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Abstract

By a classical theorem transversal homoclinic points of maps lead to
shift dynamics on a maximal invariant set, also referred to as a homo-
clinic tangle. In this paper we study the fate of homoclinic tangles in
parameterized systems from the viewpoint of numerical continuation and
bifurcation theory. The new bifurcation result shows that the maximal
invariant set near a homoclinic tangency, where two homoclinic tangles
collide, can be characterized by a system of bifurcation equations that is
indexed by a symbolic sequence. These bifurcation equations consist of a
finite or infinite set of hilltop normal forms known from singularity theory.
For the Hénon family we determine numerically the connected components
of branches with multi-humped homoclinic orbits that pass through sev-
eral tangencies. The homoclinic network found by numerical continuation
is explained by combining our bifurcation result with graph-theoretical
arguments.

Keywords: Homoclinic tangency, symbolic dynamics, numerical continuation,
bifurcation of homoclinic orbits.
AMS Subject Classification: 37N30, 65P20, 65P30

1 Introduction

We consider parameter dependent, discrete time dynamical systems of the form

xn+1 = f(xn, λ), n ∈ Z, (1.1)
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where f is smooth and f(·, λ), λ ∈ R are diffeomorphisms in Rk. We assume
that the system (1.1) has a smooth branch of hyperbolic fixed points and our
main interest is in branches of homoclinic orbits that return to these fixed points.
Generically one finds turning points on these branches which correspond to homo-
clinic tangencies where stable and unstable manifolds of the fixed point intersect
nontransversally, see [26, 3] for the precise relation.

While the dynamics near transversal intersections are well understood through
the celebrated Smale-Shilnikov-Birkhoff Theorem (see [43, 42, 18, 36]), the pic-
ture near homoclinic tangencies still seems to be far from being complete. There
is a wealth of references that deal with phenomena occurring near homoclinic
tangencies, mostly for planar diffeomorphisms. We mention the two monographs
[35, 5] which deal with various aspects of nonuniformly hyperbolic behavior, such
as the Newhouse phenomenon, measures of sets with secondary tangencies etc.
Another source showing the richness of phenomena is [6] where the authors study
the so-called fattened Arnold map as a model for tangencies of planar diffeomor-
phisms. We also refer to the work [15] which supports the generic occurrence
of homoclinic tangencies of all orders. Among the further references, we men-
tion the papers [7, 9, 8] which relate homoclinic tangencies to global structural
changes, such as boundary crisis or basin boundary metamorphosis. Moreover, a
theory of trellises (sets of pieces of stable and unstable manifolds) is developed
that allows to study global changes in two-dimensional phase space by symbolic
coding and graph representations. In [28] it is shown that shift dynamics occurs
in arbitrarily small neighborhoods of the tangency.

Homoclinic (or heteroclinic) tangencies also occur in a natural way for Poincaré
maps of continuous time dynamical systems. These maps are either generated
by classical Poincaré sections of periodic orbits or by special cross-sections taken
in the vicinity of continuous homoclinic orbits. We refer to [22, Ch.4,5] for a
recent overview and to [31, 29, 34] for numerical approaches utilizing such sec-
tions. In particular, these references study codimension-two homoclinic orbits
(’orbit flip’ and ’inclination flip’) which lead to multi-humped orbits in a fan of
the two-parameter region. More details on the relation to continuous systems
will be discussed in Section 2.

Finally, we mention that transversal and tangential homoclinic orbits of maps
can be computed numerically in a robust way by solving boundary value problems
on a finite interval, cf. [4, 13, 16, 26]. Errors caused by this approximation have
been completely analyzed, see [27, 26, 3]. The works [26, 16] also study curves of
homoclinic tangencies in two-parameter systems.

To the best of our knowledge the maximal invariant set near a homoclinic
tangency has not been completely characterized in the literature. Nor are we
aware of any study – particularly for Hénon’s map – of global connected com-
ponents of multi-humped homoclinic orbits containing tangencies. Both topics
will be central to this paper. We consider bifurcations of multi-humped homo-
clinic orbits from tangential orbits in arbitrary space dimensions and investigate
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in detail the global behavior of branches of multi-humped orbits for the classical
Hénon example.

Our main local result (see Theorem 1) determines the elements of the maximal
invariant set in a neighborhood of the tangent orbit and of the critical parameter
from a set of bifurcation equations. Using the same shift space as in the transver-
sal case, we associate with any sequence of symbols a bifurcation equation that
describes those branches of orbits that have the return pattern of the symbolic
sequence. Such a result does not fully resolve the dynamics near tangencies,
but reduces the problem to a set of perturbed bifurcation equations for which
the unperturbed form is known (similar to Liapunov-Schmidt reduction, cf. [14,
Ch.I]). The theorem covers multi-humped homoclinic orbits that enter and leave
a neighborhood of the fixed point several times, by relating it to a perturbed
system of hilltop bifurcations (see [14] for the hilltop normal form). Our main
results will be stated in Section 2 (Theorems 1 and 5) with the rather involved
proofs deferred to Sections 5 and 6.

The global approach asks for possible bifurcations of multi-humped orbits that
are known to emerge from the tangencies. We take the Hénon family as a model
equation for a detailed numerical study of the homoclinic network that arises
from a total of 4 primary homoclinic tangencies. We show that the connected
components of this network are by no means arbitrary. Rather, they follow
certain rules governing the bifurcations of multi-humped orbits. Combining these
rules with graph-theoretical and combinatorial arguments allows to predict the
structure to a large extent, see Theorem 9. Only some fine details are left to
numerical computations as will be demonstrated in Sections 3 and 4.

2 Setting of the problem and main results

The aim of this section is to state our main result on bifurcation equations near
homoclinic tangencies. We first describe the setting and state our assumptions:

A1 f ∈ C∞(Rk × Λ0,Rk) for some open set Λ0 ⊂ R and f(·, λ) is a diffeomor-
phism for all λ ∈ Λ0,

A2 f(ξ(λ), λ) = ξ(λ) for some smooth branch ξ(λ) ∈ Rk, λ ∈ Λ0,

A3 fx(ξ(λ), λ) ∈ Rk,k is hyperbolic for all λ ∈ Λ0.

Clearly, if ξ0 is a hyperbolic fixed point of f(·, λ0) for some λ0 ∈ R then A2 and
A3 follow for some neighborhood Λ0 of λ0. Replacing f by g(x, λ) = f(x+ ξ(λ+
λ0), λ+λ0)− ξ(λ+λ0) shows that A2, A3 can be assumed to hold for the trivial
branch ξ(λ) = 0 and for a neighborhood Λ0 of zero. This will be our standing
assumption throughout Sections 5 and 6.
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It is well known that transversal homoclinic orbits lead to chaotic dynamics
on a nearby invariant set commonly referred to as a homoclinic tangle. Let us
first assume that this situation occurs at some parameter value λ̃ ∈ Λ0.

