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Instituto de Ciencias Matemáticas,
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Abstract

We consider parameter-dependent, continuous-time dynamical systems under
discretizations. It is shown that generalized Hopf bifurcations are shifted and turned
into generalized Neimark-Sacker points by general one-step methods. We analyze
the effect of discretizations methods on the emanating Hopf curve. In particular, we
obtain estimates of the discretized eigenvalues along this curve. A detailed analysis
of the discretized first Lyapunov coefficient is also given. The results are illustrated
by a numerical example.

1 Introduction

Consider a continuous-time dynamical system depending on parameters

ẋ(t) = f(x(t), α), (1.1)

where f ∈ Ck(Ω × Λ,RN) with open sets 0 ∈ Ω ⊂ RN , 0 ∈ Λ ⊂ R2, k ≥ 1 sufficiently
large, N ≥ 2. The first and commonly used tool for understanding the dynamics generated
by the vector field (1.1) is numerical time-integration. For this purpose we can utilize one-
step methods, which consists in approximating the evolution operator by a discrete-time
system

x 7→ g(x, α), (1.2)
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Fig. 1.1: Bifurcation diagram and generic phase portraits near a generalized Hopf point.

with g ∈ Ck(Ω × Λ,RN ), where the step-size were assumed to be previously fixed. It
then becomes evident the importance of establishing theoretical results that allow us to
make conclusions about the real behavior of system (1.1) starting from the numerical
observations obtained via (1.2). The situation turns out to be more involved if the sys-
tem undergoes bifurcations under variation of parameters. Rigorous results concerning
topological conjugacies of continuous-time systems and their discretizations can be found
in [21]. There, elementary codimension one bifurcations are considered.

In this article we suppose that system (1.1) presents generalized Hopf bifurcations,
which consist of Hopf points with vanishing first Lyapunov coefficient (see [18]). Further
we assume that (1.1) is discretized via general one-step methods, see Section 2.

In this setting, we will first discuss whether a one-step method applied to the continuous-
time system reproduce by a “discrete version” the codimension two point. For cusp and
Bogdanov-Takens bifurcations, it is already known that they persist at the same position
under general Runge-Kutta methods, see [22]. The fold-Hopf case, and its discretized bi-
furcation picture, is dealt in [24]. Results in this direction for the remaining codimension
two bifurcations seem not to be available.

Then we analyze the effect of discretization methods on the local bifurcation picture of
the generalized Hopf bifurcation, see Figure 1.1. In this picture, the curves labeled by H+

(resp. H−) and T correspond to paths of Hopf points with positive (resp. negative) first
Lyapunov coefficient and nondegenerate fold bifurcation of cycles, respectively. Typical
phase portraits are also depicted. In this article our efforts will be focused to studying
the discretization of the emanating Hopf curve. Discretization of systems with Hopf
bifurcations has been addressed to a large extent (cf. [3, 6, 7, 14, 15, 23, 27]). It has
been proven that Hopf points are O(hp)-shifted and turned into Neimark-Sacker points
by general one-step methods of order p ≥ 1. Approximation of regular periodic orbits
originated at the Hopf bifurcation has been considered too. Nevertheless, these results
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strictly apply when dealing with one-dimensional sections in Figure 1.1. The problem
of discretizing the emanating Hopf curve must be tackled in a codimension two context.
To accomplish this we will appeal to the techniques employed in [24]. There, suitably
modified defining systems of the underlying bifurcations are manipulated in order to
obtain existence and closeness results. Defining systems for the computation of Hopf
points are presented in [3, 4, 12, 13, 25, 28], and for generalized Hopf bifurcations in
[11, 29]. A broad overview of defining systems for various types of bifurcations can be
found in [10].

In the study of generalized Hopf bifurcations and their discretizations, the first Lya-
punov coefficient plays an important role. For this reason, the present article also take up
the analysis of the discretization of this coefficient, providing further details concerning
the effect of one-step methods on the emanating Hopf branches, whose dynamical nature
is determined by the above mentioned coefficient. Explicit formulae for the computation
of the first Lyapunov coefficient of both continuous- as well as discrete-time dynamical
systems are derived in [17, 20], respectively.

2 Basic setup

Let us first formally define the bifurcations we will deal with.

