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Abstract

We present explicit error bounds concerning the behavior of the proper orthogonal decompo-
sition (POD) method when the data is drawn from long trajectories. We express the error of the
POD method in terms of the canonical angle for systems with exponentially decaying behavior.
We test our theoretical bounds numerically using a linear parabolic equation. The considerations
are motivated by a subdivision algorithm for the computation of invariant measures in discrete
dynamical systems using the POD method as a model reduction tool.

Keywords: Model reduction, Singular value decomposition, Dynamical systems, Parabolic equa-
tions, Finite Elements.

1 Introduction

The proper orthogonal decomposition (POD), also known as principal component analysis or
Karhunen-Loeve decomposition, is a model reduction method that has reached great influence
in the theory of dynamical systems in recent years.

The idea of the POD method is to determine a nested family of subspaces in the original state
space that optimally span the data consisting of given snapshots. Common applications are given in
fluid dynamics and control theory ([KV02], [RCM04], [ASG01]). But also in the theory of parabolic
problems the application of POD is investigated in recent years, [KV01].

The method is described in more detail in [HLB96]. Also [Ant05] gives a nice introduction into
the power of the method where particular attention is paid to the balanced truncation ansatz. See
also [BQO05] for the combination of the POD method with a balanced truncation ansatz.

We introduce the method in a simple, abstract setting. The definition is as follows:

Definition 1.1. Let H be a separable real Hilbert space and a collection of snapshots in H be given
by

{yi : i = 1, . . . ,m}.
An ℓ-dimensional orthonormal system {wk}ℓk=1 is called proper orthogonal decomposition basis of
rank ℓ corresponding to {yi}i if it solves the minimization problem

Epod({ψk}ℓk=1) :=
1

m

m
∑

j=1

‖yj − Pψyj‖2 !
= min (1)

where Pψ =
∑ℓ
k=1 ψkψ

T
k : H → H is the orthogonal projection onto span{ψ1, . . . , ψℓ}.
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We want to focus on the behavior of the POD method in parabolic problems of the form

∂u

∂t
= f(u) −Au =: F (u) in Ω

u = 0 on ∂Ω (2)

u(x, 0) = u0(x), x ∈ Ω

where A : V → H is a linear positive operator, f ∈ C(V,H) with real separable Hilbert spaces V,H
defining a so-called Gelfand triple, i.e. V is dense in H with continuous injection and, by identifying
H and its dual H∗, we get dense embeddings

V ⊂ H = H∗ ⊂ V ∗.

Typical error results for the POD method in discretized parabolic problems cover the case of a
single, finite-time trajectory. Typically, the snapshots are chosen along trajectories of the system.
Then, the POD modes span a low-dimensional subspace. By a Galerkin ansatz with respect to the
POD modes we get a dynamical system in the low-dimensional POD subspace of the form

∂v

∂t
= Fred(v) Fred : Rℓ → Rℓ

v(0) = Pψu0

(3)

The question arises, how the original and the reduced system (3) relate to each other. We will
recall an error result from [KV01] for the resulting POD trajectory in Section 2.

The error bounds in [KV01] strongly depend on the length Te of the sample trajectory. In
this paper we analyze the long time behavior of the POD method, i.e. the case when Te grows.
This problem is motivated by some set-oriented algorithms for the approximation of invariant
measures in high-dimensional systems that we developed in recent years, see [Kem10]. These
algorithms combine subdivision techniques used by Dellnitz, Junge et al. ([DFJ01],[DJ98], [DJ99])
for computing attractors and invariant measures (cf. the software package GAIO) with the POD
method as a model reduction method. Since these algorithms analyze the long time behavior of
dynamical systems we are also interested in the long time behavior of the POD method or, to be
more precise, in the behavior of the POD method when the data is drawn from long trajectories of
the original system.

Another question is also motivated by the subdivision algorithms: Should one rather take one
long trajectory or several short ones to set up a collection of snapshots? Since the algorithms
in GAIO are based on the computation of short time trajectories, it is reasonable to use a large
number of trajectories. Indeed, numerical experiments suggest a trade-off between the number and
the length of trajectories used for the collection of snapshots. We will state some theoretical and
numerical results concerning this question in Sections 3.4 and 4.3.

Let us look at the problem in more detail. As suggested above we consider the case of m
snapshots along a trajectory with time spacing T = Te

m . Using these snapshots we derive an ℓ-
dimensional POD basis as explained above. If we compare the POD and the original trajectory
various limit problems occur, e.g.

• ℓ,m fixed, T growing to infinity,

• ℓ, T fixed, m growing to infinity,

• m,T fixed, ℓ either growing to infinity or to the dimension N of the spatial discretization of
(2).

We will mainly derive explicit error bounds describing the dependence on m,T where ℓ is chosen
adequately with respect to the dynamics of the model systems.
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We will see in Section 2 that the POD vectors to snapshots {yj}j are given by the singular
vectors of a linear operator Y corresponding to {yj}j . If we consider a linearized system

∂u

∂t
= Au (4)

with snapshots along a trajectory, it is easy to see that the POD basis strongly depends on the
singular value decomposition of A. On the other hand it is well-known that the dynamical behavior
of (4) is described by the eigenvalues and eigenvectors of A. Observe that for arbitrary matrices
the singular value decomposition tells us nothing about the structure of the eigenvectors and vice
versa. As an add-on we will see in the following that for special systems with exponentially decaying
behavior the singular vectors are ruled by the eigenvalue decomposition. By that we get proper
error bounds for the POD method.

The outline of this paper is as follows: In Section 2 we will describe the relation between
the proper orthogonal decomposition and the singular value decomposition in detail. An explicit
formulation of the error term in (1) immediately follows from these considerations. After that we
recall a finite-time POD error estimate by Kunisch and Volkwein to see the structure of typical
POD error results. For our long-time error estimates we use the well-known concept of canonical
angles which we recall in the end of Section 2.

In Section 3 we present our main results. We consider exponentially decaying dynamical behav-
ior. In Section 3.1 the corresponding POD basis for a trajectory converging to an asymptotically
stable fixed point is analyzed. In Section 3.2 we derive further estimates by a deeper analysis of the
different eigendirections of a linearized system around an asymptotically stable fixed point. As a
slight generalization of the fixed point case we consider an attracting invariant subspace after that.
Finally, a result for the POD method with snapshots from more than one trajectory is presented
in Section 3.4

In Section 4 several of the theoretical bounds derived in Section 3 are illustrated by numerical
experiments. We will see that the theoretical bounds for the case of different speeds of convergence
describe the numerical results rather well. For the case of snapshots taken from many trajectories
instead of one, the numerical experiments suggest a trade-off between the number of trajectories
and their length. A deeper analysis of this phenomenon is part of future work.

2 Theoretical background and existing theory

2.1 Singular Value decomposition of compact operators

The concept of POD is strictly related to the singular value decomposition of compact operators.

Theorem 2.1 (see e.g. [Kir96]). Let G,H be arbitrary Hilbert spaces and Y : H → G a compact
operator with adjoint operator Y ∗. Let the eigenvalues of the self-adjoint positive semidefinite
operator K = Y ∗Y : H → H be denoted by {λi}i∈I with

λ1 ≥ λ2 ≥ . . . ≥ 0

where I may be finite (I ⊂ N) or infinite (I = N). Then there are orthonormal systems {ui}i∈I ⊂
H, {vi}i∈I ⊂ G with

Y ui = σivi and Y ∗vi = σiui

where σi =
√
λi, i ∈ I. For every u ∈ H we get the expression

u = u0 +
∑

i∈I
〈u, ui〉ui

with u0 ∈ ker(K) and

Ku =
∑

i∈I
σi〈u, ui〉vi. (5)
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Definition 2.2. For a compact operator Y : H → G between Hilbert spaces as above the singular
value decomposition of Y is defined by {σi, ui, vi)}i∈I as given by Theorem 2.1. More precisely, we
call σi the singular values, ui the right and vi the left singular vectors.