A4 For some λ̃ ∈ Λ0 there exists a nontrivial homoclinic orbit x̃Z = (x̃n)n∈Z,
i.e. limn→±∞ x̃n = ξ̃ := ξ(λ̃) and x̃n 6= ξ̃ for some n ∈ Z. This orbit is
transversal in the sense that the variational equation

yn+1 = fx(x̃n, λ̃)yn, n ∈ Z (2.1)

has no nontrivial bounded solution yZ = (yn)n∈Z in Rk.

In this case the stable and the unstable manifold of ξ̃ intersect transversally
at each x̃n and the set H̃ = {x̃n}n∈Z∪{ξ̃} is hyperbolic, cf. [37]. Moreover, there
exists an open neighborhood U of H̃ such that the dynamics on the maximal
invariant set

M(U, λ̃) = {x ∈ U : fn(x, λ̃) ∈ U ∀n ∈ Z} (2.2)

is conjugate to a subshift of finite type (see the Smale-Shilnikov-Birkhoff Homo-
clinic Theorem in [18] and [36, Chapter 5] for a proof). To be precise, let N ≥ 2
and let

SN = {0, 1, . . . , N − 1}Z
be the shift space with N symbols which is compact w.r.t. the metric

d(s, t) =
∑

j∈Z 2−|j||sj − tj |, s = (sj)j∈Z, t = (tj)j∈Z ∈ SN . (2.3)

Let β be the Bernoulli shift

β(s)i = si+1, i ∈ Z, s ∈ SN .

Consider a special subshift of finite type, see [32]

ΩN = {s ∈ SN : A(N)
si,si+1

= 1 ∀i ∈ Z}
generated by the N × N binary matrix

A(N) =



















1 1 0 · · · 0

0 0 1
. . .

...
...

. . . 1 0

0
. . . 1

1 0 · · · · · · 0



















∈ {0, 1}N×N .

Then there exists a neighborhood U of H̃ , an integer N ≥ 2 and a homeomor-
phism h : ΩN → M(U, λ̃) such that

f(·, λ̃) ◦ h = h ◦ β in ΩN . (2.4)
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A continuation of the transversal homoclinic orbit w.r.t. the parameter λ
leads to a curve of homoclinic orbits that typically exhibits turning points. As
an example we refer to Figure 1 for the Hénon map. Parts of the branch that can
be parametrized by λ belong to transversal homoclinic orbits while (quadratic)
turning points correspond to homoclinic orbits with a (quadratic) tangency, see
Theorem 3 for a precise statement. In this case we replace Assumption A4 by

B4 For some λ̄ ∈ Λ0 there exists a nontrivial homoclinic orbit x̄Z = (x̄n)n∈Z
converging towards ξ̄ = ξ(λ̄). The orbit is tangential in the sense that the
variational equation

yn+1 = fx(x̄n, λ̄)yn, n ∈ Z (2.5)

has a non-trivial bounded solution uZ = (un)n∈Z in Rk that is unique up
to constant multiples.

Since the fixed point stays hyperbolic we have exponential decay for both the
orbit and the solution of (2.5), i.e. for some α, Ce > 0

‖x̄n − ξ̄‖ + ‖un‖ ≤ Cee
−α|n|, n ∈ Z. (2.6)

Therefore, we may normalize

‖uZ‖2
ℓ2 = 〈uZ, uZ〉2ℓ2 =

∑

n∈Z uT
nun = 1. (2.7)

In the following we use 〈·, ·〉 to denote the inner product in ℓ2. The assumption
on (2.5) in B4 holds if and only if the tangent spaces of the stable and unstable
manifold have a one-dimensional intersection, i.e.

Tx̄n
W s(ξ̄) ∩ Tx̄n

W u(ξ̄) = span(ūn), n ∈ Z.

We refer to Theorem 3 and to [26, Appendix] for a more general statement.
Consider open neighborhoods U ⊂ Rk of H = {x̄n}n∈Z ∪ {ξ̄} and Λ ⊂ Λ0 of

λ̄, respectively. Our main interest is in the dynamics on the maximal invariant
set

M(U, Λ) = {(x, λ) ∈ U × Λ : fn(x, λ) ∈ U ∀n ∈ Z}.
As in the transversal case, we will still work with the subshift (ΩN , β) but the
conjugacy (2.4) will be replaced by a set of bifurcation equations. For any s ∈ ΩN

define the index set
I(s) = {n ∈ Z : sn = 1}, (2.8)

and note that I : ΩN → Z(N) ⊂ 2Z is bijective, whereZ(N) = {J ⊂ Z : |j − k| ≥ N ∀j, k ∈ J, j 6= k}. (2.9)
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With any s ∈ ΩN we associate the Banach space

ℓ∞(s) = {τ ∈ RI(s) : ‖τ‖∞ < ∞},

‖τ‖∞ = sup
ℓ∈I(s)

|τℓ|, Bρ = {τ ∈ ℓ∞(s) : ‖τ‖∞ ≤ ρ}.

Our aim is to determine the elements of M(U, Λ) from a set of bifurcation
equations

gs(τ, λ) = 0, τ ∈ Bρτ
, λ ∈ Λ, (2.10)

where s ∈ ΩN , ρτ > 0 is independent of s and

gs :
Bρτ

× Λ → ℓ∞(s)
(τ, λ) 7→ gs(τ, λ)

is a sufficiently smooth map. Note that (2.10) constitutes a finite or an infinite
system of equations depending on the cardinality of I(s).

In order to formulate the precise statement we define the pseudo orbits

pn(s) = ξ̄ +
∑

ℓ∈I(s)

(x̄n−ℓ − ξ̄), n ∈ Z. (2.11)

Equation (2.6) shows that pZ(s) is a bounded sequence, in particular

‖pn(s) − ξ̄‖ ≤ C̄ = Ce
1 + e−α

1 − e−α
, n ∈ Z. (2.12)

Setting ξ̄n = ξ̄ for all n ∈ Z we write (2.11) more formally as

pZ(s) = ξ̄Z +
∑

ℓ∈I(s)

β−ℓ(x̄Z − ξ̄Z).
Here and in what follows we use the symbol β to denote the shift of sequences inRk. Thus β acts as an operator in sequence spaces such as ℓp(Rk), 1 ≤ p ≤ ∞.

