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Abstract. This paper deals with the spatial and temporal regularity of the

unique Hilbert space valued mild solution to a semilinear stochastic partial dif-

ferential equation with nonlinear terms that satisfy global Lipschitz conditions.

It is shown that the mild solution has the same optimal regularity properties as

the stochastic convolution. The proof is elementary and makes use of existing

results on the regularity of the solution, in particular, the Hölder continuity

with a non-optimal exponent.

1. Introduction

Consider the following semilinear stochastic partial differential equation (SPDE)

dX(t) + [AX(t) + F (X(t))] dt = G(X(t)) dW (t), for 0 ≤ t ≤ T,
X(0) = X0,

(1.1)

where the mild solution X takes values in a Hilbert space H. The linear operator
−A : D(A) ⊂ H → H is self-adjoint and the generator of an analytic semigroup on
H. For example, let −A be the Laplacian with homogeneous Dirichlet boundary
conditions and H = L2(D) for some bounded domain D ⊂ Rd with smooth bound-
ary ∂D or a convex domain with polygonal boundary. The nonlinear operators F
and G are assumed to be globally Lipschitz continuous in the appropriate sense and
W : [0, T ] × Ω → U denotes a standard Q-Wiener process on a probability space
(Ω,F , P ) with values in some Hilbert space U .

In a recent paper [5] the authors prove the existence of a unique mild solution
X : [0, T ]×Ω→ H. Moreover, they show that X enjoys certain spatial and temporal
regularity properties.

The spatial regularity is measured in terms of the domains Ḣr := D(A
r
2 ), r ≥ 0,

of fractional powers of the operator A. If −A is the Laplacian, these domains
coincide with standard Sobolev spaces, for example, Ḣ1 = H1

0 (D) or Ḣ2 = H1
0 (D)∩

H2(D) (c.f. [7, Th. 6.4] or [12, Ch. 3]). The regularity in time is expressed by the
Hölder exponent.
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Using only Lipschitz assumptions on F and G the authors of [5] show that for
every γ ∈ [0, 1) the solution X maps into Ḣγ ⊂ H and is γ

2 -Hölder continuous with

respect to the norm
(
E
[
‖ · ‖pH

]) 1
p , p ∈ [2,∞).

As we will demonstrate in this paper, it turns out that this is also true for the
border case γ = 1. The proof is based on a very careful use of the smoothing
property of the corresponding semigroup E(t) = e−tA (see Lemma 3.2), and on the
Hölder continuity of X with a suboptimal exponent (see Lemmas 3.4 and 3.5).

The case γ = 1 is of special interest in numerical analysis. For example, if one is
analysing an approximation scheme based on a finite element method, the spatial
regularity determines the order of convergence. Hence, a suboptimal regularity
result leads to a suboptimal estimate of the order of convergence (c.f. [12]).

Evolution equations of the form (1.1) are also studied by other authors. We refer
to [4, 6, 11, 14] and the references therein. A related result is [16], where conditions
for spatial C∞-regularity are given.

The optimal regularity of stochastic convolutions of the form

WΦ
A (t) =

∫ t

0

E(t− σ)Φ(σ) dW (σ),

is studied in [4, Prop. 6.18] and [2]. Here E(t) = e−tA is an analytic semigroup
and Φ is a stochastically square integrable (p = 2) process with values in the set of
Hilbert-Schmidt operators. If, for r ≥ 0, the process Φ is regular enough so that the
process t 7→ A

r
2 Φ(t) is still stochastically square integrable, then the convolution is

a stochastic process, which is square integrable with values in Ḣ1+r. There exist
some generalizations of this result, for instance, to Banach space valued integrands
[3], to the case p > 2 [13], and to Lévy noise [1].

Our regularity result for the mild solution of (1.1) coincides with the optimal
regularity property of the stochastic convolution but with the restriction r < 1. In
this sense we understand our result to be optimal.

This paper consists of four additional sections. In the next section we give a
more precise formulation of our assumptions. In Section 3 we are concerned with
the spatial regularity of the mild solution. The proof is divided into several lemmas,
which contain the key ideas of proof. The lemmas are also useful in the proof of
the temporal Hölder continuity in Section 4. The proof of continuity in the border
case requires an additional argument in form of Lebesgue’s dominated convergence
theorem. This technique is also developed in Section 4. The last section briefly
reviews our result in the special case of additive noise and gives an example which
demonstrates that the spatial regularity results are indeed optimal.

2. Preliminaries

In this section we present the general form of the SPDE we are interested in.
After introducing some notation we state our assumptions and cite the result on
existence, uniqueness and regularity of a mild solution from [5].

ByH we denote a separable Hilbert space (H, (·, ·), ‖ · ‖). Further, let A : D(A) ⊂
H → H be a densely defined, linear, self-adjoint, positive definite operator, which is
not necessarily bounded but with compact inverse. Hence, there exists an increasing
sequence of real numbers (λn)n≥1 and an orthonormal basis of eigenvectors (en)n≥1
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in H such that Aen = λnen and

0 < λ1 ≤ λ2 ≤ . . . ≤ λn(→∞).

The domain of A is characterized by

D(A) =
{
x ∈ H :

∞∑
n=1

λ2
n(x, en)2 <∞

}
.

Thus, −A is the generator of an analytic semigroup of contractions, which is denoted
by E(t) = e−At.