The POD method in a Hilbert space H can be described in terms of the singular value de-
composition of a suitable linear operator. Therefore we consider the linear operator Y : Rm → H
defined for the given collection of snapshots {yi}i≤m by

Y (w) =
1√
m

m
∑

i=1

wiyi. (6)

Observe that the range of Y is finite, hence Y is a compact operator and we can use the singular
value decomposition of Y . The adjoint is given by Y ∗ : H → Rm with

Y ∗(ϕ) =
1√
m

(〈ϕ, y1〉, . . . , 〈ϕ, ym〉)T . (7)

In our case the self-adjoint operator K = Y ∗Y : Rm → Rm can be identified with the matrix

K =
1

m
(〈yj , yi〉)ij ∈ Rm,m.

K is called correlation matrix. The right singular vectors vk ∈ Rm defined in Theorem 2.1 are the
eigenvectors of the correlation matrix. Using the fact

Y vk = σkwk,

the left singular vectors wk can be expressed by

wk =
1√
mσk

m
∑

i=1

(vk)iyi ∈ H. (8)

Theorem 2.3. Let a collection {yi}mi=1 of snapshots be given in a separable Hilbert space H. The
corresponding linear operator Y : Rm → H shall be given by (6). Let d ≤ m be the dimension of
the subspace spanned by the collection of snapshots span{y1, . . . , ym}. Then the POD basis of rank
ℓ ≤ d is given by the left singular vectors {wk}ℓk=1 of Y .

The approximation error is given by the singular values of Y :

Epod({wk}ℓk=1) =

d
∑

k=ℓ+1

σ2
k.

In the finite-dimensional case H = RN the operator Y : Rm → RN is given by a matrix and
we get the following result

Corollar 2.4. Let a collection {yi}mi=1 of snapshots be given in H = RN . Then the POD basis of
rank ℓ is given by the singular vectors wk ∈ RN of

Y =
1√
m

col(y1, . . . , ym) ∈ RN,m

where col(y1, . . . , ym) denotes the matrix with columns y1, . . . , ym. The approximation error is
determined by the small singular values of Y :

Epod({wk}ℓk=1) =
d
∑

k=ℓ+1

σ2
k.
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2.2 A brief review of finite-time POD error estimates

We give a brief overview of the existing convergence theory of POD methods for parabolic problems
developed by Kunisch, Volkwein et al. (see [KV01], [KV02]). We start with equation (2) defining an
abstract parabolic system and consider the variational formulation of it. Assuming that A induces
a V -elliptic continuous bilinear form a : V × V → R, we see that for given T > 0 the problem
transforms to

d

dt
(u(t), ϕ)H + a(u(t), ϕ) = (f(u(t)), ϕ)h for all ϕ ∈ V, t ∈ (0, T )

(u(0), χ)H = (u0, χ)H for all χ ∈ H.
(9)

Under proper conditions for the nonlinearity f there is a unique and continuous solution to (9) on
a finite time interval (0,T), the so-called weak solution of the PDE (2). We denote this solution by
u(t) = u(t;T, u0) ∈ C([0, T ], V ).

Volkwein and Kunisch consider a POD basis derived from such a trajectory u(t) at given time
steps tj = j∆t, j = 1, . . . ,m. To achieve a better error constant, they also include the corresponding
finite difference quotients

∂̄u(tk) =
u(tk) − u(tk−1)

∆t
to obtain a collection of snapshots

yj = u(tj−1), j = 1, . . . ,m+ 1,

ym+1+j = ∂̄u(tj−1), j = 1, . . . ,m+ 1.

For these snapshots, let the POD basis of rank ℓ be given by {ψ1, . . . , ψℓ} and denote the ℓ-
dimensional POD space by

V ℓ := span{ψ1, . . . , ψℓ}.
Now the reduced-order system corresponding to (2) using the backward Euler-Galerkin scheme

is given by

(∂̄Uk, ψ)H + a(Uk, ψ) = (f(Uk), ψ)H for all ψ ∈ V ℓ, (10)

(U0, ψ)H = (u0, ψ)H for all ψ ∈ V ℓ.

Here, ∂̄Uk denotes the analogue to ∂̄u(tk) for the Euler sequence in (Uk)k in V ℓ:

∂̄Uk =
Uk − Uk−1

∆t
.

Kunisch and Volkwein proved the following relation between the exact weak solution and the POD
solution for a given initial value u0 ∈ H:

Theorem 2.5. Assume that (9) has a unique solution u ∈ C([0, T ], V ) with u ∈ W 2,2([0, T ];H)
and that {Uk}mk=0 is the unique solution to (10) satisfying

max
0≤k≤m

‖Uk‖H ≤ C̃

for a constant C̃ > 0 independent of m. If f is locally Lipschitz on H and ∆t sufficiently small,
then there exists a constant C > 0 independent of ℓ,m such that

1

m

m
∑

j=1

‖u(tj) − Uj‖2
H ≤ C

(

‖u0 − P ℓu0‖2
H +

d
∑

k=ℓ+1

σ2
k + (∆t)2

)

.

Here, the Ritz projector P ℓ : H → V ℓ is defined by

a(P ℓu, ψ) = a(u, ψ) for all ψ ∈ V ℓ

and σk are the singular values of Y defined by (6).
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2.3 Perturbation theory for the singular value decomposition

We introduce the concept of canonical angles described in [SS90]. By this notion, we will compare
the POD modes with the eigendirections of dynamical systems in Section 3. The perturbation
result derived by Stewart and Sun in [SS90] will be the key result that we will use in the next
section to derive error results for the long time behavior of the POD method.

For the definition of canonical angles we state the following theorem:

Theorem 2.6 (see [SS90]). Let X,Y ∈ Cn,ℓ be column orthonormal: XHX = Y HY = Iℓ. Then
it holds

• for 2ℓ ≤ n: There are unitary Q ∈ Cn,n, U, V ∈ Cℓ,ℓ with

QXU =





Iℓ
0
0



 , QY1V =





Γ
Σ
0



 (11)

and Γ = diag(γ1, . . . , γℓ), Σ = diag(σ1, . . . , σℓ), 0 ≤ γ1 ≤ . . . ≤ γℓ, σ1 ≥ . . . ≥ σℓ ≥ 0,
σ2
i + γ2

i = 1, i = 1, . . . , ℓ.

• for 2ℓ > n: There are unitary Q ∈ Cn,n, U, V ∈ Cℓ,ℓ with

QXU =





In−ℓ 0
0 I2ℓ−n
0 0



 , QY1V =





Γ 0
0 I2ℓ−n
Σ 0



 (12)

and Γ = diag(γ1, . . . , γn−ℓ), Σ = diag(σ1, . . . , σn−ℓ), γi, σi as above.

This theorem allows us to define canonical angles between subspaces.

Definition 2.7. For X = col(x1, . . . , xℓ) and Y = col(y1, . . . , yℓ) with orthonormal columns we
define the canonical angle between the subspaces R(X) and R(Y ) given by X and Y as the matrix

∠(X,Y ) := sin−1 Σ (13)

where Σ ∈ Cℓ,ℓ and Σ ∈ Cn−ℓ,n−ℓ are the diagonal matrices as defined in (11) and (12), respectively.

Now, let the singular value decompositions of A and A+ E ∈ Cm,n, m ≥ n be given by

(

W1 W2 W3

)H
A
(

V1 V2

)

=





Σ1 0
0 Σ2

0 0





(

W̃1 W̃2 W̃3

)H
(A+ E)

(

Ṽ1 Ṽ2

)

=





Σ̃1 0

0 Σ̃2

0 0





where Σ1, Σ̃1 ∈ Rℓ,ℓ, Σ2, Σ̃2 ∈ Cn−ℓ,n−ℓ, W1, W̃1 ∈ Cm,ℓ, W2, W̃2 ∈ Cm,n−ℓ, W3, W̃3 ∈ Cm,m−n,
V1, Ṽ1 ∈ Cn,ℓ and V2, Ṽ2 ∈ Cn,n−ℓ.
Theorem 2.8 (see [SS90]). Let α, δ > 0 be given with

minσ(Σ̃1) ≥ α+ δ and maxσ(Σ2) ≤ α

Then we have

max(‖ sin ∠(W1, W̃1)‖2, ‖ sin ∠(V1, Ṽ1)‖2) ≤
max{‖R‖2, ‖S‖2}

δ
,

where R and S are the residuals

R := AṼ1 − W̃1Σ̃1 and S := AHW̃1 − Ṽ1Σ̃1.
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The following corollary immediately follows by the well-known Theorem of Mirsky.