Similarly, for every τ ∈ ℓ∞(s) we define the bounded sequence

vZ(s, τ) =
∑

ℓ∈I(s)

τℓβ
−ℓuZ. (2.13)

Note that the sequence pZ(s) has humps at the positions defined by I(s) and that
pZ(s) is a pseudo orbit of f(·, λ̄) with a small error, see Lemma 13. The term
vZ(s, τ) shifts the solution of the variational equation to the positions defined by
I(s) and combines them linearly.
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Theorem 1 Let assumptions A1 - A3 and B4 hold. Then there exist constants
0 < rτ ≤ ρτ , N ∈ N and neighborhoods U of H, Λ of λ̄ and for any s ∈ ΩN

smooth functions

gs : Bρτ
× Λ → ℓ∞(s),

xZ,s : Bρτ
× Λ → ℓ∞(Rk)

with the following properties.

(i) For any point (y0, λ) ∈ M(U, Λ) with orbit yn = fn(y0, λ), n ∈ Z there
exists an index ν ∈ Z and elements s ∈ ΩN , τ ∈ Bρτ

⊂ ℓ∞(s) such that

βνyZ = xZ,s(τ, λ) + pZ(s) + vZ(s, τ), (2.14)

gs(τ, λ) = 0. (2.15)

(ii) Conversely, if s ∈ ΩN , τ ∈ Brτ
⊂ ℓ∞(s), λ ∈ Λ satisfy (2.15), then

there exists ν ∈ Z such that (yn, λ)n∈Z, with yZ given by (2.14), belongs to
M(U, Λ).

Remark 2 Theorem 1 reduces the study of M(U, Λ) to the set of bifurcation
equations (2.15) with a symbolic index s ∈ ΩN . It may be regarded as a type of
Liapunov-Schmidt reduction though we have not formally put it into this frame-
work. The construction of the neighborhood U × Λ uses some features from the
transversal case [36, Theorem 5.1], but is considerably more involved, see Sec-
tions 5 and 6. We also note that we were not able to prove that one can take
rτ = ρτ which would give a complete characterization of M(U, Λ) in terms of
(2.14), (2.15). Another issue which has not yet been resolved, is continuous de-
pendence of the functions xZ,s and gs on the symbolic sequence s with respect to
the metric (2.3).

The functions gs and xZ,s have several properties that we discuss next.
Due to B4 the adjoint equation

yT
n+1fx(x̄n+1, λ̄) = yT

n , n ∈ Z (2.16)

has a non-trivial solution wZ that is unique up to constant multiples, cf. [37,
Section 2]. It decays exponentially as in (2.6) and can thus be normalized such
that ‖wZ‖ℓ2 = 1. Without loss of generality we take Ce in (2.6) such that

‖wn‖ ≤ Cee
−α|n|, n ∈ Z. (2.17)

As is shown in [26] the quantities

cλ = 〈wZ, (fλ(x̄n, λ̄))n∈Z〉, cx =
1

2
〈wZ, (fxx(x̄n, λ̄)u2

n)n∈Z〉 (2.18)

characterize the behavior of the branch of homoclinic orbits that passes through
(x̄Z, λ̄).
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Theorem 3 The operator F : ℓ∞(Rk) ×R→ ℓ∞(Rk) defined by

F (xZ, λ) =
(

(xn+1 − f(xn, λ))n∈Z) (2.19)

has a limit point at (x̄Z, λ̄) in the sense that F (x̄Z, λ̄) = 0 and

N (DxF (x̄Z, λ̄)) = span{uZ}.
The limit point is transversal, i.e.

DλF (x̄Z, λ̄) /∈ R(DxF (x̄Z, λ̄)) if and only if cλ 6= 0.

Moreover, it is a quadratic turning point, i.e.

D2
xF (x̄Z, λ̄)u2Z /∈ R(DxF (x̄Z, λ̄)) if and only if cx 6= 0.

Remark 4 For transversal homoclinic orbits (λ 6= λ̄), the Sacker-Sell spectrum,
cf. [39], of the variational equation (2.1) is a pure point spectrum

ΣED(λ) = {|µ| : µ ∈ σ(fx(ξ(λ), λ))}.

At a turning point, we find a spectral explosion to a continuous Sacker-Sell spec-
trum

ΣED(λ̄) = {|µ| : µ ∈ σ(fx(ξ̄, λ̄))} ∪ [µs, µu],

where

µs = max{|µ| < 1 : µ ∈ σ(fx(ξ̄, λ̄))}, µu = min{|µ| > 1 : µ ∈ σ(fx(ξ̄, λ̄))}.

Our second result shows that the constants cλ, cx play an important role in
the behavior of the bifurcation function gs(τ, λ).

Theorem 5 Let the assumptions of Theorem 1 hold. Then the functions xZ,s,
gs have the following properties

(i)

xZ,βs(βτ, λ) = βxZ,s(τ, λ), where I(βs) = I(s) − 1, (2.20)

gβs(βτ, λ) = βgs(τ, λ). (2.21)

(ii) For some constants C > 0, α > 0, independent of s, N and ℓ ∈ I(s)

∣

∣gs(τ, λ)ℓ−(cλ(λ− λ̄)+cxτ
2
ℓ )
∣

∣ ≤ C
(

(λ− λ̄)2 + |λ− λ̄|‖τ‖∞+‖τ‖3
∞+e−αN/2

)

.
(2.22)
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Remark 6 Note that one can prove existence of n-humped orbits in the transver-
sal case from the well-known shadowing principle, see the remarks following Eq.
(4.1). To obtain an analogous result for the tangential case is much more difficult.
Although Theorem 1 completely characterizes the maximal invariant set near a
tangency, such a result requires to prove existence of smooth solution branches
for the reduced system (2.15). In principle, this task is solved by the unfolding
theory for singularities, see [14]. However, in order to make the theory applicable
to the bifurcation equations (2.15) one needs estimates of (all) derivatives of gs

in (2.22). In fact, the function gs(·, ·) comes out smoothly from Theorem 11, but
estimating their derivatives is quite involved (cf. the proof of (2.22) in Section 6)
and has not yet been done.

If we consider a homoclinic symbol s ∈ ΩN with K = card(I(s)) < ∞ humps,
then Theorem 5 shows that the bifurcation equations are small perturbations of
a set of K identical turning point equations

0 = cλ(λ − λ̄) + cxτ
2
ℓ , ℓ ∈ I(s).

If cλ, cx 6= 0 one can shift λ̄ to zero and scale λ and τℓ such that one obtains a
set of hilltop bifurcations of order K, cf. [14, Ch. IX, §3],

0 = λ − τ 2
ℓ , ℓ ∈ I(s). (2.23)

For two-humped orbits the set I(s) contains two elements and the solution curves
of (2.23) are shown in Figure 8. This case will be crucial for understanding the
global behavior of homoclinic curves in the next sections.

