT
0w4,

Q224 := s−1pT
0 (fx((0, 0) + sd2) − f 0

x)v1, Q114 := pT
1w4,

Q244 := s−1pT
0 (fz((0, 0) + sd2) − f 0

z )d2.
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(iii) Approximation of the homoclinic orbit of the reduced system

∆ := Q211(Q114 +Q224) −Q214(Q111 +Q212),

τ :=
5

7∆
(Q111 +Q212),

σ :=
1

2Q211

((Q2
114 −Q211Q244)τ

2 − 1).

Choose a suitable ǫ > 0 and let:

δ1 := σǫ4,

δ2 := τǫ2,

u1(t) :=
ǫ2

Q211

(
1 − 3 sech2

( ǫ
2
t
)
−Q214τ

)
,

u2(t) :=
3ǫ3

Q211

sech2
( ǫ

2
t
)

tanh
( ǫ

2
t
)
.

(iv) Transformation of the homoclinic orbit of the reduced system to the

original system

x(t) :=
(
v0 v1

)
u(t) +Dδ,

α := K1δ.

5 Numerical Applications

We conclude this article with some numerical experiments whose purpose is to illustrate
the use of the starting procedure. In what follows, after applying the starting procedure to
the systems, we employ the thus obtained approximations for initializing (damped) New-
ton iterations of the defining systems given in terms of Υ̂T , Υ̂P (cf. Section 2). Therefore,
it is worth showing how the underlying matrices look like in order to implement the New-
ton iterations. These matrices will be denoted by AT , AP , respectively. Under notation of
Section 2, let M := |N−|+N++1. The matrix AT evaluated at (xJ , uJ , α) ∈ SN

J ×SN
J ×R2

presents the following sparse structure

AT := (aij)i,j=1,...,2NM+1 :=




A1
0
0

A3

0
A2 0
0 0

A1
A4

0
0 0 A5 0



, (5.1)
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where:

(aij)i=1,...,NM,j=1,...,NM := A1 ∈ RNM,NM ,

(aij)i=NM+1,...,2NM,j=NM+1,...,2NM := A1,

(aij)i=NM+1,...,N(2M−1),j=1,...,N(M−1) := A2 ∈ RN(M−1),N(M−1),

(aij)i=1,...,N(M−1),j=2NM+1 := A3 ∈ RN(M−1),

(aij)i=NM+1,...,N(2M−1),j=2NM+1 := A4 ∈ RN(M−1),

(aij)i=2NM+1,j=NM+1,...,2NM := A5 ∈ R1,NM ,

and

A1 :=




−fx(xN−
, α) IN 0

. . .
. . .

0
. . .

. . .

−fx(xN+−1, α) IN
IN 0 −IN



,

A2 :=




−fxx(xN−
, α)[uxN

−

] 0
. . .

. . .

0 −fxx(xN+−1, α)[uxN+−1
]



,

A3 :=




−fα1
(xN−

, α)
...

−fα1
(xN+−1, α)


 ,

A4 :=




−fxα1
(xN−

, α)uxN
−

...
−fxα1

(xN+−1, α)uxN+−1


 ,

AT
5 := 2




uxN
−

...
uxN+


 ,

where fxx(x, α)[u] := (fx(x, α)u)x, (x, u, α) ∈ RN ×RN ×R2. Moreover, the matrix AP is
computed similarly as AT . Just the rows of Ap that are related to the boundary conditions
differ from those of AT , as the projection boundary conditions have a different structure
and furthermore they depend on the parameter α, in contrast to the periodic ones.

Once we have found a homoclinic tangency, continuation with respect to a second
parameter, say α2, is possible. By doing so, we will obtain an approximation of a first
curve of homoclinic tangencies that emanates from the R12 point. On the other hand,
continuation with respect to one parameter, with the other one fixed, will allow us to
obtain a closed curve of transversal homoclinic orbits. In this way, a second homoclinic
tangency can be found, and thereby a second curve of homoclinic tangencies can be
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continued. For the purposes above described, we will use the Euler-Newton method (cf.
[1, Algorithm 10.2.10]) combined with step-size control as described in [10, Section 2.3].

