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Abstract

We propose an adequate notion of a heteroclinic trajectory in non-
autonomous systems that generalizes the notion of a heteroclinic orbit of
an autonomous systems. A heteroclinic trajectory connects two families
of semi-bounded trajectories that are bounded in backward and forward
time. We apply boundary value techniques for computing one representa-
tive of each family. These approximations allow the construction of pro-
jection boundary conditions that enable the calculation of a heteroclinic
trajectory with high accuracy. The resulting algorithm is applied to a
non-autonomous version of Hénon’s map.

Keywords: Non-autonomous discrete time dynamical systems, heteroclinic con-
nection, numerical approximation, boundary value problems, error analysis.
AMS Subject Classification: 70K44, 34C37, 37B55.

1 Introduction

Homoclinic and heteroclinic orbits are important structures in dynamical sys-
tems. For example, the famous theorem of Smale, cf. [23], states that in au-
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tonomous systems, the dynamics in a neighborhood of a homoclinic orbit is
chaotic. In autonomous systems, heteroclinic orbits describe possible transitions
between two equilibria; consequently they lie in the intersection of the unstable
manifold of the first equilibrium with the stable manifold of the second one.

To avoid the expensive computation of invariant manifolds [19], various ap-
proximation results for directly computing these orbits have been developed in
the literature. For this task boundary value approaches turn out to be very effi-
cient. In continuous time, cf. [1], the resulting algorithms are implemented, for
example, in the current version of the bifurcation toolbox Matcont [7, 10]. For
discrete time systems, we refer to [2, 3, 5, 14].

Real-life systems, like population models in a fluctuating environment [8, 9, 4],
are typically non-autonomous. This fact motivates the consideration of non-
autonomous difference equations of the form

xn+1 = fn(xn), n ∈ Z, (1)

where fn ∈ C∞(Rk,Rk) are assumed to be diffeomorphisms for all n ∈ Z. In
this setup, homoclinic and heteroclinic orbits lie in the intersection of stable and
unstable fiber bundles which are non-autonomous analogs of invariant manifolds,
see [13, 24, 22].

Consequently, a homoclinic orbit w.r.t. a fixed point from the autonomous
world has to be replaced by a pair of trajectories ξ̄Z := {ξ̄n}n∈Z and z̄Z := {z̄n}n∈Z
of (1), converging towards each other, i.e. limn→±∞ ‖ξ̄n − z̄n‖ = 0. Pairs of
homoclinic trajectories are analyzed in [15, 18].

In this paper we extend these ideas to the non-autonomous analog of a hetero-
clinic connection between two fixed points, which we call a heteroclinic trajectory.
This is an orbit of (1), connecting two trajectories ξ̄−Z and ξ̄+Z that are bounded
in backward and forward time, respectively. First, one needs approximations of
the reference trajectories ξ̄±Z . These reference trajectories are not unique due
to our weak assumption of semi-boundedness and consequently, two families of
semi-bounded trajectories exit. We assume that the corresponding variational
equations

un+1 = Dfn(ξ̄
−
n )un, n ∈ Z−,

vn+1 = Dfn(ξ̄
+
n )vn, n ∈ Z+

have half-sided exponential dichotomies, cf. Appendix A. This hyperbolicity as-
sumption justifies numerical computations. It turns out that all trajectories of
the semi-bounded family on Z+ converge towards each other exponentially fast
in forward time, and the same holds true in negative time for the second fam-
ily. We impose an initial condition to select one representative of each family
and state a theorem that guarantees an accurate numerical approximation. Es-
sentially, we make use of the fact that under hyperbolicity assumptions, errors
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from the boundary, decay exponentially fast toward the midpoint of the finite
computational interval.

In a second step, these orbits are used to set up the boundary operator for
computing a heteroclinic trajectory. For this purpose, we take linear approxima-
tions of stable and unstable fiber bundles that we obtain by computing dichotomy
projectors, using techniques that have been developed in [16, 17].

We illustrate the approximation results for the first step by computing several
semi-bounded trajectories of a non-autonomous version of Hénon’s map. In a
second step, we solve the corresponding boundary value problem and get the
desired heteroclinic connection between these non-autonomous families of semi-
bounded trajectories.

2 Heteroclinic trajectories

We start this section be introducing the concept of heteroclinic trajectories. Then
an algorithm for computing these objects is proposed.

Denote by XJ the space of bounded sequences on J :

XJ :=

{

uJ = (un)n∈J ∈ (Rk)J : sup
n∈J

‖un‖ < ∞
}

equipped with the ℓ∞-norm, and denote by 0J the zero element in XJ .
Consider a non-autonomous difference equations that is generated by a para-

meter-dependent map
xn+1 = f(xn, λn), n ∈ Z. (2)

We impose the following assumptions on f .