By W : [0, T ]×Ω→ U we denote a Q-Wiener process with values in a separable
Hilbert space (U, (·, ·)U , ‖·‖U ). While our underlying probability space is (Ω,F , P ),
we assume that the Wiener process is adapted to a normal filtration (F t)t∈[0,T ] ⊂
F . The covariance operator Q : U → U is linear, bounded, self-adjoint, positive
semidefinite but not necessarily of finite trace.

We study the regularity properties of a stochastic process X : [0, T ] × Ω → H,
T > 0, which is the mild solution to the stochastic partial differential equation
(1.1). Thus, X satisfies the equation

X(t) = E(t)X0 −
∫ t

0

E(t− σ)F (X(σ)) dσ +
∫ t

0

E(t− σ)G(X(σ)) dW (σ)(2.1)

for all 0 ≤ t ≤ T .
In order to formulate our assumptions and main result we introduce the notion

of fractional powers of the linear operator A. For any r ∈ R the operator A
r
2 is

given by

A
r
2 x =

∞∑
n=1

λ
r
2
nxnen

for all

x ∈ D(A
r
2 ) =

{
x =

∞∑
n=1

xnen : (xn)n≥1 ⊂ R

with ‖x‖2r := ‖A r
2 x‖2 =

∞∑
n=1

λrnx
2
n <∞

}
.

By defining Ḣr := D(A
r
2 ) together with the norm ‖x‖r for r ∈ R, Ḣr becomes a

Hilbert space.
As usual [4, 9] we introduce the separable Hilbert space U0 := Q

1
2 (U) with the

inner product (u0, v0)U0 := (Q−
1
2u0, Q

− 1
2 v0)U with Q−

1
2 denoting the pseudoin-

verse. The diffusion operator G maps H into L0
2, where L0

2 denotes the space of all
Hilbert-Schmidt operators Φ: U0 → H with norm

‖Φ‖2L0
2

:=
∞∑
m=1

‖Φψm‖2.

Here (ψm)m≥1 is an arbitrary orthonormal basis of U0 (for details see, for exam-
ple, Proposition 2.3.4 in [9]). Further, L0

2,r denotes the set of all Hilbert-Schmidt
operators Φ: U0 → Ḣr together with the norm ‖Φ‖L0

2,r
:= ‖A r

2 Φ‖L0
2
.

Let r ∈ [0, 1), p ∈ [2,∞) be given. As in [5, 10] we make the following additional
assumptions.
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Assumption 2.1. There exists a constant C such that

‖G(x)−G(y)‖L0
2
≤ C‖x− y‖ ∀x, y ∈ H(2.2)

and we have that G(Ḣr) ⊂ L0
2,r and

‖G(x)‖L0
2,r
≤ C (1 + ‖x‖r) ∀x ∈ Ḣr.(2.3)

Assumption 2.2. The nonlinearity F maps H into Ḣ−1+r. Furthermore, there
exists a constant C such that

‖F (x)− F (y)‖−1+r ≤ C‖x− y‖ ∀x, y ∈ H.(2.4)

Assumption 2.3. The initial value X0 : Ω → Ḣr+1 is an F0-measurable random
variable with E

[
‖X0‖pr+1

]
<∞.

Under the above conditions Theorem 1 in [5] states that for every γ ∈ [r, r+1) and
T > 0 there exists an up to modification unique mild solution X : [0, T ]×Ω→ Ḣγ

to (1.1) of the form (2.1), which satisfies

sup
t∈[0,T ]

E
[
‖X(t)‖pγ

]
<∞.

Moreover, the solution process is continuous with respect to
(
E
[
‖ · ‖pγ

] ) 1
p and ful-

fills

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,
γ−s

2 )
<∞

for every s ∈ [0, γ].
The aim of this paper is to show that these regularity results also hold with

γ = r + 1.

Remarks. 1. Actually, Theorem 1 in [5] assumes that F : H → H is globally
Lipschitz, which is slightly stronger than Assumption 2.2. That Assumption 2.2 is
sufficient can be proved by just following the given proof line by line and making
the appropriate changes where ever F comes into play.

2. Assumption 2.3 can be relaxed to X0 : Ω→ H being a F0-measurable random
variable with E [‖X0‖p] <∞. But, as it is known from deterministic PDE theory,
this will lead to a singularity at t = 0.

3. The framework is quite general. We refer to the discussion in [10] for some
more explicit examples, further references and a related result for temporal regu-
larity. Further examples and a detailed discussion of Assumption 2.1 can be found
in [5].

3. Spatial regularity

In this section we deal with the spatial regularity of the mild solution. Our
result is given by the following theorem. For a more convenient notation we set
‖·‖Lp(Ω;H) := (E [‖ · ‖pH])

1
p for any Hilbert space H. Also, if applied to an operator,

the norm ‖ · ‖ is understood as the operator norm for bounded, linear operators
from H to H.
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Theorem 3.1 (Spatial regularity). Let r ∈ [0, 1), p ∈ [2,∞). Given the assump-
tions of Section 2 the unique mild solution X in (2.1) satisfies

sup
t∈[0,T ]

(
E
[∥∥X(t)

∥∥p
r+1

]) 1
p ≤

(
E
[∥∥X0

∥∥p
r+1

]) 1
p + C

(
1 + sup

t∈[0,T ]

(
E
[∥∥X(t)

∥∥p
r

]) 1
p

)
,

where the constant C depends on p, r, A, F , G, T and the Hölder continuity
constant of X with respect to the norm ‖ · ‖Lp(Ω;H).

In particular, X maps into Ḣr+1 almost surely.

Before we prove the theorem we introduce several useful lemmas. The first states
some well known facts on analytic semigroups (c.f. [8]). Since parts (iii), (iv) are
not readily found in the literature, we provide proofs here.