Definition 2.1. A point (x0, α0) ∈ Ω× Λ is referred to as a generalized Hopf bifurcation
(in short GH point1) of (1.1) if:

• f(x0, α0) = 0,

• fx(x0, α0) has the only critical, simple eigenvalues ±iω0, 0 < ω0 ∈ R.

• The first Lyapunov coefficient vanishes at (x0, α0).

Definition 2.2. A point (x0, α0) ∈ Ω × Λ is referred to as a generalized Neimark-Sacker
bifurcation (in short GN point2) of (1.2) if:

• g(x0, α0) − x0 = 0,

• gx(x0, α0) has the only critical, simple eigenvalues e±iθ0, 0 < θ0 ∈ R, eikθ0 6= 1,
k = 1, 2, 3, 4, 5, 6.

• The first Lyapunov coefficient vanishes at (x0, α0).

For our purposes it is useful to introduce standard augmented systems for the contin-
uation of Hopf points. Assume that (x0, α0) ∈ Ω × Λ is a generic (see below) GH point

1Also called Bautin and degenerate Hopf, though the latter term is sometimes given a wider meaning.
2Also called Chenciner and degenerate Neimark-Sacker.
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of (1.1). Consider the following system of 3n + 2 scalar equations for (x, α, q1, q2, ω) ∈
Ω × Λ ×RN ×RN ×R (cf. [4, Section 5.2.2]):





f(x, α) = 0,
fx(x, α)q1 + ωq2 = 0,
fx(x, α)q2 − ωq1 = 0,
qT01q1 + qT02q2 − 1 = 0,

qT01q2 − qT02q1 = 0,

(2.1)

which is the real form of the complex system defining the Hopf bifurcation:





f(x, α) = 0,
fx(x, α)q − iωq = 0,

〈q, q0〉 − 1 = 0,
(2.2)

where 〈q, q0〉 = qT q0, q = q1 + iq2, and q0 = q01 + iq02 is a reference vector that is not
orthogonal to the critical complex eigenspace corresponding to ±iω0. In this setting we
have that system (2.1) has full rank at (x0, α0), cf. [4, Lemma 7.4].

Similarly, a standard augmented system for the continuation of Neimark-Sacker points
of (1.2) is given by (cf. [18, Section 10.3.1]):





g(x, α) − x = 0,
gx(x, α)q1 − cos(ω)q1 + sin(ω)q2 = 0,
gx(x, α)q2 − cos(ω)q2 − sin(ω)q1 = 0,

qT01q1 + qT02q2 − 1 = 0,
qT01q2 − qT02q1 = 0,

which is the real form of the complex system defining the Neimark-Sacker bifurcation
bifurcation: 




g(x, α) − x = 0,
gx(x, α)q − eiωq = 0,

〈q, q0〉 − 1 = 0,
(2.3)

where q0 ∈ CN is again a suitably chosen reference vector.
We will now present explicit formulae for the computation of the first Lyapunov coef-

ficients, which are necessary for Definition 2.1, 2.2 to be precise. For this purpose, denote
by A·, B·(·, ·), and C·(·, ·, ·) the operators given by:

Ar := rx(x, α),

Br(v, w) := rxx(x, α)[v, w] :=

N∑

i=1

N∑

j=1

∂2r(x, α)

∂xj∂xi
viwj,

Cr(v, w, z) := rxxx(x, α)[v, w, z] :=
N∑

i=1

N∑

j=1

N∑

l=1

∂3r(x, α)

∂xl∂xj∂xi
viwjzl,
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where v, w, z ∈ RN , and r ∈ Ck(Ω × Λ,RN) with k ≥ 1 sufficiently large. With the
notation above introduced, the first Lyapunov coefficient at a Hopf point of (1.1) (cf.
(2.2)) is given by

LH :=
1

2
Re〈p, Cf(q, q, q) − 2Bf(q, A

−1
f Bf(q, q)) +Bf(q, (2iωIN − Af)

−1Bf(q, q))〉,

where p ∈ CN satisfies ATf p = −iωp, 〈p, q〉 = 1. Analogously, the first Lyapunov coeffi-
cient at a Neimark-Sacker point of (1.2) (cf. (2.3)) is defined as

LNS :=
1

2
Re e−iωd, (2.4)

where

d := 〈p, Cg(q, q, q) − 2Bg(q, (Ag − IN)−1Bg(q, q)) +Bg(q, (e
2iωIN −Ag)

−1Bg(q, q))〉.

