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Abstract

Relaxed one-sided Lipschitz conditions play an important role when

analyzing ordinary differential inclusions. They allow to derive a-priori

estimates of solutions and convergence estimates for explicit and im-

plicit time discretizations. In this paper we consider Galerkin finite

element discretizations of semilinear elliptic inclusions that satisfy a

relaxed one-sided Lipschitz condition. It is shown that solution sets

of both, the continuous and the discrete system, are nonempty closed

bounded and connected sets in H
1-norm. Moreover, the solution sets

of the Galerkin inclusion converge with respect to the Hausdorff dis-

tance measured in L
p-spaces. We also set up a full discretization of

the Galerkin inclusion which uses a partitioning of the finite element

space into cells and support functionals for measuring the residual of

Galerkin approximations. An efficient implementation is developed

that utilizes connectedness of the solution set and that is tested on a

numerical example.
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1 Introduction

In this paper we analyze and implement Galerkin methods for computing
weak solutions of a semilinear elliptic inclusion. Before formulating the set-
valued setup, we briefly recall the classical single-valued case.

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, let M(Ω)
denote the (Lebesgue-)measurable functions on Ω and let L2 = L2(Ω), H1

0 =
H1

0 (Ω), and H
1 = H1(Ω) be the standard Hilbert spaces with inner products

(u, v)L2 =

∫

Ω

u(x)v(x)dx, (u, v)H1 = (Du,Dv)L2 + (u, v)L2. (1)

Consider a bilinear form a(·, ·) : H1
0 × H

1
0 → R that is continuous and

coercive, i.e. there exist constants c, C > 0 such that

a(u, v) ≤ C||u||H1||v||H1 for all u, v ∈ H1
0 ,

a(u, u) ≥ c||u||2
H1 for all u ∈ H1

0 .
(2)

Further let f : Ω × R → R be a nonlinear map such that the associated
Nemytskii operator

[f̃(u)](x) = f(x, u(x)), x ∈ Ω

is defined for u ∈ H1
0 and satisfies f̃(u)v ∈ L1 for all v ∈ H1

0 . A function
u ∈ H1

0 satisfying

a(u, v) =

∫

Ω

f̃(u)v dx for all v ∈ H1
0 (3)

is then called a weak solution of the elliptic problem defined by a and f .
In the set-valued setting we consider a set-valued mapping F : Ω×R→

CC(R), where CC(R) denotes the set of all convex compact subsets of R.
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With F we associate a set-valued Nemytskii operator F̃ : M(Ω) ⇉ M(Ω)
defined by

F̃ (u) := {v ∈ M(Ω) : v(x) ∈ F (x, u(x)) a.e.}. (4)

In Proposition 5 we will show that under suitable conditions on F , the oper-
ator F̃ maps elements of Lp(Ω) to closed, bounded, and convex subsets of its
dual space Lq(Ω). The set-valued analog of (3) then is to find u ∈ H1

0 such
that

a(u, v) =

∫

Ω

fvdx for all v ∈ H1
0 and some f ∈ F̃ (u). (5)

For the classical case
a(u, v) = (Du,Dv)L2

equation (5) can be regarded as the weak formulation of the semilinear elliptic
inclusion

−∆u ∈ F̃ (u), u = 0 on ∂Ω.

For the Galerkin approximation of (5) we consider a family of finite-
dimensional subspaces XN ⊂ H1

0 satisfying the approximation property

dist(v,XN)H1 = inf{||v − vN ||H1 : vN ∈ XN} → 0 as N →∞ (6)

for all v ∈ H1
0 .

The weak Galerkin inclusion then consists in finding uN ∈ XN such that

a(uN , v) =

∫

Ω

fNvdx for all v ∈ XN and some fN ∈ F̃ (uN). (7)

Let S ⊂ H1
0 and SN ⊂ XN denote the set of weak solutions defined by (5)

and (7), respectively. Our aim is to show that the solution sets are nonempty
sets that are closed and bounded with respect to the norm || · ||H1. Moreover,
we study the distances

dist(S, SN) = sup
u∈S

inf
v∈SN

||u− v||, dist(SN , S),

distH(S, SN) =max(dist(S, SN), dist(SN , S))

as N →∞ with respect to both norms || · ||L2 and || · ||H1.
For proving the existence of solutions we employ a global solvability theo-

rem for set-valued inclusions [3] that holds for nonlinear mappings satisfying
a relaxed one-sided Lipschitz condition with constant l ∈ R (see below),
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which we will impose on F . Under the assumption l < c, with c given by
(2), we prove in Section 3 that SN is nonempty and, moreover, that any
sequence of solutions in SN has a subsequence converging weakly in H1

0 to a
weak solution of (5). In the subsequent section we derive error estimates for
solution sets in every Lp such that H1 ⊂⊂ Lp is compactly embedded, where
approximation property (6) is the only assumption imposed on the Galerkin
spaces XN .

In Section 4 we set up and analyze a numerical procedure for solving
(7). The method builds on the idea of support functionals [10] and uses
finite coverings of spheres in XN with respect to the norm || · ||H1. The errors
introduced by this spatial discretization will be estimated in detail. Moreover
we use the path-connectedness of the semi-discretized solution set in order
to develop an efficient search algorithm for the computation of the solution
of the fully discretized problem.

2 Properties of the Nemytskii operator

As usual, we will denote Proj(x, Y ) := {y ∈ Y : |x − y| = dist(x, Y )} and
‖Y ‖ := supy∈Y |y| for any x ∈ Rd and Y ⊂ Rd. If Rd is equipped with the
Euclidean metric and Y is convex, then Proj(x, Y ) is a singleton.

Let p ∈ (1,∞) be such that H1
0 ⊂ Lp be continuously embedded, let

C(p) be the norm of the embedding i : H1
0 → Lp, and let q be the dual

exponent given by 1
p
+ 1

q
= 1. Recall (for example from [1, Th. 8.9]) that the

embedding is continuous for arbitrary p if d = 1, 2 and for p ≤ 2d/(d− 2) if
d ≥ 3 whenever the boundary of Ω is Lipschitz.

Throughout this text, the multivalued nonlinearity will be required to be
Caratheodory and relaxed one-sided Lipschitz in the second variable with a
uniform constant l ∈ R.
Definition 1. A multivalued mapping F : Ω × R → CC(R) is called Cara-
theodory, if for every s ∈ R, x 7→ F (x, s) is measurable and for any x ∈ Ω,
s 7→ F (x, s) is continuous.

The most important facts about Caratheodory multivalued mappings are
displayed in [2]. We also refer to this book for precise definitions of measur-
ability, continuity, and upper and lower semicontinuity of set-valued maps.

Definition 2. A multivalued mapping F : Ω×R→ CC(R) is called relaxed
one-sided Lipschitz (ROSL) in the second variable with (a uniform) constant
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l ∈ R, if for any x ∈ Ω, s, s′ ∈ R, and t ∈ F (x, s), there exists some
t′ ∈ F (x, s′) such that

(t− t′)(s− s′) ≤ l(s− s′)2.

A detailed coverage of the ROSL property can be found in [7] and other
work of the same author.

Given an arbitrary multivalued mapping F : Ω×R→ CC(R), define the
functions f+, f− : Ω × R → R by f+(x, s) := supF (x, s) and f−(x, s) :=
inf F (x, s).

Lemma 3. A set-valued mapping F : Ω×R→ CC(R) is Caratheodory and
ROSL in the second variable if and only if f+ and f− are Caratheodory and
one-sided Lipschitz (in the classical sense) in the second variable with the
same Lipschitz constant.

Proof. Measurability. Assume that for fixed s ∈ R, the mapping x 7→ F (x, s)
is measurable. By the Characterization Theorem [2, Theorem 8.1.4], there
exists a sequence (fn)n of measurable selections of x 7→ F (x, s) such that
F (x, s) = ∪n∈Nfn(x) for all x ∈ Ω. Hence, their pointwise supremum and
infimum f+(x, s) = supn∈N fn(x) and f−(x, s) = infn∈N fn(x) are measurable
functions.

Conversely, assume that for fixed s ∈ R, the functions x 7→ f+(x, s) and
x 7→ f−(x, s) are measurable. But then all functions fλ given by fλ(x) :=
λf+(x, s) + (1 − λ)f−(x, s) with λ ∈ [0, 1] ∩Q are measurable, and F (x) =
∪λ∈[0,1]∩Qfλ(x), so that x 7→ F (x, s) is measurable by the Characterization
Theorem.

Continuity. Because of

distH(F (x, s), F (x, s
′)) = max{|f+(x, s)− f+(x, s

′)|, |f−(x, s)− f−(x, s
′)|},

the mapping s 7→ F (x, s) is continuous w.r.t. to the Hausdorff distance if
and only if the functions s 7→ f+(x, s) and s 7→ f−(x, s) are continuous.

ROSL property. Let F be ROSL in the second argument with constant
l ∈ R, and assume that there exist some fixed x ∈ Ω and s, s′ ∈ R with
s > s′ and

(f+(x, s)− f+(x, s
′))(s− s′) > l|s− s′|2.

As F is ROSL, there exists some t′ ∈ F (x, s′) satisfying

(f+(x, s)− t
′)(s− s′) ≤ l|s− s′|2 < (f+(x, s)− f+(x, s

′))(s− s′),
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but then f+(x, s
′) < t′, which is a contradiction. Similar computations for

the case s < s′ and the function s 7→ f−(x, s) show that f+ and f− are
one-sided Lipschitz in the second argument with constant l.