Although the starting procedure for homoclinic tangencies is essentially a theory-
based method, there is still a trial-and-error-component which cannot be avoided. This
component is found in the choice of a “suitable” ǫ > 0 in Step (iii) of the starting
method for homoclinic orbits near a Bogdanov-Takens point (see Section 4). It is clear
that the smaller ǫ is chosen, the better is the approximation of the homoclinic orbit,
however, also the worse is the condition of the defining system whose solution we need
to find. Therefore, there exists a compromise between approximation of the homoclinic
orbit and conditioning of the underlying system. Roughly speaking, we can visualize this
compromise as if there existed an interval (ǫmin, ǫmax), 0 < ǫmin < ǫmax, in which we
should try choosing values of ǫ in order to generate a converging, nontrivial sequence via
(damped) Newton iterations. Choosing values of ǫ outside this interval will be likely to
produce either diverging sequences or trivial solutions (i.e. sequences of equilibria, or more
complicated types of spurious solutions, etc.).

Throughout the numerical applications, || · || will represent the Euclidean norm. More-
over, for the continuation of transversal homoclinic orbits, we use the amplitude function

ampl(xJ , α) :=

√√√√
Nf∑

i=N−

||xi − ξ(α)||2,

where Nf := N+ (resp. Nf := N+ − 1), if we use projection boundary conditions (resp.
periodic boundary conditions), and ξ(α) stands for the parameter-dependent equilibrium
which the points of the homoclinic orbit converge to. This function will allow us to
visualize closed curves of transversal homoclinic orbits.

In all the numerical examples we will first compute a tangential homoclinic orbit x0
J

with −N− = N+ = 20. Then, if an orbit with a larger length is desired, we set an initial
approximating orbit to

(. . . , ξ, . . . , ξ, x0
J , ξ, . . . , ξ, . . .),

and then we use it for the corresponding Newton iterations.
Finally, all the computations will be performed with MATLAB.

5.1 Normal form of the 1 : 1 resonance

Consider the system
(
x1

x2

)
7→ g(x, α) :=

(
x1 + x2

x2 + α1 + α2x2 + x2
1 + x1x2

)
, (5.2)

where x := (x1, x2) ∈ R2, α := (α1, α2) ∈ R2. This system was already discussed in
Section 2. Let us apply the starting procedure to (5.2). The matrix A is given by

A :=




0 1 1
0 0 1
1 1 0


 .
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By means of this matrix we obtain the linear transformations:

K̃(δ) :=

(
1 0
0 1

)
δ,

H̃(u, δ) :=

(
1 −1
0 1

)
u+

(
1 0
−1 0

)
δ.

The computed quadratic coefficients are:

a := 1, b := 1.

With these coefficients we obtain the following ǫ-dependent flow approximation:

δ1 := − 1
4
ǫ4,

δ2 := − 0.35714285714052ǫ2,

u1(t) := ǫ2

2

(
1 − 3 sech2

(
ǫ
2
t
))
,

u2(t) := 3ǫ3

2
sech2

(
ǫ
2
t
)
tanh

(
ǫ
2
t
)

+ 1
2
δ1.

(5.3)

It is important to point out that this step can be easily automatized, since the critical
eigenvectors of the approximating vector field do not depend on a, b. Therefore, only
the Q’s (cf. Step (ii) of the starting method near Bogdanov-Takens points) must be
recomputed in each example.

By choosing ǫ := 0.9, N− := −40, N+ := 60, and after some damped Newton itera-
tions, we find a homoclinic tangency xJ , XJ at

(α1, α2) = (−0.2135818065347,−0.28928571428382),

with
||Υ̂T (xJ , XJ , α)|| ≈ 8.33 × 10−12.

In order to verify that the so obtained orbit xJ is actually a homoclinic tangency,
we plot the stable and unstable manifolds of the system. These are shown in Figure 5.1
and 5.2. In these pictures we can see that the points of xJ indeed correspond to the
tangential intersections of W u

ξ and W s
ξ . These manifolds are approximated via forward

(resp. backward) iterations of (5.2) starting from points on the tangent space of W u
ξ (resp.

