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Abstract

In this note we consider the application of the freezing method to the
approximation of traveling waves in hyperbolic-parabolic systems such
as the Hodgkin-Huxley model and the FitzHugh-Nagumo equation. The
tuple consisting of the profile and the speed of a traveling wave is a sta-
tionary solution for the method and we prove its asymptotic stability with
optimal rates. Therefore, the method is suitable for the approximation
of traveling waves by time integration. Numerical experiments for the
FitzHugh-Nagumo equations confirm our results.

1 Introduction

Traveling wave solutions occur in many problems from different areas of ap-
plications from biology, chemistry, and physics. Many of these problems are
modeled by reaction diffusion equations for which some of the components do
not diffuse. For example we mention the electric signalling in nerve cells which
is modelled by the spatial extension of the famous Hodgkin-Huxley equations
[5]. These equations read

‘/t - %me - gKTL4(V — VK) — gNamsh(V i VNa) o gl(v B ‘/l)7
ng = a, (V) (1 —n) = B,(V)n,
my = am(V) (1 —m) — Bn(V)m,

hi = ap(V) (1 = h) = Br(V) h,

with nonlinearities v, By, ... With the variables u = V and v = (n,m, h)7, the
system has the form

Ut :Auzz+fl(uvv)7 Ut:fQ(uav)' (11)

A traveling wave solution of (1.1) is a solution (u,v) of the form w(z,t) =
ul(x — A°t), v(z,t) = v°(x — A°t), where (u®,v°) is the profile and A° is the
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speed of the wave. When (1.1) is considered in a co-moving frame with speed
A, i.e. the new spatial variable £ = x — A\°t is used, the equation becomes

up = Auge + A ue + f1(u,v), v = A + fa(u,v), (1.2)

and (u°,v°) is a steady state of this system. Note that (1.2) is parabolic in the
u variable and (non-strictly) hyperbolic in the v variable.

The Hodgkin-Huxley equations as a model for nerve signalling motivates that
in applications it is of big importance not only to know that there is a traveling
wave solution, but also to prove that it is asymptotically stable and to calculate
the actual profile (u°,v°) and the speed A°. To calculate the profile and speed
numerically, one approximates the equation by a boundary value problem with
asymptotic boundary conditions. Then this nonlinear boundary value problem
has to be solved numerically. For this a good initial guess is needed which is
usually obtained by a long-time simulation of the original dynamic problem.

The difficulty with this long-time simulation is that a traveling wave solution
leaves the computational domain in finite time and one also does not have
a direct approximation for the speed of the wave. A method to overcome this
problem is the so called “freezing method”, introduced in [2], and independently
in [12]. Its principal idea is to separate the time evolution of the solution into
an evolution of the profile and an evolution of a symmetry part, given by an
evolution in a Lie group.

We consider general coupled parabolic-hyperbolic Cauchy problems of the
form

Ut:Auxm+g(uav)x+fl(uvv)v Ut:BUI+f2(U,U), xER,tZO, (1 3)
u(z,0) =uo(z) € R", v(z,0) =vo(x) € R™. '

On (1.3) we impose the following general assumptions:
e The functions satisfy fi,g € C3(R"*™ R") and f, € C3(R**™ R™),

o the matrix A € R™" satisfies A + AT > a > 0 in the sense of hermitian
matrices,

e the matrix B € R™™ is a real diagonal matrix,

e there exists a traveling wave solution with profile (u°,v°) and speed A°,
and (u®,v°) € CH(R,R"*™) and (u?,v?) € H*(R,R"*™).

We denote by C,f the k-times differentiable functions with continuous and
bounded derivatives, H* denotes the usual Sobolev space of k-times weakly
differentiable functions with L? derivatives. In [8] it is shown that these as-
sumptions suffice to show existence and uniqueness for the Cauchy problem
(1.3) in a neighborhood of the traveling wave.