A1 f ∈ C∞(Rk ×R,Rk) and f(·, λ) is a diffeomorphism for all λ ∈ R.
A2 For the parameter sequence λ̄Z, equation (2) has two semi-bounded solu-

tions ξ̄+Z = {ξ̄+n }n∈Z and ξ̄−Z = {ξ̄−n }n∈Z which are bounded for n ≥ 0 and
n ≤ 0, respectively.

A3 The variational equations

un+1 = Dxf(ξ̄
−
n , λ̄n)un, n ∈ Z−, (3)

un+1 = Dxf(ξ̄
+
n , λ̄n)un, n ∈ Z+ (4)

possess exponential dichotomies on Z− and Z+, respectively, with data
(K±, α±

s , α
±
u , P

±sZ±, P
±uZ± ), cf. Appendix A, Definition 9.

Denote by k±
s and k±

u the dimensions of the subspaces R(P±s
n ) and R(P±u

n ),
respectively.
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Definition 1 Fix λZ and let ξ±Z and zZ be three different solutions of the non-
autonomous difference equation (2). The trajectory zZ is heteroclinic with re-
spect to ξ+Z and ξ−Z , if

lim
n→+∞

‖zn − ξ+n ‖ = 0 and lim
n→−∞

‖zn − ξ−n ‖ = 0.

A4 For the parameter sequence λ̄Z, equation (2) possesses a heteroclinic tra-
jectory z̄Z with respect to ξ̄+Z and ξ̄−Z .

Note that it follows from the Roughness-Theorem 10 that the variational
equation

un+1 = Dxf(z̄n, λ̄n)un, n ∈ Z (5)

has exponential dichotomies on Z− and on Z+. Denote beQ±s,u
n the corresponding

projectors. If k−
u + k+

s = k, then half sided dichotomies can be combined to a
dichotomy on Z, if R(Q−u

0 )⊕R(Q+s
0 ) = Rk, cf. [21].

2.1 An alternative viewpoint

For achieving a deeper understanding and to see that the above assumptions are
in certain respects minimal, we look at heteroclinic orbits from an alternative
viewpoint. Consider a trajectory z̄Z, having an exponential dichotomy on Z
with at least one stable and one unstable direction. Denote by Ψ the solution
operator of (2) with parameter sequence λ̄Z. The stable and unstable fibers of
z̄Z are defined as

Ss
0(z̄Z) = {x ∈ Rk : lim

n→∞
‖Ψ(n, 0)x− z̄n‖ = 0},

Su
0 (z̄Z) = {x ∈ Rk : lim

n→−∞
‖Ψ(n, 0)x− z̄n‖ = 0}.

Any trajectory ξ+Z which starts on the stable fiber bundle at time n = 0 converges
in forward time exponentially fast towards z̄Z. Similarly, any starting point on
the unstable fiber bundle results in a trajectory ξ−Z that converges in backwards
time towards z̄Z.

From the Roughness-Theorem 10, it follows that the variational equations
along ξ−Z and ξ+Z have exponential dichotomies on Z− and Z+, respectively, cf.
A4. Furthermore, ξ−Z is generically not bounded in forward time and ξ+Z is not
bounded in backward time. This is assumed in A2. From this viewpoint it
is also clear, that these orbits are not unique, since each starting point in the
corresponding fiber Ss,u

0 (z̄Z) leads to a semi-bounded trajectory.
Uniqueness of the semi-bounded trajectories ξ̄±Z can only be achieved by in-

troducing an extra condition, for example, by taking initial points from the in-
tersection of the fiber Ss,u

0 (z̄Z) with a hyperplane Σs,u
0 , cf. Figure 1.
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Figure 1: Illustration of families of bounded trajectories on Z± that start
on the stable and unstable fiber S

s,u
0 (z̄Z), respectively. The intersection

of Ss,u
0 (z̄Z) with the hyperplane Σs,u

0 gives locally unique orbits.

2.2 Initial conditions for bounded trajectories

Consider solutions that are bounded in forward time on the interval [n0,∞)∩Z.
We impose the following assumption on the hyperplane Σs

n0
:

A5 Let Σs
n0

be a k+
u -dimensional subspace, such that Σs

n0
⊕R(P+s

n0
) = Rk.

Note that a generic subspace of dimension k+
u satisfies this assumption.

The initial condition xn0
∈ Σs

n0
can equivalently be written as

(Y +
n0
)Txn0

= 0, (6)

where the columns of Y +
n0

form a basis of the orthogonal complement of Σs
n0
.