Remark 7 The emergence of multi-humped homoclinic orbits near tangencies
is reminiscent of the fan of multi-humped orbits created near codimension-two
homoclinics in continuous systems, see [22, Sect. 5.1] and [40, 21]. However,
the underlying mechanisms seem to be different. This is discussed in the survey
paper [22, Sect. 4.3] which also suggests to further compare both phenomena. For
continuous systems the occurrence of a fan of homoclinics near an inclination flip
or orbit flip bifurcation is explained by a so-called singular horse-shoe appearing
in suitable Poincaré sections. On the other hand multi-humped orbits in discrete
systems are created by maps of horse-shoe type with tangencies. Though it is
natural that the codimensions of both phenomena differ by one, there is another
distinguishing feature that is relevant for numerical continuation: the curves of
multi-humped homoclinics in the fan of a continuous system all accumulate at a
single pair of parameters, while the corresponding curves in the discrete system
have their own turning points which relate to secondary tangencies close to but
not at the critical parameter value. This will be illustrated in Section 4.
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3 Homoclinic orbits and their continuation

A typical example, which plays the role of a normal form for quadratic two-
dimensional mappings, is the famous Hénon map, cf. [20, 33, 11, 19] which is
defined as

f(x, λ) =

(

1 + x2 − 1.4x2
1

λx1

)

.

This map has fixed points

ξ±(λ) =

(

ν(λ)
λν(λ)

)

, where ν(λ) =
1

2.8

(

λ − 1 ±
√

(λ − 1)2 + 5.6
)

and for λ̃ = 0.35 a transversal homoclinic orbit xZ(λ̃) w.r.t. the fixed point ξ+(λ̃)
exists, satisfying Assumption A4.

For numerical computations, we approximate an infinite homoclinic orbit
xZ(λ̃) by a finite orbit segment xJ , where J = [n−, n+] ∩ Z. The segment is
determined as a zero of the boundary value operator

ΓJ(xJ , λ̃) =

(

xn+1 − f(xn, λ̃), n = n−, . . . , n+ − 1
b(xn−

, xn+)

)

.

Here b : R2k → Rk defines a boundary condition, for example

bper(x, y) = x − y, or bproj(x, y) =

(

Bs(x − ξ̄)
Bu(x − ξ̄)

)

,

in case of periodic and projection boundary conditions, where Bs and Bu yield
linear approximations of the stable and the unstable manifold. Due to our hy-
perbolicity assumption, ΓJ(·, λ̃) has for J sufficiently large a unique zero in a
neighborhood of the exact solution. Moreover approximation errors decay at an
exponential rate that depends on the type of boundary condition, cf. [4].

For Hénon’s map, we solve the corresponding boundary value problem, ob-
tain in this way an approximation of xZ(λ̃) and continue this orbit w.r.t. the
parameter λ, using the method of pseudo arclength continuation, cf. [25, 1,
17, 13]. In Figure 1, we plot the amplitude of these orbits amp(xJ (λ)) :=
(
∑

n∈J ‖xn(λ) − ξ+(λ)‖2
)

1
2 versus the parameter. This figure is well known, cf.

[4], but is reproduced here to illustrate and introduce our labeling of left and
right turning points.

At the value λ̃ = 0.35 four distinct homoclinic orbits occur that we denote
by xiZ, i ∈ {0, . . . , 3}. We choose their index by following the order given by the
continuation routine. The orbit x0Z is shown in Figure 2 together with parts of
the stable and the unstable manifold of the fixed point ξ+(λ̃). The enlargements
in the figure show which intersection of the manifolds leads to the four homoclinic
orbits.
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0

1

2

3ℓ3,0 = (x3,0Z , λ3,0)

ℓ1,2 = (x1,2Z , λ1,2)

r0,1 = (x0,1Z , λ0,1)

r2,3 = (x2,3Z , λ2,3)

λ

amp

Figure 1: Continuation of homoclinic Hénon orbits. At the parameter λ̃ = 0.35
four distinct orbits xiZ, i ∈ {0, . . . , 3} exist that turn into each other via left or
right turning points.

At each turning point, two orbits collide; with r and ℓ, we distinguish right
and left turning points. Figure 3 illustrates intersections of stable and unstable
manifolds at these four turning points.

Errors of turning point calculations for finite approximations of homoclinic
orbits decay exponentially fast w.r.t. the length of the computed orbit segment, cf.
[27, Theorem 5.1.1]. We refer to [12], for algorithms that compute approximations
of one-dimensional and two-dimensional stable and unstable manifolds and to [30]
for a comparison of competing methods.

4 Connected components of multi-humped or-

bits

For Hénon’s map, we find four distinct transversal homoclinic orbits xsZ, s ∈
{0, . . . , 3} at λ̃ = 0.35 and we identify xZ(s) with its symbol s. Note that the
orbits 0, 1, 2, 3, 0 pass into each other via left (L) and right (R) turning points r0,1,
ℓ1,2, r2,3, ℓ3,0, see Figure 3. The graph in Figure 4 gives an alternative illustration
of these transitions.

The transition graph for one-humped orbits in Figure 4 consists of exactly
one LR-cycle. Note that all one-humped orbits lie on a single closed curve and
thus are found via numerical continuation.

The corresponding analysis of closed curves of n-humped orbits, with n ≥ 2,
is more involved and is the main goal of this section. Indeed, several disjoint
curves of n-humped orbits occur. We introduce a symbolic coding for n-humped
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2
3

ξ+

x0Z
Figure 2: Primary homoclinic orbit x0Z w.r.t. the fixed point ξ+, and parts of the
stable manifold (green) and the unstable manifold (red). The enlargement shows
the intersections of manifolds that lead to the four homoclinic orbits in Figure 1.

orbits and put two orbits into the same equivalence class, if they lie on the same
closed curve.

For the construction of an n-humped orbit, we choose a sufficiently long in-
terval J = [n−, n+] around zero and a sequence s ∈ Sn := {0, . . . , 3}n. We define
the pseudo orbit

x̃Z[s] := xs1

(−∞,n+]x
s2
J . . . x

sn−1

J xsn

[n−,∞), (4.1)

see Figure 5. Since the collection of single orbits xrZ, r ∈ {0, . . . , 3} together
with the fixed point forms a hyperbolic set, the Shadowing-Lemma, cf. [38, 36]
shows that the pseudo orbit x̃Z(s) lies close to a true n-humped f -orbit which we
denote by xZ(s). In Sn there are 4n different symbols and thus we expect to find
4n different n-humped orbits xZ(s). We identify these orbits with their symbol.
Note that composing initial approximations of multi-humped orbits from pieces
of single orbits is a very common approach that appears in discrete as well as
continuous time dynamical systems, see [8, 31, 29, 34].

We also note that our construction of pseudo orbits in (4.1) slightly differs
from (2.11), where we add up shifted orbits. With both approaches, we expect
to find the same shadowing orbit for sufficiently large intervals J .
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r0,1
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3
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Figure 3: Intersections of stable and unstable manifolds at the four turning points
in the cutout region from Figure 2.