In the case n = 0 we have a semilinear hyperbolic problem which was ana-
lyzed in [9, 11].

The plan for the rest of the paper is as follows. In Section 2 we state a
nonlinear stability result for traveling waves in system (1.3). In Section 3 we
briefly recall the freezing method and describe how it is applied in the setting of
this paper. Our main result is Theorem 2 which we state in Section 3. It shows
that under certain spectral assumptions and a mild non-degeneracy assumption



on the phase condition the freezing method converges exponentially to the profile
and speed of the traveling wave with the rate given by the spectral assumption.
Section 4 is devoted to the proof of our main result. We finish the paper with
numerical experiments for the FitzHugh-Nagumo equations. The results of these
experiments confirm the theoretically predicted rates of convergence.

2 Stability of traveling waves

Let us first consider the existence of solutions to (1.3). In [8] we show that, if
the general assumptions hold, the problem (1.3) is well-posed for initial data
close to the traveling wave. Note that by considering (1.3) in a co-moving frame
(see (1.2)), the assumption A° = 0 is no restriction.

Proposition 1 (Existence and uniqueness, [8, Thm 4.9] and [10]). Consider
(1.3) and assume that the general assumptions are satisfied with \°> = 0. Then
for every initial data ug € u® + HY(R,R"™), vo € v° + H(R,R™), there is
a unique global solution, i.e. there is T* € (0,00] and (u*,v*) so that for all
0<T <T* holds

u* € C([0,T);u’+ HY N HY(0,T;u® + L*) N L*(0,T;u® + H?),

L L ) (2.1)
v* € C([0, T|;v°+ H )NH (0,T;v° 4+ L*),

and (u*,v*) is the unique solution of (1.3) on [0,T], where the equality (1.3)
holds as an equality in L*(R,R™) x L2(R,R™) for almost every t € [0,T]. More-
over, it holds the dichotomy that either T* = +o00 or 0 < T* < +o0 and
1imt/T* u*(t) — UOHHI + ||’U*(ﬁ) — ’UOHHl = +o00.

Of course the general assumptions do not suffice to prove stability. To state
the needed assumptions, we consider the equation (1.3) in the co-moving frame
& = x — A\°t and obtain (we again write x instead of &)

up = Augg + (g(u,v) + )\Ou)z + fi(u,v), v = (B+X)vg + fa(u,v). (2.2)

The profile (u®,v°) is a steady state of (2.2). Linearization of (2.2) about the
profile (u°,v°) leads to the linear PDE

Ut = Atgg + (019° + X°)ug + 02g°ve + (0195 + O1fT)u + (D293 + 01 f5)v,
v = (B + )\O)UZ + 01 fSu+ DafIv,

(2.3)
where we abbreviate g°(x) = g(u°(x),v°(z)), 019°(x) = gu(u®(x),v°(x)), etc.
We define P to be the operator on the right hand side of (2.3) that is applied
to (u,v). It can be written in the form

P(0) =40, 2 (), C)

and we consider P as a closed operator on L?. Note that although in general
the solution (u*,v*) from Proposition 1 belongs to an affine space, the variables
(u,v) in the linearized equation belong to the standard L? space. The general
assumption imply that the coefficients B , C belong to Cg (R, R*+m-n+m) and are
asymptotically constant. Let Ei = limg 400 E(:c) and éi = limg 400 é(x)



It is well-known that the spatial equivariance of equation (2.2) implies that
the spatial derivative (u2,v2) of the profile (u°, v°) belongs to the kernel N'(P)
of the operator P.

For the stability theorem we require the following spectral assumptions:

e The matrix By = B + \° is invertible,

e there is § > 0 so that for all w € R, s € o(—w?A + iwB_ + C_) or
s €o(—w?A+iwBy + C4) implies Res < —§ < 0,

e for the point spectrum o,¢(P) of the operator P on L? holds o, (P) N
{Res > —d} = {0} and 0 is an algebraically simple eigenvalue of P.