Define the discrete intervals J+ = [n0, n+]∩Z and J̃+ = [n0, n+−1]∩Z, where
0 ≤ n0 < n+ and the case n+ = +∞ is included.

Let λJ+ be a fixed sequence. We combine the two conditions (2) and (6) for
computing an orbit that starts in Σs

n0
by introducing the operator Γ+

J+
:

Γ+
J+

:
XJ+ ×RJ+ → XJ̃+

×Rk+s

(xJ+ , λJ+) 7→ ((xn+1 − f(xn, λn))n∈J̃+, (Y
+
n0
)Txn0

).

In case J+ = Z+, the next lemma shows that, by assuming A5, a zero of Γ+Z+

is regular, which implies local uniqueness of the solution of equation (2) with
initial condition (6) on Z+.
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Lemma 2 Assume A1–A3 and A5 with n0 = 0. Then ξ̄+Z+ is a regular solution
of

Γ+Z+(xZ+ , λ̄Z+) = 0Z+. (7)

Proof: Regularity means that the linear operator

DxZ+
Γ(ξ̄+Z+, λ̄Z+) : XZ+ → XZ+ ×Rk+s (8)

is a homeomorphism, i.e.

DxZ+
Γ(ξ̄+Z+, λ̄Z+)uZ+ = (rZ+ , v) (9)

has for any rZ+ ∈ XZ+ and v ∈ Rk+s a unique solution. Note that system (9) is
equivalent to

un+1 −Dxf(ξ̄
+
n , λ̄n)un = rn, n ≥ 0, (10)

(Y +
0 )Tu0 = v.

By [21, Lemma 2.7], we obtain a unique bounded solution uZ+ ∈ XZ+ of equation
(10) by fixing P+s

0 u0. Note that the linear equation

(Y +
0 )TP+s

0 u0 = v

is uniquely solvable due to the regularity of the matrix (Y +
0 )T |R(P+s

0
), see Assump-

tion A5. As a consequence, the operator (8) is one to one and onto.
�

By choosing a subspace Σs
n0

that satisfies A5, we set up the boundary condi-
tion (6), and uniquely obtain a bounded trajectory, starting on the stable fiber
Ss
0(z̄Z). Typically, this is not the trajectory ξ̄+Z+ from Assumption A2. All start-

ing points x0 ∈ Ss
0(z̄Z) define trajectories xZ that converge towards z̄Z as n → ∞.

Furthermore, one immediately sees by using the Roughness-Theorem 10 that the
variational equation

un+1 = Dxf(xn, λ̄n)un (11)

has an exponential dichotomy on J = [N,∞), since

‖Dxf(xn, λ̄n)−Dxf(ξ̄
+
n , λ̄n)‖ ≤ β

for sufficiently large N , where β denotes the bound for the perturbation in The-
orem 10. The resulting dichotomy of (11) can be extended to Z+ by adjusting
the constant K.

Note that the difference between these solutions dn = xn − ξ̄+n converges
exponentially fast to 0 as n → ∞, since the difference equation

dn+1 = f(ξ̄+n + dn, λ̄n)− f(ξ̄+n , λ̄n) =

∫ 1

0

Dxf(ξ̄
+
n + τdn, λ̄n)dτ · dn (12)
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has by the Roughness-Theorem 10 an exponential dichotomy on Z+ with slightly
changed data (K̃, α̃+

s , α̃
+
u , P̃

+sZ+ , P̃
+uZ− ). Denote by Φ̃ the solution operator of (12),

then it follows that

‖dn‖ = ‖Φ̃(n, 0)d0‖ = ‖Φ̃(n, 0)P̃+s
0 d0‖ ≤ K̃e−α̃+

s n‖d0‖.

By reversing the time, we get a similar exponential estimate for the second tra-
jectory ξ̄−Z−.

From this viewpoint, the orbit z̄Z is heteroclinic with respect to two families of
trajectories; one that converges in forward time and another one that converges
in backward time towards z̄Z with exponential rates.

3 Numerical approximation of semi-bounded

trajectories

We now return to the original viewpoint and introduce an algorithm which gives
accurate approximations of the two semi-bounded trajectories ξ̄±Z . In a second
step we then compute in Section 4 a heteroclinic connection z̄Z of these trajecto-
ries.

We assume without loss of generality that ξ̄+Z from Assumption A2 addi-
tionally satisfies the initial condition (6). Note that the trajectory ξ̄+Z is “only”
a representative of the family of hyperbolic trajectories with same asymptotic
behavior, in forward time.

We derive an approximation result for ξ̄+Z . The case of semi-bounded trajec-
tories in negative time can be treated similarly. Assume that the subspace Σs

0 is
fixed such that A5 holds.