Conversely, fix x ∈ Ω and let s 7→ f+(x, s) and s 7→ f−(x, s) be one-
sided Lipschitz with constant l. Then for any λ ∈ [0, 1], the function s 7→
fλ(x, s) := λf+(x, s) + (1 − λ)f−(x, s) is a selection of s 7→ F (x, s) which is
one-sided Lipschitz with constant l. Let s, s′ ∈ R and and t ∈ F (x, s) be
given. Then t = fλ(x, s) for some λ ∈ [0, 1], and hence t′ := fλ(x, s

′) is an
element of F (x, s′) satisfying

(t− t′)(s− s′) = (fλ(x, s)− fλ(x, s
′))(s− s′) ≤ l|s− s′|2,

so that F is ROSL.

Lemma 4. If F,G : Ω→ CC(R) are measurable, then the function

x 7→ dist(F (x), G(x))

is measurable.

Proof. By the Characterization Theorem [2, Theorem 8.1.4], there exists a
sequence (fn)n of measurable selections of F such that F (x) = ∪n∈Nfn(x).
Hence

x 7→ dist(F (x), G(x)) = sup
t∈F (x)

dist(t, G(x)) = sup
n∈Ndist(fn(x), G(x))

is a countable supremum of measurable functions (see [2, Corollary 8.2.13])
and measurable as such.

The following proposition shows that the notion of a Nemytskii operator
is still meaningful in the set-valued context.

Proposition 5. Let F : Ω × R → CC(R) be a Caratheodory set-valued
mapping which satisfies the growth bound

‖F (x, s)‖ ≤ α(x) + β|s|p−1, x ∈ Ω, s ∈ R (8)

for some nonnegative α ∈ Lq(Ω) and β ≥ 0. If Ω ⊂ Rd is an open and
bounded domain, then the set-valued Nemytskii operator (4) is well-defined
as an operator F̃ : Lp(Ω) ⇉ Lq(Ω), has closed, convex, and bounded values,
and maps bounded sets to bounded sets. Moreover, F̃ is continuous w.r.t. the
Hausdorff metric on the closed and bounded subsets of Lq(Ω).
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Remark 6. i) In view of [9, Theorem 3.4.4], growth estimate (8) is a nec-
essary condition for F̃ to map Lp(Ω) into Lq(Ω) in the single-valued, and
hence also in the set-valued case.

ii) The single-valued Nemytskii operators f̃+, f− : Lp → Lq given by
[f̃+(u)](x) := f+(x, u(x)) and [f̃−(u)](x) := f−(x, u(x)) are well-defined and
continuous.

Proof. General properties. For any u ∈ Lp(Ω), the mapping x 7→ F (x, u(x))
is measurable according to [2, Theorem 8.2.8] and hence admits a measurable
selection v ∈ F̃ (u), which proves that the values of F̃ are nonempty.

If u ∈ Lp(Ω) and v ∈ F̃ (u), then v(x) ∈ F (x, u(x)) a.e. implies

|v(x)| ≤ α(x) + β|u(x)|p−1 = α(x) + β|u(x)|
p
q a.e.

so that

‖v‖Lq ≤ ‖α+ β|u|
p
q ‖Lq ≤ ‖α‖Lq + β‖u

p
q ‖Lq ≤ ‖α‖Lq + β‖u‖

p
q

Lp.

Consequently, F̃ : Lp(Ω) ⇉ Lq(Ω) is well-defined, has bounded images,
and maps bounded sets to bounded sets. Moreover, its images are convex,
because for any v1, v2 ∈ F̃ (u) and λ ∈ [0, 1], the inclusion

[λv1 + (1− λ)v2](x) ∈ λF (x, u(x)) + (1− λ)F (x, u(x)) = F (x, u(x))

holds a.e.
For every sequence (vn)n ⊂ F̃ (u) and v ∈ Lq(Ω) with vn → v in Lq(Ω),

we have vn(x) → v(x) a.e. along a subsequence. Since F has closed values,
v(x) ∈ F (x, u(x)) a.e. and F̃ (u) is closed.

Continuity properties. Let F be Caratheodory, and let (un)n ⊂ Lp(Ω)
and u ∈ Lp(Ω) such that un → u in Lp(Ω). If the statement

dist(F̃ (un), F̃ (u))Lq → 0 as n→∞ (9)

is false, then there exist ε > 0 and a subsequence (un)n∈N′ such that

dist(F̃ (un), F̃ (u))Lq > ε for all n ∈ N′. (10)

There exists a further subsequence (un)n∈N′′ satisfying un(x)→ u(x) a.e. By
Lemma 4 and [2, Theorem 8.2.8], the functions

ϕn(x) := dist(F (x, un(x)), F (x, u(x)))
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are measurable. Growth condition (8) and [16, (30b), Appendix] ensure that
there exists a constant C(q, 3) depending only on q such that

ϕn(x)
q ≤

(

‖F (x, un(x))‖+ ‖F (x, u(x))‖
)q

≤
(

2α(x) + β(|un(x)|
p
q + |u(x)|

p
q )
)q

≤ C(q, 3)
(

2qα(x)q + βq|un(x)|
p + βq|u(x)|p

)

and 2qα(x)q+βq|un(x)|
p+βq|u(x)|p → 2qα(x)q+2βq|u(x)|p in L1. Continuity

of F in the second argument implies that dist(F (x, un(x)), F (x, u(x)))
q → 0

almost everywhere, and hence
∫

Ω

dist(F (x, un(x)), F (x, u(x)))
qdx→ 0 as n→∞ (11)

by the Generalized Majorized Convergence Theorem (Theorem 19a in Ap-
pendix 2 of [16]).

Now let fn ∈ F̃ (un), and set gn(x) := Proj(fn(x), F (x, u(x))). By [2,
Corollary 8.2.13], the functions gn : Ω → R are measurable, and growth
condition (8) guarantees that gn ∈ L

q(Ω). By construction and because of
(11),

‖fn−gn‖
q
Lq =

∫

Ω

|fn(x)−gn(x)|
qdx ≤

∫

Ω

dist(F (x, un(x)), F (x, u(x)))
qdx→ 0,

so that
dist(F̃ (un), F̃ (u))Lq → 0 as N′′ ∋ n→∞,

because fn were arbitrary. This contradicts (10), and thus (9) holds. As a
consequence, the mapping F̃ is upper semicontinuous.

Lower semicontinuity of F̃ can be shown analogously.

Proposition 7. Let F : Ω×R→ CC(R) be a Caratheodory mapping which
is ROSL in the second argument with constant l ∈ R and satisfies growth
condition (8). Let H1

0 ⊂ Lp be continuously embedded, and let q be the dual
exponent. Then the Nemytskii operator F̃ : H1

0 (Ω) ⇉ Lq(Ω) is ROSL in the
sense that for all u, u′ ∈ H1

0 and v ∈ F̃ (u), there exists v′ ∈ F̃ (u′) such that
∫

Ω

(v − v′)(u− u′)dx ≤ l‖u− u′‖2L2 ≤ l+‖u− u′‖2H1,

where l+ := max{0, l}.
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Proof. Let u, u′ ∈ H1
0 (Ω) and v ∈ F̃ (u) be given. As v(x) ∈ F (x, u(x)) a.e.,

the ROSL property of F implies that the values of the mapping H : Ω ⇉ R
defined by

H(x) := {t ∈ F (x, u′(x)) : (t− v(x))(u′(x)− u(x)) ≤ l(u′(x)− u(x))2}

are nonempty for every x ∈ Ω. The function

g(x, t) := (t− v(x))(u′(x)− u(x))

is Caratheodory and the values of the mapping

G(x) := (−∞, l(u′(x)− u(x))2]

are closed, so that the intersections

H(x) = F (x, u′(x)) ∩ g(x, ·)−1(G(x))

are closed as well. By the Inverse Intersection Lemma [2, Theorem 8.2.9],
the mapping H is measurable, and consequently, it admits a measurable
selection v′(·). By construction, v′(x) ∈ F (x, u′(x)) a.e., and Proposition 5
ensures that v′ ∈ Lq(Ω), so that v′ ∈ F̃ (u′). As

∫

Ω

(v − v′)(u− u′)dx ≤ l

∫

Ω

(u′ − u)2dx = l‖u′ − u‖2L2 ≤ l+‖u′ − u‖2H1,

F̃ is ROSL with constant l+.

Proposition 8. Let F : Ω × R → CC(R) be a set-valued mapping which
is measurable in the first and L-Lipschitz in the second argument and sat-
isfies growth condition (8). Then the set-valued Nemytskii operator F̃ :
Lp(Ω) ⇉ Lq(Ω) is well-defined and Lipschitz continuous with Lipschitz con-

stant L|Ω|1−
2
p , has closed and convex values, and maps bounded sets to bounded

sets.

Proof. Let u, u′ ∈ Lp(Ω) and f ∈ F̃ (u) be given, and define a function
f ′ : Ω → R by f ′(x) := Proj(f(x), F (x, u′(x))). By Corollary 8.2.13 in [2],
the function f ′ is measurable. Growth condition (8) and Lipschitz continuity
(which strengthens bound (8)) ensure that f, f ′ ∈ F̃ (u′) ∩ Lp(Ω). Since

‖f − f ′‖pLp =

∫

Ω

|f(x)− f ′(x)|pdx =

∫

Ω

dist(F (x, u(x)), F (x, u′(x)))pdx

≤

∫

Ω

Lp|u(x)− u′(x)|pdx = Lp‖u− u′‖pLp,
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and the interpolation inequalities (see [8, page 623]) imply ‖f − f ′‖Lq ≤

|Ω|1−
2
p‖f − f ′‖Lp, the Nemytskii operator satisfies

dist(F̃ (u), F̃ (u′))Lq ≤ L|Ω|1−
2
p‖u− u′‖Lp.