0 1 2 3
RR L

L

Figure 4: Transition graph for one-humped orbits.

x0Z
x1Z
x2Z
x3Z

xZ[01]

xZ[123]

Figure 5: Construction of multi-humped orbits.
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Given two symbols s, s̄ ∈ Sn, we analyze whether the n-humped orbits xZ(s)
and xZ(s̄) can turn into each other via continuation.

Let us first look at the two-humped case.

4.1 Bifurcation of two-humped orbits

The continuation of two-humped orbits exhibits three closed curves of homoclinic
orbits, see Figure 6. At the parameter value λ̃, there exist 16 different homoclinic
orbits xZ(s), indexed by s ∈ S2. These orbits lie on different closed curves, namely
8 on the first, and 4 on the second and the third curve.

0.1 0.2 0.3 0.4
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0.1 0.2 0.3 0.4
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2.6

2.8
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3.6

3.8  

 

λ

amp

Figure 6: Continuation of two-humped orbits of length n− = −20, n+ = 21.

We note that it is challenging to compute the continuation pictures in Figure
6 due to the sharp turns that occur, see Figure 7.

0.4705 0.471 0.4715 0.472
3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.7

λ

amp

Figure 7: Zoom of the red box in Figure 6, showing sharp turns of curves of 2-
humped orbits. The black points are computed by our continuation routine and
illustrate the decrease of step sizes.
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An accurate step size control is essential for achieving these diagrams. With
too large continuation steps, the algorithm directly jumps from the upper light
green to the lower dark green curve.

For the continuation of n-humped orbits, this problem also shows up with
available software like Matcont, cf. [13], when using the standard setup of
parameters. We therefore apply our own implementation of an Euler-Newton
method which controls the step size by cond−α, where α ∈ [0.7, 0.81] and cond
denotes the condition number of the Jacobian, occurring in the Newton process of
the corrector step. The difficulty of continuing n-humped orbits across the sharp
turns is illustrated by the minimal step sizes that we find during the computation,
see Table 1.

n 2 3 4 5

hmin 9 · 10−4 8 · 10−6 9 · 10−7 2 · 10−7

Table 1: Minimal step sizes hmin of our algorithm for the continuation of n-
humped orbits.

The following discussion explains why a large condition number close to the
sharp turns is to be expected.

One observes that at each turning point in Figure 6, exactly one component
of the symbol changes. For example, the symbol (1, 1) changes at a left turning
point into the symbol (2, 1). But why does the symbol (1, 1) not change into the
symbol (1, 2)? The answer, which transition occurs depends on small terms that
perturb a hilltop bifurcation, see the discussion below. These small terms are
caused by the finite distance between the single humps.

For two-humped orbits, the system (2.23) is a set of two equations in three
variables λ, τ1, τ2, called the hilltop normal form, cf. [14]

λ = τ 2
1 , λ = τ 2

2 . (4.2)

Figure 8 (left) shows the solution curves of (4.2) while the red curves in Figure
8 (right) indicate the generic solution picture of a perturbed equation. Here
we neglect more detailed bifurcation diagrams which take into account small
hysteresis effects w.r.t. the parameter λ, see [14, Ch. IX, §3] for the unfolding
theory.

Note that the Jacobian of the Newton process becomes singular at a simple
bifurcation point, cf. [10], and hence is ill-conditioned at a perturbed bifurcation.
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(2, 1)(2, 1)

(1, 1) (1, 1)

(1, 2) (1, 2)
(2, 2) (2, 2)

τ1 + τ2τ1 + τ2

τ1 − τ2τ1 − τ2

λλ

Figure 8: Unperturbed (left) and perturbed hilltop bifurcation (right) at the turning
point ℓ1,2.

4.2 Connected components and equivalent symbols

Homoclinic orbits that lie on a common closed curve define a connected compo-
nent of

H :=
{

(yZ, λ) ∈ ℓ∞(Rk) ×R : yn+1 = f(yn, λ) ∀n ∈ Z, lim
n→±∞

yn = ξ(λ)
}

.

More precisely, let s ∈ Sn and denote by C(s) ⊂ H the connected component
that satisfies (xZ(s), λ̃) ∈ C(s).

Then, we obtain an equivalence relation by identifying two sequences s, s̄ ∈
Sn, if the corresponding orbits lie in the same component i.e.

s ∼= s̄ ⇔ (xZ(s̄), λ̃) ∈ C(s). (4.3)

In the following, we discuss how to find these equivalence classes. In particu-
lar, we show under some generic assumptions that each equivalence class has at
least four elements, and for n-humped orbits it turns out that one class has at
least 4n elements.

For this task, we introduce a labeled graph G with vertices s ∈ Sn. Two
vertices s and s̄ ∈ Sn are connected with an L or R-edge, if xZ(s) bifurcates into
xZ(s̄) via a left or right turning point. Since we do not know the effect of the
perturbed hilltop bifurcation a priori, we put an edge, if the transition is possible
for at least one perturbation. For example, the vertices (1, 1) and (2, 1) as well
as (1, 1) and (1, 2) are connected with L-edges in case n = 2, see Section 4.1.
Precise rules for constructing this graph are stated in Section 4.3.

Our hypothesis is that the desired equivalence classes correspond to a special
decomposition of this graph into disjoint LR-cycles.

In case of one-humped orbits, the only LR-cycle is 01230, see Figure 4. Con-
sequently, all symbols lie in the same equivalence class, which matches the fact
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that all one-humped orbits lie on the same closed curve and thus, in the same
connected component of H.

4.3 Graph structure of homoclinic network

In this section, we give precise rules for defining the labeled graph G which we
identify with its adjacency tensor with entries R and L.

First, we assume that only one of the n humps can turn into a neighboring
hump at a turning point.

R1 There is no edge from s ∈ Sn to s̄ ∈ Sn if

s = s̄ or ‖s − s̄‖1 =

n
∑

i=1

d(si, s̄i) ≥ 2,

where d is the distance on the cycle 01230.

Now let s, s̄ ∈ Sn and assume ‖s− s̄‖1 = 1, then there exists a unique j such
that sj 6= s̄j .

From λ2,3 > λ0,1 we conclude that the right transition at r2,3 can only occur
if the orbit contains no 0 and no 1 hump. Therefore, we define R-edges in G
according to the following rule.

R2 G(s, s̄) = R if

• {sj , s̄j} = {0, 1},

• {sj , s̄j} = {2, 3} and si ∈ {2, 3} for all i = 1, . . . , n.

Similarly from λ1,2 > λ3,0 we conclude that the left transition at ℓ3,0 can only
occur if the orbit contains no 1 and no 2 hump. Our rules for L-edges are:

R3 G(s, s̄) = L if

• {sj , s̄j} = {1, 2},

• {sj , s̄j} = {0, 3} and si ∈ {0, 3} for all i = 1, . . . , n.