By Lemma 2, ξ̄+Z is a regular zero of Γ+Z+ at the parameter λ̄Z+ . The implicit
function theorem guarantees the existence of convex neighborhoods U = U(λ̄Z+)
and V = V (ξ̄Z+) such that for each µZ+ ∈ U it follows that Γ+Z+(·, µZ+) has a
unique zero in V .

3.1 Extension of semi-bounded trajectories to bounded

trajectories on Z
For proving error estimates for numerically computed semi-bounded trajectories,
we use an approximation theorem for bounded trajectories on Z which was de-
veloped in [18], see Appendix B, Theorem 11. To make this result applicable, we
first change the system (2) to

xn+1 = g(xn, λn), n ∈ Z (13)

such that the following condition is satisfied.
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C1 Let xZ be a bounded solution of (13) on Z. Then ξn := xn, n ∈ Z+ defines
a bounded solution of (2) on Z+ that satisfies the initial condition (6).

Consequently, an accurate approximation of xZ of (13) immediately gives an
accurate approximation of ξ+Z+ on Z+.

Assume A1-A5 and let the columns of Xs and Xu form bases of R(P+s
0 ) and

of Σs
0, respectively. Then, the matrix S = [Xs, Xu] is by Assumption A5 regular.

Define

g(x, λn) :=







f(x, λn) for n ≥ 0,

S

(

e−αsIk+s 0
0 eαuIk+u

)

S−1x for n < 0.
(14)

Note that g depends on the dichotomy rates and the projectors from A3, which
are a-priori not known. Introducing this system merely has technical reasons. In-
deed, this extended system makes approximation results for bounded trajectories
on Z from [18], cf. Appendix B, applicable to semi-bounded trajectories.

Lemma 3 With the above assumptions, condition C1 holds true for g, defined
in (14).

Proof: Let xZ be a bounded solution of (13). Obviously, ξZ+ := xZ+ is a
bounded solution of (2) on Z+. It remains to prove that the boundary condition
(6) holds true. Due to the boundedness of xZ as n → −∞ it follows that x0

has no component in Xs; otherwise this solution increases exponentially fast in
backward time. Thus x0 = Xuγ with some γ ∈ Rk+u and consequently x0 ∈ Σs

0,
which is equivalent to (Y +

0 )Tx0 = 0.
�

Consequently, regular solutions of (7) give regular bounded trajectories of
(14). Denote by x̄Z the g(·, λ̄)-orbit that satisfies x̄Z+ = ξ̄+Z+. We use the same
notation U and V for neighborhoods of x̄Z and λ̄Z on Z such that for λZ ∈ U

there exists a unique bounded trajectory xZ ∈ V of (14).

3.2 Errors on finite intervals; an algorithm for computing

accurate approximations of semi-bounded trajectories

We already have seen that semi-bounded solutions on Z+ of the original sys-
tem (7) correspond to bounded trajectories of the extended system (14). In this
section, a boundary value approach is applied to the latter system (14) for obtain-
ing approximations numerically. Projection boundary conditions are particularly
useful, since the left boundary condition is known exactly and given by our initial
condition (6). At the right boundary, we only can guess an appropriate condition.

First, errors are analyzed that occur when we alter the system at the right
boundary.
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Theorem 4 Assume A1-A3 and A5. Let µZ ∈ U be a sequence of parameters
such that µn = λ̄n for all n ≤ n+. Denote by xZ, yZ ∈ V the corresponding
solutions of xn+1 = g(xn, λ̄n) and yn+1 = g(yn, µn), respectively. Then

‖yn − xn‖∞ ≤ Ce−α+
u (n+−n) for n ≤ n+.

The proof immediately follows from [18, Theorem 5].
Consequently, errors that occur due to an inaccurate right boundary condition

decay exponentially fast towards the left side. We construct a boundary operator
by picking a subspace Σu

n+
of dimension k+

u at random. Let the columns of Y +
n+

form a basis of (Σu
n+
)⊥, then

b :
Rk ×Rk → Rk

(x0, xn+
) 7→

(

(Y +
0 )Tx0

(Y +
n+
)Txn+

)

. (15)

We assume that for sufficiently large n+, we can alter the sequence of parameters
λ̄Z such that the solution with respect to this new parameter sequence satisfies
the right boundary condition.

A6 Let Σu
n+

be a subspace of dimension k+
u such that

∡(Σu
n+
,R(P u

n+
)) > σ. (16)

Denote by Y +
n+

a basis of (Σu
n+
)⊥. Let µZ ∈ U be a sequence with µn = λ̄n

for n ≤ n+, such that the unique bounded solution x̃Z ∈ V of

xn+1 = g(xn, µn), n ∈ Z
satisfies (Y +

n+
)T x̃n+

= 0.