The remaining statements follow from Proposition 5.

In particular,
dist(F̃ (u), F̃ (u′))L2 ≤ L‖u− u′‖H1

for u, u′ ∈ H1
0 and p = q = 2.

The following proposition shows that the set-valued Nemytskii operator
can be parametrized by a family of single-valued operators with favorable
properties. This is the key ingredient for proving connectedness of the solu-
tion set of the differential inclusion (see Theorem 14). We can only prove such
a result for mappings F : Ω × Rd → Rd with d = 1, because it is currently
unclear under which conditions ROSL multimaps admit parametrizations by
OSL single-valued mappings.

Proposition 9. Let F : Ω×R→ CC(R) be a Caratheodory mapping which
is ROSL in the second argument with constant l ∈ R and satisfies growth
condition (8). Let H1

0 ⊂ Lp be continuously embedded, and let q be the dual
exponent. Moreover, let the family Λ :=M(Ω, [0, 1]) of measurable functions
from Ω to [0, 1] be equipped with the L∞ norm. Then the nonlinear operator
f̃ : Lp × Λ→ Lq given by

f̃λ(u)(x) := λ(x)f+(x, u(x)) + (1− λ(x))f−(x, u(x)) (12)

satisfies

i) F̃ (u) = ∪λ∈Λf̃λ(u) for all u ∈ H1
0 ;

ii) u 7→ f̃λ(u) is continuous and OSL with constant l+ for all λ ∈ Λ;

iii) λ 7→ f̃λ(u) is continuous for every u ∈ H1
0 .

Proof. i) The inclusion ∪λ∈Λf̃λ(u) ⊂ F̃ (u) for all u ∈ H1
0 follows directly

from (12). Conversely, let u ∈ H1
0 and f ∈ F̃ (u) be given. Then

f(x) ∈ F (x, u(x)) = [f−(x, u(x)), f+(x, u(x))]

= {µf+(x, u(x)) + (1− µ)f−(x, u(x)) : µ ∈ [0, 1]},
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so that the Filippov Theorem [2, Theorem 8.2.10] ensures the existence of a
measurable function λ : Ω→ [0, 1] satisfying f = f̃λ(u).

ii) Let u, u′ ∈ H1
0 and λ ∈ Λ be given. Then

‖f̃λ(u)− f̃λ(u
′)‖Lq

= ‖
(

λf̃+(u) + (1− λ)f̃−(u)
)

−
(

λf̃+(u
′) + (1− λ)f̃−(u

′)
)

‖Lq

≤ ‖λ
(

f̃+(u)− f̃+(u
′)
)

‖Lq + ‖(1− λ)
(

f̃−(u)− f̃−(u
′)
)

‖Lq

≤ ‖f̃+(u)− f̃+(u
′)‖Lq + ‖f̃−(u)− f̃−(u

′)‖Lq .

By Remark 6ii), f̃+ and f̃− are continuous from Lp to Lq and hence in
particular from H1

0 to Lq, so that

‖f̃λ(u)− f̃λ(u
′)‖Lq → 0 as ‖u− u′‖Lp → 0

and u 7→ f̃λ(u) is continuous. The OSL property follows from

∫

Ω

(

f̃λ(u)− f̃λ(u
′)
)

(u− u′)dx

=

∫

Ω

{
(

λ(x)f+(x, u(x)) + (1− λ(x))f−(x, u(x))
)

−
(

λ(x)f+(x, u
′(x)) + (1− λ(x))f−(x, u

′(x))
)

} · (u(x)− u′(x))dx

=

∫

Ω

λ(x)
(

f+(x, u(x))− f+(x, u
′(x))

)

(u(x)− u′(x))dx

+

∫

Ω

(1− λ(x))
(

f+(x, u(x))− f+(x, u
′(x))

)

(u(x)− u′(x))dx

≤

∫

Ω

λ(x)l|u(x)− u′(x)|2dx+

∫

Ω

(1− λ(x))l|u(x)− u′(x)|2dx

= l‖u− u′‖2L2 ≤ l+‖u− u′‖2H1
0
.

iii) Let u ∈ H1
0 and λ, λ′ ∈ Λ. Then

‖f̃λ(u)− f̃λ′(u)‖Lq

= ‖
(

λf̃+(u) + (1− λ)f̃−(u)
)

−
(

λ′f̃+(u) + (1− λ′)f̃−(u)
)

‖Lq

≤ ‖λ− λ′‖L∞

(

‖f̃+(u)‖Lq + ‖f̃−(u)‖Lq

)

→ 0 as ‖λ− λ′‖L∞ → 0.
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3 Existence and estimates of solutions

It is useful to reformulate differential inclusion (5) and Galerkin inclusion (7)
in operator form. Assume that the boundary of Ω is Lipschitz. We consider
XN as a Hilbert space endowed with the norm || · ||H1 and denote its dual
by X ∗

N . The Riesz isomorphism QN : X ∗
N → XN , N ∈ N associates with any

ϕ ∈ X ∗
N the unique element QNϕ ∈ XN satisfying

〈ϕ, v〉 = (QNϕ, v)H1 for all v ∈ XN ,

where 〈·, ·〉 denotes the duality pairing. The Ritz projector RN : H1
0 → XN

is defined by
a(RNu, v) = a(u, v) for all v ∈ XN . (13)

Let H1
0 ⊂ Lp be continuously embedded for some p > 1, let C(p) be the norm

of the embedding i : H1
0 → Lp, and let q be the dual exponent. (According

to Theorem 8.9 in [1], the embedding is continuous for arbitrary p if d = 1, 2
and for p ≤ 2d/(d− 2) if d ≥ 3, and it is compact for arbitrary p if d = 1, 2
and for p < 2d/(d− 2) if d ≥ 3.)

Consider the embedding operators J : Lq → H−1 = (H1
0 )

∗ and JN : Lq →
X ∗

N given by 〈Jf, u〉 =
∫

Ω
uf dx and 〈JNf, uN〉 =

∫

Ω
uNf dx for any f ∈ Lq,

u ∈ H1
0 , and uN ∈ XN . Their norms are bounded by ‖J‖, ‖JN‖ ≤ C(p).

Define A : H1
0 → H−1 and AN : XN → X

∗
N by the identities

〈Au, v〉 = a(u, v) for all v ∈ H1
0 ,

〈ANu, v〉 = a(u, v) for all v ∈ XN ,

and define the nonlinear operators F : H1
0 ⇉ H−1 and FN : XN → CC(X

∗
N )

by F(u) = JF̃ (u) and FN(u) = JN F̃ (u). Then differential inclusion (5) and
Galerkin inclusion (7) can be rewritten as

Au ∈ F(u), u ∈ H1
0 (14)

ANuN ∈ FN(uN), uN ∈ XN . (15)

The following proposition shows that compactness of the embeddingH1
0 ⊂⊂

Lp and approximation property (6) imply uniform convergence of the opera-
tors RN on bounded sets. No explicit assumptions on Ω and ∂Ω are necessary.
Textbooks on finite element theory such as [5, Theorem II.7.2], [11, Theorem
5.5], and [15, Lemma 1.1] only treat pointwise convergence, but specify a
rate of convergence, which seems to be impossible here.
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Proposition 10. Let p > 1 be such that the embedding H1
0 ⊂⊂ Lp is compact

and let (6) hold. Then the Ritz projector satisfies

sup
‖u‖H1≤1

‖u−RNu‖Lp → 0 as N →∞. (16)

Proof. First note that by the classical Céa Lemma for every u ∈ H1
0 ,

‖u− RNu‖H1 ≤
C

c
inf{||u− w||H1 : w ∈ XN}, (17)

and hence by (6) and the continuous embedding

||u−RNu||Lp ≤ C(p)‖u− RNu‖H1 → 0 as N →∞. (18)

If the assertion is false there exists an ε > 0, a subsequence N′ ⊂ N, and a
sequence uN ∈ H

1
0 , N ∈ N′ such that

||uN ||H1 ≤ 1, ||uN −RNuN ||Lp ≥ ε, N ∈ N′. (19)

Then we find a u ∈ H1
0 and a subsequence N′′ ⊂ N′ such that

uN ⇀ u in H1
0 , N′′ ∋ N →∞, (20)

and by the compact embedding,

uN → u in Lp, N′′ ∋ N →∞. (21)

From the triangle inequality we obtain

‖uN −RNuN ||Lp ≤ ‖uN − u‖Lp + ‖u−RNu‖Lp + ‖RN(u− uN)‖Lp, (22)

where the first two terms converge to 0 as N′′ ∋ N → ∞ by (18) and (21).
We are going to show that the last term also converges to 0 for a suitable
subsequence. This contradicts (19) and finishes the proof.

Let vN = u− uN , N ∈ N′′ and note that by (19) and (20),

‖vN‖H1 ≤ 2 and vN ⇀ 0 in H1
0 as N′′ ∋ N →∞. (23)

From the uniform bound on RN in the H1-norm we infer

‖RNvN‖H1 ≤
C

c
‖vN‖H1 ≤ 2

C

c
.
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Hence there exists a subsequence N′′′ ⊂ N′′ and some v ∈ H1
0 such that

RNvN ⇀ v in H1
0 and RNvN → v in Lp as N′′′ ∋ N →∞. (24)

Now, consider the term

a(RNvN , v) =a(RNvN , RNv) + a(RNvN , v − RNv)

=a(vN , RNv) + a(RNvN , v − RNv)

=a(vN , v) + a(RNvN − vN , v −RNv) (25)

≤a(vN , v) + 2C

(

C

c
+ 1

)

‖v − RNv‖H1.