Corollar 2.9. With the notation as above let the singular values be arranged in a descending order
in Σ1,Σ2. Denote by γ the spectral gap between Σ1 and Σ2:

γ := min{σ1 − σ2 : σ1 ∈ σ(Σ1), σ2 ∈ σ(Σ2)} = minσ(Σ1) − maxσ(Σ2).

Then it holds for γ > ‖E‖2:

max(‖ sin ∠(W1, W̃1)‖2, ‖ sin ∠(V1, Ṽ1)‖2) ≤
‖E‖2

γ − ‖E‖2
.

3 Long-time behavior of POD solutions

To our knowledge, error estimates concerning POD modes exist only for finite time intervals as in
Theorem 2.5.

As explained above, our work is motivated by algorithms analyzing the long time properties
of dynamical systems. Therefore we analyze how aspects of the long-time behavior transfer to
reduced order systems if we use POD-based model reduction. A detailed description of every
possible dynamical behavior seems impossible. Hence we restrict ourselves to dynamical systems
with exponentially decaying behavior. We will see that already in these cases the results are getting
quite complex.

A central error bound in the convergence theory of POD methods is given by the behavior of
the remaining singular values

d
∑

k=ℓ+1

λk

of the operator Y given by the snapshots. We have a closer look at the time dependence of this
error bound in the following cases. Therefore, we consider the ordinary differential equation

ut = f(u), f : RN → RN

u(0) = u0.
(14)

Wherever possible, we will make generalizations to the case of an infinite dimensional state space.

3.1 Asymptotically stable fixed point

We assume that there exists an asymptotically stable fixed point in the ODE (14). We consider
snapshots based on a trajectory converging to that fixed point. As we expect, the resulting POD
basis converges to the same fixed point. In detail, the following holds:

Theorem 3.1. Let ū be an asymptotically stable fixed point of (14), i.e. f(ū) = 0 and

σ(Df(ū)) ⊂ C− := {z ∈ C;Rez < 0}. (15)

Let u(t) be a trajectory of (14) with initial value u0 near ū such that

‖u(t) − ū‖2 ≤ e−αt‖u0 − ū‖2 for all t > 0. (16)

and some α > 0. Then the POD basis of rank 1 for the snapshots

yj = u(tj) = u(jT ), j = 1, . . . ,m
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with stepsize T ≥ T0 > 0 is given by some {w1} where the error of the POD method (see Corol-
lary 2.4) is given by

Epod({w1}) ≤ C1
e−α2T

m
(17)

and the angle between the POD mode and the fixed point satisfies

| sin(∠(w1, ū))| ≤ C2
e−αT√
m

(18)

with C1, C2 independent of T,m.

Remarks 3.2. • In (18) we use the notion of canonical angles introduced in section 2.3. Ob-
serve that for two vectors u, v ∈ RN the canonical angle is given explicitly by

∠(u, v) = cos−1

(

uT v

‖u‖2‖v‖2

)

.

• The existence of a trajectory with (16) follows by standard theory from (15) if we choose α > 0
such that Reσ(Df(ū)) < −α.

Proof. We consider the matrix Y = 1√
m

col(y1, . . . , ym) and decompose it in the form

Y = Y0 + E, Y0 =
1√
m

col(ū, . . . , ū) ∈ RN,m.

The singular value decomposition of Y0 is given by

WT
0 Y0V0 =

(

‖ū‖2 0
0 0

)

where W0 = col(w1, . . . , wN ) with

w1 =
ū

‖ū‖2
.

The singular values {σ0
i }i of Y0 are given by

σ0
1 = ‖ū‖2, σ

0
i = 0, i ≥ 2.

Let the singular value decomposition of Y be given by

WTY V =

(

diag(σ1, . . . , σm)
0

)

.

Then by the Theorem of Mirsky

Epod({w1}) =

m
∑

i=2

σ2
i ≤ (σ1 − ‖ū‖2)

2 +

m
∑

i=2

σ2
i

=
m
∑

i=1

(σi − σ0
i )

2

Mirsky

≤ 1

m

m
∑

i=1

‖yi − ū‖2
2

≤ 1

m

m
∑

i=1

(

e−2αT
)i ‖u0 − ū‖2

2

≤ 1

m
e−α2T 1

1 − e−2αT0
‖u0 − ū‖2

2. (19)
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We use Corollary 2.9 to get the following estimate for the canonical angle between the singular
vector w1 of Y and ū of Y0:

| sin ∠(w1, ū)| ≤
‖E‖2

γ − ‖E‖2
(20)

where the spectral gap γ in this example is given by

γ = σ0
1 − σ0

2 = ‖ū‖2.

For E = Y − Y0 = col(y1 − ū, . . . , ym − ū) we use the approximation

‖E‖2 ≤ ‖E‖F =

(

1

m

m
∑

i=1

‖yi − ū‖2
2

)1/2

.

If we take m or T large enough such that

‖E‖F ≤ ‖ū‖2

2

we get

| sin(∠(w1, ū))| ≤
2‖E‖F
‖ū‖2

(19)

≤ 2C√
m
‖ū− u0‖e−αT

√

1

1 − e−2αT0
.

3.2 Different speeds of convergence to a fixed point

In the next theorem we deal with the situation of an asymptotically stable fixed point in detail.
Therefore we have a closer look at the linearized system around a stable fixed point ū:

wt = Df(ū)w

w(0) = v0 := u0 − ū.
(21)

Assume A := Df(ū) to be diagonalizable:

V AV −1 = diag(λ1, . . . , λN ), V = col(v1, . . . , vN ).

For the solution w(t) of (21) with initial value u0 − ū, this yields

w(t) =
N
∑

i=1

(w0)ie
−λitvi

where w0 = V−1v0. Assuming a gap in the spectrum {λi}i we analyze the behavior of the POD
modes for the linearized system.

Theorem 3.3. Let a trajectory converge to the fixed point 0 in the following way:

u(t) = e−λ1t v + e−λ2t w (22)

where λ2 = λ1 + δ. Then the resulting singular values controlling the POD expansion for the
snapshots yj = u(jT ), j = 1, . . . ,m, have a gap

σ1 ∈
[

(

1 − γ
‖w‖2

‖v‖2

)

σ0
1 ,
(

1 + γ
‖w‖2

‖v‖2

)

σ0
1

]

, (23)

|σ2| ≤ γ
‖w‖2

‖v‖2
σ0

1 . (24)
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with γ = e−δT and σ0
1 = 1√

m
‖v‖2‖a‖2. This leads to the following estimate for the angle between

the first POD mode w1 of Y and the direction of slowest attraction v

| sin(∠(v, w1))| ≤
γ

‖v‖2

‖w‖2
− γ

(25)

if ‖v‖2

‖w‖2
> γ.

Proof. As before, let Y = 1√
m

col(y1, . . . , ym) be the matrix of snapshots. It can be written as a

sum of two rank-1-matrices

Y = Y0 + E, Y0 =
1√
m
vaT , E =

1√
m
wbT

where a = (e−λ1T , . . . , e−λ1mT )T , b = (e−λ2T , . . . , e−λ2mT )T . WithD = diag(γ, . . . , γm), γ = e−δT ,
one can also write b as b = Da.

The singular values {σ0
i }i of Y0 are zero except for

σ0
1 =

1√
m
‖v‖2‖a‖2.