Note that A6 is a strong assumption that is not automatically satisfied for
randomly chosen Σu

n+
. In particular, it is not clear whether this subspace has an

intersection with the neighborhood V . However, if a good approximation ξ of
xn+

is known a-priori, one can shift the boundary condition by replacing xn+
by

(xn+
− ξ) in the right side of (15) and get rid of the latter problem. Moreover,

the angle condition (16) is typically satisfied for randomly chosen subspaces, and
x̃Z exists for our nonlinear examples.

The following approximation result on the finite interval J = [0, n+] is a
consequence of Appendix B, Theorem 11.

Theorem 5 Assume A1-A3 and A5. Fix σ > 0 and a sufficiently large n+ and
choose a subspace Σu

n+
and a sequence µZ with corresponding solution x̃Z, such

that A6 is satisfied.
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Then, there exists a δ > 0 such that the boundary value problem

xn+1 = f(xn, λ̄n), n ∈ [0, n+ − 1]

with boundary operator (15) has a unique solution yJ in the δ-neighborhood
Bδ(x̃J). Furthermore, these solutions coincide on the finite interval J , i.e. yJ =
x̃J .

Proof: A careful inspection of the proof of [18, Theorem 4] reveals that the
choice of n+ only depends on the dichotomy rates and on the angle between the
subspace Σu

n+
and R(P u

n+
). Note that we have uniform estimates of dichotomy

rates, for parameter sequences and g-orbits in our neighborhoods U and V .
Since the solution x̃Z satisfies the boundary condition (15), we get no approx-

imation error inside the interval J .
�

A combination of the previous results allows the approximation of the original
trajectory x̄Z up to any given accuracy.

Theorem 6 Assume A1-A3 and A5, A6. For any tolerance ∆ > 0 there exist
constants n+ < N ∈ N and a δ > 0 such that the boundary value problem

yn+1 = f(yn, λ̄n), n ∈ [0, N − 1] (17)

with boundary condition (15) has a unique solution y[0,N ] ∈ Bδ(x̄[0,N ]) that satisfies

‖x̄n − yn‖ ≤ ∆ for all 0 ≤ n ≤ n+.

Proof: By Theorem 5, the boundary value problem (17) has for sufficiently large
N a unique solution yN ∈ Bδ(x̄[0,N ]) that coincides with the trajectory x̃[0,N ] from
Assumption A6.

Using Theorem 4 we obtain for 0 ≤ n ≤ N

‖x̄n − yn‖ = ‖x̄n − x̃n‖ ≤ Ce−α+
u (N−n).

Thus, for N sufficient large we find an n+ < N such that Ce−α+
u (N−n) < ∆ for all

0 ≤ n ≤ n+.
�

Summarizing these results, we obtain the following algorithm for computing
an accurate approximation of the semi-bounded trajectory ξ̄+Z . First, choose the
initial condition (6) and an appropriate boundary condition on the right side.
Then, solve the boundary value problem (17), (15) on a buffer interval [0, N ].
Finally, the left part of the solution from 0 to n+ gives an accurate approximation
of the semi-bounded trajectory ξ̄Z+ .
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3.3 Numerical experiments: Computation of semi-bound-

ed trajectories

For numerical experiments, we choose a non-autonomous version of the well
known Hénon map, see [12, 20, 6, 11], which is defined as

f(x, λ) =

(

1 + x2 − λx2
1

1.4x1

)

.

For constant parameter sequences λn = λ, n ∈ Z, the system

xn+1 = f(xn, λn), n ∈ Z
is autonomous and has for λ > − 1

25
two fixed points

η±(λ) =

(

ν(λ)
1.4ν(λ)

)

, where ν(λ) =
1

5λ

(

1±
√
1 + 25λ

)

.

Passing over to the non-autonomous case λn = λ + εrn with a randomly chosen
sequence rZ ∈ [−1, 1]Z we obtain for sufficiently small ε two bounded trajec-
tories ξ±Z (λZ) on Z, and consequently, there exist two families of semi-bounded
trajectories.

We demonstrate the numerical approximation of ξ̄+Z (λZ) on the finite interval
J = [0, 100] for the parameters λn = 0.4 + εrn with ε = 0.5. We numerically
solve the boundary value problem (17), (15) using Newton’s method. As initial
guess of the solution, we take the fixed point η+(0.4). The boundary operator
Y +
n+

is chosen according the unstable subspace of η+(0.4). For emphasizing the
influence of the initial condition on the solution, we solve the boundary value
problem for various initial planes Σs

0 and plot the solutions in Figures 2 and 3
in case Newton’s method converges. In these figures, one can clearly observe
the convergence of the solutions towards each other. Assuming A5, each initial
plane Σs

0 contains at least one point of the stable fiber Ss
0(ξ̄

+Z (λZ)). A plot of the
solutions for various initial planes automatically gives an approximation of this
fiber bundle.