Using (18), (23), (24) and the weak continuity of a(·, v) we find that the
right-hand side of (25) converges to 0 as N′′′ ∋ N → ∞ while the left-hand
side converges to a(v, v). Therefore, v = 0 and (24) shows ‖RNvN‖Lp → 0 asN′′′ ∋ N →∞.

Lemma 11. Let H1
0 ⊂ Lp be continuously embedded for some p ≥ 2. Let

F : Ω×R→ CC(R) be a Caratheodory mapping which is ROSL in the second
argument with constant l ∈ R and satisfies growth condition (8). Then the
multifunction QNFN : XN → CC(XN) is continuous and ROSL with the
constant l+ := max{0, l}.

Proof. The images of QNFN are bounded, because QN and JN are bounded
operators and the images of F̃ are bounded according to Proposition 5.

Let (vk)k ⊂ QNFN(u) and v ∈ XN be such that vk → v in XN . There
exists a sequence (fk)k ∈ F̃ (u) with QNJNfk = vk. As QN is an isometric
isomorphism, there exists a unique ϕ ∈ X ∗

N such that QNϕ = v, and thus
JNfk → ϕ in X ∗

N . Since F̃ (u) is closed, bounded, and convex (see Proposition
5), there exists a subsequence (fk)k∈N′ such that fk ⇀ f in Lq and f ∈ F̃ (u)
by Mazur’s Lemma [13, Theorem I.3.12]. Now

〈ϕ,w〉 ← 〈JNfk, w〉 =

∫

Ω

wfk dx→

∫

Ω

wf dx = 〈JNf, w〉

for all w ∈ XN shows that JNf = ϕ, and hence v = QNJNf ∈ QNFN(u), so
that FN(u) is closed.

Continuity of QNFN follows from

dist(QNFN(u), QNFN(u
′))H1 = dist(QNJN F̃ (u), QNJN F̃ (u

′))H1

≤ C(p) dist(F̃ (u), F̃ (u′))L2
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and continuity of F̃ (see Proposition 5).
If u, u′ ∈ XN and v ∈ QNFN(u) are given, there exists some f ∈ F̃ (u)

such that v = QNJNf . As F̃ is ROSL (see Proposition 7), there exists some
f ′ ∈ F̃ (u′) with

∫

Ω

(f − f ′)(u− u′) dx ≤ l+‖u− u′‖2H1,

and hence the element v′ := QNJNf
′ ∈ QNFN(u

′) satisfies

(v − v′, u− u′)H1 = (QNJN(f − f
′), u− u′)H1

=

∫

Ω

(f − f ′)(u− u′) dx ≤ l+‖u− u′‖2H1

so that QNFN is ROSL with constant l+.

3.1 Existence of solutions and properties of the solu-
tion sets

Theorem 12. Let H1
0 ⊂⊂ Lp be compactly embedded for some p ≥ 2. Let

F : Ω × R → CC(R) be a Caratheodory mapping which is ROSL in the
second argument with constant l ∈ R such that l < c with c from (2) and
which satisfies growth condition (8). Then SN is nonempty and compact for
every N ∈ N. Moreover, we have the uniform bound

‖SN‖H1 ≤ κ−1C(p)‖α‖Lq , κ := c− l+. (26)

If, in addition, approximation property (6) holds then any sequence (uN)N ,
uN ∈ SN , of approximate solutions contains a subsequence converging weakly
in H1(Ω) to a solution u ∈ H1

0 (Ω) of the original inclusion. Moreover, bound
(26) holds for the solution set S.

Proof. The set-valued operator GN : XN → CC(XN) given by

GN(u) = QN(FN(u)−ANu) (27)

is continuous, because

dist(GN (u), GN(u
′))H1 = dist(QN [FN(u)− ANu], QN [FN(u

′)−ANu
′])H1

≤ ‖QNAN (u− u
′)‖H1 + dist(QNFN(u), QNFN(u

′))H1
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and both QNAN and QNFN are continuous (see Lemma 11). Because of

(−QNANu+QNANu
′, u− u′)H1 = −a(u − u′, u− u′) ≤ −c‖u− u′‖2H1 ,

the operator −QNAN : XN → XN is ROSL with constant −c. By Lemma
11, the mapping QNFN is ROSL with constant l+, and hence the sum GN =
QNFN − QNAN is ROSL with constant −κ < 0. Consequently, Theorem
27 guarantees the existence of a solution uN ∈ XN of inclusion (15) and
compactness of SN .

We derive a bound on the H1-norm of the solutions that is independent
of N . If uN ∈ SN , then QNANuN ∈ QNFN (uN). As QNFN is ROSL, there
exists some vN ∈ QNFN(0) such that

(QNANuN − vN , uN)H1 ≤ l+‖uN‖
2
H1 ,

and hence

c‖uN‖
2
H1 ≤ a(uN , uN) = 〈ANuN , uN〉 = (QNANuN − vN , uN)H1 + (vN , uN)H1

≤ l+‖uN‖
2
H1 + ‖QNFN(0)‖H1‖uN‖H1 ,

so that
‖uN‖H1 ≤ κ−1‖QNFN(0)‖H1 ≤ κ−1C(p)‖α‖Lq .

Now consider a sequence uN ∈ XN , N ∈ N of solutions for (15), i.e. there
exist fN ∈ F̃ (uN) such that

a(uN , v) =

∫

Ω

fNv dx for all v ∈ XN . (28)

By (26) the sequence (uN)N∈N is bounded in H1
0 and hence there exist a

subsequence (uN)N∈N′ and a function u ∈ H1
0 such that uN ⇀ u in H1

0 and

uN → u in Lp as N →∞. (29)

By Proposition 5 and (26) the sets F̃ (uN) are uniformly bounded in Lq and
hence we find a subsequence (fN )N∈N′′ and an f ∈ Lq such that fN ⇀ f in
Lq as N →∞. Proposition 5 ensures that

dist(fN , F̃ (u))Lq ≤ dist(F̃ (uN), F̃ (u))Lq → 0.
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Thus for every δ > 0, there exists some Nδ ∈ N such that

fN ∈ Bδ(F̃ (u)) for all N ≥ Nδ.

As Bδ(F̃ (u)) is closed and convex, Mazur’s Lemma [13, Theorem I.3.12]
implies that f ∈ Bδ(F̃ (u)). Since δ was arbitrary, f ∈ F̃ (u) holds.

For an arbitrary v ∈ H1
0 we have by (6) a sequence vN ∈ XN such that

||v − vN ||H1 → 0 as N →∞. Then using (28) with v = vN we obtain

−a(u, v) +

∫

Ω

fv dx = a(uN − u, v)− a(uN , v − vN)− a(uN , vN) +

∫

Ω

fv dx

= a(uN − u, v)− a(uN , v − vN)−

∫

Ω

fN (vN − v) dx

+

∫

Ω

(f − fN)v dx.

The first term converges to 0 because a(·, v) : H1
0 7→ R is (weakly) continuous.

For the second term we use (2) and the boundedness of ||uN ||H1 while the
last two terms converge to 0 by the boundedness and the weak convergence
of fN . Therefore, u solves the inclusion (5) with f ∈ F̃ (u).

The estimate ||S|| ≤ κ−1C(p)‖α‖Lq proceeds along the same lines as in
the discrete case.

Remark 13. In view of the example in [4, Example 10] one cannot expect
the solution sets SN and S to be convex.

The following theorem shows that under standard assumptions, the so-
lution sets SN and S are path-connected. This property allows the use of
very efficient search algorithms for the computation of the fully discretized
solution sets Sρ

N(δ) and Ŝ
ρ
N(δ

′) (see Lemma 26 and the subsequent algorithm).

Theorem 14. Let H1
0 ⊂ Lp be continuously embedded for some p ≥ 2. Let

F : Ω×R→ CC(R) be a Caratheodory mapping which is ROSL in the second
argument with constant l ∈ R such that l < c and which satisfies growth
condition (8). Then the sets SN ⊂ H1

0 and S ⊂ H1
0 are path connected.