With the coefficient LH above introduced, we are now able to define genericity of a GH
point. Thus, a GH point of (1.1) is said to be generic if the real form of the system:





f(x, α) = 0,
fx(x, α)q − iωq = 0,
fTx (x, α)p+ λp = 0,

〈q, q0〉 − 1 = 0,
〈p, q〉 − 1 = 0,

Afv − Bf(q, q) = 0,
(2iωIN − Af )w − Bf(q, q) = 0,

Re〈p, Cf(q, q, q) − 2Bf(q, v) +Bf (q, w)〉 = 0,

(2.5)

has full rank at the GH point, see [11, Proposition 3]. Few remarks about the above
presented system are in order. Note that the first, second, and fourth equations of (2.5)
define the Hopf condition (cf. (2.2)). On the other hand, the third, fifth, sixth, and
seventh equations provide auxiliary data in order to force the first Lyapunov coefficient to
vanish. This condition is expressed in the last equation of system (2.5). Furthermore, the
complex variable λ = λ1 + iλ2 is artificially introduced to regularize the system. Formally,
it holds λ = iω at a GH point.

The analysis presented in [11] is the cornerstone of the present article, since there
the genericity of a GH point is associated to the regularity of the real form of system
(2.5). Thereby, the approach employed in [24] for analyzing fold-Hopf bifurcations can be
applied to our case too.

As mentioned in the Introduction, our main goal is to describe the effect of discretiza-
tion methods on the local bifurcation diagram of dynamical systems near a GH point. In
this sense we consider general one-step methods of order p ≥ 1 applied to (1.1), given by

x 7→ ψh(x, α) := x+ hΦ(h, x, α), (2.6)

with ψ,Φ : [−h∗, h∗] × Ω̃ × Λ̃ → RN sufficiently smooth, h∗ > 0, where 0 ∈ Ω̃ ⊂ Ω,

0 ∈ Λ̃ ⊂ Λ are compact sets. That the method is of order p means that there exists a
positive constant C0 (depending only on f), such that it holds

||ϕh(x, α) − ψh(x, α)|| ≤ C0|h|
p+1,
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for all (h, x, α) ∈ [−h∗, h∗] × Ω̃ × Λ̃, where ϕt(·, α) stands for the t-flow of (1.1) and
|| · || denotes any norm3 in RN . In this setting, there exist smooth functions Υ,Ξ :

[−h0, h0] × Ω̃ × Λ̃ → RN such that:

ψh(x, α) = ϕh(x, α) + Υ(h, x, α)hp+1,

Φ(h, x, α) = f(x, α) + Ξ(h, x, α)h,
(2.7)

hold for all (h, x, α) ∈ [−h0, h0] × Ω̃ × Λ̃, where 0 < h0 < h∗, see [5, 9, 26].
With the technical framework above introduced, we have all the necessary machinery

at hand for presenting the main results of the present work.

3 Generalized Hopf bifurcations under discretization

In this section we will suppose we are given a continuous-time dynamical system (1.1)
which undergoes a GH bifurcation. We assume that the system is discretized via general,
p-th order one-step methods. Under these conditions, we will show that the GH point is
shifted and turned into a GN point by the one-step map, for all sufficiently small step-size.
For this purpose, the ideas applied in [24] will be adapted to our case. Formally speaking,
we have the following:

Theorem 3.1. Let a general one-step method of order p ≥ 1 applied to (1.1) be given by

(2.6). Assume that system (1.1) has a generic GH point at (xGH , αGH) ∈ Ω̃ × Λ̃. Then,

there exists a positive constant ρ ≤ h0 and a neighborhood Ω′×Λ′ ⊂ Ω̃× Λ̃ of (xGH , αGH),
in which (2.6) has a unique GN point (xGN(h), αGN(h)) that depends smoothly on h, for
all h ∈ (−ρ, ρ). Furthermore, the following estimate holds

||(xGN(h), αGN(h)) − (xGH , αGH)|| ≤ C|h|, (3.1)

for some C > 0 and all h ∈ (−ρ, ρ).