Lemma 3.2. For the analytic semigroup E(t) the following properties hold true:
(i) For any µ ≥ 0 there exists a constant C = C(µ) such that

‖AµE(t)‖ ≤ Ct−µ for t > 0.

(ii) For any 0 ≤ ν ≤ 1 there exists a constant C = C(ν) such that

‖A−ν(E(t)− I)‖ ≤ Ctν for t ≥ 0.

(iii) For any 0 ≤ ρ ≤ 1 there exists a constant C = C(ρ) such that∫ τ2

τ1

‖A
ρ
2E(τ2 − σ)x‖2 dσ ≤ C(τ2 − τ1)1−ρ ‖x‖2 for all x ∈ H, 0 ≤ τ1 < τ2.

(iv) For any 0 ≤ ρ ≤ 1 there exists a constant C = C(ρ) such that∥∥∥∫ τ2

τ1

AρE(τ2 − σ)xdσ
∥∥∥ ≤ C(τ2 − τ1)1−ρ‖x‖ for all x ∈ H, 0 ≤ τ1 < τ2.

Proof. (iii) We use the expansion of x ∈ H in terms of the eigenbasis (en)n≥1 of
the operator A. By Parseval’s identity we get∫ τ2

τ1

∥∥A ρ
2E(τ2 − σ)x

∥∥2 dσ =
∫ τ2

τ1

∥∥∥ ∞∑
n=1

A
ρ
2E(τ2 − σ)(x, en)en

∥∥∥2

dσ

=
∞∑
n=1

∫ τ2

τ1

(x, en)2λρn e−2λn(τ2−σ) dσ

=
1
2

∞∑
n=1

(x, en)2λρ−1
n

(
1− e−2λn(τ2−τ1)

)
.

For all κ ∈ [0, 1] the function x 7→ 1− e−2x

xκ is bounded for x ∈ [0,∞). Hence,

0 ≤ 1− e−2λn(τ2−τ1)

(λn(τ2 − τ1))1−ρ ≤ C(ρ)

for some constant C(ρ), which depends only on ρ. Therefore,∫ τ2

τ1

∥∥A ρ
2E(τ2 − σ)x

∥∥2 dσ ≤ 1
2
C(ρ)(τ2 − τ1)1−ρ ‖x‖2 .
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The proof of (iv) works in a similar way. We square the left-hand side and use
Parseval’s identity again. This yields∥∥∥∫ τ2

τ1

AρE(τ2 − σ)xdσ
∥∥∥2

=
∥∥∥∫ τ2

τ1

∞∑
n=1

AρE(τ2 − σ)(x, en)en dσ
∥∥∥2

=
∞∑
n=1

(∫ τ2

τ1

(x, en)λρn e−λn(τ2−σ) dσ
)2

=
∞∑
n=1

(x, en)2
(1− e−λn(τ2−τ1)

λ1−ρ
n

)2

.

As above we conclude∥∥∥∫ τ2

τ1

AρE(τ2 − σ)x dσ
∥∥∥2

≤ C(ρ)2(τ2 − τ1)2(1−ρ)‖x‖2.

The proof is complete. �

The next lemma is a special case of Lemma 7.2 in [4] and will be needed to
estimate the stochastic integrals.

Lemma 3.3. For any p ≥ 2, 0 ≤ τ1 < τ2 ≤ T , and for any L0
2-valued predictable

process Φ(t), t ∈ [τ1, τ2], we have

E
[∥∥∥ ∫ τ2

τ1

Φ(σ) dW (σ)
∥∥∥p] ≤ C(p)E

[( ∫ τ2

τ1

∥∥Φ(σ)
∥∥2

L0
2

dσ
) p

2
]
.

Here the constant can be chosen to be

C(p) =
(p

2
(p− 1)

) p
2
(

p

p− 1

)p( p2−1)

.

The following two lemmas contain our main idea of proof and yield the key
estimates.

Lemma 3.4. Let s ∈ [0, r + 1], p ≥ 2, and Y be a predictable stochastic process
on [0, T ] which maps into Ḣr with supσ∈[0,T ] ‖A

r
2 Y (σ)‖Lp(Ω;H) < ∞. Then there

exists a constant C = C(p, r, s, A,G) such that, for all τ1, τ2 ∈ [0, T ] with τ1 < τ2,

(3.1)
(
E
[( ∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ).

If, in addition, for some δ > r
2 there exists Cδ such that

‖Y (t1)− Y (t2)‖Lp(Ω;H) ≤ Cδ|t2 − t1|
δ for all t1, t2 ∈ [0, T ],

then we also have, with C = C(p, s,G,Cδ), that

(3.2)
(
E
[( ∫ τ2

τ1

∥∥A s
2E(τ2 − σ)

(
G(Y (σ))−G(Y (τ2))

)∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C√
1 + 2δ − s

(τ2 − τ1)
1+2δ−s

2 .
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In particular, with C = C(T, δ, p, r, s, A,G,Cδ) it holds that

(3.3)
∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)G(Y (σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ).

Proof. First note that, for 0 ≤ τ1 < τ2 ≤ T fixed, the mapping [τ1, τ2] 3 σ 7→
A
s
2E(τ2 − σ)G(Y (σ)) is a predictable L0

2-valued process. Hence, Lemma 3.3 is
applicable and gives∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)G(Y (σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)

(
G(Y (σ))−G(Y (τ2))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

=: S1 + S2.