Proof. For λ ∈ Λ =M(Ω, [1, 0]), define

fλ(x, s) := λ(x)f+(x, s) + (1− λ(x))f−(x, s).
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Clearly, fλ : Ω×R→ R is Caratheodory. By Lemma 3,

(fλ(x, s)− fλ(x, s
′))(s− s′)

= [λ(x)f+(x, s) + (1− λ(x))f−(x, s)](s− s
′)

−[λ(x)f+(x, s
′) + (1− λ(x))f−(x, s

′)](s− s′)

= λ(x)[f+(x, s)− f+(x, s
′)](s− s′)

+(1− λ(x))[f−(x, s)− f−(x, s
′)](s− s′)

≤ (λ(x) + (1− λ(x)))l|s− s′|2 = l|s− s′|2,

so that fλ is OSL with constant l. Theorem 12 applied to the right-hand side
(x, s) 7→ {fλ(x, s)} guarantees the existence of a solution uN,λ ∈ H

1
0 of

a(uN,λ, v) =

∫

Ω

fλ(x, uN,λ(x))v(x)dx for all v ∈ XN . (30)

For any two solutions uN,λ and u′N,λ of (30), inequality

c‖uN,λ − u
′
N,λ‖

2
H1 ≤ a(uN,λ − u

′
N,λ, uN,λ − u

′
N,λ)

=

∫

Ω

(

fλ(x, uN,λ(x))− fλ(x, u
′
N,λ(x))

)

(uN,λ − u
′
N,λ)dx

≤ l‖uN,λ − u
′
N,λ‖

2
L2 ≤ l+‖uN,λ − u

′
N,λ‖

2
H1

implies ‖uN,λ− u
′
N,λ‖H1 = 0. Consequently, problem (30) possesses a unique

solution uN,λ for any λ ∈ Λ, and the operator ψ : Λ→ H1
0 that maps λ ∈ Λ

to the unique solution of (30) is well-defined.
Let uN,λ = ψ(λ) and uN,λ′ = ψ(λ′) be given. Then

c‖uN,λ − uN,λ′‖2H1

≤ a(uN,λ − uN,λ′, uN,λ − uN,λ′)

=

∫

Ω

(

f̃λ(uN,λ)− f̃λ′(uN,λ′)
)

(uN,λ − uN,λ′)dx

=

∫

Ω

(

f̃λ(uN,λ)− f̃λ(uN,λ′)
)

(uN,λ − uN,λ′)dx

+

∫

Ω

(

f̃λ(uN,λ′)− f̃λ′(uN,λ′)
)

(uN,λ − uN,λ′)dx

≤ l+‖uN,λ − uN,λ′‖2H1 + C(p)‖f̃λ(uN,λ′)− f̃λ′(uN,λ′)‖Lq‖uN,λ − uN,λ′‖Lp
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by Proposition 9 ii), so that

‖uN,λ−uN,λ′‖H1 ≤ κ−1C(p)‖f̃λ(uN,λ′)− f̃λ′(uN,λ′)‖Lq → 0 as ‖λ−λ′‖L∞ → 0

by Proposition 9 iii). In particular, ψ is continuous.
Now let two arbitrary solutions uN , u

′
N ∈ SN be given. By Proposition

9 i), there exist λ, λ′ ∈ Λ such that uN = ψ(λ) and u′N = ψ(λ′). Define
µ : [0, 1]→ Λ by µ(t) := tλ′ + (1− t)λ. Then µ is continuous with µ(0) = λ
and µ(1) = λ′, so that ψ ◦ µ : [0, 1] → SN is a continuous curve joining
ψ ◦ µ(0) = uN and ψ ◦ µ(1) = u′N .

The path-connectedness of S can be shown by an analogous proof.

3.2 Estimates of solution sets

Next we estimate the distance of the solution sets.

Theorem 15. Let H1
0 ⊂⊂ Lp be compactly embedded for some p ≥ 2. Let

F : Ω×R→ CC(R) be a Caratheodory mapping which is ROSL in the second
argument with some constant l ∈ R such that l < c and which satisfies growth
condition (8). If the approximation property (6) holds, then the solution sets
S and SN of (14) and (15) satisfy

dist(SN , S)Lp → 0 as N →∞. (31)

Proof. If (31) is false, there exist ε > 0 and a sequence (uN)N∈N′ with uN ∈
SN such that

dist(uN , S)Lp > ε for all N ∈ N′.

The proof of Theorem 12 shows that (uN)N admits a further subsequence
that converges weakly in H1

0 to a solution u of (5). In particular, equation
(29) holds, which contradicts the initial assumption.

Remark 16. It is not clear whether convergence with respect to the H1-norm
holds under the conditions of the theorem.

Theorem 17. Let H1
0 ⊂⊂ Lp be compactly embedded for some p ≥ 2. Let

F : Ω×R→ CC(R) be a Caratheodory mapping which is ROSL in the second
argument with some constant l ∈ R such that l < c and which satisfies growth
condition (8). Assume that approximation property (6) holds. Then S is
relatively compact in Lp(Ω) and

dist(RNS, SN)H1 → 0 as N →∞,

dist(S, SN)Lp → 0 as N →∞.
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Proof. By Theorem 12, ‖S‖H1 ≤ κ−1C(p)‖α‖Lq . Because of

c‖RNu− u‖
2
H1 = a(RNu− u,RNu− u)

= −a(RNu− u, u) ≤ C‖RNu− u‖H1 · ‖u‖H1,

we have

‖RNu− u‖H1 ≤
C

c
‖u‖H1.

Consequently, the set (∪N∈NRNS) ∪ S is bounded in H1
0 (Ω) and hence pre-

compact in Lp(Ω).
Let u ∈ S, i.e.

a(u, v) =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω)

for some f ∈ F̃ (u), and let N ∈ N be given. The nonlinear operator GN :
XN → CC(XN) defined in (27) has been shown to be continuous and ROSL
with constant −κ < 0. Hence Theorem 27 guarantees the existence of a
solution uN ∈ XN of the inclusion

0 ∈ GN(uN)

such that

‖uN −RNu‖H1 ≤ κ−1 dist(0, GN(RNu))H1

= κ−1 dist(QNANRNu,QNFN(RNu))H1

= κ−1 inf
f̃∈F̃ (RNu)

sup
v∈XN

‖v‖
H1=1

−a(RNu, v) +

∫

Ω

f̃ v dx

≤ κ−1 inf
f̃∈F̃ (RNu)

sup
v∈XN

‖v‖
H1=1

(|a(RNu− u, v)|

+|a(u, v)−

∫

Ω

fv dx|+ |

∫

Ω

(f − f̃)v dx|)

≤ C(p)κ−1 inf
f̃∈F̃ (RNu)

‖f − f̃‖Lq

≤ C(p)κ−1 dist(F̃ (u), F̃ (RNu))Lq .

By inequality (16),

sup
u∈S
‖u−RNu‖Lp → 0 as N →∞. (32)
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Since F̃ is continuous (from Lp(Ω) to Lq(Ω)), it is uniformly continuous on
the precompact set (∪N∈NRNS) ∪ S, so that by (32),

sup
u∈S

dist(F̃ (u), F̃ (RNu))Lq → 0 as N →∞,

and hence
dist(RNS, SN)H1 → 0 as N →∞.

In particular, inequality (32) implies

dist(S, SN)Lp ≤ dist(S,RNS)Lp + dist(RNS, SN)H1 → 0

as N →∞.

Remark 18. If instead of (16) inequality

sup
‖u‖H1≤1

‖u− RNu‖H1 → 0 as N →∞ (33)

is assumed, then the strengthened version

sup
u∈S
‖u− RNu‖H1 → 0 as N →∞.

of (32) implies

dist(S, SN)H1 → 0 as N →∞

by the same proof as above. Inequality (33) holds e.g. whenever Ω is a polygo-
nal convex domain and the coefficients of the elliptic operator are sufficiently
smooth (see [5, Theorems II.7.2 and II.7.3]).

4 Implementation

Throughout this section, the mapping F : Ω×R→ CC(R) will be required to
be measurable in the first and Lipschitz continuous with Lipschitz constant
L > 0 in the second argument. It seems to be necessary to impose this
assumption in order to obtain a modulus of continuity of the Nemytskii
operator F̃ : L2(Ω) ⇉ L2(Ω) without disproportionate complications. In
view of Proposition 8, it follows that F̃ is Lipschitz continuous with the
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same Lipschitz constant L. The assumption κ := c − L > 0 is consistent
with the notation employed in Section 3.

It is well-known (see e.g. [11]) that spaces of piecewise linear continuous
functions subject to suitable triangulations of the domain Ω satisfy approxi-
mation property (6). In what follows, XN is assumed to be such a space, and
in particular, the value v(x) of some v ∈ XN at x ∈ Ω is well-defined.

In the multivalued setting, it is impossible to imitate the classical ap-
proach to computing solutions of nonlinear PDEs. The current state of Set-
Valued Analysis does not allow to apply an analog of Newton’s method to
the nonlinear problem (7). Therefore, it seems reasonable to realize the
computation of the solution set SN by a search algorithm after a complete
discretization of the problem.

4.1 Full discretization of the elliptic inclusion

There are three levels of discretization. The error distH(S, SN) caused by the
projection of the continuous problem to XN has been discussed in Section
3. The space XN itself has to be discretized in terms of a grid ∆ρ ⊂ XN

with the property that for any uN ∈ XN , there exists some uρN ∈ ∆ρ such
that ‖uN − u

ρ
N‖H1 ≤ ρ. Then bounded subsets of XN can be projected to

a finite number of grid points. Finally, a discretization of the images of the
Nemytskii operator FN is needed. Experience from the linear case [12] shows
that a direct discretization of an image FN(u) = JN F̃ (u) is problematic,
because the sets F̃ (u) ⊂ L2(Ω) are not compact and hence do not admit
any straight-forward discretization technique. The indirect discretization of
the set FN(u) in terms of its support function σFN (u) proves much more
efficient: The support function σE : {v ∈ XN : ‖v‖H1 = 1} → R of a subset
E ⊂ CC(X ∗

N) is defined by

σE(v) := sup
e∈E
〈e, v〉. (34)

It can be discretized by introducing a δ-net Vδ ⊂ {v ∈ XN : ‖v‖H1 = 1}
which is a discrete subset with the property that for every v ∈ XN with
‖v‖H1 = 1, there exists some vδ ∈ Vδ such that ‖v − vδ‖H1 ≤ δ. Then the
discretized version of σE is its restriction to Vδ.