The stability result, proved in [10], also see [8, Cor. 4.42], is the following;:

Theorem 1 (Asymptotic stability of traveling waves [10]). Let the general as-
sumptions and the spectral assumptions hold. Then for every 0 < n < § there
is p > 0 so that for all initial data ug € u® + H? and vg € v° + H?, with
luo — |32 + [Jvo — v°||32 < p?, ezists a unique solution (u,v) of (1.3) on
[0,00). The solution satisfies the smoothness properties from Proposition 1.
Moreover, there is Yoo = Yoo(Uo,v0) € R and a constant Cpge = Cpge(n) > 0,
independent of (ug,vo), so that

P00l < Cpae (luo — u|l 2 + [lvo — v°|l12), and
lu(t) = u(- = A% = o)l + [[v(E) = (- = A% = o)l (2.4)
< dee(||u0—u0||H2 + HUO—UOHHz)e_”t vt > 0.

Due to its importance in applications, the stability of traveling waves in
parabolic-hyperbolic PDEs has been analyzed by many authors. Our result is
closely related to the result of Kreiss, Kreiss, and Petersson [6] who do not allow
a non-strictly hyperbolic part and also do not state precise rates of convergence.
Other important results are for example obtained by Evans [3], who analyzed
the nerve axon equations. His analysis does not include a nonlinear advection
term in the “u”’—equation. We also mention the paper [1] by Bates and Jones.
Their analysis uses a compactness argument which prohibits the analysis of
front solutions, which are included in our result. Finally, recent results are due
to Ghazaryan, Latushkin and Schecter [4]. They consider a system from gasless
combustion, where the essential spectrum touches the imaginary axis which they
overcome by considering semigroups in different weighted spaces, but they also
do not allow for a nonlinear advection term.

3 Approximation by the freezing method

We do not give a full introduction to the freezing method [2] and [12] here, but
only give the central ideas needed in the special case of traveling waves. For the
general formulation we refer to the cited references.

Theorem 1 shows the asymptotic stability of a traveling wave under spectral
assumptions. So, in principal, it is possible to approximate the profile by a
long-time simulation, but since A° is unknown, we cannot use the correct co-
moving frame and the solution eventually leaves the computational domain.
The idea is to calculate a proper speed —and with this a proper reference frame—



simultaneously. We make the following
Ansatz: Write the solution (u(z,t),v(z,t)) of the Cauchy problem (1.3) in the
form

u(z,t) = U(x — A(t),t), o(z,t) =V(e—A),1). (3.1)

We do not make this more precise here, but the following formal calculations
lead to the freezing method, which can be implemented on a computer and for
which we show in Theorem 2 that it really approximates the profile and the
speed of the traveling wave we look for.

Differentiate u(z,t) = U(x—A(t),t) and v(z,t) = V(z— A(¢), t) with respect
to time and obtain with the chain rule and the shift equivariance of (1.3) (we

set A:=A)

Ut = AUps + g(U,V)a + f1(U, V) + AUy, Vi = BV + fo(U, V) + AV,

U(z,0) = up(z), V(z,0)=uwo(x), (3:2)

for which U = u°, V = v°, A = \° is a stationary solution. Because, compared
to (1.3), (3.2) has the additional unknown A, one needs a suitable additional
equation, to obtain a well-posed problem again. In this note we only consider
the so called fized phase condition (see [2]) which we generalize to have the
following form:

0=U(U-UV-V), (3.3)

where W is a linear functional and (U, V) is a suitable reference function. The full
system, consisting of (3.2) and (3.3), is a partial differential algebraic equation
(PDAE) for the unknowns (U, V, ). Of course ¥ and U, V, in (3.3) cannot be
chosen arbitrarily and we impose the following phase assumptions:

e The linear functional ¥ is of the form ¥ (u,v) = ¥ (u) + 12 (v) for (u,v) €
L*(R,R™™), where 1)1 € H~! is given by ¢1(u) = [ h(z)Tu(z) dx with
h € HY(R,R™), and o € (L?),

e the non-degeneracy condition ¥(u2,v2) # 0 holds,

e the reference functions U and V/ are elements of the affine spaces u®+ H 1
and v° + H!, respectively, and (U — u°,V —v°) = 0.