W s
ξ ) at ξ, close enough to the equilibrium.
The next experiment will be the continuation of transversal homoclinic orbits with

respect to α1, letting α2 = −0.28928571428382 fixed. The result is shown in Figure
5.3. In this picture we obtained a closed loop, which is a known phenomenon that is a
consequence of the behavior of the stable and unstable manifolds under perturbation (cf.
[6]). Along this curve we marked the points PT1

, PTr
, and PT2

, which correspond to the first
homoclinic tangency (i.e. the one we have already computed), a transversal homoclinic
point, and a second homoclinic tangency, respectively. The transversal homoclinic orbit
is located at

(α1, α2) = (−0.21528248893748,−0.28928571428382).
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Fig. 5.1: Stable and unstable manifolds along the homoclinic tangency xJ .
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Fig. 5.2: Stable and unstable manifolds around the equilibrium ξ.
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Fig. 5.3: Continuation of transversal homoclinic orbits with respect to α1, with α2 fixed.

Furthermore, in Figure 5.4, we show the transversal intersections of the manifolds along
the homoclinic orbit. Now we will switch to the second homoclinic tangency. To achieve
this, we first use PT2

as a starting point for the Newton iterations. This point is, in
parameter space, located at

(α1, α2) = (−0.21672274959574,−0.28928571428382).

In this way, we obtain a very good approximation of both the parameter values, as well
as of the second tangential homoclinic orbit, which will be denoted by y0

J . However, we
also need an initial value Y 0

J for the solution of the variational equation of (5.2) along y0
J .

In order to construct Y 0
J , we use the fact that the matrix

Γ̂T
xJ

(y0
J , α)

is almost singular, which allows us to find a vector Y 0
J , such that

Γ̂T
xJ

(y0
J , α)Y 0

J ≈ 0.

This step can be easily implemented by a single command in MATLAB. Thus, after some
few Newton iterations, we found a second homoclinic tangency yJ , YJ at

(α1, α2) = (−0.2167231774074,−0.28928571428382),

with
||Υ̂T (yJ , YJ , α)|| ≈ 5.93 × 10−12.

In Figure 5.5 we show the tangential intersections of the manifolds along the homoclinic
orbit yJ .
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Fig. 5.4: Stable and unstable manifolds along a transversal homoclinic orbit.
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Fig. 5.5: Stable and unstable manifolds along the second homoclinic tangency yJ .
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Fig. 5.6: Tangential homoclinic branches.

Our next goal in this experiment is to numerically compute the “horn” of homoclinic
tangencies that emanates from the R12 point. This horn consists of two branches of
tangential homoclinic orbits, which are schematically shown in Figure 2.1. Note that in
the above performed computations, we already obtained two points of the horn, namely,
PT1

and PT2
(see Figure 5.3).

The experiment is performed as follows. Choose ǫ := 0.55 in (5.3), N− := −20,
N+ := 20 with the corresponding discrete interval J20. With these values we obtain two
homoclinic tangencies xJ20

, XJ20
, and yJ20

, YJ20
, located at

αx = (−0.02442993556905,−0.10803571428571),

and
αy = (−0.02442993416031,−0.10803571428571),

respectively, with

||Υ̂T (xJ20
, XJ20

, αx)|| ≈ 2 × 10−13, ||Υ̂T (yJ20
, YJ20

, αy)|| ≈ 6.01 × 10−12.

With this information we are ready to perform the continuation of the horn. The result of
the continuation is shown in Figure 5.6. The tangential homoclinic branches are labeled
by T T20

1 , T T20

2 . The superscript T20 denotes the use of periodic boundary conditions within
the interval J20 above defined. The label NS denotes the Neimark-Sacker curve. In Figure
5.6 we can observe that the position of the curves in the parameter space is consistent with
Figure 2.1, however, the width of the horn is actually much smaller. In fact, we will next
see how small this width really is. To achieve this, we perform the continuation of T T20

1 ,
and then, for some α2’s fixed, we continue transversal homoclinic orbits with respect to
α1 (see Figure 5.3). The width of the horn is then obtained by measuring the difference
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Fig. 5.7: Width of the homoclinic horn.

between the maximum and minimum values that α1 attains along the closed curve of
transversal homoclinic orbits. Of course, this procedure is not performed for every point
of T T20

1 , otherwise the numerical and time cost would have been unnecessarily high. The
result of this process is shown in Figure 5.7. In this picture w(α2) stands for the width
of the horn with respect to α2. It draws our attention how small the region between T T20

1

and T T20

2 really is, and furthermore, we can also observe that the width increases as the
parameters move away from the R12 point along T T20

1 , which is consistent with the theory
(cf. [8], [17, Section 9.5.2]).