0 10 20 30 40 50 60 70 80 90 100−0.5
0

0.5
1

1.5

0

1

2

x1

x2

n

Figure 2: Semi-bounded trajectories, computed on the interval [0, 100] for
various initial conditions.
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−0.5

0
0.5

1
1.5

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

n

Σs1
0

Σs2
0

Σs3
0

Ss
0(ξ̄

+Z (λZ))

Figure 3: Semi-bounded trajectories, computed on the interval [0, 100] for
various initial conditions, where only the first 7 points of each orbit are
displayed. The orbits that start on the green subspaces Σsi

0 , i ∈ {1, 2, 3}
are connected with dotted lines.

Approximations of the second trajectory ξ̄−Z (λ) on Z− are given in Figure
4, together with the trajectories from Figure 2. Observe that the stable and
unstable fibers Ss

0(ξ̄
+Z (λZ)) and Su

0 (ξ̄
−Z (λZ)) intersect transversally. Therefore,

a heteroclinic connection of these trajectories exists for which we propose an
approximation routine in the forthcoming section.

4 Approximation of heteroclinic trajectories

With the results from the previous sections, we get accurate approximations of
the semi-bounded trajectories ξ̄±Z±. These approximations are needed for the
definition of accurate boundary conditions that are essential for the computation
of the heteroclinic trajectory z̄Z.

First we ensure that the variational equation along the heteroclinic trajectory
(5) possesses an exponential dichotomy by assuming the following transversality
condition.

A7 k−
u + k+

s = k and the trajectory z̄Z is transversal, i.e.

un+1 = Dxf(z̄n, λ̄n)un, n ∈ Z, uZ ∈ XZ ⇐⇒ uZ = 0Z.
Lemma 7 Assume A1-A4 and A7. Then the difference equation (5) has an
exponential dichotomy on Z.
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0

1
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x1
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n

P
Ss
0(ξ̄

+Z (λZ))
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0 (ξ̄

−Z (λZ))
Figure 4: Semi-bounded trajectories, computed on the interval [−100, 0]
(in red) and on [0, 100] (in black) for various initial conditions, where
only the first 7 points of each orbit are displayed. P denotes an intersec-
tion of the stable and unstable fibers Ss

0(ξ̄
+Z (λZ)) and Su

0 (ξ̄
−Z (λZ)).

Proof: From the convergence limn→∞ ‖ξ̄+n − z̄n‖ = 0, limn→−∞ ‖ξ̄−n − z̄n‖ = 0
and the dichotomy assumption A3 it follows from the Roughness-Theorem 10
that z̄Z has half-sided dichotomies on Z− and on Z+. By the transversality
assumption A7 and [21, Proposition 2.6] we can combine these dichotomies and
get an exponential dichotomy on Z.

�

4.1 Construction of accurate boundary conditions

Let Qs
n and Qu

n, n ∈ Z be the dichotomy projectors of (5). A sketch of heteroclinic
trajectories and the stable and unstable subspaces of the exponential dichotomy
at time n− and n+ is given in Figure 5.

For the numerical approximation of z̄Z on the finite interval J = [n−, n+], we
demand the end points to lie in the green subspaces that are shifted to ξ̄n−

and
ξ̄n+

in Figure 5. Formally, we require

zn−
− ξ̄−n−

∈ R(Qu
n−

) and zn+
− ξ̄+n+

∈ R(Qs
n+
)

which is equivalent to

bn±
(zn−

, zn+
) :=

(

(Y 1
n−
)T (zn−

− ξ̄−n−
)

(Y 2
n+
)T (zn+

− ξ̄+n+
)

)

= 0 (18)

where Y 1
n−

and Y 2
n+

are bases of R(Qu
n−
)⊥ and R(Qs

n+
)⊥, respectively. Note that

Qu
n−
, P u

n−
as well as Qs

n+
, P s

n+
converge exponentially fast towards each other.

13



R(Qs
n−

)

R(Qu
n−

)

R(Qs
n+
)

R(Qu
n+
)

z̄Z
ξ̄−Z

ξ̄+Z

Figure 5: Illustration of heteroclinic trajectories together with the corre-
sponding stable and unstable subspaces at n− and n+.