We expect a connected component to correspond to an LR-cycle in this graph,
i.e. a cycle on which L and R-edges alternate. A precise statement of our hy-
pothesis is as follows.

Hypothesis 8 The connected components of n-humped orbits and thus the equiv-
alence classes (4.3) are in one to one correspondence to partitions of G into
disjoint LR-cycles.
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Figure 9: L-edges of G (left) and R-edges (center) for two-humped orbits. The
cycles in the right figure correspond to the closed curves that are computed nu-
merically in Figure 6.

In case n = 2, the L and R-edges are shown in the left and center picture of
Figure 9, respectively. The right diagram additionally shows the LR-cycles that
correspond to the connected components from Figure 6.

A partition of the graph into disjoint LR-cycles is not unique and conse-
quently, the decomposition in the right of Figure 9 is not the only possible can-
didate, satisfying Hypothesis 8. Figure 10 illustrates all possible partitions (up
to reflections at the diagonal).

Figure 10: All possible decompositions (up to symmetry) into disjoint LR-cycles.

Our numerical results show that the first partition in the second row of Figure
10 actually occurs in the Hénon system. This indicates the particular paths (red
or magenta in Figure 8) taken on each perturbed hilltop bifurcation.

Corresponding diagrams for n = 3 are given in Figure 11.
We continued n-humped orbits numerically for Hénon’s map up to n = 5.

Table 2 summarizes the number of cycles and their lengths found in the compu-
tation.
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Figure 11: L-edges of G (left) and R-edges (center) for three-humped orbits. The
green lines in the right figure show the cycles that are computed numerically.

length of cycle
n 4 8 12 16 20

1 1
2 2 1
3 9 2 1
4 45 3 3 1
5 205 6 6 4 1

Table 2: Continuation of n-humped orbits – length of occurring cycles in numer-
ical experiments.

Hypothesis 8 relates connected components of H to LR-cycles in the graph G,
given by our rules R1-R3. Even though we cannot decompose G uniquely into
disjoint LR-cycles, our experiments for n-humped orbits of Hénon’s map suggest
that the length of occurring cycles is always a multiple of 4. Furthermore, there
exists one cycle of length at least 4n. Indeed, we prove that these observations
follow from Hypothesis 8.

Theorem 9 Fix n ∈ N and assume that Hypothesis 8 holds true. Then, all
n-humped orbits lie on cycles whose length is a multiple of 4.

For the specific symbols s0 = (0, . . . , 0) and s2 = (2, . . . , 2) ∈ Sn, the corre-
sponding orbits xZ(s0) and xZ(s2) lie on a common cycle of at least length 4n.

Remark 10 Table 2 shows that there is exactly one orbit of length 4n and all
other orbits are shorter. Hence, the orbit of length 4n contains s0 and s2.

Proof: By assuming Hypothesis 8 we see that it suffices to analyze LR-cycles of
the graph G. More precisely, we prove Theorem 9 along the following steps.

(i) Each LR-cycle in G has length 4m, m ≥ 1, m ∈ N.

19



(ii) There exists an LR-cycle from s0 to s2 of length 4n and each LR-cycle that
contains s0 and s2 has at least length 4n.

(iii) Each LR-cycle that contains s0 also contains s2.

(i) Let the vertices v1, . . . , vm, vm+1 = v1 form an LR-cycle in G. Fix j ∈
{1, . . . , n} and let lj = #

{

i ∈ {1, . . . , m} : vi
j 6= vi+1

j , G(vi, vi+1) = L
}

be
the number of L-edges for which the corresponding vertices only differ in
the jth component.

From R1 it follows that lj is an even number and maxj=1,...,n{lj} ≥ 2,
otherwise the cycle cannot be closed in the jth component. Furthermore,
an LR-cycle has the same number of L and R-edges. Thus, the cycle has
length

m =

n
∑

i=1

2li = 4

n
∑

i=1

li
2

= 4p with p =

n
∑

i=1

li
2
≥ 1.

(ii) We explicitly construct an LR-cycle in G from s0 to s2: (0 · · ·0) 7→ (10 · · ·0)
7→ (20 · · ·0) 7→ (210 · · ·0) 7→ (220 · · ·0) 7→ · · · 7→ (2 · · · 2) 7→ (32 · · ·2) 7→
(312 · · ·2) 7→ (302 · · ·2) 7→ (3012 · · ·2) 7→ (3002 · · ·2) 7→ (30 · · ·0) 7→
(0 · · ·0) which has length 4n. Note that the distance from s0 to s2 on
the full quadratic grid is 2n and consequently, each cycle containing these
two points has at least length 4n.

(iii) For proving that each LR-cycle with s0 also contains s2, assume that an
LR-cycle exists that contains s2 but not s0. This cycle lies in the subgraph
that we obtain by deleting the vertex s0 with its corresponding edges.

Note that the LR-cycles start with an L and end with an R-edge, and it
follows from R2 that all R-edges that start at s2 end in

V3 := {s ∈ Sn : ∃j ∈ {1, . . . , n} : sj = 3}.

We define the graph G̃ by deleting the R-edges of s2 from the remaining
graph. Figure 12 illustrates this construction in case n = 2.

If G̃ breaks into two components V3 and G̃\V3, then we get a contradiction
to the above assumption and an LR-cycle in the original graph G that
contains s2 but not s0 cannot exist.

To finish the proof, we show that an LR-path in G̃ from s2 to V3 does not
exist.

From s2 we cannot go directly via an R-edge to V3, since the corresponding
edges are deleted in G̃. Thus without loss of generality, we get: (2 · · ·2) 7→
(12 · · ·2) 7→ (02 · · ·2). Denote by vm the mth vertex on this path. A 3-
component can only be achieved by the left transition ℓ3,0 or by the right
transition r2,3, see R2 and R3.
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Figure 12: Transition graph in case n = 2. L-edges and R-edges are plotted in
red and black, respectively. Vertices and edges that are deleted in the proof of
Theorem 9 are marked by green crosses.

If a j exists with vm
j ∈ {0, 1}, then the r2,3 transition is impossible by R2.

If a j exists with vm
j ∈ {1, 2}, then the ℓ3,0 transition is impossible by R3.

Thus, we only obtain a 3 component via the vertex s0 = (0 . . . 0) which is
deleted in G̃.

�

In summary, 4n different n-humped orbits for Hénons map exist at the pa-
rameter value λ̃ = 0.35. These orbits share the same connected component, if
they turn into each other via parameter-continuation. We have introduced a sym-
bolic coding and proposed rules to decide a-priori, if two orbits lie on a common
component. Via a graph theoretical argument, it turns out that the minimal
component size is 4. Furthermore, the orbits coded by (0 · · ·0) and (2 · · ·2) lie
on a common curve and this curve connects at least 4n orbits via continuation.