Because of the high complexity of the task, it is important to choose an
appropriate setting and to avoid dispensable computations whenever possi-
ble. A practical implementation of our algorithm proceeds as follows.
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1. Fix a small number of selections fn, n = 1, . . . , n̄, of F such as f+,
f−, and

1
2
(f+ + f−). Compute the solutions un, n = 1, . . . , n̄, of the

classical problems

a(un, v) =

∫

Ω

fn(un)v dx ∀ v ∈ XN

by means of an FEM solver. Obviously, the functions un solve (7).
Lemma 19 states that

SN ⊂ U :=
(

∩n̄n=1 B(un, κ
−1 diam F̃ (un)L2)H1

)

.

This area must be searched for solutions.

2. Intersect U with a ρ-grid ∆ρ. In Sections 4.2 and 4.3 it is shown that
the fully discretized solution set

Sρ
N(δ) := {u

ρ
N ∈ U ∩∆ρ : max

v∈Vδ

[a(uρN , v)− σFN (uρ
N )(v)] ≤ (C + L)ρ}

is a good approximation of SN w.r.t. the H1 norm, where Vδ is a suf-
ficiently dense covering of the unit sphere in H1

0 and σFN (uρ
N ) is the

support function of the closed, convex, and bounded set FN(u
ρ
N). The

computation of the defect a(uρN , v)− σFN (uρ
N )(v) is simplified consider-

ably by Lemma 24.

3. Redundant computations must be avoided. In principle, it is necessary
to check for every uρN ∈ U ∩ ∆ρ whether it is an element of Sρ

N(δ).
Lemma 25 states that if a defect

a(uρN , v)− σFN (uρ
N )(v) ≥ (C + L)ρ+ η

with some η > 0 is computed, then B(uρN ,
η

C+L
)H1 ⊂ Sρ

N(δ)
c. Conse-

quently, all grid points in this ball can be skipped. A similar strategy
can be pursued if the defect is much smaller than allowed and uρN is
surrounded by elements of Sρ

N(δ).

This ball skipping method must be used carefully. For strongly non-
linear right-hand sides, only approximations of the constants L and κ
are known. As a consequence, the radii of the balls may be chosen too
small, so that the method underperforms, or, which is much worse, too
large, when parts of the solution set may be cut off.
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Alternatively, it is possible to exploit the path connectedness of SN .
To this end, one approximate solution is computed by means of an
FEM solver. Then adjacent grid points of already known approximate
solutions are checked successively. This method has the advantage that
only grid points very near to SN need to be checked. In addition, it is
more reliable than the ball skipping method described above.

Detailed error estimates for the discretization error are given below.

4.2 Localization of SN

At first, we fix the dimension of the finite-dimensional subspace XN ⊂ H1
0 (Ω).

The error distH(S, SN) resulting from the projection of the original problem
to XN has been estimated in Section 3. A-priori estimate (26) implies that
SN ⊂ Bκ−1‖α‖

L2
(0) ⊂ XN . Alternatively, it is possible to localize SN by

computing one element u∗N ∈ SN by a suitable finite element approach and
applying the following lemma.

Lemma 19. If uN , u
∗
N ∈ SN , then

‖uN − u
∗
N‖H1 ≤ κ−1 diam F̃ (u∗N)L2 .

Proof. Since uN , u
∗
N ∈ SN , there exist fN ∈ F̃ (uN) and f ∗

N ∈ F̃ (u∗N) such
that

a(uN , v) = (fN , v)L2,

a(u∗N , v) = (f ∗
N , v)L2

for all v ∈ XN . As F̃ is Lipschitz, there exists some g∗N ∈ F̃ (u
∗
N) such that

‖fN − g
∗
N‖L2 ≤ L‖uN − u

∗
N‖L2.

Hence

c‖uN − u
∗
N‖

2
H1 ≤ a(uN − u

∗
N , uN − u

∗
N) = (uN − u

∗
N , fN − f

∗
N)

= (uN − u
∗
N , fN − g

∗
N) + (uN − u

∗
N , g

∗
N − f

∗
N )

≤ L‖uN − u
∗
N‖

2
H1 + [diam F̃ (u∗N)L2 ]‖uN − u

∗
N‖H1

implies the statement of the lemma.

The diameter

diam F̃ (u∗N)L2 =
(

∫

Ω

|f+(x, u
∗
N(x))− f−(x, u

∗
N(x))|

2dx
)

1
2

can be computed without any difficulties.
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4.3 Projection of SN to a grid

Let ∆ρ be a grid in XN such that for every uN ∈ XN , there exists some
uρN ∈ ∆ρ with ‖uN − u

ρ
N‖H1 ≤ ρ. The following proposition shows that the

spatially discretized solution set

Sρ,ε
N := {uρN ∈ ∆ρ : dist(Au

ρ
N ,FN(u

ρ
N))X ∗

N
≤ (C + L)ρ+ ε}, (35)

is a good approximation of SN for small ε > 0. It is useful to allow an
inaccuracy of size ε, because in practice, the above distance can only be
approximated (see Section 4.4).

Proposition 20. If κ > 0, then

distH(SN , S
ρ,ε
N )H1 ≤ max{ρ, κ−1((C + L)ρ) + ε)}.

Proof. Let uN ∈ SN be given. By definition of ∆ρ, there exists some uρN ∈ ∆ρ

with ‖uN − u
ρ
N‖H1 ≤ ρ, and

dist(AuρN ,FN(u
ρ
N))X ∗

N
≤ ‖AuρN − AuN‖X ∗

N

+ dist(AuN ,FN(uN))X ∗
N

+ dist(FN(uN),FN(u
ρ
N))X ∗

N
,

where

‖AuρN −AuN‖X ∗
N
= sup

v∈XN
‖v‖

H1≤1

a(uρN − uN , v) ≤ C‖uρN − uN‖H1 ≤ Cρ

by definition,
dist(AuN ,FN(uN))X ∗

N
= 0,

because uN ∈ SN , and

dist(FN(uN),FN(u
ρ
N))X ∗

N

= dist({JNfN : fN ∈ F̃ (uN)}, {JNf
ρ
N : f ρ

N ∈ F̃ (u
ρ
N)})X ∗

N

= sup
fN∈F̃ (uN )

inf
f
ρ
N∈F̃ (uρ

N )
‖JN(fN − f

ρ
N)‖X ∗

N

≤ dist(F̃ (uN), F̃ (u
ρ
N))L2 ≤ L‖uN − u

ρ
N‖L2 ≤ Lρ.

Consequently,
dist(AuρN ,FN(u

ρ
N))X ∗

N
≤ (C + L)ρ,
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and uρN ∈ S
ρ
N ⊂ Sρ,ε

N , so that dist(SN , S
ρ,ε
N )H1 ≤ ρ.

Conversely, let uρN ∈ S
ρ,ε
N be given, and consider the mapping GN : XN →

CC(XN ) defined in the proof of Theorem 12. It was shown that GN is con-
tinuous and ROSL with constant −κ < 0, and zeroes of GN are precisely the
elements of SN . By Theorem 27, there exists some uN ∈ SN such that

‖uρN − uN‖H1 ≤ κ−1 dist(0, GN(u
ρ
N))H1

≤ κ−1 dist(AuρN ,FN(u
ρ
N))X ∗

N
≤ κ−1((C + L)ρ+ ε),

so that dist(Sρ,ε
N , SN)H1 ≤ κ−1((C + L)ρ+ ε).

4.4 Computation of the defect

Let δ ∈ (0, 1] be given, and let Vδ be a finite subset ofXN such that ‖vδ‖H1 = 1
for all vδ ∈ Vδ and for every v ∈ XN with ‖v‖H1 = 1, there exists some vδ ∈ Vδ
with ‖v − vδ‖H1 ≤ δ. The properties of the support function defined in (34)
are listed in [10]. In particular,

dist(E,E ′)X ∗
N
= max

v∈XN
‖v‖

H1=1

[σE(v)− σE′(v)]

for any two E,E ′ ∈ CC(X ∗
N). Moreover, σE is Lipschitz with constant ‖E‖X ∗

N

according to [14]. (The statement is given forRd equipped with the Euclidean
norm, but the proof is correct for any finite-dimensional Hilbert space.)

Lemma 21. For any two E,E ′ ∈ CC(X ∗
N),

dist(E,E ′)X ∗
N
≤ max

vδ∈Vδ

[σE(vδ)− σE′(vδ)] + δ(‖E‖X ∗
N
+ ‖E ′‖X ∗

N
)

and
dist(E,E ′)X ∗

N
≥ max

vδ∈Vδ

[σE(vδ)− σE′(vδ)].

Proof. For any v ∈ XN with ‖v‖H1 = 1, there exists some vδ ∈ Vδ with
‖v − vδ‖H1 ≤ δ, so that

σE(v)− σE′(v) ≤ |σE(v)− σE(vδ)|+ [σE(vδ)− σE′(vδ)] + |σE′(vδ)− σE′(v)|

≤ [σE(vδ)− σE′(vδ)] + δ(‖E‖X ∗
N
+ ‖E ′‖X ∗

N
),

which implies the first statement of the lemma. The second statement is
obvious.
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Define the fully discretized solution set Sρ
N (δ) with uniform discretization Vδ,

δ ∈ (0, 1], of the right-hand side by

Sρ
N(δ) := {u

ρ
N ∈ ∆ρ : max

v∈Vδ

[a(uρN , v)− σFN (uρ
N )(v)] ≤ (C + L)ρ}. (36)

Proposition 22. If δ < c−L
C+L

, then the approximation error of the fully
discretized solution set Sρ

N (δ) is

distH(SN , S
ρ
N(δ))H1 ≤ max{ρ, κ−1((C + L)ρ+ µ(ρ, δ)δ)},

where µ(ρ, δ) = (C + L)
(C+L)ρ+(1+δ)‖α‖

L2

κ−(C+L)δ
+ ‖α‖L2δ.