In the second step we just used the triangle inequality. Now we deal with both
summands separately. In the first term S1 the time in G(Y (τ2)) is fixed. We also
notice that η := s − r − max(0, s − r) ≤ 0 and, hence, A

η
2 is a bounded linear

operator on H. Furthermore, since s ∈ [0, r+ 1] we have ρ := max(0, s− r) ∈ [0, 1]
and Lemma 3.2 (iii) is applicable. By writing s = η + ρ+ r, we get∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ

=
∫ τ2

τ1

∞∑
m=1

∥∥A s
2E(τ2 − σ)G(Y (τ2))ϕm

∥∥2
dσ

≤
∞∑
m=1

∫ τ2

τ1

∥∥A η
2
∥∥2∥∥A ρ

2E(τ2 − σ)A
r
2G(Y (τ2))ϕm

∥∥2 dσ

≤ C(s, r)
∥∥A η

2
∥∥2∥∥A r

2G(Y (τ2))
∥∥2

L0
2
(τ2 − τ1)min(1,1+r−s),

where (ϕm)m≥1 denotes an orthonormal basis of U0. We also used that 1 − ρ =
1−max(0, s− r) = min(1, 1 + r − s). Finally, by Assumption 2.1 we conclude

S1 ≤ C(p, r, s, A,G)
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ).

This proves (3.1). For S2 we first make use of the fact that ‖BΦ‖L0
2
≤ ‖B‖‖Φ‖L0

2

and then apply Lemma 3.2 (i) followed by (2.2) to get

S2 ≤ C(p, s,G)
∥∥∥(∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2 dσ
) 1

2
∥∥∥
Lp(Ω;R)

= C(p, s,G)
(∥∥∥∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2 dσ
∥∥∥
Lp/2(Ω;R)

) 1
2

≤ C(p, s,G)
(∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2Lp(Ω;H) dσ
) 1

2
.
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By the Hölder continuity of Y we arrive at

S2 ≤ C(p, s,G,Cδ)
(∫ τ2

τ1

(τ2 − σ)−s+2δ dσ
) 1

2

≤ C(p, s,G,Cδ)√
1 + 2δ − s

(τ2 − τ1)
1+2δ−s

2 .

This shows (3.2). Combination of the estimates for S1 and S2 yields (3.3) by using
(τ2 − τ1)δ ≤ T δ. �

Lemma 3.5. Let s ∈ [0, r+1], p ≥ 2, and Y be a stochastic process on [0, T ] which
maps into H with supσ∈[0,T ] ‖Y (σ)‖Lp(Ω;H) < ∞. Then there exists a constant
C = C(r, s, F ) such that, for all τ1, τ2 ∈ [0, T ] with τ1 < τ2,

(3.4)
∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)F (Y (τ2)) dσ

∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 .

If, in addition, for some δ > 0 there exists Cδ such that

‖Y (t1)− Y (t2)‖Lp(Ω;H) ≤ Cδ|t2 − t1|
δ for all t1, t2 ∈ [0, T ],

then we also have, with C = C(r, s, F, Cδ), that

(3.5)
∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)

(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤ C

1 + r − s+ 2δ
(τ2 − τ1)

1+r−s+2δ
2 .

In particular, with C = C(T, δ, r, s, F, Cδ) it holds that

(3.6)
∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)F (Y (σ)) dσ

∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 .

Proof. As in the previous lemma the main idea is to use the Hölder continuity of
Y to estimate the left-hand side in (3.6). We have∥∥∥ ∫ τ2

τ1

A
s
2E(τ2 − σ)F (Y (σ)) dσ

∥∥∥
Lp(Ω;H)

≤
∥∥∥ ∫ τ2

τ1

A
s
2E(τ2 − σ)F (Y (τ2)) dσ

∥∥∥
Lp(Ω;H)

+
∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)

(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

.

Therefore, if we show (3.4) and (3.5) then (3.6) follows immediately by using (τ2−
τ1)δ ≤ T δ.

For (3.4) first note that the random variable A
r−1
2 F (X(τ2)) takes values in H

almost surely. Hence, we can apply Lemma 3.2 (iv). Together with Assumption
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2.2 this yields∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)F (Y (τ2)) dσ

∥∥∥
Lp(Ω;H)

≤
∥∥∥∫ τ2

τ1

A
s+1−r

2 E(τ2 − σ)A
r−1
2 F (Y (τ2)) dσ

∥∥∥
Lp(Ω;H)

≤ C(r, s)(τ2 − τ1)
1+r−s

2
∥∥A r−1

2 F (Y (τ2))
∥∥
Lp(Ω;H)

≤ C(r, s, F )
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 .

Finally, again by Lemma 3.2 and Assumption 2.2, we show (3.5):∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)

(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤
∫ τ2

τ1

∥∥A s+1−r
2 E(τ2 − σ)A

r−1
2 (F (Y (τ2))− F (Y (σ)))

∥∥
Lp(Ω;H)

dσ

≤ C(r, s, F )
∫ τ2

τ1

(τ2 − σ)
r−s−1

2 ‖Y (τ2)− Y (σ)‖Lp(Ω;H) dσ

≤ C(r, s, F, Cδ)
∫ τ2

τ1

(τ2 − σ)
r−s−1+2δ

2 dσ =
2C(r, s, F, Cδ)
1 + r − s+ 2δ

(τ2 − τ1)
1+r−s+2δ

2 .

This completes the proof. �

Now we are well prepared for the proof of Theorem 3.1.