A complete classification of the 4n orbits into connected components requires
more knowledge on perturbations of hilltop bifurcations that we have not yet
analyzed. We presented numerical data found for the cases of 2 − 5-humped
orbits.

5 Bifurcation analysis near homoclinic tangen-

cies

In this section we prove the main Theorem 1 and Theorem 5(i) by using an
existence and uniqueness result for a suitable operator equation in spaces of
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bounded sequences. In the following we use the notation Bρ(x) and Bρ = Bρ(0)
to denote closed balls of radius ρ in some Banach space.

5.1 The operator equation

First recall the operator F : ℓ∞(Rk)×R→ ℓ∞(Rk) from (2.19) and the normal-
ization λ̄ = 0 and ξ(λ) = 0 for λ close to λ̄, see A2, A3 in Section 2. Then for
any s ∈ ΩN define the operator

Gs : ℓ∞(Rk) × ℓ∞(s) × ℓ∞(s) ×R→ ℓ∞(Rk) × ℓ∞(s)

by

Gs(xZ, g, τ, λ) =

(

F (pZ(s) + xZ + vZ(s, τ), λ) + w(s, g)
〈β−ℓuZ, xZ〉, ℓ ∈ I(s)

)

. (5.1)

Here pZ, vZ are defined in (2.11), (2.13) and w(s, g) is given by (recall wZ from
(2.16))

w(s, g) =
∑

ℓ∈I(s)

gℓβ
−ℓwZ, g ∈ ℓ∞(s).

Our aim is to derive the functions xZ,s, gs in Theorem 1 by solving

Gs(xZ, g, τ, λ) = 0 (5.2)

for ‖τ‖∞, |λ| sufficiently small and for all s ∈ ΩN . More precisely, we prove in
Section 6 the following Reduction Theorem.

Theorem 11 There exist constants C0, ρx, ρg, ρτ , ρλ > 0 and a number N0 ∈ N
such that for all N ≥ N0 and for all s ∈ ΩN the following statements hold. For
all τ ∈ Bρτ

, λ ∈ Bρλ
the system (5.2) has a unique solution

g = gs(τ, λ) ∈ Bρg
⊂ ℓ∞(s), xZ = xZ,s(τ, λ) ∈ Bρx

⊂ ℓ∞(Rk).

Moreover, the following estimate is satisfied:

max(‖g − g̃‖∞, ‖xZ − x̃Z‖∞) ≤ C0‖Gs(xZ, g, τ, λ)− Gs(x̃Z, g̃, τ, λ)‖ (5.3)

for all g, g̃ ∈ Bρg
, xZ, x̃Z ∈ Bρx

, τ ∈ Bρτ
, λ ∈ Bρλ

.

5.2 Preparatory Lemmata

In order to construct the neighborhoods U and Λ in Theorem 1 we need several
lemmata.
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Lemma 12 There exists N1 ∈ N, such that for all N ≥ N1, s ∈ ΩN the linear
system

∑

k∈I(s)

〈β−ℓuZ, β−kuZ〉τk = rℓ, ℓ ∈ I(s), r ∈ ℓ∞(s) (5.4)

has a unique solution τ ∈ ℓ∞(s) and

‖τ‖∞ ≤ 2‖r‖∞. (5.5)

Proof: Rewrite (5.4) as fixed point equation

τ = Pτ + r, (Pτ)ℓ = −
∑

k∈I(s),k 6=ℓ

〈β−ℓuZ, β−kuZ〉τk

and note

‖Pτ‖∞ ≤ ‖τ‖∞ sup
ℓ∈I(s)

∑

k∈I(s),k 6=ℓ

|〈uZ, βℓ−kuZ〉|
≤ ‖τ‖∞C

∑

j≥1

e−αjN =
Ce−αN

1 − e−αN
‖τ‖∞.

Thus, we choose N1 such that Ce−αN1

1−e−αN1
≤ 1

2
. Then P is contractive and (5.5)

follows. �

Lemma 13 There exist N2 ∈ N, C2 > 0 such that

‖F (pZ(s) + vZ(s, τ), λ)‖∞ ≤ C2(|λ| + ‖τ‖2
∞ + e−αN/2) (5.6)

for all N ≥ N2, s ∈ ΩN , |λ| ≤ 1, τ ∈ B1 ⊂ ℓ∞(s).

Proof: We estimate

pn+1(s) + vn+1(s, τ) − f(pn(s) + vn(s, τ), λ)

=
∑

ℓ∈I(s)

(x̄n+1−ℓ + τℓun+1−ℓ) − f(pn(s) + vn(s, τ), 0) + O(|λ|)

=
∑

ℓ∈I(s)

(

f(x̄n−ℓ, 0) + τℓfx(x̄n−ℓ, 0)un−ℓ

)

−f
(

∑

ℓ∈I(s)

x̄n−ℓ +
∑

ℓ∈I(s)

τℓun−ℓ, 0
)

+ O(|λ|)

=
∑

ℓ∈I(s)

f(x̄n−ℓ, 0) +
∑

ℓ∈I(s)

τℓfx(x̄n−ℓ, 0)un−ℓ

−f
(

∑

ℓ∈I(s)

x̄n−ℓ, 0
)

− fx

(

∑

j∈I(s)

x̄n−j , 0
)

∑

ℓ∈I(s)

τℓun−ℓ + O(|λ| + ‖τ‖2
∞).
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For n ∈ Z, choose ℓ̃ ∈ I(s) such that |n − ℓ̃| ≤ |n − ℓ| for all ℓ ∈ I(s). Then
|n − ℓ| ≥ N

2
for all ℓ 6= ℓ̃ and, therefore, by (2.6),

∥

∥

∥

∑

ℓ∈I(s)

f(x̄n−ℓ, 0) − f
(

∑

ℓ∈I(s)

x̄n−ℓ, 0
)

∥

∥

∥

≤
∥

∥

∥

∑

ℓ∈I(s),ℓ 6=ℓ̃

f(x̄n−ℓ, 0)
∥

∥

∥
+
∥

∥

∥
f(x̄n−ℓ̃, 0) − f

(

∑

ℓ∈I(s)

x̄n−ℓ, 0
)

∥

∥

∥

≤
∥

∥

∥

∑

ℓ∈I(s),ℓ 6=ℓ̃

x̄n+1−ℓ

∥

∥

∥
+ L

∥

∥

∥

∑

ℓ∈I(s),ℓ 6=ℓ̃

x̄n−ℓ

∥

∥

∥
≤ C2e

−αN/2.