Proof. Denote the real form of (2.5) by

F (x, α, z) = 0, (3.2)

with F : Ω̃× Λ̃×R7N+3 → R8N+5, z := (q1, q2, p1, p2, v, w1, w2, ω, λ1, λ2). Consider zGH ∈R7N+3, such that F (xGH , αGH , zGH) = 0. Then, system (3.2) is regular at (xGH , αGH , zGH)
(cf. Section 2). Now let us construct a similar system that describes a GN point of the
one-step map (2.6). By following the structure of (2.5), combined with (2.3) and (2.4),

3Throughout this article, the symbol || · || will be used to denote norms in different spaces. From the
context, no confusion should arise.
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we obtain the following complex system:




ψh(x, α) − x = 0,
ψhx(x, α)q − eiωq = 0,

(ψhx(x, α))Tp− e−λp = 0,
〈q, q0〉 − 1 = 0,
〈p, q〉 − 1 = 0,

(Aψ − IN)v − Bψ(q, q) = 0,
(e2iωIN − Aψ)w − Bψ(q, q) = 0,

Re e−iω〈p, Cψ(q, q, q) − 2Bψ(q, v) +Bψ(q, w)〉 = 0,

(3.3)

whose solutions correspond to GN points of (2.6). Note that for h = 0 the system
becomes trivial (observe e.g. the first equation of (3.3) at h = 0). This is inconvenient
for our approach, as we want to perform our analysis for h small, although, in general,
system (3.3) may be suitable for the continuation of GN points of three-parameter discrete
systems. Let us then consider the following modified system:






1
h

(
ψh(x, α) − x

)
= 0,

1
h

(
ψhx(x, α)q − eihωq

)
= 0,

1
h

(
(ψhx(x, α))Tp− e−hλp

)
= 0,

〈q, q0〉 − 1 = 0,
〈p, q〉 − 1 = 0,

1
h

((Aψ − IN)v − Bψ(q, q)) = 0,
1
h

(
(e2ihωIN −Aψ)w −Bψ(q, q)

)
= 0,

1
h

Re e−ihω〈p, Cψ(q, q, q) − 2Bψ(q, v) +Bψ(q, w)〉 = 0.

(3.4)

Note that all but fourth and fifth equations have been divided by h, and ω, λ have been
replaced with hω, hλ, respectively. This change will regularize the system at h = 0, as
we will see.

Denote the real form of (3.4) by

G(h, x, α, z) = 0,

with G : [−h0, h0] × Ω̃ × Λ̃ ×R7N+3 → R8N+5. We will next show that

G(0, x, α, z) = F (x, α, z) (3.5)

for all (x, α, z) ∈ Ω̃× Λ̃×R7N+3. To accomplish this, it suffices to work with the complex
forms. Let us begin with the first equation of (2.5) and (3.4). By (2.7), we have that

1

h

(
ψh(x, α) − x

)∣∣∣∣
h=0

= Φ(h, x, α)|h=0 = f(x, α). (3.6)

Similarly, it follows:

1

h

(
ψhx(x, α)q − eihωq

)∣∣∣∣
h=0

=
1

h

(
(IN + hΦx(h, x, α))q − (1 + ihω +O(h2))q

)∣∣∣∣
h=0

,

= (Φx(h, x, α)q − (iω +O(h))q)|h=0 ,

= fx(x, α)q − iωq. (3.7)
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The analysis for the third equation follows analogously. As for the sixth equation, it holds
that:

1

h
((Aψ − IN )v − Bψ(q, q))

∣∣∣∣
h=0

= (Φx(h, x, α)v − BΦ(q, q))|h=0 ,

= Afv −Bf (q, q).

Now let us work with the seventh equation:

1

h

(
(e2ihωIN − Aψ)w − Bψ(q, q)

)∣∣∣∣
h=0

= (((2iω +O(h))IN − Φx(h, x, α))w −BΦ(q, q))|h=0 ,

= (2iωIN −Af )w − Bf(q, q).

