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Abstract

In a previous paper [6] we suggested a numerical method for com-

puting all Lyapunov exponents of a dynamical system by spatial inte-

gration with respect to an ergodic measure. The method extended an

earlier approach of Aston and Dellnitz [2] for the largest Lyapunov ex-

ponent by integrating the diagonal entries from the QR-decomposition

of the Jacobian for an iterated map. In this paper we provide an

asymptotic error analysis of the method for the case in which all Lya-

punov exponents are simple. We employ Oseledec multiplicative er-

godic theorem and impose certain hyperbolicity conditions on the in-

variant subspaces that belong to neighboring exponents. The resulting

error expansion shows that one step of extrapolation is enough to ob-

tain exponential decay of errors.
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1 Introduction

In this paper we analyze a numerical method for computing all Lyapunov

exponents of a discrete time dynamical system by spatial integration. This

method was proposed in [6] as an extension of earlier work by Aston and

Dellnitz [2],[3]. In particular, we will derive an error expansion that justifies

the extrapolation procedure applied in [6].
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We consider a dynamical system generated by the iterates of a C1-

diffeomorphism

g : M → M, (1.1)

where M is a smooth and compact d-dimensional submanifold of some Rk.

The Theorem of Oseledec [24],[28] associates with any invariant ergodic mea-

sure µ on the Borel σ-algebra of M a set of Lyapunov exponents

λ1 ≥ λ2 ≥ . . . ≥ λd

and a decomposition of the tangent space TM into subspaces invariant under

the linearization, for details see Appendix A.

The idea in [6] is to approximate λj as follows

λj ≈ ajn =
1

n

∫

M

ln(Rjj(Dgn(x)))dµ(x). (1.2)

Here gn = g ◦ · · · ◦ g denotes the n-th iterate of g and Dgn its Jacobian.

The number Rjj(A), A ∈ Rd×d is the (j, j)-entry of the unique upper tri-

angular matrix R that has positive diagonal entries and satisfies the QR-

decomposition A = QR, QTQ = Id. In [6] this approach was called hybrid

since it combines a spatial integration method with the well known QR-

method for Lyapunov exponents along single trajectories (see [7],[10],[11],

[13],[16],[18] and [21],[5] for some general theory).

While one can establish convergence limn→∞ ajn = λj under rather weak

conditions (see [6, Theorem 2]) we prove in this paper a more detailed error

expansion of the type

ajn = λj +
Cj

n
+O

(
e−∆jn

n

)

. (1.3)

Here Cj is a constant that can be expressed as an appropriate µ-integral

(see (2.14)) and ∆j measures the distance of λj to the remaining Lyapunov

spectrum (see (2.16)).

The expansion (1.3) immediately suggests to eliminate the slow principal

error term by extrapolation (cf. [3]),

bjn = (n+ 1)ajn+1 − najn, n = 0, 1, . . . .

In Figure 1 we illustrate the error behavior for the time T -map (T = 0.2)

of the Lorenz system. For the computations we used the package GAIO by
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Figure 1: The Lorenz system : Errors |λj−ajn| of approximate Lyapunov

exponents (left) and of extrapolated values |λj−bjn| (right) : j = 1(∗), j =

2(×), j = 3(+). Note the different scales on the vertical axis.
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Dellnitz and co-authors ( cf. [8], [9]) which allows to approximate invariant

measures by elementary measures supported on box collections. Parameter

values are as in [6, Example 3] with the exception that the number of rga-

steps was raised to 27. This avoids spoiling the convergence rates as n → ∞

by errors in the approximate measure. For general purposes the latter errors

should be properly balanced with errors in (1.3), see [6] for some comments

on this problem.

Our assumptions and the precise results will be formulated in Section 2

with the proofs given in Section 3. One of our main assumptions will be

simplicity of the Oseledec invariant subspaces. Together with some integra-

bility conditions this will suffice to prove an intermediate result of the form

ajn = λj +
Cj

n
+ o( 1

n
), see Theorem 1. Then much stronger hyperbolicity con-

ditions will be imposed for the proof of (1.3). The numerical experiments

in [6] and [3] suggest that these strong assumptions are actually satisfied for

standard examples such as the Henon map or the Lorenz system. But we

are not aware of rigorous results in this direction.

Exterior algebra is generally known to be helpful for handling all Lya-

punov exponents and has even been used numerically, cf. [1]. It will also

be the main tool for deriving (1.3). Therefore we summarize the essentials

needed for this paper in Appendix B. However, we emphasize that the hy-

brid method itself does not make explicit use of exterior products and hence

does not suffer from the curse of dimension entailed by spaces of exterior
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products.

2 Assumptions and main results

We briefly recall the realizaton of the hybrid method from [6] and then discuss

the special situation of the Oseledec Theorem that will be considered.

2.1 The hybrid method

Let A = Q(A)R(A) be the unique QR-decomposition of a nonsingular matrix

A ∈ Rd×d such that Q(A) ∈ Rd×d is orthogonal and R(A) ∈ Rd×d is upper

triangular with positive diagonal entries. The hybrid method approximates

the j−th Liapunov exponent λj by the sequence of integrals

ajn =
1

n

∫

ln (Rjj(Dgn(x)) dµ(x), n ∈ N0. (2.4)

We note that in case j = 1 we have R11(Dgn(x)) = ||Dgn(x)e1|| where

e1 = (1, 0, . . . , 0)T . Then the hybrid method coincides with taking v = e1 in

the vector method proposed in [4].

The measure µ will be computed approximately by the package GAIO

(see [8],[9] in general and [6] for details in our case). The elements Rjj (Dgn(x))

are computed as in the QR−method for single trajectories (see [10],[11],[13],[18]).

Take any nonsingular matrix Z0 ∈ Rd×d (e.g. Z0 = Id) and define the se-

quence {Zn}n∈N0 via

Zn+1 := Dg(gn(x))Q(Zn) , n ∈ N0 .

From the decomposition Dgn(x) = Q (Dgn(x))R (Dgn(x)) one obtains by

induction (cf. [10], [18])

R (Dgn(x)) =
1∏

i=n

R(Zi) and Q (Dgn(x)) = Q(Zn), n ∈ N0.

The diagonal values of the upper triangular matrices are given by

Rjj (Dgn(x)) =
n∏

i=1

Rjj(Zi).
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2.2 Oseledec spaces and Oseledec minors

In the following we will always assume that there exists some ergodic prob-

ability measure µ on the Borel σ-algebra of M . By the theorem of Oseledec

(see Appendix A and [20], [24]) there exists a Borel set Mµ ⊂ M of full

measure, invariant under g such that for all x ∈ Mµ and v ∈ TxM the limit

λ(x, v) = lim
n→∞

1

n
ln ‖Dgn(x)v‖

exists and is independent of x. Moreover, there is a measurable decomposi-

tion TxM =
⊕s

i=1W
i(x) for some s ≤ d and there are numbers λ̃1 > . . . > λ̃s

such that the following holds for j = 1, . . . , s

λ̃j = λ(x, v) for all x ∈ Mµ and v ∈

s⊕

i=j

W i(x)\

s⊕

i=j+1

W i(x).

Counting the λ̃j values according to their multiplicities we obtain the Lya-

punov exponents λ1 ≥ . . . ≥ λd.