The same holds for the singular values {σ1
i }i of E with

‖E‖2 = σ1
1 =

1√
m
‖w‖2‖Da‖2

≤ γ√
m
‖w‖2‖a‖2 = γ

‖w‖2

‖v‖2
σ0

1 . (26)

We get the following relative error bounds for the singular values of Y :

|σ1 − σ0
1 |, |σ2| ≤ ‖E‖2 ≤ γ

‖w‖2

‖v‖2
σ0

1

which leads to (23) and (24).
Considering the estimate of the POD mode w1 note that the singular vector of Y0 is given by

v
‖v‖2

. We use (20) to get an estimate for the angle between the first singular vector w1 of Y and v:

| sin(∠(v, w1))| ≤
‖E‖2

δY − ‖E‖2

with spectral gap

δY = σ0
1 − σ0

2 = σ0
1 =

1√
m
‖v‖2‖a‖2

and the norm of E already computed in (26). Together this yields

| sin(∠(v, w1))| ≤
γ ‖w‖2

‖v‖2
σ0

1

σ0
1 − γ ‖w‖2

‖v‖2
σ0

1

=
γ

‖v‖2

‖w‖2
− γ

.

This theorem shows that the first POD vector approximates the direction of the slower attraction
quite well for a two-dimensional linear system. However, in the more realistic case of N different
directions of attraction, the result is less satisfying. We will deal with this situation now.

Thinking of the situation in the linear system (21), we look for a more general result of N
different directions. For this, we need a norm estimate for the inverse of a Vandermonde matrix.
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Theorem 3.4 ([Gau62]). For distinct numbers xi ∈ C, i = 1, . . . , n define the Vandermonde
matrix V = Vand({xi}ni=1) ∈ Cn,n by

V =











1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

...
1 xn . . . xn−1

n











Then we have

‖V −1‖1 ≤ max
j=1,...,n

n
∏

k=1
k 6=j

1 + |xk|
|xk − xj |

(27)

where ‖ · ‖1 is the usual 1-norm induced by the L1-norm.

‖A‖1 = max
j=1,...,n

n
∑

i=1

|aij |, A ∈ Cn,n.

If the xj are located on the same ray through the origin, i.e.

xj = |xj |eiϕ

for a fixed ϕ ∈ [0, 2π), then (27) is an equality.

Using this technical result we are able to state and prove the following main result of this section.

Theorem 3.5. Let a trajectory of (21) be given by

u(t) =

N
∑

j=1

e−λjt vj (28)

where {v1, . . . , vN} are linearly independent and

0 < λ1 < . . . < λℓ < λℓ + δ = λℓ+1 ≤ . . . ≤ λN . (29)

Collect the directions vi in matrices V0 = col(v1, . . . , vℓ) and V1 = col(vℓ+1, . . . , vN ). Consider
snapshots yi = u(iT ), i = 1, . . . ,m, to a given stepsize T ≥ 1/δ. Then the corresponding POD
basis of rank ℓ given by Wℓ = col(w1, . . . , wℓ) satisfies

‖ sin(∠(V0,Wℓ))‖2 ≤ γ

M − γ
(30)

if M > γ := e−δT . Here, M > 0 is given by

M =







‖v1‖2√
2(N−1)σ1(V1)

, ℓ = 1
√

ℓ
2(N−ℓ)

( gapα

2

)ℓ σℓ(V0)
σ1(V1)

, ℓ ≥ 2
(31)

with αi = e−λiT and gapα = min
1≤i<j≤ℓ

|αi − αj |.
If the eigenvalues are well-separated, i.e.

λj − λj−1 ≥ δ for all j = ℓ+ 1, . . . , N (32)

and T ≥ 2/δ, then the bound (30) holds for the larger constant

M =







‖v1‖2√
2σ1(V1)

, ℓ = 1
√

ℓ
2

( gapα

2

)ℓ σℓ(V0)
σ1(V1)

, ℓ ≥ 2.
(33)
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Proof. As before we define the matrix of snapshots Y = 1√
m

col(y1, . . . , ym). Since we have

yi = u(iT ) =

N
∑

j=1

e−λjiT vj , i = 1, . . . ,m,

we can write Y as

Y =
1√
m
VAT , A = (αij)ij ∈ Rm,N .

As before, we describe the POD space of rank ℓ as a perturbation of the first ℓ eigendirections vi,
i = 1, . . . , ℓ. The POD space Wℓ = col(w1, . . . , wℓ) is given by the singular value decomposition of
Y :

WTY U =
(

diag(σ1, . . . , σN ) 0
)

with W = col(w1, . . . , wN ) ∈ RN,N , U ∈ Rm,m orthogonal, σ1 ≥ . . . ≥ σN ≥ 0.
We decompose Y as

Y = Y0 + E, Y0 =
1√
m
V0A

T
0 , E =

1√
m
V1A

T
1

with A =
(

A0 A1

)

, V =
(

V0 V1

)

, A0 = (αij)ij ∈ Rm,ℓ, V0 = col(v1, . . . , vℓ) ∈ RN,ℓ. The singular
value decomposition of the rank-ℓ matrix Y0 is given by

WT
0 Y0U0 = D :=

(

diag(σ0
1 , . . . , σ

0
ℓ ) 0

0 0

)

∈ Rm,N (34)

with W0 = col(w0
1, . . . , w

0
N ) ∈ RN,N , U0 ∈ Rm,m orthogonal and σ0

1 ≥ . . . ≥ σ0
ℓ > 0. Since

Y0 = 1√
m
V0A

T
0 , we get R(Y0) = R(V0). On the other hand by (34) we have

Y0U0 = W0D0 = col(σ1w
0
1, . . . , σℓw

0
ℓ , 0, . . . , 0)

and hence R(V0) = R(Y0) = span{w0
1, . . . , w

0
ℓ}. As before, we can use (20) to get an estimate for the

angle between the POD basis given by Wℓ ∈ RN,ℓ and the eigendirections collected in V0 ∈ RN,ℓ:

‖ sin(∠(V0,Wℓ))‖2 ≤ ‖E‖2

δY − ‖E‖2

where δY = σ0
ℓ − σ0

ℓ+1 = σ0
ℓ = σℓ(Y0).

In this notation, we can estimate the canonical angle between the eigendirections and the POD
modes in terms of singular values of Y0 and E:

‖ sin(∠(V0,Wℓ))‖2 ≤ σ1(E)

σℓ(Y0) − σ1(E)
.

We will discuss these values in the following.

1. σℓ(Y0): We use the characterization Y0 = 1√
m
V0A

T
0 to get a lower bound for the smallest

nonzero singular value σℓ(Y0). We use the submultiplicativity of the singular values (see
[SS90], Theorem I.4.5 and Exercise I.4.6) to get

σℓ(Y0) ≥
1√
m
σℓ(V0)σℓ(A0).

For ℓ = 1, the matrix A0 ∈ Rm,ℓ is given by a column vector such that

σℓ(A0) = σ1(A0) = ‖A0‖2 = ‖(α1, α
2
1, . . . , α

m
1 )T ‖2 ≥ α1

12



and with σℓ(V0) = σ1(V0) = ‖v1‖2, we get

σℓ(Y0) ≥
1√
m
α1‖v1‖2. (35)

For ℓ ≥ 2 we decompose A0 =

(

A
(1)
0

A
(2)
0

)

, A
(1)
0 ∈ Rℓ,ℓ, and get a lower bound by the interlacing

property of singular values (see [GvL96]):

σℓ(A0) = σℓ(A
T
0 ) = σℓ(

(

A
(1)
0

T
A

(2)
0

T
)

) ≥ σℓ(A
(1)
0 ).