Note that µ(ρ, δ)ց κ−1‖α‖L2 as (ρ, δ)→ 0.

Proof. Let uρN ∈ S
ρ
N (δ). By Lemma 21, estimate

dist(AuρN ,FN(u
ρ
N))X ∗

N

≤ max
v∈Vδ

[σ{Au
ρ
N }(v)− σFN (uρ

N )(v)] + δ(‖AuρN‖X ∗
N
+ ‖FN(u

ρ
N)‖X ∗

N
)

≤ (C + L)ρ+ C‖uρN‖H1δ + ‖F̃ (uρN)‖L2δ

≤ (C + L)ρ+ C‖uρN‖H1δ + (‖F̃ (0)‖L2 + dist(F̃ (0), F̃ (uρN))L2)δ (37)

≤ (C + L)ρ+ C‖uρN‖H1δ + (‖α‖L2 + L‖uρN‖H1)δ

≤ (C + L)ρ+ (C + L)‖uN‖H1δ + ‖α‖L2δ,

holds. Let fN ∈ F̃ (u
ρ
N) be such that JNfN ∈ Proj(ANu

ρ
N ,F(u

ρ
N)). Then

c‖uρN‖
2
H1 ≤ a(uρN , u

ρ
N) = (QNANu

ρ
N , u

ρ
N)H1

= (QNANu
ρ
N −QNJNfN , u

ρ
N)H1 + (QNJNfN , u

ρ
N)H1

≤ dist(ANu
ρ
N ,FN(u

ρ
N))X ∗

N
‖uρN‖H1 + ‖F̃ (uρN)‖L2‖uρN‖H1

≤ [(C + L)ρ+ (C + L)‖uN‖H1δ + ‖α‖L2δ]‖uρN‖H1

+ [‖α‖L2 + L‖uρN‖H1]‖uρN‖H1

implies

(c− L− (C + L)δ)‖uρN‖H1 ≤ (C + L)ρ+ ‖α‖L2δ + ‖α‖L2

and thus the a-priori estimate

‖uρN‖H1 ≤
(C + L)ρ+ (1 + δ)‖α‖L2

c− L− (C + L)δ
. (38)
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But (38) inserted into (37) yields

dist(AuρN ,FN(u
ρ
N))X ∗

N

≤ (C + L)ρ+ (C + L)
(C + L)ρ+ (1 + δ)‖α‖L2

c− L− (C + L)δ
δ + ‖α‖L2δ,

so that the inclusion
Sρ,0
N ⊂ Sρ

N(δ) ⊂ S
ρ,µ(ρ,δ)δ
N

implies

distH(SN , S
ρ
N(δ))H1 ≤ max{ρ, κ−1((C + L)ρ+ µ(ρ, δ)δ)}

according to Proposition 20.

Alternatively, it is possible to define a fully discretized solution set with
adaptive discretization Vδ(uρ

N ) with δ : ∆ρ → (0, 1] by setting

Ŝρ
N(δ

′) := {uρN ∈ ∆ρ : max
v∈V

δ(u
ρ
N

)

[a(uρN , v)− σFN (uρ
N )(v)] ≤ (C + L)ρ}, (39)

where δ(uρN) := min{1, ‖uρN‖
−1
H1}δ′ with some (uniform) δ′ ∈ (0, 1].

Proposition 23. If κ > 0, then the approximation error of the adaptive fully
discretized solution set Ŝρ

N (δ
′) is

distH(SN , Ŝ
ρ
N(δ))H1 ≤ max{ρ, κ−1((C + L)ρ+ µδ′)},

where µ = C + L+ ‖α‖L2.

A comparison with Proposition 22 shows that the error estimate given
therein is rather pessimistic.

Proof. By estimate (37),

dist(AuρN ,FN(u
ρ
N))X ∗

N

≤ (C + L)ρ+ (C + L)‖uρN‖H1δ(uρN) + ‖α‖L2δ(uρN)

≤ (C + L)ρ+ (C + L+ ‖α‖L2)δ′,

so that
Sρ,0
N ⊂ Ŝρ

N (δ
′) ⊂ Sρ,µδ′

N

Again, Proposition 20 yields

distH(SN , Ŝ
ρ
N(δ

′))H1 ≤ max{ρ, κ−1((C + L)ρ+ µδ′)}.
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For any E ⊂ Ω, let χE : Ω → {0, 1} denote the indicator function given
by χE(x) = 1 if x ∈ E and χE(x) = 0 otherwise.

Lemma 24. For any v ∈ XN and uρN ∈ ∆ρ,

σFN (uρ
N ) = (f ρ,v

N , v)L2 ,

where

f ρ,v
N (x) := χ{v(x)≥0}(x)f+(x, u

ρ
N(x)) + χ{v(x)<0}(x)f−(x, u

ρ
N(x)).

Proof. The function f ρ,v
N is well-defined. Since v ∈ XN is continuous, the

evaluation of v at x makes sense and the sets Ω+ := {v(x) ≥ 0} and
Ω− := {v(x) < 0} are measurable. As F is Caratheodory, the functions
x 7→ f+(x, u

ρ
N(x)) and x 7→ f−(x, u

ρ
N(x)) are measurable by Lemma 3, and

by Proposition 5, they are L2 functions, so that f ρ,v
N ∈ L2(Ω).

Maximality. Let f ∈ F(uρN) be an arbitrary element. Then

〈JNf
ρ,v
N , v〉 − 〈JNf, v〉 = (f ρ,v

N − f, v)L2

= (f+(x, u
ρ
N(x))− f, v)L2(Ω+) + (f−(x, u

ρ
N(x))− f, v)L2(Ω−) ≥ 0,

so that
(f ρ,v

N , v)L2 = 〈JNf
ρ,v
N , v〉 ≥ 〈JNf, v〉

for all f ∈ F(uρN).

As a consequence of Lemma 24, the fully discretized solution sets Sρ
N(δ)

and Ŝρ
N (δ

′) can be rewritten as

Sρ
N(δ) := {uρN ∈ ∆ρ : max

v∈Vδ

[a(uρN , v)− (f ρ,v
N , v)L2] ≤ (C + L)ρ},

Ŝρ
N(δ

′) := {uρN ∈ ∆ρ : max
v∈V

δ(u
ρ
N

)

[a(uρN , v)− (f ρ,v
N , v)L2] ≤ (C + L)ρ}.

4.5 Excluding irrelevant areas

It is intuitively clear that if some uρ,∗N ∈ ∆ρ yields a large defect in the defining
relation (36), then nearby grid points cannot be elements of the solution set
Sρ
N(δ). If, on the other hand, some uρ,∗N ∈ ∆ρ yields a defect that is much

smaller than allowed, it is obvious that nearby grid points must be contained
in Sρ

N(δ). The following lemma quantifies this issue.
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Lemma 25. Let v ∈ Vδ, u
ρ,∗
N ∈ ∆ρ, and η > 0 be given. If

a(uρ,∗N , v)− σFN (uρ,∗
N )(v) > (C + L)ρ+ η

and ‖uρN − u
ρ,∗
N ‖H1 ≤ η

C+L
, then uρN /∈ Sρ

N (δ). If, on the other hand,

a(uρ,∗N , v)− σFN (uρ,∗
N )(v) ≤ (C + L)ρ− η

for all v ∈ Vδ and ‖uρN − u
ρ,∗
N ‖H1 ≤ η

C+L
, then uρN ∈ S

ρ
N(δ).

Note that the maximal defect maxv∈Vδ
[a(uρ,∗N , v)− σFN (uρ,∗

N )(v)] can be nega-
tive.

Proof. As seen in the proof of Proposition 20, FN is Lipschitz with constant
L. Hence

a(uρN , v)− σFN (uρ
N )(v)

= [a(uρN , v)− a(u
ρ,∗
N , v)] + [a(uρ,∗N , v)− σFN (uρ,∗

N )(v)] + [σFN (uρ,∗
N )(v)− σFN (uρ

N )(v)]

≥ [a(uρ,∗N , v)− σFN (uρ,∗
N )(v)]− |a(u

ρ
N − u

ρ,∗
N , v)| − |σFN (uρ,∗

N )(v)− σFN (uρ
N )(v)|

> (C + L)ρ+ η − C‖uρN − u
ρ,∗
N ‖H1 − distH(FN(u

ρ,∗
N ),FN(u

ρ
N))X ∗

N

≥ (C + L)ρ+ η − (C + L)‖uρN − u
ρ,∗
N ‖H1

and (C+L)‖uρN −u
ρ,∗
N ‖H1 ≤ η implies a(uρN , v)−σFN (uρ

N )(v) > (C +L)ρ and
thus the first statement of the lemma.

The second statement follows from an almost identical computation.

Obviously, this technique is very sensitive to the constants L and C. If
F is not globally Lipschitz, but the solutions of the differential inclusion are
bounded by some embedding theorem, then L depends on the upper bound
for the solution set and the embedding constant, which can be difficult to
determine. It is not recommended to use the ball-skipping method in such a
situation, because we observed failure caused by an ill-estimated value of L.

Alternatively, one can rely on the path connectedness of the solution set
SN . Associate with any vρ ∈ ∆ρ the Voronoi cell

Vρ(v
ρ) := {v ∈ XN : ‖v − vρ‖H1 ≤ inf

vρ′∈∆ρ

‖v − vρ′‖H1}.