Throughout the paper we will make the simplifying assumption

dimW i(x) = 1 for i ∈ 1, . . . , s for µ− a.e. x ∈ M, (2.5)

which implies s = d in the decomposition TxM =
⊕d

i=1W
i(x). Moreover,

there exist vectors wi(x) of unit length that are measurable with respect to

x ∈ M and span the spaces W i(x), i.e.

W i(x) = span{wi(x)}, |wi(x)| = 1, i = 1, . . . , d, x ∈ Mµ. (2.6)

By the invariance of W i(x) under g the spanning vectors from (2.6) satisfy

Dg(x)wi(x) = a(i)(x)wi(g(x)), (2.7)

for some scalar a(i)(x). For the mappings a(i) : Mµ → R this implies

|a(i)(x)| = ‖Dg(x)wi(x)‖ i = 1, . . . , d .

By the continuity of Dg(·) the mappings
∣
∣a(i)(·)

∣
∣ are measurable.

Using induction on equation (2.7) leads to

Dgn(x)wi(x) =

0∏

ν=n−1

a(i)(gν(x))wi(g
n(x)) . (2.8)
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It is convenient to define (cf. [2], [3])

A(i)
n (x) =

0∏

ν=n−1

a(i)(gν(x)) i = 1, . . . , d . (2.9)

For j ∈ {1, . . . , d} let Ord(j, d) be the set of ordered multiindices 1 and define

Ai
n(x) = A(i1)

n (x) · · ·A
(ij)
n (x), i = (i1, . . . , ij) ∈ Ord(j, d). (2.10)

For the special element 1j = (1, . . . , j) ∈ Ord(j, d) we have

A
1j
n (x) = A(1)

n (x) · · ·A(j)
n (x).

Let W (x) ∈ Rd,d denote the Oseledec matrix with columns w1(x), . . . , wd(x)

and introduce its trailing principal minors

Pj(x) = det










Wj j(x) · · · Wj d(x)

Wj+1 j(x) · · · Wj+1d(x)

. . . . . . . . . . . . . . . . . . . . . . . . . .

Wd j(x) · · · Wd d(x)










. (2.11)

One of our main assumptions is positivity of the minors

|Pj+1(x)| > 0 and |Pj(x)| > 0 for µ-a.e. x ∈ M, (A1)

where Pj(x) = 1 in case j = d + 1. Later on we impose the stronger

requirement that for some ε̄j > 0,

|Pj+1(x)| > ε̄j and |Pj(x)| > ε̄j µ-a.e.. (A1’)

We further require that there exists some εj > 0 such that

Gj (W (x)) ≥ εj and Gj−1 (W (x)) ≥ εj , µ-a.e., (A2)

where

Gj(A) =
√

det (A(1 : d, 1 : j)TA(1 : d, 1 : j))

denotes the Gramian volume of the parallelepiped generated by the first j

column vectors of a matrix A ∈ Rd×d (cf. Appendix B or [17]). In case j = 1

we set G0(W (x)) = 1 in (A2).

1Ord(j, d) = {δ ∈ {1, . . . , d}{1,...,j} : δ strictly monotone} see also Appendix B.
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Next introduce the inverse matrices (αij(x))
d
i,j=1 = W−1(x) ∈ Rd×d for

x ∈ Mµ (cf.[3]) which satisfy

eν =

d∑

i=1

αiν(x)wi(x) for ν = 1, . . . , d. (2.12)

For multiindices i = (i1, . . . , ij) ∈ Ord(j, d) we use minors αi(x) of the

α-matrix defined by

αi(x) = αi1,...,ij (x) = det(α(i,1j)(x)) = det










αi11(x) · · · αi1j(x)

αi21(x) · · · αi2j(x)

. . . . . . . . . . . . . . . . . . . . .

αij1(x) · · · αijj(x)










.

In case i = 1j = (1, . . . , j) we have the leading principal minor α1j (x).
2.3 Convergence Theorem

In section 3.1 below we show that the Gramian volume of the first j columns

of Dgn(x) may be written as

(Gj (Dgn(x)))2 = Γj,n(x) + ρj,n(x) ,

where

Γj,n(x) =
(
α1j (x))2 (A1j

n (x)
)2

Gj (W (gn(x)))2 (2.13)

and ρj,n(x) is a remainder (see (3.19)) for which we will derive good estimates

(see (3.27)).

Theorem 1. For a fixed index j ∈ {1, . . . , d} let the system (1.1) satisfy

(2.5) and assumptions (A1), (A2). Moreover, assume

(i) ln
|Pj+1(x)|

|Pj(x)|
is µ-integrable.

(ii) The sequences of functions

(

ln

(

1 +
ρj,n(x)

Γj,n(x)

))

n∈N and

(

ln

(

1 +
ρj−1,n(x)

Γj−1,n(x)

))

n∈N
have a common µ-integrable majorant.
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Then the following expansion holds

1

n

∫

lnRjj(Dgn(x))dµ = λj +
Cj

n
+ o

(
1

n

)

,

where

Cj =

∫

ln
|Pj+1(x)|Gj (W (x))

|Pj(x)|Gj−1 (W (x))
dµ. (2.14)

2.4 Hyperbolicity and spectral gaps

The standard definition of a hyperbolic set [25],[21] assumes that 0 is not a

Lyapunov exponent and the dynamics can be split into exponentially decay-

ing and growing components. In the following we consider such a splitting at

an arbitrary point in the Lyapunov spectrum, similar to the (λ, µ)-splitting

in [21] and in analogy to splittings of the Sacker-Sell spectrum in [27],[12].

Definition 2. For some j ∈ {1, . . . , d−1} the system (1.1) is called hyperbolic

of type (λj+1, λj) if there exists a set M j
µ ⊂ Mµ with µ

(

M j
µ

)

= 1 and

constants C ≥ 1, µr
j+1,µ

l
j such that

(i) λj+1 ≤ µr
j+1 < µl

j ≤ λj.

(ii) For all x ∈ M j
µ,

(a) ‖Dgn(x)v‖ ≤ C enµ
r
j+1‖v‖ if v ∈

d⊕

i=j+1

W i(x) and n ≥ 0,

(b) ‖Dgn(x)v‖ ≥
1

C
enµ

l
j‖v‖ if v ∈

j
⊕

i=1

W i(x) and n ≥ 0.

The constants C, µl
j and µr

j+1 are called the (hyperbolicity) parameters.

Remark. For any fixed x ∈ Mµ it is clear that hyperbolicity parameters

depending on x exist, see Lemma 5. Our assumption here is that they can be

taken independently of x.

Obviously the set M j
µ is hyperbolic in the classical sense when the system

is hyperbolic of type (λj+1, λj) with parameters µr
j+1 < 0 < µl

j . The follow-

ing theorem shows that hyperbolicity of type (λj+1, λj) leads to exponential

estimates of remainders.
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Theorem 3. For some fixed j ∈ {1, . . . , d} let the system (1.1) satisfy (2.5)

and assumptions (A1’),(A2), and let it be hyperbolic of type (λj+1, λj) and

of type (λj , λj−1) with parameters C,µr
j+1, µ

l
j and C,µr

j , µ
l
j−1, respectively.

Then the following estimate holds

1

n

∫

lnRjj(Dgn(x))dµ = λj +
Cj

n
+O

(
e−∆jn

n

)

, (2.15)

where Cj is defined in (2.14) and ∆j is given by

∆j = min
{

µl
j − µr

j+1, µ
l
j−1 − µr

j

}

. (2.16)

Remarks. 1. Note that the assumptions of Theorem 3 are stronger than

those of Theorem 1. Condition (A1’) implies both assumptions (A1) and

(i) of Theorem 1 and the hyperbolicity condition in Theorem 3 implies the

integrability condition (ii) of Theorem 1, see Section 3.2.