Note that the system (3.2) and (3.3) has no initial condition for A. But using
the phase assumptions, (ug,vo) close to (u°, v°) uniquely determines A(0) by
differentiating (3.3) with respect to time. It is a common property of (P)DAEs
that for some dependent variables initial data cannot be prescribed but are given
by hidden constraints. Our main result is

Theorem 2 (Stability of the freezing method). Impose the general, spectral,
and phase assumptions. Then for every 0 < n < §, there is pg > 0 so
that for all ug € uw® + H?, vg € v° + H? with \P(U — up, V — vg) = 0 and
luo — u®|%2 + |lvo — v°||32 < po, there is a unique solution (U,V,X) of the
freezing system (3.2), (3.3), i.e. for all T > 0, U and V belong to the spaces in
(2.1), X € C([0, T];R), and the equalities in (3.2) hold in L* and equality (3.3)
holds pointwise. Furthermore, there is C = C(n) > 0, so that for all t > 0 holds

1T () =l + 1V () =0l +IAE) = A7) < O (lao =] 2 + [[vo— 0 12 )e .
(3.4)



4 Proof of Theorem 2

Let 0 < < § be given. By going into a co-moving frame it is no restriction to
assume A\° = 0. To simplify notation, we define

Fp(u,v) == A11Uaze + g(u,v)z + fi(u,v) and Fp(u,v) = Bavy + fa(u,v),

Rp:{(uo,vo) cug € u® 4+ H?, vy € v° + H?,
Ug — U || g2 Vo — UV ||z S P, U — Ug,V — Vg) = .
0|12 + o2 < 52 W(i N ) 0

Step 1: [Solution of the PDE] By Theorem 1 exist p > 0 and Cpqe > 0,
so that for (ug,v0) € R, equation (1.3) has a unique solution (u,v) on [0, c0)
and there is ¢ € R so that (2.4) holds. In the following (u, v) always denotes
this solution of (1.3).

Step 2: [Solution ansatz] Ansatz (3.1) is now used to obtain a solution
of (3.2), (3.3) from the PDE solution.

Lemma 1. Let (ug,vo) € Ry, p from Step 1. If A € C*([0,T);R) satisfies

\I/<ux(~ AL ), Vo + A,t))A

- —\II(FP (u(- + A, 1), v(- + A1), By (u- + A, 1), v(- + A, t))), (4.1)

for all t € [0,T] and A(0) = 0. Then the triple (U,V,A), given by U(-,t) =
u(- + A(t),t) and V(-,t) =v(- + A(t),t) is a solution of (3.2), (3.3) on [0,T].

Proof. By assumption and Step 1, the functions (U,V, ), A = A, belong to
the smoothness classes asserted in Theorem 2. Moreover, for the distributional
derivatives hold
d . d .

U 1) =B V)0 +ADUL(), —V(t)=FU,V)(#) +A)Va(t), (42)
as equalities in L? for a.e. t € [0,T]. The assumptions U e u® + H' and
Ve +H imply U—-U € H'(0,T];L?) and V — V € H'([0,T};L?). Tt
follows (see [8, Lem. 4.18]) W(U—~U,V—V) € H'([0,T]; R) and its distributional
derivative is given by

d_ - « ,
E\I/(UfU, V-V)=—-Y(FU,V),FpUV))-A¥(U,,V,) forae. te[0,T]
But because of (4.1) the right hand side is equal to zero and from continuity
and ¥(U —ug, V —wvg) = 0 follows ¥ (U — U,V — V) = 0, so that (3.2) and (3.3)
hold. (|