Finally, it follows that:

1

h
Re e−ihω〈p, Cψ(q, q, q) − 2Bψ(q, v) +Bψ(q, w)〉

∣∣∣∣
h=0

=Re e−ihω〈p, CΦ(q, q, q) − 2BΦ(q, v)

+BΦ(q, w)〉|h=0 ,

=Re〈p, Cf(q, q, q) − 2Bf (q, v)

+Bf(q, w)〉.

Thus, (3.5) holds, and thereby we have that G(0, xGH , αGH , zGH) = 0 and G(x,α,z)(0,
xGH , αGH , zGH) = F(x,α,z)(xGH , αGH , zGH) is nonsingular, as (3.2) is regular at the GH
point. Therefore, the Implicit Function Theorem guarantees the existence of functions
(xGN , αGN , zGN) : (−ρ, ρ) → R8N+5, 0 < ρ < h0, such that

G(h, xGN (h), αGN(h), zGN(h)) = 0, (xGN (0), αGN(0), zGN(0)) = (xGH , αGH , zGH),

h ∈ (−ρ, ρ). This shows the existence, uniqueness, and smooth dependence on h of a GN
point of (2.6). Now expand (xGN , αGN) near h = 0. We obtain

(xGN (h), αGN(h)) = (xGH , αGH) + Θ(h)h,

where Θ is some smooth function4. Hence, it follows:

||(xGN(h), αGN(h)) − (xGH , αGH)|| = ||Θ(h)h||,

≤ C|h|,

where C := suph∈(−ρ,ρ) ||Θ(h)||.

Note that the main statement of the above theorem is that a GH point persists as
a shifted GN point, under general one-step methods. The shift estimate obtained is of
first order, regardless the order of the method. This result may seem to be quite pes-
simistic, however, the numerical experiments will show that a much better result cannot
be expected, see Section 5.

4In what follows, by the term “(some smooth function) · wk”, k ≥ 1, w some real variable, we mean
the integral remainder of a Taylor series.
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Fig. 4.1: Discretized path of Hopf points near a GH bifurcation.

4 Emanating Hopf curve under discretization

In the previous section we proved that GH points persist under one-step methods. As we
mentioned in the Introduction, we are interested to know whether the local bifurcation
diagram near this bifurcation is “well” reproduced by a one-step method. In this sense,
the first part of this task has been achieved, namely, the organizing center was shown to
be preserved by discretization methods.

Now we take up the problem of analyzing the discretization of the Hopf curve of
system (1.1) that emanates from the GH bifurcation. The result we are after is illustrated
in Figure 4.1. The curves labeled by H+, NS+ (resp. H−, NS−) represent paths of Hopf,
Neimark-Sacker points respectively, with positive (resp. negative) Lyapunov coefficients.

The analysis is formulated as follows. Suppose we are given a continuous-time dy-
namical system (1.1) which undergoes a GH bifurcation. We assume that this system
is discretized via general one-step methods, as in Section 3. Under these conditions, we
will show that there exists a step-size-independent neighborhood (the dashed square in
Figure 4.1) of the GH point, such that the discretized path of Hopf points (NS in Figure
4.1) approximates the original curve (H in Figure 4.1) with the order of the method. For
this purpose, we do not reduce the systems, e.g. via center manifold theory, but we rather
work with them in full dimension. To do so, the arguments employed in [24, Theorem
4.1] will be applied. For this reason we will only present a sketch of the proof of the main
result. Throughout this section we denote by α = (α1, α2) ∈ R2 the parameters of the
system. With these remarks we are ready to formulate:

Theorem 4.1. Let a general one-step discretization method of order p ≥ 1 applied to
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(1.1) be given by (2.6). Assume that system (1.1) has a generic GH point at the origin
(xGH , αGH) = (0, 0), with eigenvectors q1GH ± iq2GH corresponding to the critical eigen-
values ±iωGH . Further denote system (2.1) by

F̃ (x, α, z) = 0, (4.1)

with F̃ : Ω̃×Λ̃×R2N+1 → R3N+2, z := (q1, q2, ω), and assume that F̃(x,α1,z)(xGH , αGH , zGH)
is nonsingular5. Then, there exist positive constants ρ ≤ h0, δ and curves of Hopf and
Neimark-Sacker points of systems (1.1) and (2.6), respectively, defined by:

CH(α2) := (xH(α2), α1H(α2), zH(α2), α2),

CNS(h, α2) := (xNS(h, α2), α1NS(h, α2), zNS(h, α2), α2),

with xH : (−δ, δ) → RN , xNS : (−ρ, ρ) × (−δ, δ) → RN , α1H : (−δ, δ) → R, α1NS :
(−ρ, ρ) × (−δ, δ) → R, zH : (−δ, δ) → R2N+1, zNS : (−ρ, ρ) × (−δ, δ) → R2N+1 smooth6.
Furthermore, the following estimate holds for all (h, α2) ∈ (−ρ, ρ)× (−δ, δ) and uniformly
in α2

||dNS(h, α2) − dH(α2)|| ≤ C|h|p, (4.2)

where dH := (xH , α1H , zH) and dNS := (xNS, α1NS, zNS), C > 0.

Sketch of the proof. Since F̃(x,α1,z)(0, 0, zGH) is nonsingular, the Implicit Function Theo-
rem guarantees the existence of the function dH = (xH , α1H , zH) : (−δ1, δ1) → R3N+2,
such that

F̃ (dH(α2), α2) = 0, dH(0) = (0, 0, zGH),

α2 ∈ (−δ1, δ1). In the spirit of [24, Theorem 4.1], we will rewrite (4.1) in terms of the
h-flow ϕh(·, α) of (1.1). Thus, we obtain the system (cf. (2.3) and (3.4)):





1
h

(
ϕh(x, α) − x

)
= 0,

1
h

(
ϕhx(x, α)q − eihωq

)
= 0,

〈q, q0〉 − 1 = 0.
(4.3)

Denote the real form of the above system by F (h, x, α, z) = 0, with F : (−h0, h0) × Ω̃ ×

Λ̃ ×R2N+1 → R3N+2. Then, it holds (see [24, Theorem 4.1])

F (h, dH(α2), α2) = 0,

for all (h, α2) ∈ (−h0, h0) × (−δ1, δ1). Similarly, a system whose zeroes describe a curve
of Neimark-Sacker points of (2.6) is given by:





1
h

(
ψh(x, α) − x

)
= 0,

1
h

(
ψhx(x, α)q − eihωq

)
= 0,

〈q, q0〉 − 1 = 0,
(4.4)

5This assumption is imposed only for assuring that α2 can be used as parametrization variable. This
is allowed due to the genericity of the GH point (see system (2.5)).

6By the term “Neimark-Sacker curve”, we mean the graph of the function CNS(h∗, ·), for h∗ ∈ (−ρ, ρ)
fixed.
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whose real form will be denoted by G(h, x, α, z) = 0. Hence, we will show the existence
of a curve of Neimark-Sacker points of (2.6). By (3.6) and (3.7), it holds

G(0, x, α, z) = F̃ (x, α, z),

for all (x, α, z) ∈ Ω̃×Λ̃×R2N+1. Hence, we have that G(0, 0, 0, zGH) = 0 and G(x,α1,z)(0, 0,
0, zGH) is nonsingular. Thereby, the Implicit Function Theorem guarantees the existence
of the function dNS = (xNS, α1NS, zNS) : (−ρ1, ρ1) × (−δ2, δ2) → R3N+2, 0 < ρ1 ≤ h0,
such that

G(h, dNS(h, α2), α2) = 0, dNS(0, 0) = (0, 0, zGH),

(h, α2) ∈ (−ρ1, ρ1) × (−δ2, δ2). Let us now establish closeness relations between the real
form of the defining systems (4.3) and (4.4). For this purpose, it suffices to analyze their
complex form. By (2.7), it follows that:

1

h

(
ψh(x, α) − x

)
=

1

h

(
ϕh(x, α) − x+ Υ(h, x, α)hp+1

)
=

1

h

(
ϕh(x, α) − x

)
+ Υ(h, x, α)hp,

and

1

h

(
ψhx(x, α)q − eihωq

)
=

1

h

(
(ϕhx(x, α) + Υx(h, x, α)hp+1)q − eihωq

)
,

=
1

h

(
ϕhx(x, α)q − eihωq

)
+ Υx(h, x, α)qhp.