Proof of Theorem 3.1. By taking norms in (2.1) we get, for t ∈ [0, T ],(
E
[
‖X(t)‖pr+1

]) 1
p = ‖A

r+1
2 X(t)‖Lp(Ω;H)

≤ ‖A
r+1
2 E(t)X0‖Lp(Ω;H)

+
∥∥∥A r+1

2

∫ t

0

E(t− σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A r+1

2

∫ t

0

E(t− σ)G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

=: I + II + III.

The first term is well-known from deterministic theory and can be estimated by

‖A
r+1
2 E(t)X0‖Lp(Ω;H) ≤ ‖A

r+1
2 X0‖Lp(Ω;H) <∞,

since X0 : Ω→ Ḣr+1 by Assumption 2.3.
We recall that, by Theorem 1 in [5], the mild solution X is an Ḣr-valued pre-

dictable stochastic process which is δ-Hölder continuous for any 0 < δ < 1
2 with

respect to the norm ‖·‖Lp(Ω;H). We choose δ := r+1
4 so that 0 ≤ r

2 < δ < 1
2 . Hence,

we can apply Lemmas 3.4 and 3.5 with Y = X.
For the second term we apply (3.6) with τ1 = 0, τ2 = t, s = r + 1 and Y = X.

This yields

II ≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
<∞.

For the last term we apply (3.3) with the same parameters as above:

III ≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
<∞.
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Note that supσ∈[0,T ] ‖X(σ)‖Lp(Ω;H) ≤ supσ∈[0,T ] ‖A
r
2X(σ)‖Lp(Ω;H) is finite because

of Theorem 1 in [5]. �

4. Regularity in time

This section is devoted to the temporal regularity of the mild solution. Our
result is summarized in the following theorem.

Theorem 4.1 (Temporal regularity). Let r ∈ [0, 1), p ∈ [2,∞). Under the as-
sumptions of Section 2 the unique mild solution X is continuous with respect to(
E [‖ · ‖ps ]

) 1
p and satisfies

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,

1+r−s
2 )

<∞(4.1)

for every s ∈ [0, r + 1].

Before we begin the proof we analyse the continuity properties of the semigroup
in the deterministic context. For Hölder continuity the results of Lemma 3.2 will
be sufficient. But in order to prove continuity, that is, the case s = r + 1, we need
the following result.

Lemma 4.2. Let 0 ≤ τ1 < τ2 ≤ T . Then we have
(i)

lim
τ2−τ1→0

∫ τ2

τ1

∥∥A 1
2E(τ2 − σ)x

∥∥2 dσ = 0 for all x ∈ H,

(ii)

lim
τ2−τ1→0

∥∥∥∫ τ2

τ1

AE(τ2 − σ)xdσ
∥∥∥ = 0 for all x ∈ H,

(iii)

lim
τ2−τ1→0

∫ τ1

0

∥∥A 1
2
(
E(τ2 − σ)− E(τ1 − σ)

)
x
∥∥2 dσ = 0 for all x ∈ H,

(iv)

lim
τ2−τ1→0

∥∥∥∫ τ1

0

A
(
E(τ2 − σ)− E(τ1 − σ)

)
xdσ

∥∥∥ = 0 for all x ∈ H.

Proof. As in the proof of Lemma 3.2 we use the orthogonal expansion of x ∈ H
with respect to the eigenbasis (en)n≥1 of the operator A. Thus, for (i) we get as in
the proof of Lemma 3.2 (iii)∫ τ2

τ1

‖AE(τ2 − σ)x‖2 dσ =
1
2

∞∑
n=1

(x, en)2
(

1− e2λn(τ2−τ1)
)
.

We apply Lebesgue’s dominated convergence theorem. Note that the sum is domi-
nated by 1

2‖x‖
2 for all τ2 − τ1 ≥ 0. Moreover, for every n ≥ 1 we have

lim
τ2−τ1→0

(
1− eλn(τ2−τ1)

)
(x, en)2 = 0.

Hence, Lebesgue’s theorem gives us (i). The same argument also yields the remain-
ing cases, since∥∥∥∫ τ2

τ1

AE(τ2 − σ)xdσ
∥∥∥2

=
∞∑
n=1

(
1− eλn(τ2−τ1)

)2(x, en)2,
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and ∫ τ1

0

∥∥A 1
2 (E(τ2 − τ1)− I)E(τ1 − σ)x

∥∥2 dσ

=
∞∑
n=1

(
e−λn(τ2−τ1) − 1

)2 ∫ τ1

0

λn e−2λn(τ1−σ) dσ (x, en)2

=
1
2

∞∑
n=1

(
e−λn(τ2−τ1) − 1

)2 (1− e−λnτ1
)

(x, en)2,

as well as ∥∥∥∫ τ1

0

A (E(τ2 − τ1)− I)E(τ1 − σ)x dσ
∥∥∥2

=
∞∑
n=1

(
e−λn(τ2−τ1) − 1

)2(
λn

∫ τ1

0

e−λ(τ1−σ) dσ
)2

(x, en)2

=
∞∑
n=1

(
e−λn(τ2−τ1) − 1

)2 (1− e−λnτ1
)

(x, en)2.

The proof is complete. �

Proof of Theorem 4.1. First we show (4.1). Let 0 ≤ t1 < t2 ≤ T be arbitrary. By
using the mild formulation (2.1) we get(

E [‖X(t1)−X(t2)‖ps ]
) 1
p =

∥∥A s
2 (X(t1)−X(t2))

∥∥
Lp(Ω;H)

≤
∥∥A s

2 (E(t1)− E(t2))X0

∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t2

t1

E(t2 − σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t1

0

(E(t2 − σ)− E(t1 − σ))F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t2

t1

E(t2 − σ)G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t1

0

(E(t2 − σ)− E(t1 − σ))G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

=: T1 + T2 + T3 + T4 + T5.