2.In case j = 1 the assumption reduces to hyperbolicity of type (λ2, λ1) with

∆1 given by ∆1 = µl
1 − µr

2. Similarly, in case j = d we assume hyperbolicity

of type (λd, λd−1) and set ∆d = µl
d−1 − µr

d.

3. The proof below suggests that the results of Theorems 1 and 3 remain valid

if instead of (2.5) one only assumes simplicity of the j-th Lyapunov exponent

λj. However, we have not carried out the details of such a generalization.

The following corollary shows that error expansions hold if each Lya-

punov exponent allows a hyperbolic splitting and if all Oseledec minors be-

have properly.

Corollary 4. Let the system (1.1) satisfy (2.5) and the following conditions:

(i) There exists an ε > 0 such that

|Pj(x)| > ε for j = 2, . . . , d and µ a.e. x ∈ M.

(ii) The system is hyperbolic of type (λj+1, λj) for j = 1, . . . , d− 1.

Then the expansion

1

n

∫

lnRjj(Dgn(x))dµ = λj +
Cj

n
+O

(
e−∆jn

n

)

for j = 1, . . . , d,

holds with Cj ,∆j given by (2.14) and (2.16).

Note that there are no assumptions on the Gramians Gj . These follow

from the hyperbolicity conditions as we will show in Section 3.2.

9



3 Proof of main results

3.1 Convergence under integrability conditions (Theorem 1)

In the following we will frequently use the following elementary fact. If a real

sequence cn > 0 satisfies limn→∞
1
n
ln cn = −∆ < 0 then cn = O(e(−∆+ε)n)

for every 0 < ε < ∆.

Lemma 5. Consider i > j and 0 < ε < λj − λi = ∆. Then for µ a.e.

x ∈ M there is a constant Cx,ε, such that

∣
∣
∣A(i)

n (x)
∣
∣
∣ ≤ Cx,εe

(−∆+ε)n
∣
∣
∣A(j)

n (x)
∣
∣
∣ .

In particular, limn→∞

∣

∣

∣

A
(i)
n (x)

∣

∣

∣

∣

∣

∣
A

(j)
n (x)

∣

∣

∣

= 0.

Proof. From the Oseledec theorem and (2.8),(2.9) we obtain

1

n
ln

∣
∣
∣A

(i)
n (x)

∣
∣
∣

∣
∣
∣A

(j)
n (x)

∣
∣
∣

=
1

n
ln

‖Dgn(x)wi(x)‖

‖Dgn(x)wj(x)‖

=
1

n
ln ‖Dgn(x)wi(x)‖ −

1

n
ln ‖Dgn(x)wj(x)‖

→ λi − λj < 0, as n → ∞.

Therefore, for each x ∈ Mµ we find some Cx,ε such that
∣
∣
∣A

(i)
n (x)

∣
∣
∣

∣
∣
∣A

(j)
n (x)

∣
∣
∣

≤ Cx,εe
(−∆+ε)n, n ∈ N.

Lemma 6. Let i, ℓ ∈ Ord(j, d) be arbitrary with i 6= 1j = (1, . . . , j) and

0 < ε < λj − λj+1 = ∆. Then there exist constants Cx,ε for x ∈ Mµ such

that ∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

+

∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 ≤ Cx,εe
(−∆+ε)n.

In particular,

lim
n→∞

∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

= lim
n→∞

∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 = 0.
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Proof. As in the proof of Lemma 5 the definition (2.10) of A
(i)
n (x) leads to

lim
n→∞

1

n
ln

∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

=

j
∑

k=1

λik −

j
∑

ν=1

λν = −∆i

and

lim
n→∞

1

n
ln

∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 =

j
∑

k=1

λik +

j
∑

k=1

λℓk − 2

j
∑

ν=1

λν = −∆i,ℓ .

Note that 0 < ∆ ≤ ∆i ≤ ∆i,ℓ follows from i 6= 1j. Hence for some Cx,ε ≥ 1

and µ a.e. x ∈ M ,
∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

≤ Cx,εe
(−∆i+ε)n and

∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 ≤ Cx,εe
(−∆i,ℓ+ε)n.

The proof of Theorem 1 proceeds in four steps.

Step 1 (Expansion of Gramian volumes)

We make extensive use of exterior products and their properties as summa-

rized in Appendix B. From the definition (2.12) we obtain

Dgn(x)ek = Dgn(x)
d∑

i=1

αik(x)wi(x)

=

d∑

i=1

αik(x)Dgn(x)wi(x)

=

d∑

i=1

αik(x)A
(i)
n (x)wi(g

n(x)), k = 1, . . . , d. (3.17)

We abbreviate Dgn(x)·k = Dgn(x)ek Then the properties of the exterior

product (see Appendix B, Lemma 16) and (3.17) yield

(Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j =

=
∑

ν∈Ord(j,d)

αν(x)
(

∧j
k=1A

(νk)
n (x)wνk(g

n(x))
)

=
∑

ν∈Ord(j,d)

αν(x)

j
∏

k=1

A(νk)
n (x)(∧j

k=1wνk(g
n(x))).
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Theorem 11 and Corollary 12 lead to the following expression for the Gramian

(Gj (Dgn(x)))2 =
∥
∥
∥(Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j

∥
∥
∥

2
=

=
∑

ν,ℓ∈Ord(j,d)

αν(x)αℓ(x)

j
∏

k=1

A(νk)
n (x)A(ℓk)

n (x)
〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D

=
∑

ν,ℓ∈Ord(j,d)

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D
(3.18)

= Γj,n(x) + ρj,n(x) ,

where

Γj,n(x) =
(
α1j (x))2 (A1j

n (x)
)2

‖w1(g
n(x)) ∧ · · · ∧ wj(g

n(x))‖2

and ρj,n is defined as the remainder term in (3.18), cf. (2.13) in Section 2.2.

Therefore,

ρj,n(x) = (3.19)

=
∑

ν,ℓ∈Ord(j,d)
ℓ 6=1j αν(x)αℓ(x)A

ν
n(x)A

ℓ
n(x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D

+
∑

ν∈Ord(j,d)
ν 6=1j αν(x)α1j (x)Aν

n(x)A
1j
n (x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wk (g

n(x))
〉

D
.

For the terms ρj−1,n(x) and Γj−1,n(x) we have analogous expressions with

indices running in Ord(j − 1, d).

Step 2 (Integral expression of remainder)

We proceed along the lines of [15], [16], use (2.8) and the Oseledec theorem

(Appendix A, Theorem 9) to conclude

λj = lim
n→∞

1

n
ln ‖Dgn(x)wj(x)‖

= lim
n→∞

1

n
ln

0∏

ν=n−1

∣
∣
∣a(j)(gν(x))

∣
∣
∣ ‖wj (g

n(x))‖
︸ ︷︷ ︸

=1

= lim
n→∞

1

n

n−1∑

ν=0

ln
∣
∣
∣a(j)(gν(x))

∣
∣
∣ .
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By Birkhoff’s ergodic theorem (see [26]) we obtain

λj = lim
n→∞

1

n

n−1∑

ν=0

ln
∣
∣
∣a(j)(gν(x))

∣
∣
∣ =

∫

ln
∣
∣
∣a(j)(x)

∣
∣
∣ dµ .