Therefore, we conclude that

G(h, x, α, z) = F (h, x, α, z) + Γ(h, x, α, z)hp,

where Γ is some smooth function. With the above relation, combined with the techniques
employed in [24, Theorem 4.1], the assertion of the Theorem follows.

Before switching to the next topic of this section, few remarks seem to be in order. The
theorem above presented provides stronger results than those of [24, Theorem 4.1]. The
main difference is the defining system used. In the analysis presented here, we consider the
additional variable z = (q1, q2, ω), and thereby we can obtain O(hp)-estimates between the
critical eigenvectors7. Moreover, it can also be derived interesting relations between the
critical eigenvalues of the original system and their discretization. Under assumptions and
notation of the previous theorem, denote by iωH(α2) and µNS(h, α2) := eihωNS(h,α2) the
critical eigenvalues along the Hopf and Neimark-Sacker curves, respectively, for (h, α2) ∈
(−ρ, ρ) × (−δ, δ). Then, by (4.2), it follows that:

∣∣µNS(h, α2) − eihωH(α2)
∣∣ =

∣∣eihωNS(h,α2) − eihωH(α2)
∣∣ ,

≤ L|ωNS(h, α2) − ωH(α2)||h|,

≤ C · L|h|p+1,

7Of course, this result makes sense only if we consider a suitable normalization condition.
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where L is a local Lipschitz constant of the exponential function. Therefore, we conclude
that

µNS(h, α2) = eihωH(α2) +O(hp+1),

uniformly in α2, and for h sufficiently small. This relation improves, for this particular
case, the general approximation given in [27, Lemma 3.2].

Sofar we have almost completed the analysis of the discretized bifurcation picture
shown in Figure 4.1. The effect of discretization methods on the organizing center and
the emanating Hopf curve is now understood. However, it remains to determine whether
the Hopf branches are discretized “correctly” by one-step methods. Thus, we will now
investigate whether the Lyapunov coefficients change sign in the same direction, as they
cross the bifurcation points. Let us make this assertion more precise. Let again the
assumptions of Theorem 4.1 be fulfilled. Denote by LH(α2) and LNS(h, α2) the first
Lyapunov coefficients along the Hopf and Neimark-Sacker curves of systems (1.1) and
(2.6), respectively, for (h, α2) ∈ [0, ρ)× (−δ, δ). Assume that LH(α2) > 0 (resp. LH(α2) <
0) for α2 > 0 (resp. α2 < 0), see Figure 4.1. Denote by αGN(h) = (α1GN(h), α2GN (h))
the parameter values at which the one-step map (2.6) undergoes the GN bifurcation, for
h ∈ [0, ρ), cf. Theorem 3.1. In this setting, we will show that

LNS(h, α2) > 0, for all α2 > α2GN (h),

and
LNS(h, α2) < 0, for all α2 < α2GN (h),

provided the step-size is sufficiently small. In order to prove this, note first that since the
GH point of (1.1) is generic, we have that the Lyapunov coefficient vanishes with nonzero
velocity. According to the behavior assumed for LH , it must be true that8

LH(α2) = L′

H(0)α2 + ∆(α2)α
2
2,

for all α2 ∈ (−δ, δ), where L′
H(0) > 0 and ∆ is some smooth function. By taking into

account the Lyapunov-coefficient-components of (3.5) and the estimate (4.2), it can be
shown that

LNS(h, α2) = h(LH(α2) + Λ(h, α2)h), (4.5)

for all (h, α2) ∈ [0, ρ] × (−δ, δ), where Λ is some smooth function. The above relation
was first noticed in [1, Theorem 5.1], when dealing with a particular type of one-step
methods. Our discussion places (4.5) in a more general context. By combining the last
two equations, we arrive at

LNS(h, α2) = h(L′

H(0)α2 + ∆(α2)α
2
2 + Λ(h, α2)h). (4.6)

Next, differentiate the above expansion with respect to α2. We obtain

L′

NS(h, α2) = h(L′

H(0) + ∆′(α2)α
2
2 + 2∆(α2)α2 + Λ′(h, α2)h).

8Throughout this discussion, the symbol ′ means derivative with respect to α2.
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Now evaluate this expression at the GN point α2 = α2GN (h). This yields

L′

NS(h, α2GN(h)) =h(L′

H(0) + ∆′(α2GN(h))α2
2GN (h) + 2∆(α2GN(h))α2GN (h)

+ Λ′(h, α2GN(h))h).