A
(1)
0 ∈ Rℓ,ℓ can be expressed as

A
(1)
0

T
= Vα diag(α1, . . . , αℓ)

where Vα = Vand({αj}ℓj=1) is the Vandermonde-Matrix as defined in Theorem 3.4. Together
with the submultiplicativity of the singular values we get

σℓ(A0) ≥ σℓ(A
(1)
0 ) ≥ αℓσℓ(Vα) = αℓσ1(V

−1
α )−1 = αℓ ‖V −1

α ‖−1
2 ≥ αℓ

√
ℓ ‖V −1

α ‖−1
1

= αℓ
√
ℓ






max
j=1,...,ℓ

ℓ
∏

k=1
k 6=j

1 + αk
|αk − αj |







−1

≥ αℓ
√
ℓ
(gapα

2

)ℓ

since 1 + αk ≤ 2 and by definition |αk − αj | ≥ gapα for all k, j ∈ {1, . . . , ℓ}, k 6= j. Another
application of the submultiplicativity of the singular values implies

σℓ(Y0) = σℓ(
1√
m
V0A

T
0 ) ≥ αℓ

√
ℓ√
m

(gapα
2

)ℓ

σℓ(V0). (36)

2. ‖E‖2 = σ1(E): To approximate the first singular value of E = 1√
m
V1A

T
1 we use the submul-

tiplicativity of the singular values to get

σ1(E) = σ1(
1√
m
V1A

T
1 ) ≤ 1√

m
σ1(V1)σ1(A

T
1 ).

For the largest singular value of A1, recall the structure of the matrix

A1 = (αij)ij ∈ Rm,N−ℓ

with αj = e−λjT ∈ (0, 1), j = ℓ + 1, . . . , N ordered by αℓ+1 ≥ . . . ≥ αN . We use the well-
known matrix norm inequality ‖B‖2

2 ≤ ‖B‖1‖B‖∞ (see e.g. [GvL96], Corollary 2.3.2) and
get

σ1(A1)
2 = ‖A1‖2

2 ≤ ‖A1‖1 ‖A1‖∞ (37)

=

(

max
j=ℓ+1,...,N

m
∑

i=1

αij

)



 max
i=1,...,m

N
∑

j=ℓ+1

αij





=

(

m
∑

i=1

αiℓ+1

)





N
∑

j=ℓ+1

αj



 . (38)

By assumption γ is bounded by

γ = e−δT < 2−δT ≤ 1/2
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and the first sum can be approximated by

m
∑

i=1

αiℓ+1 = αℓ+1

1 − αmℓ+1

1 − αℓ+1
≤ αℓ+1

1

1 − αℓ+1

= γαℓ(1 − γαℓ)
−1 ≤ γαℓ(1 − γ)−1 (39)

≤ 2γαℓ. (40)

For the second sum in (38) a weak estimate is always given by the monotonicity of αj ,
j = ℓ+ 1, . . . , N :

N
∑

j=ℓ+1

αj ≤
N
∑

j=ℓ+1

αℓ+1 = (N − ℓ)αℓ+1 = (N − ℓ) γ αℓ. (41)

Combining (40), (41) and (38), we get the following bound for σ1(E):

σ1(E) ≤ 1√
m
σ1(A1)σ1(V1) ≤

√

2(N − ℓ)

m
γ αℓ σ1(V1). (42)

If we have λj − λj−1 ≥ δ, j = ℓ+ 1, . . . , N , we get a bound for the second sum by

N
∑

j=ℓ+1

αj = αℓ+1 +

N
∑

j=ℓ+2

e−λjT = αℓ+1 +

N
∑

j=ℓ+2

e−
λj
δ
δT · 1

≤ αℓ+1 +
N
∑

j=ℓ+2

e−
λj
δ
δT

(

λj
δ

− λj−1

δ

)

≤ αℓ+1 +

∫

λN
δ

λℓ+1

δ

e−sδT ds = αℓ+1 +
1

δT

(

e−λℓ+1T − eλNT
)

≤ αℓ+1 +
αℓ+1

δT
= γαℓ

(

1 +
1

δT

)

. (43)

With the assumption δT ≥ 2 and by combining (39), (43) and (38), we obtain

σ1(A1)
2 ≤ γαℓ(1 − γ)−1γαℓ

(

1 +
1

δT

)

= γ2α2
ℓ (1 − e−δT )−1

(

1 +
1

δT

)

≤ γ2α2
ℓ (1 − 2−2)−1

(

1 +
1

2

)

= 2γ2α2
ℓ . (44)

By the submultiplicativity of the singular values we have

σ1(E) ≤ 1√
m
σ1(A1)σ1(V1) ≤

√

2

m
γ αℓ σ1(V1). (45)

Together for ℓ = 1, it follows

‖ sin(∠(v1, w1))‖2 ≤ σ1(E)

σ1(Y0) − σ1(E)

(35)
(42)

≤
√

2(N − 1)σ1(V1)γ

‖v1‖2 −
√

2(N − 1)σ1(V1)γ
=

γ
‖v1‖2√

2(N−1)σ1(V1)
− γ

provided the right hand side is positive.
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For ℓ ≥ 2, the estimates (36), (42) imply

‖ sin(∠(V0,Wℓ))‖2 ≤ σ1(E)

σℓ(Y0) − σ1(E)

(36)
(42)

≤
√

2(N − ℓ)σ1(V1)γ√
ℓ
( gapα

2

)ℓ
σℓ(V0) −

√

2(N − ℓ)σ1(V1)γ

=
γ

√

ℓ
2(N−ℓ)

( gapα

2

)ℓ σℓ(V0)
σ1(V1)

− γ

provided the right hand side is positive. Similar bounds (but independent on N) hold for the case
of separated eigenvalues as noted in (33). In that case we use (45) instead of (42).

Remark 3.6. The 2-speed case analyzed in Theorem 3.3 satisfies the assumptions of Theorem 3.5
with ℓ = 1, N = 2. Hence, equation (30) should give the same estimate as (25). However, the
estimates differ by a factor of

√
2:

∠(v, w1)
(30)

≤ γ

M − γ

(33)

≤ γ
‖v‖2√
2 ‖w1‖2

− γ
.

This is one of the reasons why the 2-speed case was done separately.
Observe that γ = γ(T ) is antitone in T . Hence at least for fixed dimensions of the state space,

the right hand side tends to zero if the time interval T between the snapshots is increasing—as in
the 2-speed case.

In Theorem 3.5 we state two different error bounds for the canonical angle. In the case of
well/separated eigenvalues, i.e. (32) holds, the error bound is independent on the state space
dimension N as we would expect from the theory of discretization schemes. Fortunately, in most
numerical applications the eigenvalues decay very fast, so that the stronger assumption (32) holds.
Additionally, the higher modes vj , j ≫ 1, usually also decay in norm.

However, without knowledge of the distribution of the eigenvalues of higher magnitude, we only
get an error bound that grows with increasing state space dimension. We cannot expect a better
result, i.e. a result independent of the state space dimension, as we will see in the next theorem.
There we consider a ’worst-case scenario’ where the eigenvalues of higher absolute value collapse to
a multiple eigenvalue and the modes are orthonormal. In this scenario, the error grows indeed with
the state space dimension N . In the limit, the POD vector is orthogonal to the first eigendirection,
i.e. the direction of slowest attraction is not detected by the POD method.

Proposition 3.7. Let a trajectory of (21) be given by

u(t) =

N
∑

j=1

e−λjt vj (46)

with V = col(v1, . . . , vN ) ∈ RN,N orthogonal and eigenvalues

0 < λ1 < λ2 = λ1 + δ = λ3 = . . . = λN . (47)

As before, we take snapshots along the trajectory denoted by yi = u(iT ), i = 1, . . . ,m. Let the POD
basis of rank 1 be given by the vector w1 ∈ RN . Then the angle between v1 and w1 increases at
least with the square root of the space dimension N :

∣

∣

∣sin
(π

2
− ∠(v1, w1)

)∣

∣

∣ = O(N−1/2). (48)
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Proof. We write the matrix of snapshots again as

Y =
1√
m
V AT , A = (αij)ij ∈ Rm,N

with αj = e−λjT . In this special case A is a rank-2 matrix of the following form

A = col(a,Da, . . . ,Da)

where D = diag(γ, . . . , γm), γ = e−δT , and a = (α1, . . . , α
m
1 ).

Observe that, since V is orthogonal, the following holds for the first singular vector w1 of Y :
Let the singular value decomposition of AT be given by

WT
AA

TUA = DA = diag(σ1, σ2, 0, . . . , 0)

with WA ∈ RN,N , UA ∈ Rm,m. Now, since V is orthogonal the singular value decomposition of
Y = 1√

m
V AT can be expressed via the decomposition of AT :

(VWA)TY UA =
1√
m
DA.