Using the definition (2.7) of a(j)(x) we arrive at

λj =

∫

ln ‖D g(x)wj(x)‖dµ. (3.20)

As in (2.4) we define for j = 1, . . . , d

ajn =
1

n

∫

lnRjj(Dgn(x))dµ.

For the existence of these integrals compare [6, Theorem 2]. We show below

that the limit

lim
n→∞

n(ajn − λj)

exists and agrees with Cj given by (2.14). Then this proves

ajn = λj +
Cj

n
+ o

(
1

n

)

.

Let us first write

najn =

∫

lnRjj(Dgn(x))dµ

=

∫

ln
Rjj(Dgn(x))
∣
∣
∣A

(j)
n (x)

∣
∣
∣

dµ +

∫

ln
∣
∣
∣A(j)

n (x)
∣
∣
∣ dµ. (3.21)

By the definition (2.9) of A
(j)
n (x) and the invariance of the µ-integral of

ln
∣
∣a(j)(x)

∣
∣ the second term satisfies

∫

ln
∣
∣
∣A(j)

n (x)
∣
∣
∣ dµ =

∫

ln
0∏

ν=n−1

∣
∣
∣a(j)(gν(x))

∣
∣
∣ dµ

=

n−1∑

ν=0

∫

ln
∣
∣
∣a(j)(gν(x))

∣
∣
∣ dµ

= nλj .

Therefore, equation (3.21) leads to

n(ajn − λj) =

∫

ln
Rjj(Dgn(x))
∣
∣
∣A

(j)
n (x)

∣
∣
∣

dµ. (3.22)
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In the following we discuss the integral on the right-hand side.

Step 3 (Estimates of integrand)

Let us first show that Cj from (2.14) can be written as follows

Cj =

∫

ln

∣
∣α1j (x)∣∣ ‖w1(x) ∧ · · · ∧ wj(x)‖

∣
∣α1j−1(x)

∣
∣ ‖w1(x) ∧ · · · ∧ wj−1(x)‖

dµ. (3.23)

From [17, §1.4]) we have the following representation of the minors of an

inverse matrix for all multi-indices i, ν ∈ Ord(k, d) and k = 1, . . . , d

det










αi1 ν1(x) · · · αi1 νk(x)

αi2 ν1(x) · · · αi2 νk(x)

. . . . . . . . . . . . . . . . . . . . . . .

αik ν1(x) · · · αik νk(x)










=

= (−1)Ki,νdetW (x)−1 det










Wν̂1 î1
(x) · · · Wν̂1 îd−k

(x)

Wν̂2 î1
(x) · · · Wν̂2 îd−k

(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wν̂d−k î1
(x) · · · Wν̂d−k îd−k

(x)










where Ki,ν =
∑k

l=1 (il + νl) and the complementary tuples

(̂i1, . . . , îd−k), (ν̂1, . . . , ν̂d−k) ∈ Ord(d− k, k) are defined by

{̂i1, . . . , îd−k} ∪ {i1, . . . , ik} = {1, . . . , d} = {ν̂1, . . . , ν̂d−k} ∪ {ν1, . . . , νk}.

Writing this in terms of coordinates of exterior products (see Definition 14)

yields

(
∧kα(x)

)

i,ν
= (−1)Ki,ν

(
∧d−kW (x)

)

ν̂, î

detW (x)
. (3.24)

Special cases of this formula are the following (using the notation from (2.11))

∣
∣α1j (x)∣∣ = ∣∣∣∣ Pj+1(x)

det (W (x))

∣
∣
∣
∣

and
∣
∣α1j−1(x)

∣
∣ =

∣
∣
∣
∣

Pj(x)

det (W (x))

∣
∣
∣
∣
.

Hence positivity of |α1k(x)| is characterized by positivity of |Pk+1(x)| for

k = j − 1, j, and the following equation holds

|Pj+1(x)|

|Pj(x)|
=

|α1j (x)|
|α1j−1(x)|

.
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From (3.23) we conclude that for each n ∈ N
Cj =

∫

ln

∣
∣α1j (x)∣∣ ‖w1(g

n(x)) ∧ · · · ∧ wj(g
n(x))‖

∣
∣α1j−1(x)

∣
∣ ‖w1(g

n(x)) ∧ · · · ∧ wj−1(g
n(x))‖

dµ.

In order to see this, we write the integrand in (3.23) as a sum of an α and

a w term and use the g invariance of the integral for the second summand.

By our assumptions (i) and (A2) both integrals in this decomposition exist.

It remains to consider

∫

ln
Rjj (Dgn(x))

A
(j)
n (x)

− ln

∣
∣α1j (x)∣∣ ‖w1(g

n(x)) ∧ · · · ∧wj(g
n(x))‖

∣
∣α1j−1(x)

∣
∣ ‖w1(g

n(x)) ∧ · · · ∧wj−1(g
n(x))‖

dµ

=

∫

ln
Rjj (Dgn(x))

∣
∣α1j−1(x)

∣
∣ ‖w1(g

n(x)) ∧ · · · ∧wj−1(g
n(x))‖

A
(j)
n (x)

∣
∣α1j (x)∣∣ ‖w1(g

n(x)) ∧ · · · ∧ wj(g
n(x))‖

dµ.

By the properties of the exterior product and its relation to the QR-decomposition

(see Lemma 17 and (B.4) in Appendix B) we obtain

Rjj (Dgn(x)) =

∏j
i=1 Rii (Dgn(x))

∏j−1
i=1 Rii (Dgn(x))

=

(
∧jR (Dgn(x))

)1j1j
(
∧j−1R (Dgn(x)))1j1j

=

∥
∥
∥(
∧jR (Dgn(x)))·1j∥∥∥

∥
∥
∥(
∧j−1R (Dgn(x)))·1j∥∥∥

=

∥
∥
∥
∧jR(Dgn(x))(e1 ∧ · · · ∧ ej)

∥
∥
∥

∥
∥
∥
∧j−1R(Dgn(x))(e1 ∧ · · · ∧ ej−1)

∥
∥
∥

=

∥
∥
∥
∧jDgn(x)(e1 ∧ · · · ∧ ej)

∥
∥
∥

∥
∥
∥
∧j−1Dgn(x)(e1 ∧ · · · ∧ ej−1)

∥
∥
∥

=
‖Dgn(x)·1 ∧ · · · ∧Dgn(x)·j‖

‖Dgn(x)·1 ∧ · · · ∧Dgn(x)·j−1‖
.

From (3.18) we infer

(Rjj (Dgn(x)))2 =

15



=

〈

(Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j, (Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j

〉

D〈

(Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j−1, (Dgn(x))·1 ∧ · · · ∧ (Dgn(x))·j−1

〉

D

=

∑

ν,ℓ∈Ord(j,d)

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D

∑

ν,ℓ∈Ord(j−1,d)

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

〈

∧j−1
k=1wνk(g

n(x)) ,∧j−1
k=1wℓk(g

n(x))
〉

D

.

Using ρj,n(x), Γj,n(x) from (3.19),(2.13) we find from the last equation

(

Rjj (Dgn(x))

A
(j)
n (x)

)2

=
Γj,n(x) + ρj,n(x)

(Γj−1,n(x) + ρj−1,n(x))
(

A
(j)
n (x)

)2

=

(
α1j (x))2 ∥∥∥∧j

k=1wk (g
n(x))

∥
∥
∥

2

(
α1j−1(x)

)2
∥
∥
∥∧

j−1
k=1wk (gn(x))

∥
∥
∥

2 +
ρj,n(x)

Γj−1,n(x)
(

A
(j)
n (x)

)2

1 +
ρj−1,n(x)

Γj−1,n(x)

.