Numerically, we compute dichotomy projectors P−u
n−

and P+s
n+

of the variational
equations (3) and (4) at n− and n+ using the algorithm that is proposed in [16]
and [17], see Section 4.1.1. This task first requires the approximation of ξ̄−Z and ξ̄+Z
on buffer intervals [n1

−, n
2
−] and [n1

+, n
2
+] around n− and n+, using the techniques

from Section 3, see Figure 6. If the buffer intervals are sufficiently large, we
obtain in this way also good approximations of Qu

n−
and Qs

n+
.

n− n+

n1
− n1

+n2
− n2

+

Aim:

Needed:

approximation of z̄Z
approximation of ξ̄−Z approximation of ξ̄+Z

Figure 6: Construction of buffer intervals for computing accurate bound-
ary conditions.

4.1.1 Computing dichotomy projectors

We illustrate the computation of the dichotomy projector P+s
n+

, if an approximate
trajectory ξ+n for n ∈ [n1

+, n
2
+] is given. For this task the following least squares

approach from [17] applies.
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Let P = B+R with Moore-Penrose inverse B+ = BT (BBT )−1, where

B =













−An1
+

I

. . .
. . .
. . .

. . .

−An2
+
−1 I













, An = Dxf(ξ
+
n , λ̄n),

and the i-th block R[i] of the matrix R ∈ Rk(n2
+
−n1

+
),k is given as

R[i] =

{

0 for i = n1
+, . . . , n

2
+ − 1, i 6= n+ − 1,

I for i = n+ − 1.

Then the rows from k(n+−n1
+)+1 to k(n+−n1

++1) of P form an approximation

P̃+s
n+

of dichotomy projector P+s
n+

. Similarly, we compute P̃−u
n−

= I − P̃−s
n−

.

Note that instead of computing the inverse of BBT one solves the linear
system BBTw = R and gets P = BTw. Further note that the error of the
projector approximation shrinks exponentially fast in n± − n1

± and n2
± − n±, see

[17, Theorem 4].

4.2 Approximation theorem for heteroclinic trajectories

Combining the previous results, we get the following approximation theorem for
heteroclinic trajectories.

Theorem 8 Assume A1-A7. Then there exist positive constants δ, N such that
the boundary value problem (2), (18) has a unique solution

zJ ∈ Bδ(z̄J), for − n−, n+ > N.

With a J-independent constant C > 0, the error can be estimated as

‖z̄J − zJ‖ ≤ C‖bn±
(z̄n−

, z̄n+
)‖. (19)

Proof: From Theorem 6, we obtain for sufficiently large buffer intervals accurate
approximations of the semi-bounded trajectories ξ̄−Z and ξ̄+Z on [n1

−, n
2
−] and on

[n1
+, n

2
+], respectively. Furthermore, accurate approximations of the correspond-

ing dichotomy projectors of the variational equations (3), (4) at n− and n+ can
be computed, using the above algorithm. The boundary operator

bn±
(z̄n−

, z̄n+
) =

(

(Y 1
n−
)T (z̄n−

− ξ−n−
)

(Y 2
n+
)T (z̄n+

− ξ+n+
)

)

converges to 0 as n± → ±∞, where Y 1
n−

and Y 2
n+

are bases of the numerically

computed subspaces R(P̃−u
n−

)⊥ and R(P̃+s
n+

)⊥, and the matrix
(

D1bn±
(z̄n−

, z̄n+
)|R(Qs

n−
) D2bn±

(z̄n−
, z̄n+

)|R(Qu
n+

)

)

15



has a uniformly bounded inverse. Consequently, Appendix B, Theorem 11 applies
and guarantees uniqueness of the boundary value solution in Bδ(z̄J ) as well as
the error estimate (19).

�

4.3 Numerical experiments: Computation of heteroclinic

trajectories

We revisit the example from Section 3.3 and compute a heteroclinic trajectory
with respect to the two families of semi-bounded trajectories that are given in
Figure 4. For this task, we first choose two semi-bounded trajectories ξ±Z (λZ) on
the interval [−100, 0] and [0, 100], respectively. Then, we approximate accurate
projection boundary conditions at n− = −50 and n+ = 50, using the least
squares approach from Section 4.1.1. Finally, we solve the obtained boundary
value problem (2), (18) on the interval [−50, 50]. The resulting orbit, and two
families of semi-bounded trajectories are shown in Figure 7.

−100 −50 0 50 100

−2

−1

0

1
−0.5

0

0.5

1

1.5

n

x1

x2

Figure 7: Two families of semi-bounded trajectories (in red and black)
and a heteroclinic connection of these families (in green).

For solving our boundary value problem (2), (18) we use Newton’s method.
As initial guess, we choose the corresponding points of the semi-bounded trajec-
tories on [−50,−1] and [1, 50], respectively, as well as an appropriate midpoint
at 0. Obviously, the choice of this initial guess and particularly of the midpoint
influences whether the heteroclinic orbit lies in the primary intersection of the
stable and unstable fiber bundle at 0 (denoted by P in Figure 4) or in secondary
intersections that are not shown in our diagrams. For two different midpoints,
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the resulting orbits are given in Figure 8. One observes that the green orbit in
Figure 8 lies in the primary intersection P of the stable and unstable fiber, while
the blue orbit must lie in a secondary intersection.