Hence the first left singular vector w1 of Y is just given by

w1 = V wA

where wA is the first column of WA. Now we consider A as a perturbation of the rank-1 matrix
Ā = col(Da, . . . ,Da). An easy calculation shows that σ =

√
N‖Da‖2 is the nontrivial singular

value of ĀT with left and right singular vector

w =
1√
N
1, u =

Da

‖Da‖2
.

As before V w is the first left singular vector of Ȳ = 1√
m
V ĀT . Observe that

γ−m(Da)i =
( 1

γ

)m−i
αi1 ≥ αi1 ≥ (1 − γi)α

i
1 = (a−Da)i for all 1 ≤ i ≤ m. (49)

For N ≥ N0 := 4γ−2m and the angle β := ∠(w,wA), we get

| sin(∠(w1, V w))| = | sin(β)| ≤ ‖Ā−A‖2

σ̄1 − ‖Ā−A‖2

=
‖(I −D)a‖2√

N‖Da‖2 − ‖(I −D)a‖2

(49)

≤ γ−m√
N − γ−m

≤ 2γ−m√
N

for all N ≥ N0. (50)

Applying the cosine theorem and addition theorems to

∠(v1, w1) = ∠(V e1, V wA) = ∠(e1, wA),

we get

| cos(∠(v1, w1))| −
1√
N

≤ | cos(∠(v1, w1)) −
1√
N

| = |eT1 wA − eT1 w|

= |eT1 (wA − w)| ≤ ‖e1‖2‖wA − w‖2

= ‖wA − w‖2 =
√

(wA − w)T (wA − w)

=
√

2 − 2wTAw =
√

2(cos(0) − cos(β))

=

√

4 sin2
(β

2

)

= 2 sin
(β

2

)

.
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Since sin(h) = h+O(h3) there exists an N1 > N0 such that the statement follows by (50):

| sin
(π

2
− ∠(v1, w1)

)

| = | cos(∠(v1, w1))| ≤ 2 sin
(β

2

)

+
1

N
≤ C√

N
for all N ≥ N1.

Remark 3.8. We note that the special type of trajectories given by (46) and (47) can also be

considered as the 2-speed case of Theorem 3.3 by setting v = v1 and w =
∑N
j=2 vj in (22). This

formulation shows that the setting of Proposition 3.7 is the ’worst case’ not only considering the
distribution of the eigenvalues but also considering the norms of the directions v and w as above:

1 = ‖v‖2 ≪ ‖w‖2 =
(

N
∑

i=2

‖vi‖2

)− 1
2

=
√
N − 1

for large N ∈ N. In this example, a reasonable error bound as in Theorem 3.3 can only be achieved

for a large integration time T . If T is chosen too small, the condition ‖v‖2

‖w‖2
> γ of Theorem 3.3 is

not violated:
1√
N − 1

=
‖v‖2

‖w‖2
> γ = e−δT ⇐⇒ T >

ln
√
N − 1

δ
.

Indeed, the experiments in Section 4.2 show that the POD method does not detect the first eigendi-
rection in this worst-case scenario.

3.3 Attracting invariant subspace

As a generalization of the situation with an asymptotically stable fixed point we consider a positive
invariant subspace that attracts the trajectory defining the snapshots exponentially. This gener-
alization is motivated by the theory of inertial manifolds: We just recall here that one can show
for a parabolic equation (2) that a proper spectral gap for A implies the so-called strong squeezing
property. By that the existence of an inertial manifold M follows, i.e. M is a finite dimensional
Lipschitz manifold which is positively invariant and attracts all trajectories exponentially. For
details we refer to [Tem97] and [Rob01].

We analyze the case of an attracting invariant subspace as a special case of such an inertial
manifold. Roughly speaking the behavior of the POD modes transfers from the case of an asymp-
totically stable fixed point. Note that we have to make additional regularity assumptions. This is
due to the fact that the POD algorithm has too many degrees of freedom if the trajectory does not
exhaust the subspace.

Theorem 3.9. Let Z = span{z1, . . . , zℓ} ⊂ RN be an ℓ-dimensional subspace of RN that is positive
invariant under (14) and exponentially attracts a trajectory u(t):

dist(u(t),Z) ≤ Ce−αt dist(u0,Z). (51)

We choose the snapshots yj = u(jT ), j = 1, . . . ,m along this trajectory. If we assume the trajectory
to be regular in the sense that

rank(ZZTY ) = ℓ (52)

with Z = col(z1, . . . , zℓ), Y = col(y1, . . . , ym), then for the POD space span{w1, . . . , wℓ} of rank ℓ,
we get the estimate

Epod({wi}i) ≤ C1
e−α2T

m
dist2(u0,Z).

If the trajectory is essential for the subspace Z in the sense that

σℓ(ZZ
TY ) ≥ C > 0 (53)

17



with C independent of T,m, then in addition we have

‖ sin(∠(Z,W )‖2 ≤ C2
e−αT√
m

dist(u0,Z).

As above C1, C2 > 0 are independent of T,m.

Proof. Consider the orthogonal projection PZ : RN → RN onto Z that can be expressed by

PZv = ZZT v ∈ Z.

We can express the Hausdorff distance by

dist2(u(t),Z) = ‖u(t) − PZu(t)‖2
2 = ‖(I − ZZT )u(t)‖2

2.

As before, we collect the snapshots yj = u(jT ) along the trajectory u(t) in a matrix Y =
1√
m

col(y1, . . . , ym) ∈ RN,m. We can decompose Y by

Y = Y0 + E, Y0 = ZZTY, E = (I − ZZT )Y.

We have the following singular value decomposition of Y0

WT
0 Y0V0 =

(

diag(σ0
1 , . . . , σ

0
ℓ ) 0

0 0

)

with positive singular values σ0
1 ≥ . . . ≥ σ0

ℓ > 0 by assumption (52). By the Theorem of Mirsky,
we get an estimate for the singular values σ1 ≥ . . . ≥ σd > 0 of Y :

d
∑

k=ℓ+1

σ2
k ≤

d
∑

k=1

(σk − σ0
k)

2

Mirsky

≤ 1

m

m
∑

j=1

‖(I − ZZT )yj‖2
2 =

1

m

m
∑

j=1

dist2(yj ,Z)

≤ C

m
dist2(u0,Z)

m
∑

j=1

e−2jT

≤ e−2αT

m
C

1

1 − e−2αT0
dist2(u0,Z).

For the singular vectors observe that we need a spectral gap to get an estimate for the canonical
angles. If the assumption (53) holds, the spectral gap is just given by C > 0 and we can use (20)
as before to get the result. If we take m or T large enough such that

‖E‖2 ≤ ‖E‖F ≤ 1

2
C

we get

‖ sin(∠(Z,W ))‖2 ≤ 2‖E‖2

C
≤ C2

e−αT√
m

dist(u0,Z).
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3.4 Snapshots from different trajectories

As stated in the introduction it is a reasonable approach for systems with more complicated behavior
to derive the POD data from more than one trajectory. Therefore we end this section with a
first observation of how the POD method behaves if more than one trajectory is used to define
snapshots. The next theorem shows that two shadowing trajectories essentially do not generate
more information than a single trajectory in the sense that the resulting POD modes are close to
each other.

Theorem 3.10. Consider trajectories u(t;u0) and u(t;u1) to different initial values u0 and u1 with
‖u0 − u1‖2 ≤ ε. Assume these trajectories are shadowing each other, i.e.

‖u(t;u0) − u(t;u1)‖2 ≤ ε, t ≥ 0.

As before, let a collection of snapshots be given by

yj = u(tj ;u0) = u(jT ;u0), j = 1, . . . ,m.

Assume a spectral gap δ > 0 for the singular values {σi}i of Y = 1√
m

col(y1, . . . , ym):

σℓ − σℓ+1 =: δ > 0.

Another collection of snapshots is built from both trajectories:

xj = yj = u(jT ;u0), xm+j = zj = u(jT ;u1), j = 1, . . . ,m.