Finally, we use

ρj,n(x)

Γj−1,n(x)
(

A
(j)
n (x)

)2 ·

(
α1j−1(x)

)2
∥
∥
∥∧

j−1
k=1wk (g

n(x))
∥
∥
∥

2

(
α1j (x))2 ∥∥∥∧j

k=1wk (gn(x))
∥
∥
∥

2

=
ρj,n(x)

(
α1j (x))2∏j

k=1

(

A
(k)
n (x)

)2 ∥∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2

=
ρj,n(x)

Γj,n(x)

and arrive at

Rjj (Dgn(x))
∣
∣
∣A

(j)
n (x)

∣
∣
∣

·

∣
∣α1j−1(x)

∣
∣ ‖w1(g

n(x)) ∧ · · · ∧ wj−1(g
n(x))‖

∣
∣α1j (x)∣∣ ‖w1(g

n(x)) ∧ · · · ∧ wj(g
n(x))‖

=

((

1 +
ρj,n(x)

Γj,n(x)

)(

1 +
ρj−1,n(x)

Γj−1,n(x)

)−1
) 1

2

. (3.25)

Step 4 (Limits of integrals)

We now prove

lim
n→∞

∫

ln

(

1 +
ρj,n(x)

Γj,n(x)

) 1
2

dµ = 0. (3.26)
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For
ρj,n(x)
Γj,n(x)

we find the expression

∑

ν,ℓ∈Ord(j,d)
ℓ 6=1j αν(x)αℓ(x)A

ν
n(x)A

ℓ
n(x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D
(
α1j (x))2 (A1j

n (x)
)2 ∥∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2 +

+
∑

ν∈Ord(j,d)
ν 6=1j αν(x)α1j (x)Aν

n(x)A
1j
n (x)

〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wk (g

n(x))
〉

D
(
α1j (x))2 (A1j

n (x)
)2 ∥∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2 .

We estimate the sequence
ρj,n(x)
Γj,n(x)

for points x ∈ M that satisfy assumptions

(A1) and (A2). By Lemma 13 we have for ν ∈ Ord(j, d)

∥
∥
∥∧

j
k=1wνk (g

n(x))
∥
∥
∥ ≤

j
∏

k=1

‖wνk (g
n(x))‖ = 1

and thus by Cauchy’s inequality
〈

∧j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))
〉

D
≤ 1 for ν, ℓ ∈ Ord(j, d).

From our assumption (A2) we then find
∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
≤ (3.27)

≤
∑

ν,ℓ∈Ord(j,d)
ℓ 6=1j ∣

∣
∣
∣
∣
∣
∣

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)〈∧

j
k=1wνk (g

n(x)) ,∧j
k=1wℓk (g

n(x))〉
(
α1j (x))2 (A1j

n (x)
)2 ∥∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2

∣
∣
∣
∣
∣
∣
∣

+
∑

ν∈Ord(j,d)
ν 6=1j ∣

∣
∣
∣
∣
∣
∣

αν(x)A
ν
n(x)〈∧

j
k=1wνk (g

n(x)) ,∧j
k=1wk (g

n(x))〉

α1j (x)A1j
n (x)

∥
∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2

∣
∣
∣
∣
∣
∣
∣

≤
∑

ν,ℓ∈Ord(j,d)
ℓ 6=1j ∣

∣
∣
∣
∣
∣
∣

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

(
α1j (x))2 (A1j

n (x)
)2 ∥∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2

∣
∣
∣
∣
∣
∣
∣

+
∑

ν∈Ord(j,d)
ν 6=1j ∣

∣
∣
∣
∣
∣
∣

αν(x)A
ν
n(x)

α1j (x)A1j
n (x)

∥
∥
∥∧

j
k=1wk (gn(x))

∥
∥
∥

2

∣
∣
∣
∣
∣
∣
∣

≤
1

ε2j







∑

ν,ℓ∈Ord(j,d)
ℓ 6=1j ∣

∣
∣
∣
∣
∣
∣

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

(
α1j (x))2 (A1j

n (x)
)2

∣
∣
∣
∣
∣
∣
∣

+
∑

ν∈Ord(j,d)
ν 6=1j ∣

∣
∣
∣
∣

αν(x)A
ν
n(x)

α1j (x)A1j
n (x)

∣
∣
∣
∣
∣







.
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The terms αν(x), ν ∈ Ord(m,d) are independent of n so that Lemma 6

implies pointwise convergence

lim
n→∞

ln

(

1 +
ρj,n(x)

Γj,n(x)

) 1
2

= 0

for µ a.e. x ∈ M . By Lebesgue’s Theorem and assumption (ii) we obtain

(3.26) and in a similar way

lim
n→∞

∫

ln

(

1 +
ρj−1,n(x)

Γj−1,n(x)

)− 1
2

dµ = 0.

Using (3.22) the proof is finished by taking logarithms in (3.25) and inte-

grating.

3.2 Error expansion in the hyperbolic case (Theorem 3)

The following Lemma gives an estimate of angles between Oseledec spaces.

The proof follows an idea of [25] for the hyperbolic case.

Lemma 7. Let the system (1.1) be hyperbolic of type (λj+1, λj) with param-

eters C, µr
j+1 and µl

j . Then there exists an ε0 > 0 such that

∠





j
⊕

i=1

W i(x) ,
d⊕

i=j+1

W i(x)



 ≥ ε0

for all x ∈ M j
µ.

Proof. Recall that the angle of two subspaces V,W is given by

sin(∠(V,W )) = inf{||v − w|| : v ∈ V,w ∈ W, ||v|| = 1 = ||w||}.

Let v ∈
⊕j

i=1 W
i(x) and w ∈

⊕d
i=j+1W

i(x) be vectors of unit norm and

define for x ∈ M j
µ

Kn(x) = Dgn(x)(v − w).

By the compactness of M we have a constant β > 0 such that

‖Dg(x)‖ ≤ β und ‖Dg−1(x)‖ ≤ β

for all x ∈ M . This implies

‖Kn(x)‖ ≤ βn‖v − w‖. (3.28)
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From the hyperbolicity of type (λj+1, λj) and the triangle inequality we infer

‖Kn(x)‖ ≥ ‖Dgn(x)v‖ − ‖Dgn(x)w‖

≥ C−1enµ
l
j − Cenµ

r
j+1 .

Since µr
j+1 < µl

j there exists n̄ ∈ N such that

ε̄ = C−1en̄µ
l
j − Cen̄µ

r
j+1 > 0.

Using (3.28) we arrive at

‖v − w‖ ≥ β−n̄ ‖Kn̄(x)‖ ≥ ε̄β−n̄

for all x ∈ M j
µ.

Next we improve the estimates of Lemma 6 under the hyperbolicity condi-

tion.

Lemma 8. Let the system (1.1) be hyperbolic of type (λj+1, λj) with param-

eters C, µl
j and µr

j+1. Then for any two multiindices i, ℓ ∈ Ord(j, d) with

i 6= 1j, ∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

+

∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 ≤ C4je−n∆j+1
j ,

where ∆j+1
j = µl

j − µr
j+1.