5.2 Hénon 3D map

The Hénon map has proven to be very rich in terms of its bifurcation diagram and
fascinating global phenomena that this system exhibits (cf. [17], [19]). In this experiment
we consider the following three-dimensional version of the Hénon map




x

y

z


 7→




α2 + α1z − x2

x

y


 .

This system undergoes an R12 singularity at (x, y, z) = (−0.75,−0.75,−0.75), (α1, α2) =
(−0.5,−0.5625). Next, we apply the starting procedure to the Hénon system, with ǫ :=
0.9, N− := −50, N+ := 50, and

A :=




0.5 0 −0.5 0.8
1 −1 0 −0.4
0 1 −1 −0.4

0.5 0.5 0.5 0


 .
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After some few Newton iterations, we find a homoclinic tangency xJ , XJ at

(α1, α2) = (−1.14448083063938,−0.23373257142857),

with
||Υ̂P (xJ , XJ , α)|| ≈ 8.12 × 10−12.

In Figure 5.8 and 5.9 we show the phase plot of the computed orbit xJ and the exponential
decay of ||Xi||, i ∈ J , respectively. It is interesting noting that the shape of the computed
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Fig. 5.8: Homoclinic orbit xJ .
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Fig. 5.9: Exponential decay of ||Xi|| with respect to i.

homoclinic tangency xJ is similar to that of the homoclinic tangencies computed for

25



the normal form, see e.g. Figure 5.1. However, the very same Hénon map may exhibit
homoclinic tangencies with a totally different shape, if we choose another suitable value
of parameters (cf. [15, Section 7.1.3]).
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[8] Broer, H., Simó, C., and Roussarie, R. Invariant circles in the Bogdanov-
Takens bifurcation for diffeomorphisms. Ergod. Th. & Dynam. Sys. 16, 6 (1996),
1147–1172.

[9] Chow, S.-N., Li, C., and Wang, D. Normal Forms and Bifurcation of Planar
Vector Fields. Cambridge University Press, New York, 1994.

[10] Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Mestrom, W., Riet, A. M.,

and Sautois, B. MATCONT and CL MATCONT: Continuation toolboxes in MAT-
LAB. University of Gent, Belgium, 2006. Available at http://www.matcont.ugent.
be/manual.pdf.

26



[11] Govaerts, W., Kuznetsov, Y. A., Khoshsiar Ghaziani, R., and Meijer,

H. G. E. Numerical methods for two-parameter local bifurcation analysis of maps.
SIAM J. Sci. Comput. 29, 6 (2007), 2644–2667.

[12] Govaerts, W., Kuznetsov, Y. A., Khoshsiar Ghaziani, R., and Meijer,

H. G. E. Cl MatContM: A toolbox for continuation and bifurcation of cycles of
maps. University of Gent, Belgium, 2008. Available at http://sourceforge.net/

projects/matcont/.

[13] Kleinkauf, J.-M. The numerical computation and geometrical analysis of het-
eroclinic tangencies. Available at http://www.mathematik.uni-bielefeld.de/

sfb343/. Preprint 98-48, SFB 343, University of Bielefeld, 1998.

[14] Kleinkauf, J.-M. Numerische Berechnung diskreter homokliner Orbits. Master’s
thesis, University of Bielefeld, Germany, 1994.

[15] Kleinkauf, J.-M. Numerische Analyse tangentialer homokliner Orbits. PhD thesis,
University of Bielefeld, Germany, 1997.

[16] Kuznetsov, Y. A. Numerical Normalization Techniques for all codim 2 Bifurca-
tions of Equilibria in ODE’S. SIAM J. Numer. Anal. 36, 4 (1999), 1104–1124.

[17] Kuznetsov, Y. A. Elements of Applied Bifurcation Theory, third ed., vol. 112 of
Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[18] Kuznetsov, Y. A., Van Veen, L., and Meijer, H. G. E. The fold-flip bifur-
cation. Internat. J. of Bif. and Chaos 14, 7 (2004), 2253–2282.

[19] Meijer, H. G. E. Codimension 2 Bifurcations of Iterated Maps. PhD thesis,
University of Utrecht, Netherlands, 2006.
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