Step 3: [Solvability] By Lemma 1 a solution of (3.2), (3.3) can be obtained
by solving the ODE (4.1). Because of (2.4) there are py, pa > 0, so that for all
(uo,v0) € Rp, holds for all [A| < p and all ¢ > 0 the lower bound

ul, ve)|

‘\I/(llm( + A t), v (- +A,t))‘ > M

: (4.3)



Therefore, r : By, (0) x [0,00) = R, given by

W (Fy (0, v) (- + A, 1), P (0, v) (- + A, )

r(At) = — U (ug(- + A, t), v (- + A, 1)) ’

is well defined and it is not difficult to see that the assumptions on ¥ are
precisely what is needed to prove continuity of r if A is sufficiently small. Thus,
the Theorem of Peano applies and yields

Lemma 2. If (ug,vo) is chosen as above, there is a solution A of the ODE (4.1)
and either A is a solution for all t > 0 with A € C*([0,00); By, (0)), or there is
0<T* < oo and A € CH([0,T%); B,, (0)), with lim; 7+ |A(t)| = pa.

In [8] (also see [11] for the purely hyperbolic case) it is shown that if p;
is sufficiently small, the second case actually never occurs, so that one obtains
global existence. Moreover, despite the fact that we have utilized the Theorem
of Peano to obtain a solution, also possible to proved that the solution in fact
is unique (for the details we refer to [8]). More precisely, it holds

Lemma 3 ([8, Lem. 4.48 and Lem. 4.50]). There is pg > 0, po < p1 so
that for all (uo,vo) € R,,, the ODE (4.1), has a unique global solution A €
C1([0,00); B, (0)). There is Cy, > 0, independent of (ug,vo) € Rp,, so that for
all t > 0 holds with po, from Step 1

IA(t) — ool < Cop(lluo — ullm2 + llvo — v°|| =) e ™" (4.4)

Step 4: [Unique solvability of the freezing system (3.2), (3.3)] Solv-
ability follows from the previous steps and uniqueness follows from the unique
solvability of the Cauchy problem (1.3) and of the ODE (4.1). For the details
we refer to [8].

Step 5: [Exponential convergence] By Steps 1-4, the unique solution
of the freezing system (3.2), (3.3) is given by the triple (U, V, ), where U =
u(-+A(t),t), V=v(-+A(t),t), and A = A with A the unique solution of (4.1).
Therefore, we estimate

10 = w3 + 1V ) = oIl
< 2{JJuC 1) = u (- = o) |0 + 47 = o) = w(- = A®) 31
[Vt = 07 = oo + 107 = o) = 07 = AD) 5 }

and find with (2.4), the assumptions on (u°,v°), and (4.4), that this can be
bounded by

< 2(C2p+ C(Iug e + 02 m)) (o =[] o + [Jvo =07 ) €2 (4.5)

To prove the claimed estimate for the convergence of A we use the identi-
ties A(t) = A(¢) and A(t) = r(A(¢),t), so that (4.3) and F,(u°,v°) = 0 and
Fp(u®,v°) = 0 show

U1 (Fp(U,V) — Fp(u?,v°)) | + |2 (Fu(U, V) — Fi(u®,v°))|
W (ug, vg)| '

x) rx

IA(B)| <2

(4.6)



For the 11—term we obtain

1 (Ep(U (), V(1) = Fp(u®,v°)| < |1 (A (U(#) — u®)as)|
+ \wl((gww, V(1) — g(u®,v)) ) + 1 (U1, V(E) — f1<u°,v0>)y.