Proof. By the definition of Ai
n(x) and A

(ik)
n (x) we have

∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

=
‖Dgn(x)wi1(x)‖ · · ·

∥
∥Dgn(x)wij (x)

∥
∥

‖Dgn(x)w1(x)‖ · · · ‖Dgn(x)wj(x)‖
.

Let us repartition i,1j ∈ Ord(j, d) as follows

š = #({i1, . . . , ij} ∩ {1, . . . , j}) ,

ŝ = j − š,

{p1, . . . , pš} = {i1, . . . , ij} ∩ {1, . . . , j},

{q1, . . . , qŝ} = {i1, . . . , ij} \ {p1, . . . , pš},

{r1, . . . , rŝ} = {1, . . . , j} \ {p1, . . . , pš}.
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Then we can write
∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

=

∏š
k=1 ‖Dgn(x)wpk(x)‖

∏ŝ
k=1 ‖Dgn(x)wqk(x)‖

∏j
i=1 ‖Dgn(x)wi(x)‖

=

∏ŝ
k=1 ‖Dgn(x)wqk(x)‖

∏ŝ
k=1 ‖Dgn(x)wrk(x)‖

.

Note that 1 ≤ ŝ ≤ j by assumption. Since wqk(x) ∈
⊕d

i=j+1W
i(x) and

wrk(x) ∈
⊕j

i=1W
i(x) for k = 1, . . . , ŝ hyperbolicity leads to

∣
∣Ai

n(x)
∣
∣

∣
∣
∣A

1j
n (x)

∣
∣
∣

≤

(

C enµ
r
j+1

)ŝ

(

C−1 enµ
l
j

)ŝ
= C2ŝe−nŝ∆j+1

j ≤ C2je−nŝ∆j+1
j ≤ C2je−n∆j+1

j .

In a similar manner one proves
∣
∣Ai

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 ≤ C4je−n∆j+1
j .

Proof. (Theorem3) From (3.25) in the proof of Theorem 1 we have

n

(
1

n

∫

lnRjj(Dgn(x))dµ − λj

)

− Cj =

=

∫

ln

((

1 +
ρj,n(x)

Γj,n(x)

)(

1 +
ρj−1,n(x)

Γj−1,n(x)

)−1
) 1

2

dµ.

Note that the assumptions (A1),(i) of Theorem 1 follow from (A1’). Hence

it remains to show

en∆j

∫

ln

((

1 +
ρj,n(x)

Γj,n(x)

)(

1 +
ρj−1,n(x)

Γj−1,n(x)

)−1
) 1

2

d ≤ Ĉ (3.29)

for all n ≥ n̄.

First consider the term
ρj,n(x)
Γj,n(x)

and recall the estimate (3.27)

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
≤

≤
1

ε2j









∑

ν∈Ord(j,d)
ℓ∈Ord(j,d)

ℓ 6=1j ∣
∣
∣
∣
∣
∣
∣

αν(x)αℓ(x)A
ν
n(x)A

ℓ
n(x)

(
α1j (x))2 (A1j

n (x)
)2

∣
∣
∣
∣
∣
∣
∣

+
∑

ν∈Ord(j,d)
ν 6=1j ∣

∣
∣
∣
∣

αν(x)A
ν
n(x)

α1j (x)A1j
n (x)

∣
∣
∣
∣
∣









.
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The formula (3.24) for the minors implies for ν ∈ Ord(j, d)

∣
∣
∣
∣

αν(x)

α1j (x) ∣∣∣∣ = ∣∣∣∣∣∣∣ (∧jα(x)
)

ν,1j
(
∧jα(x)

)1j ,1j ∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣ (
∧d−jW (x)

)

j+1,...,d, ν̂
(
∧d−jW (x)

)

j+1,...,d , j+1,...,d

∣
∣
∣
∣
∣
∣
∣

,

where ν̂ ∈ Ord(d − j, d) satisfies {ν̂1, . . . , ν̂d−j} ∪ {ν1, . . . , νj} = {1, . . . , d}.

Since
(
∧d−jW (x)

)

j+1,...,d, ν̂
is the (j + 1, . . . , d) coordinate of the vector

(
∧d−jW (x)

)

·ν̂
= wν̂1(x) ∧ · · · ∧ wν̂d−j

(x),

we obtain

∣
∣
∣
∣

αν(x)

α1j (x) ∣∣∣∣ ≤ ∥
∥wν̂1(x) ∧ · · · ∧ wν̂d−j

(x)
∥
∥

∣
∣
∣
∣

(
∧d−jW (x)

)

j+1,...,d , j+1,...,d

∣
∣
∣
∣

=

∥
∥wν̂1(x) ∧ · · · ∧ wν̂d−j

(x)
∥
∥

|Pj+1(x)|
.

Using the generalized Hadamard inequality from Lemma 13 and assumption

(A1’) we find for µ-a.e. x ∈ M

∣
∣
∣
∣

αν(x)

α1j (x) ∣∣∣∣ ≤ ∏d−j
k=1 ‖wν̂k(x)‖

|Pj+1(x)|
=

1

|Pj+1(x)|
≤

1

ε̄j
.

In a similar way we obtain the following estimate for ν, l ∈ Ord(j, d)

|αν(x)αl(x)|
(
α1j (x))2 ≤

1

ε̄2j
.

Summing up we have for µ-a.e. x ∈ M

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
≤

1

ε2j ε̄
2
j









∑

ν∈Ord(j,d)
ℓ∈Ord(j,d)

ℓ 6=1j ∣
∣Aν

n(x)A
ℓ
n(x)

∣
∣

(

A
1j
n (x)

)2 +
∑

ν∈Ord(j,d)
ν 6=1j |Aν

n(x)|∣
∣
∣A

1j
n (x)

∣
∣
∣









.

The last sum has
(
d
j

)
− 1 summands and then Lemma 8 yields

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
≤

1

ε2j ε̄
2
j

((
d

j

)

− 1

)

C4je−∆j+1
j n = C̃e−∆j+1

j n. (3.30)

In order to prove (3.29) it is sufficient to show for k = j, j − 1 and n ≥ n̄

en∆k

∫ ∣
∣
∣
∣
ln

(

1 +
ρk,n(x)

Γk,n(x)

)∣
∣
∣
∣
dµ ≤ C ′. (3.31)
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We consider k = j since k = j − 1 can be handled analogously.

Using (3.30) and estimating | ln(1 + x)| by |2x| we find an n̄ ∈ N such

that for n ≥ n̄
∣
∣
∣
∣
ln

(

1 +
ρj,n(x)

Γj,n(x)

)∣
∣
∣
∣
≤ 2

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣

for µ-a.e. x ∈ M

and hence

en∆j

∫ ∣
∣
∣
∣
ln

(

1 +
ρj,n(x)

Γj,n(x)

)∣
∣
∣
∣
dµ ≤ en∆j

∫

2

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
dµ.

For n sufficiently large equation (3.30) implies

2en∆j

∣
∣
∣
∣

ρj,n(x)

Γj,n(x)

∣
∣
∣
∣
≤ 2C̃en(∆j−∆j+1

j ) ≤ 2C̃,

and then Lebesgue’s dominated convergence theorem gives the estimate

0 ≤ en∆j

∫ ∣
∣
∣
∣
ln

(

1 +
ρj,n(x)

Γj,n(x)

)∣
∣
∣
∣
dµ ≤

∫

2C̃ dµ,

which proves (3.31) for k = j.