Clearly, every Vρ(v
ρ) is compact, and for every w ∈ Vρ(v

ρ), the estimate
‖w−vρ‖H1 ≤ ρ holds. Consequently, if there exists some w ∈ Vρ(v

ρ)∩Vρ(v
ρ′),

then ‖vρ − vρ′‖H1 ≤ 2ρ.
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Lemma 26. Let uρ, uρ′ ∈ Bρ(SN) ∩∆ρ := {v ∈ XN : dist(v, SN) ≤ ρ} ∩∆ρ.
Then there exists some n ∈ N and a sequence

{uρ = uρ0, u
ρ
1, . . . , u

ρ
n−1, u

ρ
n = uρ′} ∈ Bρ(SN) ∩∆ρ

such that Vρ(uk)∩Vρ(uk+1) 6= ∅ and ‖u
ρ
k−u

ρ
k+1‖H1 ≤ 2ρ for k = 0, . . . , n−1.

Proof. Let uρ, uρ′ ∈ Bρ(SN) ∩∆ρ be given. By definition, there exist points
uN , u

′
N ∈ SN such that ‖uρ−uN‖H1 ≤ ρ and ‖uρ′−u′N‖H1 ≤ ρ. As SN is path

connected, there exists a continuous curve w(t) : [0, 1]→ SN with w(0) = uN
and w(1) = u′N . Since w([0, 1]) is compact, the intersection w([0, 1])∩Vρ(v

ρ
k)

is nonempty only for finitely many cells Vρ(v
ρ
k), 0 ≤ k ≤ m. Set

tk := min{t ∈ [0, 1] : w(t) ∈ Vρ(v
ρ
k)}, k ∈ {0, . . . , m}.

Without loss of generality, it can be assumed that

0 = t0 ≤ t1 ≤ . . . ≤ tm, vρ0 = uρ.

We claim that for every k ∈ {0, . . . , m}, there exist some n ∈ N and a
subsequence {j0, . . . , jn} ⊂ {0, . . . , k} such that

j0 = 0, jn = k, and Vρ(v
ρ
ji
) ∩ Vρ(v

ρ
ji+1

) 6= ∅ for 0 ≤ i < k. (40)

The case k = 0 is trivial. Assume that the above statement holds for 0 ≤
k < m. Since w([0, tk+1]) ⊂ ∪

k
j=0Vρ(v

ρ
j ) and w(tk+1) ∈ Vρ(v

ρ
k+1), there exists

some k′ ∈ {0, . . . , k} such that Vρ(v
ρ
k+1) ∩ Vρ(v

ρ
k′) 6= ∅. By assumption,

there exist some n ∈ N and a sequence {j0, . . . , jn} ⊂ {0, . . . , k
′} such that

(40) is satisfied with k replaced by k′. But then, {j0, . . . , jn = k′, k + 1} ⊂
{0, . . . , k+1} is a subsequence satisfying (40) with k and n replaced by k+1
and n + 1. By recursion, (40) holds for all k ∈ {0, . . . , m}. As uρ′ = vρk for
some k ∈ {0, . . . , m}, the statement of the lemma is proved.

The above lemma can be used as follows.

Fix ρ, δ > 0 as in Section 4.4.
Choose an arbitrary selection of F such as f± := 1

2
(f+ + f−) and compute a

good approximation of the solution u±N ∈ XN of the single-valued problem

a(u±N , v) = (f±(u
±
N), v) for all v ∈ XN .
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Pick any uρ ∈ ∆ρ with ‖uρ − u±N‖H1 ≤ ρ. By construction, uρ ∈ Sρ
N (δ).

Initialize a list of grid points and save uρ as its first element. Mark it as
unchecked.
WHILE there exists an unchecked list element uρ

XX IF uρ ∈ Sρ
N(δ)

XXXX Mark uρ as positive
XXXX IF there exist elements uρ′ ∈ B2ρ(u

ρ) such that uρ′ not in list
XXXXXX Add all such grid points to the list and mark them as unchecked.
XXXX END
XXELSE Mark uρ as negative.
XXEND
END
Delete all negative elements from the list.

The proof of Proposition 20 shows that Bρ(SN)∩∆ρ ⊂ Sρ
N(δ). The above

lemma ensures that when the algorithm terminates, the list of points contains
every element of Bρ(SN) ∩∆ρ, so that

Bρ(SN) ∩∆ρ ⊂ constructed list ⊂ Sρ
N(δ).

As both distH(Bρ(SN)∩∆ρ, SN)H1 and distH(S
ρ
N(δ), SN)H1 are known to be

small, the list constructed by the algorithm is an excellent discrete approxi-
mation of SN satisfying

distH(constructed list, SN) ≤ distH(S
ρ
N(δ), SN)H1 .

The advantage of this algorithm is twofold: Only defects at grid points
very near to SN must be computed. The performance gain depends on the
shape of SN , and it seems impossible to prove a general result about it, but
in practical computation it was significant. Moreover, the algorithm is stable
in contrast to the ball-skipping method, because it is insensitive or at least
not more sensitive to the constants C and L than the computation of Sρ

N(δ)
itself. We did not observe any indication for a failure of the method.

For relatively small N , it may be useful to store the information whether a
grid point is marked as checked, unchecked, positive, or negative in an array,
because then the information can be accessed without scanning through the
list. In higher dimensions, such an array would require too much memory,
and searching the list is inevitable. In this case, we recommend the use of
a red-black tree (see [6, Chapter 13]) together with a lexicographic order
imposed on the coordinates of the representation given in the next section.
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It remains to note that the ball-skipping method and the recursive search
can both be applied not only for the computation of Sρ

N(δ), but also for the

computation of the adaptive Ŝρ
N(δ

′).

4.6 Concrete realization

The results above are stated in terms of elements of XN . For a concrete
realization, they have to be transferred to the Euclidean space RN . Let
{ϕ1, . . . , ϕN} ⊂ XN be the standard basis of XN and let the matrix M ∈RN×N be given by

Mij = (ϕi, ϕj)H1, i, j = 1, . . . , N.

As M is positive definite and symmetric, there exist matrices Q,Λ ∈ RN×N

with QTQ = id, Λ = diag(λj)
N
j=1 with λN > . . . > λ1 > 0, and M = QTΛQ.

The linear isomorphism K : RN → XN given by

K(z) :=

N
∑

i=1

(QTΛ− 1
2z)iϕi

is an isometry, because

‖K(z)‖2H1 = (

N
∑

i=1

(QTΛ− 1
2 z)iϕi,

N
∑

i=j

(QTΛ− 1
2 z)jϕj)H1

= (QTΛ− 1
2 z)TM(QTΛ− 1

2 z) = |z|22.

In particular, the images of an equidistant grid in RN and a δ-net on the
unit sphere in RN under K are an equidistant grid in XN and a δ-net on
the unit sphere in XN . Moreover, the balls in XN computed via Lemmas
19 and 25 transfer to Euclidean balls in RN with the same radius, and the
implementation is straight-forward.

In this setting, the algorithm derived from Lemma 26 is particularly pow-
erful, because if RN is decomposed in cubic boxes centered at equidistant
grid points, it is enough to check directly adjacent boxes in the course of
constructing the list.

Consider the differential inclusion

−∆u ∈ F (u) = [
1− ε

1 + u2
,

1

1 + u2
] in Ω = [0, 1]

u = 0 on ∂Ω = {0, 1}
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Figure 1: Approximations of the solution set of (41) for N = 2 and ε = 0.1,
ε = 0.5, and ε = 0.9 in coefficient space.
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with weak formulation

a(u, v) :=

∫

Ω

∇u∇vdx =

∫

Ω

f(u)v dx

for all v ∈ H1
0 and some f ∈ F̃ (u). A solution uN ∈ SN satisfies
∫

Ω

∇uN∇vdx =

∫

Ω

f(uN)v dx for all v ∈ XN . (41)

The right-hand side does not depend on the space variable x. As the maximal
and minimal selections f+ and f− of F have globally bounded derivatives,
they are and thus F is globally Lipschitz in the second variable. Suitable
constants for this problem are c = 0.908, C = 1, L = 0.649, and κ = 0.259,
and we chose N = 2, ρ = 7.8 · 10−5 and δ = 0.0628, which corresponds to a
discretization of the unit circle by 100 vectors, so that the assumptions for
the results of Section 4 are satisfied. For larger N it would have been difficult
to visualize the solution set.

Figure 4.6 shows the approximation of the solution sets of (41) for N = 2
and three values of ε in the coefficient space. A colored point (x1, x2) in the
plane means that the function x1ϕ1 + x2ϕ2 is an element of Sρ

N (δ), where
ϕ1, ϕ2 are the usual piecewise linear basis functions.

A Solvability of algebraic inclusions

The following theorem summarizes the relevant content of [3, Corollary 1
and Theorem 4]. The original statement is formulated in Rd equipped with
the Euclidean norm, but the proof is valid in an arbitrary finite-dimensional
Hilbert space.

Theorem 27. Let X be a finite-dimensional Hilbert space, let u0 ∈ X , and
let G : BR(u0) ⊂ X → CC(X ) be continuous and ROSL with constant l < 0.
If v0 ∈ X satisfies −1

l
dist(v0, G(u0)) ≤ R, then there exists a solution u ∈

BR(u0) of the algebraic inclusion v0 ∈ G(u) with

‖u− u0‖X ≤ −
1

l
dist(v0, F (u0))X , (42)

and the set
SG(v0) := {u ∈ X : v0 ∈ G(u)}

is compact.
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In the present paper, Theorem 27 is applied with X = XN , R = ∞, and
G = GN in order to characterize the solution set SN .
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