−5

0

5

−2

−1

0

1
−1

−0.5

0

0.5

1

1.5

2

n
x1

x2

P

Figure 8: Two heteroclinic trajectories (in green and blue) that are com-
puted for two different initial values of Newton’s method. Additionally,
two families of semi-bounded trajectories are shown (in red and black) .

A Exponential dichotomy

In this appendix, we collect some well known results on exponential dichotomies
from [21].

Denote by Φ the solution operator of the linear difference equation

un+1 = Anun, An ∈ Rk,k invertible , n ∈ Z, (20)

which is defined as

Φ(n,m) :=







An−1 . . . Am for n > m,

I for n = m,

A−1
n . . . A−1

m−1 for n < m.

Definition 9 The linear difference equation (20) has an exponential dichoto-

my with data (K,αs, αu, P
s
n, P

u
n ) on J ⊂ Z, if there exist two families of projectors

P s
n and P u

n = I −P s
n and constants K, α > 0, such that the following statements

hold:
P s
nΦ(n,m) = Φ(n,m)P s

m ∀n,m ∈ J,

17



‖Φ(n,m)P s
m‖ ≤ Ke−αs(n−m)

‖Φ(m,n)P u
n ‖ ≤ Ke−αu(n−m)

∀n ≥ m, n,m ∈ J.

We introduce an important perturbation result for exponential dichotomies,
frequently named as Roughness-Theorem, cf. [5].

Theorem 10 Assume that the difference equation

un+1 = Anun, An ∈ Rk,k invertible, ‖A−1
n ‖ ≤ M ∀n ∈ J

with J ⊆ Z, has an exponential dichotomy with data (K,αs, αu, P
s
n, P

u
n ). There

exits a constant β > 0 such that for 0 < δ < min (αs, αu) and Bn ∈ Rk,k satisfying
‖Bn‖ ≤ β for all n ∈ J , the matrix An + Bn is invertible and the perturbed
difference equation

un+1 = (An +Bn)un

has an exponential dichotomy on J with data
(

K̂,αs − δ,αu − δ, Qs
n, Q

u
n

)

, where
rank(Qs

n) = rank(P s
n) and

‖P s
n −Qs

n‖ ≤ 2K2 1 + e−α

1− e−α
sup
m∈J

‖Bm‖ for all n ∈ J.

B Approximation theorem for bounded trajec-

tories

We state a fundamental approximation result [18, Theorem 4] for bounded tra-
jectories in this appendix.

Theorem 11 Assume A1 and let µ̄Z be a sequence of parameters such that
xn+1 = f(xn, µ̄n), n ∈ Z has a bounded solution ζ̄Z. Further assume that the
variational equation

un+1 = Dxf(ζ̄n, µ̄n)un, n ∈ Z
has an exponential dichotomy on Z with projectors P s,u

n .
Let bn±

∈ C1(R2k,Rk) be a boundary condition such that Dbn±
(xn−

, xn+
) is

uniformly bounded and uniformly Lipschitz for all xZ ∈ U and all n−, n+ with
sufficiently large n+−n−. Here U is some fixed neighborhood of ζ̄Z. Assume that

bn±
(ζ̄n−

, ζ̄n+
) → 0 as n± → ±∞,

and that the matrix
(

D1bn±
(ζ̄n−

, ζ̄n+
)|R(P s

n−
) D2bn±

(ζ̄n−
, ζ̄n+

)|R(Pu
n+

)

)

has a uniformly bounded inverse.
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Then constants δ, N exist, such that the boundary value problem

xn+1 = f(xn, µ̄n), n = n−, . . . , n+ − 1,

bn±
(xn−

, xn+
) = 0

has a unique solution

xJ ∈ Bδ(ζ̄J) for J = [n−, n+], −n−, n+ ≥ N.

With a J-independent constant C > 0, the error can be estimated as

‖ζ̄J − xJ‖ ≤ C‖bn±
(ζ̄n−

, ζ̄n+
)‖.
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[3] W.-J. Beyn, T. Hüls, J.-M. Kleinkauf, and Y. Zou. Numerical analysis of degen-
erate connecting orbits for maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
14(10):3385–3407, 2004.
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[11] J. K. Hale and H. Koçak. Dynamics and Bifurcations, volume 3 of Texts in Applied

Mathematics. Springer-Verlag, New York, 1991.
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