3.3 Proof of Corollary 4

It remains to show that the assumptions (A2) of Theorem 3 are satisfied for

all j ∈ {1, . . . , d} and that there exists some ǭ > 0 such that

|P1(x)| = |det(W (x))| > ǭ for µ-a.e. x ∈ M. (3.32)

Setting γik(x) = | sin(∠(wi(x), span{wi+1(x), . . . , wk(x)}))| the formula (B.2)

leads for j = 2, . . . , d to the expression

‖w1(x) ∧ · · · ∧ wj(x)‖ = γ1j (x) · γ
2
j (x) · · · γ

j−1
j (x), for µ -a.e. x ∈ M.

Now Lemma 7 and the hyperbolicity condition (ii) imply

γii+1,...,d(x) ≥ ε′ for i = 1, . . . , d− 1.

Since γii+1,...,j(x) ≥ γii+1,...,d(x) holds for j ∈ {1, . . . , d} and i ≤ j+1 we have

another ǫ̃ > 0 such that for µ-a.e. x

‖w1(x) ∧ · · · ∧ wj(x)‖ ≥ ǫ̃, j ∈ {1, . . . , d}. (3.33)
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By Corollary 12 the Gramian determinant coincides with the norm above

and hence assumption (A2) is satisfied for all j ∈ {1, . . . , d}. Moreover, the

estimate (3.33) implies (3.32) since

‖w1(x) ∧ · · · ∧ wd(x)‖ = |det(W (x))| .

�

A Oseledec’s theorem

We state a special version of the multiplicative ergodic theorem of Oseledec

(see [24]) which may be found e.g. in [26], [28].

Theorem 9 (Oseledec, 1968). Let g be a C1-diffeomorphism of a compact

and smooth Riemannian manifold M of dimension d and let µ be an ergodic

measure of g on M . Then there exists a Borel set Mµ ⊂ M such that

g(Mµ) = Mµ, µ(Mµ) = 1, and the following properties hold:

(i) There exist natural numbers d1, . . . , ds with s ≤ d and
∑s

j=1 dj = d.

(ii) For every x ∈ Mµ there exists a measurable decomposition of the tan-

gent spaces TxM =
⊕s

j=1W
j(x) such that dimW j(x) = dj and

D g(x)
(
W j(x)

)
= W j(g(x)).

(iii) There are numbers λ1 > λ2 > . . . > λs such that

lim
n→∞

1

n
log ‖Dgn(x)v‖ = λj

for all v ∈
⊕s

i=j W
i(x) with v /∈

⊕s
i=j+1W

i(x) and for all x ∈ Mµ.

Remarks. 1. The points in Mµ are called (Lyapunov-)regular and the de-

composition TxM =
⊕s

j=1W
j(x) into invariant subspaces is called the Os-

eledec decomposition of TM .

2. The number λj is called the j-th Lyapunov exponent (or characteristic

number) with respect to the ergodic measure µ. The number dj denotes the

multiplicity of λj.
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3. The largest Lyapunov exponent λ1 can also be expressed in terms of matrix

norms as follows (see [26])

λ1 = lim
n→∞

1

n
ln ‖D gn(x)‖ for µ-a.e.x ∈ M.

B Exterior products

For the convenience of the reader we summarize in this appendix several

results from the theory of exterior products that are used in this paper.

Most of the results can be found in [1], [17], [19], but a few details have been

added that are important for our estimates.

B.1 Coordinate representation of exterior products

A mapping δ : {1, . . . , j} → {1, . . . , d} with j ≤ d is called strictly monotone

if δ(1) < δ(2) < . . . < δ(j) holds. By Ord(j, d) we denote the set of all

strictly monotone mappings

Ord(j, d) = {δ ∈ {1, . . . , d}{1,...,j} | δ strictly monotone}.

Let D = #Ord(j, d) and note that D =
(
d
j

)
. We will frequently identify

elements i ∈ Ord(j, d) with tuples i = (i1, . . . , ij) and simply write i =

i1, . . . , ij , where 1 ≤ i1 < . . . < ij ≤ d. In Ord(j, d) we use lexicographical

order written as σ < δ and meaning that for some ℓ ∈ {1, . . . , j} we have

σ(k) = δ(k) for k = 1, . . . , ℓ− 1 and σ(ℓ) < δ(ℓ).

The smallest element is δ1 = (1, . . . , j) = 1j and the largest element is

δD = (d+ j − 1, . . . , d).

Given vectors x1, . . . , xj ∈ Rd with coordinates xℓ = (x1ℓ, . . . , xdℓ)
T we

denote by X = [x1, . . . , xj ] the d× j-matrix with columns x1, . . . , xj, i.e.

X =










x11 · · · x1j

x21 · · · x2j

. . . . . . . . . . . . .

xd1 · · · xdj










.
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By Xi1,...,ij we denote the minor of X that belongs to the rows with indices

i1, . . . , ij , i.e.

Xi1...ij = det










xi11 · · · xi1j

xi21 · · · xi2j

. . . . . . . . . . . . . .

xij1 · · · xijj










.

The exterior product of vectors x1, . . . , xj ∈ Rd is defined as the vector

∧j
ℓ=1xℓ = x1 ∧ · · · ∧ xj ∈ RD.

with coordinates

(x1 ∧ · · · ∧ xj)i1...ij = Xi1...ij , (i1, . . . , ij) ∈ Ord(j, d). (B.1)

From the Cartesian basis {e1, . . . , ed} in Rd we obtain

{ei1 ∧ · · · ∧ eij | (i1, . . . , ij) ∈ Ord(j, d)}

as a basis of RD.

The coordinate representation of exterior products has standard properties.

Lemma 10. For all x1, . . . , xj , v ∈ Rd and α, β ∈ R the following holds:

(i) For any permutation π ∈ Sj ,

xπ(1) ∧ · · · ∧ xπ(j) = sign(π)x1 ∧ · · · ∧ xj

(ii) For ℓ = 1, . . . , j,

x1 ∧ · · · ∧ xℓ−1 ∧ (αxℓ + βv) ∧ xℓ+1 ∧ · · · ∧ xj =

α(x1 ∧ · · · ∧ xℓ ∧ . . . ∧ xj) + β(x1 ∧ · · · ∧ v ∧ · · · ∧ xj)

(iii) the vectors x1, . . . , xj are linearly dependent if and only if x1 ∧ · · · ∧ xj =

0.

Let 〈·, ·〉k denote the standard scalar product in Rk with norm ‖x‖ =
√

〈x , x〉k for x ∈ Rk.
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Theorem 11. For two decomposable vectors

x = x1 ∧ · · · ∧ xj, y = y1 ∧ · · · ∧ yj ∈ RD with xℓ, yℓ ∈ Rd, ℓ = 1, . . . , j,

the scalar product can be written as

〈x, y〉D = 〈x1 ∧ · · · ∧ xj, y1 ∧ · · · ∧ yj〉D = det (Z) ,

where Z ∈ Rj×j is defined by

Zi,ℓ = 〈xi, yℓ〉d for i, ℓ ∈ {1, . . . , j}.

Proof. We have Z = XTY for the matrices X = [x1, . . . , xj ] und Y =

[y1, . . . , yj], thus the multiplication theorem for determinants ([14]) shows

det
(
XTY

)
=

∑

i∈Ord(j,d)

Xi1,...,ijYi1,...,ij = 〈x1 ∧ · · · ∧ xj , y1 ∧ · · · ∧ yj〉D.

An immediate consequence of this theorem is the following result.