Let WY be the POD space of rank ℓ for the snapshots {yj}mj=1 and let WX be the POD space for

the snapshots {xj}2m
j=1. Then,

‖ sin(∠(WY ,WX))‖2 ≤ ε√
2δ − ε

≤
√

2
ε

δ

where the second estimate holds for ε < δ√
2
.

Proof. Let the singular value decomposition of Y = 1√
m

col(y1, . . . , ym) be given by

WTY V = D :=
(

diag(σ1, . . . , σN ) 0
)

with σ1 ≥ . . . ≥ σN ≥ 0. Observe that for the matrix

Y2 =
1√
2m

col(y1, . . . , ym, y1, . . . , ym) =
1√
2

(

Y Y
)

we get the same singular values as for Y . A short calculation shows that the matrix

V2 :=
1√
2

(

V V
V −V

)

∈ R2m,2m

is orthogonal. With W ∈ RN,N ,D ∈ RN,m as above we get

WTY2V2 =
1

2
WT

(

Y Y
)

(

V V
V −V

)

=
1

2

(

WTY WTY
)

(

V V
V −V

)

=
1

2

(

2WTY V 0
)

=
(

D 0
)

.

If we define X = 1√
2m

col(y1, . . . , ym, z1, . . . , zm), we get the norm-wise estimate

‖X − Y2‖2 ≤ ‖X − Y2‖F =
1√
2m





m
∑

j=1

‖yj − zj‖2
2





1/2

≤ ε√
2
.
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In this way we can compare the POD space WY of rank ℓ ≤ m associated to the snapshots {yi}i
along one trajectory with the POD space WX associated to the snapshots {yi, zi}i along two
trajectories and get with (20):

‖ sin(∠(WY ,WX))‖2 ≤ ‖X − Y2‖2

δ − ‖X − Y2‖2
≤ ε√

2δ − ε
.

In the case ε < δ√
2

we can simplify the denominator to find

‖ sin(∠(WY ,WX))‖2 ≤
√

2
ε

δ
.

This result gives a first insight into the behavior of the POD method for data drawn from more
than one trajectory. As mentioned in the introduction, numerical experiments show a trade-off
between the number of trajectories and the length of trajectories in the approximation behavior of
the POD method. We will give numerical results indicating such a trade-off in Section 4.3. It is a
hard and still open problem to confirm this observation by analytic means.

4 Numerical examples

4.1 Different speeds of convergence: Dependency on N

In Theorem 3.5, we have stated that the POD error bound in the diagonalizable case depends on
N . In our first numerical example we analyze this dependency for the worst-case scenario treated
in Proposition 3.7. For this, we consider a trajectory given by (46) and (47) with different gaps
in the spectrum and plot the angle between the first POD mode w1 and the first eigendirection v1
against the dimension of the system.

In detail, we perform a numerical test with the following data: We consider the spaceR1 000 with
a randomly chosen orthonormal basis {vi}i≤1 000. We build the trajectory u(t) ∈ R1 000 according
to (46) for a given N ∈ [2, 1 000] by

u(t) = e−λ1tv1 + e−λ2t
N
∑

j=2

vj , λ1 < λ2.

We use time steps ti = iT , i = 1, . . . ,m, with T = 10 and m = 100 for the collection of snap-
shots yi = u(ti), i = 1, . . . ,m. We fix m and T and analyze the dependency on N treated in
Proposition 3.7.

The result is given by the two plots in Figure 1 which confirm the theoretical result of Propo-
sition 3.7. In the left plot, we see that the angle between the first POD mode and the first
eigendirection grows up to the value π

2 , i.e. in the end no information about the first eigendirection
is contained in the first POD mode.

In the right plot, the angle is scaled according to (48). We see that, at least for the smaller
gaps δ = 0.1 and δ = 0.2, the angle behaves just as the estimate of Theorem 3.7 suggests and the
constant can be estimated from the plot. For δ = 0.3 the limit is not reached within the observation
interval 1 ≤ N ≤ 1 000 but still we can predict the convergence from the plot.

4.2 Linear parabolic problem: Different speeds of convergence

In a second example we analyze the POD behavior of a linear reaction-diffusion equation. Later
on we will focus on nonlinear reaction-diffusion equations, especially the Chafee-Infante problem.
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Figure 1: Angle between first eigenvector and POD-vector in a ’worst-case’ test system. Different
values of λ2 where λ1 = 0.2 is fixed.

This example gives a first insight into parabolic problems. It shows that the ’worst case’ considered
above is not typical in natural examples. We start with the scalar parabolic problem

ut = uxx + µu, t ≥ 0, x ∈ (0, 1)

u(0, t) = u(1, t) = 0, t ≥ 0 (54)

u(x, 0) = u0(x), x ∈ [0, 1]

with parameter µ > 0.

Discretization by FE method
We discretize (54) by the standard finite element method with linear basis functions, see [LT03]

for details. We define N equally distributed grid points in the unit interval

xi = ih, i = 1, . . . , N

where h = 1
N+1 denotes the stepsize. Using piecewise linear basis functions Λi : [0, 1] → R, called

hat functions and defined by
Λi(xj) = δij , i, j = 1, . . . , N,

we write down the weak formulation of (54). If we take the space

Vh = span{Λi : i = 1, . . . , N}

as ansatz and test space, the finite element solution uh : R+ → Vh is defined by the solution of

(
d

dt
uh(t),Λj)2 + a(uh(t),Λj) = µ(uh(t),Λj)2, 1 ≤ j ≤ N (55)

uh(0) = uh,0.

Here, the L2-product (·, ·)2 and the elliptic bilinear form a(·, ·) are given by

(u, v)2 =

∫ 1

0

u(x) v(x) dx, a(u, v) =

∫ 1

0

ux(x)vx(x) dx. (56)

The initial value uh,0 ∈ Vh for the finite element system is usually given by a projection of the
original initial function u0. Here we choose the L2-projection uh,0 = PhL2u0 defined by

(PhL2u0,Λi)2 = (u0,Λi)2 i = 1, . . . , N.
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For fixed t > 0, uh(t) is an element of Vh. Hence it is represented by a vector u(t) ∈ RN via the
representation

uh(t) =

N
∑

i=1

ui(t)Λi ∈ Vh, t ≥ 0.

Using this representation, (55) transforms to

Mhut + Shu = µMhu (57)

u(0) = u0

where the so-called mass and stiffness matrices Mh, Sh ∈ RN,N are symmetric matrices with entries
Mh = ((Λj ,Λi)2)ij and Sh = (a(Λj ,Λi))ij . The vector u0 corresponds to uh,0 as above.

Explicit formula for the FE solution
In the one-dimensional case with linear finite elements that is considered here, Mh and Sh are

tridiagonal Toeplitz matrices (i.e. constant along their diagonals) with the following entries:

Mh =
h

6
M, M =













4 1

1
. . .

. . .

. . .
. . . 1
1 4













, S =
1

h
S, S =













2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2













(58)

The following lemma provides the eigendecompositions of Sh and Mh.

Lemma 4.1 (see e.g. [Ise09], Lemma 10.5). Let A = (aij)ij be a tridiagonal symmetric Toeplitz
matrix with entries

a1,1 = ai,i = α, ai−1,i = ai,i−1 = β, i = 2, . . . , N.

Then A is diagonalizable. The eigenvalues are given by D = diag(λ1, . . . , λN ) ∈ RN,N and the
corresponding orthonormal basis of eigenvectors by V = col(v1, . . . , vN ) ∈ RN,N where

Avk = λkvk,

λk = α+ 2β cos(kπh), k = 1 . . . , N,

vkℓ =
√

2h sin(kℓπh), k, ℓ = 1, . . . , N.

As before, h = 1
N+1 .

According to Lemma 4.1, the eigendecompositions of M and S are given by

M = V DMV, S = V DSV

with an orthogonal symmetric matrix V ∈ RN,N as defined in Lemma 4.1 and diagonal matrices
DS,M = diag(λS,M1 , . . . , λS,MN ) defined by

λMk = 4 + 2 cos(kπh), λSk = 2 − 2 cos(kπh), k = 1 . . . , N.