Because of the assumption on 11, the first summand on the right hand side can
be bounded by

|91 (A1 (U () = u®)zz) | < const||U () — u®| g1

Similar estimates also hold for the other summands because of the continuity
of 11 on L? and the smoothness of g and f; together with Sobolev embedding.
Therefore,

(o] o (o] o 1/2
|01 (Fp(U, V) = Fp(u®,v))| < const (U (t) — u’||Fn + [V (£) = v°[17) "
Since 5 € (L2)' a similar estimate holds for the 15 term. Combination of these

estimates yields

()] < const([T(E) — u®l2 + [[V(£) = v°)2) /2, (4.7)

so that together with (4.5)—(4.7) follows asserted estimate (3.4). This finishes
the proof of Theorem 2. O

5 Results for the FitzHugh-Nagumo equation

We apply the freezing method (3.2), (3.3) in the following way: The system
(3.2), (3.3) is a PDAE of differentiation index 2 with respect to time (see [7]).
We differentiate equation (3.3) with respect to time in order to reduce the index
of the system to 1, this yields

Vi =BVy + f1(U, V) + AV, (5.1)
0=U(U, V).

Inserting the first two equalities of (5.1) into the last expression yields an equa-
tion that can be solved for X if U, is close to u$ and V; is close to vg:

U (AUsz +9(U,V)a + f1(U, V), BV; + f1(U,V))
B U (Uy, Vi)

We now apply our results to the FitzHugh-Nagumo equations, which read

ut:um—l—u—%ug—v, ve=¢(u+a—bv), r €R,t >0,

u(z,0) = uo(x), v(z,0) = vo(x). (5:2)

We choose the parameter values a = 0.7, b = 3, ¢ = 0.08. For this choice
there exists a traveling front solution connecting the two rest states (4— oo, V—co)
and (Y40, V4+00) Which approximately are (1.188,0.629) and (—1.564, —0.288),
respectively. The general assumptions and also first of the spectral assumptions
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Figure 1: Left: Approximated pointspectrum. Right: Dispersion curves.

are easily verified. To verify the rest of the spectral assumptions, assume v € C?
is an eigenvector of (—w?A + iwB_ + C_) for some w € R, i.e.

Mo — —w? +iXNw+ 1 —u? -1 B
V= 5 iXw— by ) U=

Let H = diag(1, é) and it follows

1 0 2 22
2Re(s)v" (0 l) v=v"(HM + M*H)v = 2v* ( Wit %) H=oo Ob) v,
1 _

what immediately implies Re(s) < max(—w? +1 —u? _, —bp) = —0.24. The
same argument also holds for +oco. For the location of the point spectrum
we use a numerical approximation whose result is given in Figure 1. For the
approximation we used a good calculation of the traveling front and calculate
the spectrum of the equation, linearized about this front and discretized by
finite differences with upwinding for the first order derivatives and periodic
boundary conditions. In summary, we find that the spectral assumptions
hold with 6 = 0.24. As phase condition we choose U = ug, V = vg, ¥; = 0, and
Ya(v) = fi,) v(z) dx, so that the phase assumptions hold.

The first two pictures of Figure 2 show a numerical simulation of the u—
variable for the original and for the frozen system. One can nicely see that the
solution of the original system leaves the computational domain very quickly
and a much larger domain would be needed. In contrast to this the solution

10
1 — (U, Vi)ll2
. . I
-1
—~ —~ 10
-~ +
S0 5o
3 = 107
= o 1 0
10
, —— 10zo , N—— 10zo
How g 0o w0 0o ¢ 10
z 2 z 2 0 5 10 15 2 25 30
t

Figure 2: Left: Evolution of u for the original system. Middle: Evolution of U
for the freezing system. Right: Convergence of |Ut||zz + ||[Vz||z2 — O.



of the frozen system remains in the computational domain and converges to a
steady state. The last picture shows the L?-convergence of the frozen solution
to this steady state. The observed rate seems to be slightly better than the rate

6—0.2415

predicted by Theorem 2. Also note, that the numerically approximated

spectrum shows a gap of size = 0.32. Solely relying on this spectral gap largely
overestimates the rate of convergence.
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