We estimate the five terms separately. The term T1 is estimated by

T1 =
∥∥∥A s−r−1

2 (I − E(t2 − t1))A
r+1
2 E(t1)X0

∥∥∥
Lp(Ω;H)

≤ C
∥∥A r+1

2 X0

∥∥
Lp(Ω;H)

(t2 − t1)
1+r−s

2 ,

where we used Lemma 3.2 (ii) and Assumption 2.3.
As in the proof of Theorem 3.1 we choose the Hölder exponent δ := r+1

4 so that
r
2 < δ < 1

2 and we can apply Lemmas 3.4 and 3.5 with Y = X.
The term T2 coincides with (3.6) and we have

T2 ≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
(t2 − t1)

1+r−s
2 .
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For the third term we also apply Lemma 3.2 (ii) before we use (3.6):

T3 =
∥∥∥A s−r−1

2 (E(t2 − t1)− I)
∫ t1

0

A
r+1
2 E(t1 − σ)F (X(σ)) dσ

∥∥∥
Lp(Ω;H)

≤ C(t2 − t1)
1+r−s

2

∥∥∥∫ t1

0

A
r+1
2 E(t1 − σ)F (X(σ)) dσ

∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
(t2 − t1)

1+r−s
2 .

The fourth term is estimated analogously by using (3.3) instead of (3.6). We get

T4 ≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
(t2 − t1)min( 1

2 ,
1+r−s

2 ).

Finally, for the last term we use Lemma 3.3 first. Since, for 0 ≤ t1 < t2 ≤ T fixed,
the function [0, t1] 3 σ 7→ A

s
2 (E(t2 − σ)− E(t1 − σ))G(X(σ)) is a predictable

stochastic process Lemma 3.3 can be applied. Then, by using Lemma 3.2 (ii) with
ν = 1+r−s

2 and Lemma 3.4 with s = r + 1 we get

T5 ≤ C
∥∥∥(∫ t1

0

∥∥A s−r−1
2 (E(t2 − t1)− I)A

r+1
2 E(t1 − σ)G(X(σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C(t2 − t1)
1+r−s

2

(∥∥∥(∫ t1

0

∥∥A r+1
2 E(t1 − σ)G(X(t1))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+
∥∥∥(∫ t1

0

∥∥A r+1
2 E(t1 − σ)

(
G(X(σ))−G(X(t1))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

)
≤ C(t2 − t1)

1+r−s
2

(
1 + sup

σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
.

Altogether, this proves (4.1) and the Hölder continuity of X with respect to the
norm ‖A s

2 · ‖Lp(Ω;H) for all s ∈ [0, r + 1).
It remains to prove continuity in the case s = r + 1. As already demonstrated

in the proof of Lemma 4.2 we use Lebesgue’s dominated convergence theorem. We
have to discuss all terms Ti, i = 1, . . . , 5, again.

For T1 continuity follows immediately: For almost every ω ∈ Ω we get that
X0(ω) ∈ Ḣr+1. Thus, for fixed ω ∈ Ω we have

lim
t2−t1→0

‖(E(t2)− E(t1))A
r+1
2 X0(ω)‖ = 0

by the strong continuity of the semigroup. We also have that

‖(E(t2)− E(t1))A
r+1
2 X0(ω)‖ ≤ ‖A

r+1
2 X0(ω)‖,

where the latter is an element of Lp(Ω; R) as a function of ω ∈ Ω by Assumption
2.3. Hence, Lebesgue’s theorem is applicable and yields limt2−t1→0 T1 = 0.

Since the same argument applies to the remaining terms, it is sufficient to provide
the pointwise limit for fixed ω ∈ Ω and a dominating function.

In the case of T2 we get

lim
t2−t1→0

T2 ≤ lim
t2−t1→0

∥∥∥∫ t2

t1

AE(t2 − σ)A
r−1
2 F (X(t2)) dσ

∥∥∥
Lp(Ω;H)

+ lim
t2−t1→0

∥∥∥∫ t2

t1

A
r+1
2 E(t2 − σ)

(
F (X(t2))− F (X(σ))

)
dσ
∥∥∥
Lp(Ω;H)

.
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Because of (3.5), where we can choose s = r + 1 and δ = r+1
4 > 0, the limit of the

second summand is 0. For the first summand we use Lemma 3.2 (iv) with ρ = 1∥∥∥∫ t2

t1

AE(t2 − σ)A
r−1
2 F (X(t2, ω)) dσ

∥∥∥ ≤ C‖A r−1
2 F (X(t2, ω))‖

≤ C
(
1 + ‖X(t2, ω)‖

)
which belongs to Lp(Ω; R). It also holds that

lim
t2−t1→0

∥∥∥∫ t2

t1

AE(t2 − σ)A
r−1
2 F (X(t2, ω)) dσ

∥∥∥ = 0

by Lemma 4.2 (ii). This completes the proof for T2.
Next we take care of T3, which is estimated by

T3 ≤
∥∥∥ ∫ t1

0

A
r+1
2
(
E(t2 − σ)− E(t1 − σ)

)
F (X(t1)) dσ

∥∥∥
Lp(Ω;H)

+
∥∥∥∫ t1

0

A
r+1
2
(
E(t2 − σ)− E(t1 − σ)

)(
F (X(t1))− F (X(σ))

)
dσ
∥∥∥
Lp(Ω;H)

.