Solving equation (57) for ut leads to

ut = V (µIN − 6

h2
D−1
M DS)V u.

Hence the solution of (57) is given by

u(t) =

N
∑

k=1

e−λkt (V u0)kvk, λk =
6

h2
· 2 − 2 cos(kπh)

4 + 2 cos(kπh)
− µ. (59)
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Figure 2: A linear reaction-diffusion system discretized by linear finite elements. Angle between first
eigenvector and POD-vector together with the theoretical bound derived from (30). Different values
of T .

The solution given by (59) is a trajectory of type (28), i.e. Theorem 3.5 is applicable.

Choice of initial data
To get comparable results for our experiments in different spaces Vh, h = 1

N+1 , N = 1, . . . , N

we choose the initial vector uh,0 corresponding to the initial function uh,0 ∈ Vh as the L2-projection
of a fixed initial function in Vh, h = 1

N+1
:

u0 =

N
∑

i=1

α0
iΛi ∈ Vh, (60)

where we choose {α0
i }1≤i≤N at random. Observe that this refers to random initial data which

should represent the worst-case behavior of solutions. We will come back to another possible choice
of initial data at the end of our analysis.

Application of Theorem 3.5 for ℓ = 1
A Taylor expansion immediately shows that the eigenvalues in (59) are of order

λk = λk(h) = k2π2 +O(h2).
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Figure 3: Blowup of the first N = 20 experi-
ments of the example as above for T = 0.5. Plot
of the region marked in Figure 2.
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Figure 4: The same system as in figure 2 for T =
0.5. Comparison of the results for the stochastic
initial data as in Figure 2 vs. smoother initial
data.

Hence the stronger assumptions (32) of Theorem 3.5 are satisfied.
Let us first take a look at the case ℓ = 1, i.e. we analyze the behavior of the first POD vector

w1 ∈ RN measured by the angle between w1 and the first Fourier mode v1. Using the notation of
Theorem 3.5 we get an explicit bound γ = γ(T ) with

γ = e−δT , δ = λ2 − λ1 ≈ 3π2.

Since V is orthonormal, we can derive M = MN (ū0,N ) depending on the initial data ū0,N :

M = MN =
|(V ū0,N )1|√

2 max
2≤k≤N

|(V ū0,N )k|
.

Therefore the bound (30) for the angle is given explicitly by

EN = EN (T, ū0,N ) =
γ(T )

MN (ū0,N ) − γ(T )
.

Figure 2 shows the results of the experiments for N = 100. We plot the angle between the first
eigenvector v1 ∈ RN and the first POD vector as a function of the spatial dimension 1 ≤ N ≤ 100
together with the theoretical bound EN for different values of T all satisfying T ≥ 2/δ as in the
theorem. We see that for small N , the canonical angle is increasing but converges very quickly.
The theoretical bound is confirmed by the experiments but overestimates the real error by a factor
of about 10-20. Nevertheless the theoretical bound predicts the right order of magnitude of the
angle in all cases.

In Figure 3 we take a closer look to the beginning of the experiments, i.e. at the interval
1 ≤ N ≤ 20. We see that the bound is even sharper for small values of N . We mention a small
numerical artefact in the last plot of Figure 2. We see that there is a small interval where the
error bound does not hold. This can be explained by roundoff errors since the absolute value of
the computed angle is very small.

In Figure 4 we compare the results of Figure 2 for T = 0.5 with an experiment for smoother
initial data. In detail the initial data is chosen randomly in the space V 1

11
instead of V 1

101
as in (60).

By that, more or less only the first 10 Fourier modes v1, . . . , v10 are involved in the L2-projections
for N ≥ 10.
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Figure 5: Same example as in Figure 2. Angle between the first ℓ = 2 eigenvectors and POD-vectors
together with the theoretical bound derived from (30). Different values of T .

We see in the plots that, qualitatively, the relation between the canonical angle and the bound
given by Theorem 3.5 does not change. Both curves are just getting smoother for N ≥ 10. This
meets our expectations since the higher Fourier modes are negligible in this case.

Application of Theorem 3.5 for ℓ = 2
We extend our experiments to the case of ℓ = 2 POD modes to illustrate the bounds of Theo-

rem 3.5 also for ℓ > 1. With analogous calculations as above we derive the bounds for γ = γ(T )
and MN = MN (u0,N ) also for the case ℓ = 2. Observe that we have δ = λ3 − λ2 ≈ 5π2 with the
exact value given by (59) and further on

gapα = |α1 − α2| = e−λ1T − e−λ2T ,

σ2(V0) = σ2((V u0)1v1, (V u0)2v2) = min{(V u0)1, (V u0)2},
σ1(V1) = σ1({(V u0)kvk}k≥3) = max{(V u0)k}k≥3.

Again, we can derive the bound EN = γ
MN−γ explicitly with

γ = e−(λ3−λ2)T , MN =
(e−λ1T − eλ2T )

4

min{(V u0)1, (V u0)2}
maxk=3,...,N (V u0)k

.
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Numerical experiments show that we have to be careful in choosing the integration time T . If
we choose T too large (e.g. T = 1), the second singular value almost vanishes. Then the problem
of finding a second singular vector becomes ill-posed such that the second POD mode is chosen
almost randomly by the algorithm and does not fit to the snapshots.

In Figure 5 we have plotted the experimental data in the same way as in Figure 2 for the case
ℓ = 2 and T ∈ {0.1, 0.25, 0.5}.

For T = 0.1 the bound exists only for some N ∈ {1, . . . , N̄}. This is due to the fact that in most
of the randomly chosen initial data the condition MN ≥ γ is violated by choosing T that small.
Therefore in the first plot of Figure 5, the theoretical bound is only evaluated in those experiments
where MN ≥ γ is satisfied.

If we choose a proper T like for example for T = 0.25 and T = 0.5, also for ℓ = 2 the bounds of
Theorem 3.5 are very suitable. As it is the case for ℓ = 1, the magnitude of the canonical angles is
described quite well by the error bounds. In particular the bounds overestimate the angles only by
a factor of about 10 − 20 as for ℓ = 1.

4.3 Snapshots from different trajectories

In our concluding example we try to broaden the results of Theorem 3.10 by numerical means. The
setting of the following computation is not covered any more by the assumptions of the theorem.
Yet we mention it here since it gives a nice prospect for the POD algorithms where POD modes
are computed from a whole bundle of short time trajectories. In the computations for Figure 6, we
derive the first POD vector for the discretized linear parabolic system (59) with T = 0.5 in different
ways. We build three different sets of snapshots collected in

Y i =
1√
6m

col(yi1, . . . y
i
6m), i = 1, 2, 3.

We consider trajectories ui(t) = u(t,ui0) starting in 3 different initial points u
i
0, i = 1, 2, 3, with

randomly chosen coefficients as above. The first collection of snapshots is built from one trajectory
of length 6mT as above:

y1
j = u1(tj), j = 1, . . . , 6m.

The second collection is built from two trajectories of half length 3mT :

y2
j = u1(tj), yj3m+j = u2(tj), j = 1, . . . , 3m.

Finally, the last collection of snapshots is built from three trajectories of length 2mT :

y3
j = u1(tj), y3

2m+j = u2(tj), y3
4m+j = u3(tj), j = 1, . . . , 2m.

The resulting angles between the first POD mode wi1, i = 1, 2, 3, and the first Fourier mode in a
typical realization of the experiment is plotted in Figure 6. We should mention that the computed
angles depend strongly on the choice of the initial data u

i
0. We have shown here a typical curve

shape.
Obviously, the first eigendirection is approximated better by two trajectories than by one, at

least for large N . Nevertheless for three trajectories in most realizations the error gets worse
again, as it is the case in the example shown in Figure 6. It seems that the length of the involved
trajectories is of greater advantage in this case than the convergence from more than two initial
points in view of the approximation of the eigendirections. A deeper theoretical analysis of this
obvious trade-off between the number and the length of trajectories used as data for the POD
method is part of a future work.
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