Corollary 12. For any set of vectors x1, . . . , xj ∈ Rd,

‖x1 ∧ · · · ∧ xj‖ =
√

det (XTX), X = [x1, . . . , xj ] ,

in particular, ‖x1 ∧ · · · ∧ xd‖ = |det (X)| in case j = d.

Recall that the Gramian determinant ‖x1 ∧ · · · ∧ xj‖ =
√

det (XTX)

equals the j-dimensional volume of the parallelepiped spanned by the vectors

x1, . . . , xj , [17, §9.5].

Angles between vectors and subspaces can also be described in terms

of exterior products. Consider, for example, linearly independent vectors

x1, . . . , xj ∈ Rd and let x ∈ Rd be arbitrary. Decompose x = xp + xo where

xp ∈ span{x1, . . . , xj} and xo⊥ span{x1, . . . , xj}. Then the volume of the

parallelepiped spanned by x1, . . . , xj, x is

‖x1 ∧ · · · ∧ xj ∧ x‖ = ‖x1 ∧ · · · ∧ xj‖ ‖x
o‖.

or equivalently
‖x1 ∧ · · · ∧ xj ∧ x‖

‖x1 ∧ · · · ∧ xj‖
= ‖xo‖.
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This quotient is the length of the x-component orthogonal to span{x1, . . . , xj}.

In case ‖x‖ = 1 we obtain the sine of the angle between x and the subspace

‖x1 ∧ · · · ∧ xj ∧ x‖

‖x1 ∧ · · · ∧ xj‖
= |sin∠ (x, span {x1, . . . , xj})| . (B.2)

We also note the obvious estimate

‖x1 ∧ · · · ∧ xj ∧ x‖ ≤ ‖x1 ∧ · · · ∧ xj‖ ‖x‖, (B.3)

which has the following generalization.

Lemma 13 (Generalized Hadamard inequality).

For vectors x1, . . . , xj ∈ Rd with j ≤ d and k ∈ {1, . . . , j},

(i) ‖x1 ∧ · · · ∧ xj‖ ≤ ‖x1 ∧ · · · ∧ xk‖‖xk+1 ∧ · · · ∧ xj‖.

(ii) ‖x1 ∧ · · · ∧ xj‖ ≤

j
∏

i=1

‖xi‖.

The proof of (i) may be found in [17, §9.5] while (ii) follows from (B.3)

by induction.

Definition 14. For a matrix A ∈ Rd×d define its j-th exterior power
∧jA ∈RD×D, D =

(
d
j

)
by its action on exterior products

∧jA(x1 ∧ · · · ∧ xj) = Ax1 ∧ · · · ∧Axj for x1, . . . , xj ∈ Rd.

As an immediate consequence of the definition we obtain that the column

of
∧jA belonging to the index ℓ1, . . . , ℓj is given by

(
∧jA

)

· ℓ1,...,ℓj
=
∧jA

(
eℓ1 ∧ · · · ∧ eℓj

)
= A ·ℓ1 ∧ · · · ∧A ·ℓj . (B.4)

By the definition of the exterior product (B.1) we obtain that the element

i1, . . . , ij of column ℓ1, . . . , ℓj is

(
∧jA

)

i1,...,ij ,ℓ1,...,ℓj
= det










Ai1ℓ1 · · · Ai1ℓj

Ai2ℓ1 · · · Ai2ℓj

. . . . . . . . . . . . . . . .

Aijℓ1 · · · Aijℓj










. (B.5)

The exterior power has the following properties:
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Lemma 15. For A,B ∈ Rd×d holds,

(i)
∧j (AB) =

∧j (A)
∧j (B).

(ii)
∧j
(
AT
)
=
(
∧jA

)T

,

(iii)
∧j
(
A−1

)
=
(
∧jA

)−1
, if A is nonsingular.

Finally, we note the transformation rule for exterior products.

Lemma 16. If x1, . . . , xd and y1, . . . , yj are vectors in Rd that satisfy

yℓ =
d∑

i=1

Aiℓxi for ℓ = 1, . . . , j, Aiℓ ∈ R,
then

y1 ∧ · · · ∧ yj =
∑

(ℓ1,...,ℓj)∈Ord(j,d)

(
∧jA

)

ℓ1,...,ℓj ,1j (xℓ1 ∧ · · · ∧ xℓj).

Proof. With X = [x1, . . . , xd] we obtain

y1 ∧ · · · ∧ yj = X A ·1 ∧ · · · ∧X A ·j =
∧jX (A ·1 ∧ · · · ∧A ·j) .

Using (B.1) and (B.4) we find

y1 ∧ · · · ∧ yj =
∑

(ℓ1,...,ℓj)∈Ord(j,d)

(
∧jX

)

· ℓ1,...,ℓj
(A ·1 ∧ · · · ∧A ·j)ℓ1,...,ℓj

=
∑

(ℓ1,...,ℓj)∈Ord(j,d)

(
∧jA

)

ℓ1,...,ℓj ,1j X ·ℓ1 ∧ · · · ∧X ·ℓj .

This proves the assertion.

B.2 Exterior product and QR-decomposition

As noted in [20] without proof the QR-decomposition is consistent with the

formation of exterior powers.

Lemma 17. Let A ∈ Rd×d be nonsingular and let A = QR be its unique

QR-decomposition (with positive diagonal entries for R). Then
∧jA =

(
∧jQ

) (
∧jR

)

is the unique QR-decomposition of
∧jA. In particular, the

diagonal elements of R
(
∧jA

)

are given by

Ri1,...,ij ,i1,...,ij

(
∧jA

)

=

j
∏

k=1

Rikik , (i1, . . . , ij) ∈ Ord(j, d). (B.6)
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Proof. In view of Lemma 15 is is sufficient to show that
∧jQ is orthogonal

and
∧jR is upper triangular with positive diagonal entries.

Lemma 15 shows the orthogonality of
∧jQ,

(
∧jQ

)T ∧jQ =
(
∧jQT

)
∧jQ =

∧j
(
QTQ

)
=
∧jId = ID.

Next note that according to (B.5),

(
∧jR

)

i1,...,ij ,ℓ1,...,ℓj
= det










Ri1ℓ1 · · · Ri1ℓj

Ri2ℓ1 · · · Ri2ℓj

. . . . . . . . . . . . . . . .

Rijℓ1 · · · Rijℓj










. (B.7)

If (i1, . . . , ij) > (ℓ1, . . . , ℓj) then there exists an index k̂ such that ik = ℓk

for k = 1, . . . , k̂ − 1 and i
k̂
> ℓ

k̂
. Hence Ri

k̂
ℓ
k̂
= 0. Since ℓk < ℓ

k̂
for

k = 1, . . . , k̂ − 1 and in > i
k̂

for n = k̂ + 1, . . . , j we arrive at

in > ℓk for k = 1, . . . , k̂ − 1 and n = k̂ + 1, . . . , j.

and therefore,

Rinℓk = 0 for k = 1, . . . , k̂ − 1 and n = k̂ + 1, . . . , j.

Thus the first k̂ columns of the matrix in (B.7) are of the form

(Ri1ℓk , . . . , Ri
k̂−1

ℓk , 0, . . . , 0)
T for k = 1, . . . , k̂,

and hence linearly dependent. Moreover, the determinant in (B.7) vanishes

for (i1, . . . , ij) > (ℓ1, . . . , ℓj). Therefore, both equation (B.6) and the posi-

tivity of diagonal elements follow from (B.7).
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