For almost every ω ∈ Ω we have that A
r−1
2 F (X(t1, ω)) ∈ H. Therefore, by Lemma

4.2 (iv),

lim
t2−t1→0

∥∥∥ ∫ t1

0

A
(
E(t2 − σ)− E(t1 − σ)

)
A
r−1
2 F (X(t1, ω)) dσ

∥∥∥ = 0.

It is also true that∥∥∥∫ t1

0

A
r+1
2
(
E(t2 − σ)− E(t1 − σ)

)
F (X(t1, ω)) dσ

∥∥∥
≤
∥∥∥∫ t1

0

A
r+1
2 E(t1 − σ)F (X(t1, ω)) dσ

∥∥∥,
which is by (3.4) a random variable in Lp(Ω; R). Hence, once again, Lebesgue’s
dominated convergence theorem yields that the limit of this summand is 0 with
respect to the norm in Lp(Ω;H).

For the second summand we get by Lemma 3.2 (ii)∥∥∥∫ t1

0

A
r+1
2
(
E(t2 − σ)− E(t1 − σ)

)(
F (X(t1))− F (X(σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤
∫ t1

0

∥∥A− η2 (E(t2 − t1)− I
)
A
r+1+η

2 E(t1 − σ)
(
F (X(t1))− F (X(σ))

)∥∥
Lp(Ω;H)

dσ

≤ C(t2 − t1)
η
2

∫ t1

0

(t1 − σ)−
2+η
2
∥∥A r−1

2
(
F (X(t1))− F (X(σ))

)∥∥
Lp(Ω;H)

dσ,

where η ∈ (0, 2]. We continue the estimate by applying Assumption 2.2 and the
Hölder continuity of X with exponent 1

2 with respect to the norm ‖ · ‖Lp(Ω;H) as it
was shown in (4.1) with s = 0. This gives∥∥∥∫ t1

0

A
r+1
2
(
E(t2 − σ)− E(t1 − σ)

)(
F (X(t1))− F (X(σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤ C(t2 − t1)
η
2

∫ t1

0

(t1 − σ)−
2+η−1

2 dσ = C
2

1− η
t

1−η
2

1 (t2 − t1)
η
2 .

Therefore, in the limit this summand also vanishes as long as η ∈ (0, 1).
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For T4, one has to use Lemma 3.3 which yields

lim
t2−t1→0

T4

≤ lim
t2−t1→0

C
∥∥∥(∫ t2

t1

∥∥A r+1
2 E(t2 − σ)G(X(σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ lim
t2−t1→0

C
∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)A

r
2G(X(t2))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ lim
t2−t1→0

C
∥∥∥(∫ t2

t1

∥∥A r+1
2 E(t2 − σ)

(
G(X(σ))−G(X(t2))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

.

The limit of the second summand is 0 because of (3.2), where we again choose
s = r + 1 and δ = r+1

4 > r
2 . By Lemma 3.2 (iii) with ρ = 1 and Assumption 2.1

the first summand is pointwise dominated by

(∫ t2

t1

∥∥A 1
2E(t2 − σ)A

r
2G(X(t2, ω))

∥∥2

L0
2

dσ
) 1

2

=
( ∞∑
m=1

∫ t2

t1

∥∥A 1
2E(t2 − σ)A

r
2G(X(t2, ω))ϕm

∥∥2 dσ
) 1

2

≤ C
( ∞∑
m=1

∥∥A r
2G(X(t2, ω))ϕm

∥∥2
) 1

2 ≤ C
(
1 +

∥∥X(t2, ω)
∥∥)

where (ϕm)m≥1 is an arbitrary orthonormal basis of U0 and the last term belongs
to Lp(Ω; R) by Theorem 1 in [5]. Lemma 4.2 (i) yields

lim
t2−t1→0

∫ t2

t1

∥∥A 1
2E(t2 − σ)A

r
2G(X(t2, ω))

∥∥2

L0
2

dσ

=
∞∑
m=1

lim
t2−t1→0

∫ t2

t1

∥∥A 1
2E(t2 − σ)A

r
2G(X(t2, ω))ϕm

∥∥2 dσ = 0.

In fact, the interchanging of sum and limit is justified by another application of
Lebesgue’s Theorem. Altogether this completes the proof for T4.

Finally, the estimate of the term T5 is done in a very similar way, since we have

T5 ≤ C
∥∥∥(∫ t1

0

∥∥A r+1
2
(
E(t2 − σ)− E(t1 − σ)

)
G(X(t1))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C
∥∥∥(∫ t1

0

∥∥A r+1
2
(
E(t2 − σ)− E(t1 − σ)

)
×
(
G(X(t1))−G(X(σ))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

by Lemma 3.3. Using the same technique as for T4, the desired result for the
first summand follows by Lebesgue’s dominated convergence theorem together with
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Lemma 4.2 (iii) and (3.1). The second summand is further estimated by∥∥∥(∫ t1

0

∥∥A r+1
2
(
E(t2 − σ)− E(t1 − σ)

)(
G(X(t1))−G(X(σ))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥2

Lp(Ω;H)

=
∥∥∥∫ t1

0

∥∥A r+1
2
(
E(t2 − σ)− E(t1 − σ)

)(
G(X(t1))−G(X(σ))

)∥∥2

L0
2

dσ
∥∥∥
Lp/2(Ω;R)

≤ C(t2 − t1)η
∥∥∥∫ t1

0

(t1 − σ)−1−r−η ‖G(X(t1))−G(X(σ))‖2L0
2

dσ
∥∥∥
Lp/2(Ω;R)

≤ C(t2 − t1)η
∫ t1

0

(t1 − σ)−1−r−η ‖X(t1)−X(σ)‖2Lp(Ω;H) dσ

≤ C(t2 − t1)η
1

1− r − η
t1−r−η1 .