Finally, by recalling that α2GN (0) = 0 (cf. Theorem 3.1), we can choose a sufficiently
small constant 0 < ρ′ ≤ ρ, such that

L′

NS(h, α2GN(h)) > 0,

for all h ∈ (0, ρ′). Thereby, the discretized bifurcation picture is completed. Note that
in this last discussion we restricted our attention to nonnegative step-sizes. This is not
a merely technical assumption, for if we allow negative step-sizes, then the sign of the
Lyapunov coefficient will change with the step-size along the Neimark-Sacker-branches
shown in Figure 4.1. This fact is due to the leading factor of the right-hand side of (4.6).

5 A Numerical Example

Consider the following continuous-time, dimensionless system:

ẋ = −

(
β + α

R

)
x+

α

R
y −

C

R
x3 +

D

R
(y − x)3 −

E

R
x5 +

F

R
(y − x)5,

ẏ = αx− (α +G)y − z −D(y − x)3 −Hy3 − F (y − x)5 − Iy5, (5.1)

ż = y,

with state variables (x, y, z) ∈ R3 and with parameters α, β, C,D,E, F,G,H, I, R ∈ R,
R > 0. This system describes the dynamics of a modified Van der Pol-Duffing oscillator.
A detailed analysis of this oscillator concerning both local, as well as global phenomena
can be found in [2], [8], and a more general discussion concerning the dynamics of this
type of circuits can be found in [16, Chapter 7].

In this experiment we assume (α, β) to be our bifurcation parameters, and we let
C = 1, D = −5, E = 1, F = 1, G = −1.5, H = 1, I = 1, R = 3 fixed. Moreover, the
numerical computations will be carried out with the continuation software CONTENT,
cf. [19].

The purpose of this example is to illustrate the theoretical result obtained in Theorem
3.1, namely, we want to observe whether GH points are shifted and turned into GN
points by one-step methods. To achieve this, we need first to find a GH point of system
(5.1). Thus, choose (xini, yini, zini) = (−0.5, 0, 0.2), (βini, αini) = (−1, 1) as initial data for
the continuation of equilibria, and let β freely vary. The thus obtained curve is plotted
in Figure 5.1. With this procedure we found: two neutral saddles, four Hopf points,
two fold, and one branching point, labeled by NTS, H , LP , and BP , respectively. We
next switch to the Hopf point located at (xH , yH, zH) ≈ (−0.569, 0, 0.294), (αH , βH) ≈
(1, 0.0876). Then, by continuing the Hopf curve with respect to α and β, we find a GH
point at (xGH , yGH, zGH) = (−0.345808037314697, 0, 0.464206984612583), (αGH , βGH) =
(−0.758767593548692, 1.20850010542548).
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Fig. 5.1: Continuation of equilibria of (5.1) for α = 1 fixed.

Next, we discretize system (5.1) by the well-known Runge-Kutta method of fourth
order. Define the distance function

DistGH(h) := ||(xGN (h), yGN(h), zGN(h), βGN (h), αGN(h))

− (xGH , yGH , zGH , βGH , αGH)||,

for h > 0 small, where || · || represents the Euclidean norm and (xGN (h), yGN(h), zGN(h),
βGN(h), αGN(h)) stands for a GN point of the Runge-Kutta map. We will then investigate
how the distance between GH and GN points of (5.1) and the one-step map, respectively,
varies with the step-size. This behavior is shown in Figure 5.2. In this picture, we let
h vary from 0.03 to 0.4. For several, fixed values of h in this interval, we computed
a GN point of the Runge-Kutta map, and thus we obtained the curve shown in the
figure. We plotted the logarithm of the variables, so that we can determine the order of
approximation as the slope of the quasi-straight line obtained. This slope is approximately
equal to 2.12 ≈ 2, which is of course consistent with Theorem 3.1.

It is important to point out that, although the numerical method applied is of order
four, we only obtained a second-order approximation of the GH bifurcation of system
(5.1). This experiment allows us to presume that the first-order estimate obtained in
Theorem 3.1 is not optimal, and that the optimal order is likely to be min(2, p), as some
other experiments suggest.
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