For the first inequality we applied Lemma 3.2 (i) and (ii) with an arbitrary param-
eter η ∈ (0, 1−r). Then we used (2.2) and the 1

2 -Hölder continuity of X. It follows,
as in all previous cases, that the summand vanishes in the limit t2 − t1 → 0. This
completes the proof. �

5. Additive noise and optimal regularity

In this section we briefly review the assumptions and our results in the case of
additive noise, that is, we consider the case where G ∈ L2

0 is independent of X.
Then the SPDE (1.1) has the form

dX(t) + [AX(t) + F (X(t))] dt = GdW (t), for 0 ≤ t ≤ T,
X(0) = X0.

(5.2)

For related regularity results in this special case we refer to [4, Ch. 5].
Since now G is a fixed bounded linear operator Assumption 2.1 is simplified to

Assumption 5.1 (Additive noise). The Hilbert-Schmidt operator G satisfies

‖G‖L0
2,r

= ‖A r
2G‖L0

2
<∞.(5.3)

Recall that the covariance operator Q of the Wiener process W is incorporated
into the norm ‖ · ‖L0

2
. If, for example, H = U and G is the identity I : H → H,

then (5.3) reads as follows

‖I‖L0
2,r

=
∞∑
m=1

∥∥A r
2Q

1
2ϕm

∥∥2
<∞,

where (ϕm)m≥1 denotes an arbitrary orthonormal basis of the Hilbert space H.
This is a common assumption on the covariance operator Q (see [4]). In particular,
for r = 0 this condition becomes ‖I‖L0

2
= Tr(Q) <∞.

Our result for additive noise is summarized by the following corollary.

Corollary 5.2 (Additive noise). If the Assumptions 2.2, 2.3 and 5.1 hold for some
r ∈ [0, 1], p ∈ [2,∞), then the unique mild solution X : [0, T ] × Ω → H to (5.2)
takes values in Ḣr+1. Moreover, for every s ∈ [0, r + 1], the solution process is

continuous with respect to
(
E [‖ · ‖ps ]

) 1
p and fulfills

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,
r+1−s

2 )
<∞.
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We stress that the case r = 1 is now included. In fact, the only place, where
r < 1 is required, is the estimate (3.2) and its consequences. But in the case of
additive noise the left-hand side of this estimate is equal to zero and we avoid this
problem. The same is true for the proof of continuity, where the critical terms
vanish analogously (c.f. the proof of Theorem 4.1).

We conclude this section by an example, which demonstrates that our spatial
regularity results are optimal. Without loss of generality we restrict our discussion
to the case p = 2. For p > 2 one may use the results on the optimal regularity of
the stochastic convolution from [13] or [1].

Example 5.3. Let H = L2(0, 1) be the space of all square integrable real functions
which are defined on the unit interval (0, 1). Further, assume that −A is the
Laplacian with Dirichlet boundary conditions. In this situation the orthonormal
eigenbasis (ek)k≥1 of −A is explicitly known to be

λk = k2π2 and ek(y) =
√

2 sin(kπy) for all k ≥ 1, y ∈ (0, 1).

Consider the SPDE
dX(t) +AX(t) dt = GdW (t), for t ∈ [0, T ]

X(0) = 0.
(5.4)

We chooseW to be aQ-Wiener process onH withQ = I and the operatorG = A−
1
2

so that Gek = λ
− 1

2
k ek. Then we have

‖G‖L0
2,r

=
∞∑
k=1

∥∥A r
2Gek

∥∥2 =
∞∑
k=1

λr−1
k = π2(r−1)

∞∑
k=1

k2(r−1).

Thus, Assumption 5.1 is satisfied for all r ∈ [0, 1
2 ) and Corollary 5.2 yields that the

mild solution X to (5.4) takes values in Ḣr+1 for all r ∈ [0, 1
2 ).

In the following we show that X(t) does not map into Ḣ
3
2 almost surely. The

mild formulation (2.1) now reads

X(t) =
∫ t

0

E(t− σ)GdW (σ).

Hence, by the Itô-isometry for the stochastic integral we have

E
[∥∥A 3

4X(t)
∥∥2] =

∫ t

0

∥∥A 3
4E(t− σ)G

∥∥2

L0
2

dσ

=
∫ t

0

∞∑
k=1

λ
3
2
k e−2λk(t−σ)λ−1

k dσ

=
1
2

∞∑
k=1

λ
− 1

2
k

(
1− e−2λkt

)
.

Since the eigenvalues λk form an increasing sequence we have(
1− e−2λkt

)
≥
(
1− e−2λ1t

)
for all t > 0. Therefore,

E
[∥∥A 3

4X(t)
∥∥2] ≥ 1

2
(
1− e−2λ1t

) ∞∑
k=1

λ
− 1

2
k

=
1

2π
(
1− e−2π2t

) ∞∑
k=1

k−1 =∞ for all t > 0.
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[5] A. Jentzen and M. Röckner. Regularity analysis for stochastic partial differential equations

with nonlinear multiplicative trace class noise. Preprint, arXiv:1005.4095v1, 2010.
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