(5.7)

In a similar way,

∑

ℓ∈I(s)

τℓfx

(

∑

j∈I(s)

x̄n−j , 0
)

un−ℓ =
∑

ℓ∈I(s)

τℓfx(x̄n−ℓ, 0)un−ℓ + O(e−αN/2‖τ‖∞). (5.8)

Combining these estimates, we obtain (5.6). �

Lemma 14 Assume A1, A2 and let x̄Z be a homoclinic f(·, 0)-orbit with respect
to the hyperbolic fixed point 0. Then, there exist neighborhoods U3 ⊂ Rk of 0,
Λ3 ⊂ Λ0 and constants N3, n0, α > 0, C3 ≥ 1 such that the following statement
holds for all K ≥ N3, −n−, n+ ≥ n0:

If xn+1 = f(xn, λ) for n ∈ J̃ := [0, K − 1], λ ∈ Λ3, and if xn ∈ U3 for all
n ∈ J := [0, K] then we have the estimate

sup
j∈J

‖xj−x̄n−+1−K+j−x̄n+−1+j‖ ≤ C3

(

‖xK − x̄n−+1‖ + ‖x0 − x̄n+−1‖ + |λ| + e−α K
2

)

.

Furthermore we obtain in case K = ∞:

sup
j≥0

‖xj − x̄n+−1+j‖ ≤ C3(‖x0 − x̄n+−1‖ + |λ|). (5.9)

Proof: Consider the pseudo-orbit pj := x̄n+−1+j + x̄n−+1−K+j, j ∈ J which is a
zero of the boundary value operator

ΓJ(yJ , λ) :=

(

yn+1 − f(yn, λ) − ρn, n ∈ J̃
bK(y0, yK)

)

,

at λ = 0, where

ρn := f(x̄n+−1+n, 0) + f(x̄n−+1−K+n, 0) − f(pn, 0), n ∈ J,

bK(y0, yK) :=

(

Ps(y0 − p0)
Pu(yK − pK)

)

.

Here Ps and Pu are the stable and unstable projectors of the fixed point 0.
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Let b be the bound from Theorem 22 for the difference equation

un+1 = (fx(0, 0) + Bn)un, Bn = fx(pn, λ) − fx(0, 0), n ∈ J̃ .

For sufficiently large −n−, n+ ≥ n0 and λ ∈ Λ3 sufficiently small, we get ‖Bn‖ ≤ b
for all n ∈ J̃ . Consequently

un+1 = fn(pn, λ)un, n ∈ J̃

has an exponential dichotomy on J with projectors P s
n, P u

n and an exponential
rate α that is independent of n−, n+, λ and K.

As in the proof of [23, Theorem 4], we show that for λ ∈ Λ3, n−, n+ ≥ n0 and
K ≥ N3 we have a uniform bound

‖D1ΓJ(pJ , λ)−1‖∞ ≤ σ−1. (5.10)

In order to see this, consider the inhomogeneous difference equation

un+1 − fx(pn, λ)un = rn, n = 0, . . .K − 1, (5.11)

Psu0 + PuuK = γ. (5.12)

Denote by Φ the solution operator of the homogeneous equation and let G be
the corresponding Green’s function, cf. (6.16). The general solution of (5.11) is
given by

un = Φ(n, 0)v +
∑

m∈J̃

G(n, m + 1)rm, (5.13)

where
v = v− + Φ(0, K)v+, v− ∈ R(P s

0 ), v+ ∈ R(P u
K).

Inserting (5.13) into (5.12), it remains to solve

Ps

(

v− + Φ(0, K)v+

)

+ Pu

(

Φ(K, 0)v− + v+

)

= R,

with
R = γ − Ps

∑

m∈J̃

G(0, m + 1)rm − Pu

∑

m∈J̃

G(K, m + 1)rm.

This finite-dimensional system has a unique solution for K ≥ N3 sufficiently large
since ‖Ps−P s

0‖ → 0 and ‖Pu−P u
K‖ → 0 as K → ∞. Therefore, the system (5.11),

(5.12) also has a unique solution uJ for K large and the dichotomy estimates lead
to a bound

‖uJ‖∞ ≤ σ−1(|γ| + ‖rJ‖∞),

i.e. (5.10) holds.
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We apply Theorem 20 with the space Y = ℓ∞J = {(yn)n∈J : yn ∈ Rk} of finite
sequences and with Z = ℓ∞

J̃
× Rk, both endowed with the sup-norm. We take

y0 = pJ and use uniform data for all λ ∈ Λ3. For δ sufficiently small we have

‖D1ΓJ(xJ , λ) − D1ΓJ(pJ , λ)‖∞ ≤
σ

2
for all sequences xJ ∈ Bδ(pJ), λ ∈ Λ3,

and by choosing the neighborhood Λ3 sufficiently small we get

‖ΓJ(pJ , λ)‖∞ = sup
n∈J̃

‖pn+1 − f(pn, λ) − ρn‖ + ‖bK(p0, pK)‖

= sup
n∈J̃

‖pn+1 − f(pn, λ) + f(pn, 0)

−f(x̄n+−1+n, 0) − f(x̄n−+1−K+n, 0)‖

= sup
n∈J̃

‖f(pn, 0) − f(pn, λ)‖ ≤
σ

2
δ for λ ∈ Λ3.

Theorem 20 applies to λ ∈ Λ3 with uniform data, and it follows from (A.5) with
some constant C3 > 0 that

‖xJ − yJ‖∞ ≤ C3‖ΓJ(xJ , λ) − ΓJ(yJ , λ)‖∞ for all xJ , yJ ∈ Bδ(pJ), λ ∈ Λ3.
(5.14)

From (2.6) we find a number n0 such that x̄n ∈ B δ
2
(0) for all |n| ≥ n0 and also

pn ∈ B δ
2
(0), n ∈ J for all −n−, n+ ≥ n0. Then we take U3 := B δ

2
(0) as our

neighborhood and note that (5.14) holds for any two sequences xJ , yJ in U3. For
n ∈ J̃ and λ ∈ Λ3 it follows that

f(pn, λ) − pn+1

= f(x̄n+−1+n + x̄n−+1−K+n, λ) − x̄n+−1+n+1 − x̄n−+1−K+n+1

= f(x̄n+−1+n + x̄n−+1−K+n, 0) − f(x̄n+−1+n, 0) − f(x̄n−+1−K+n, 0) + O(|λ|)

=

{

−f(x̄n−+1−K+n, 0) + O(‖x̄n−+1−K+n‖) for 0 ≤ n ≤ K
2

−f(x̄n+−1+n, 0) + O(‖x̄n+−1+n‖) for K
2

< n ≤ K

}

+ O(|λ|)

= O(e−α K
2 + |λ|).

Now let xJ be a sequence in U3 such that xn+1 = f(xn, λ) for all n ∈ J̃ , and
some λ ∈ Λ3. Then

‖xJ − pJ‖∞ ≤ C‖ΓJ(xJ , λ) − ΓJ(pJ , λ)‖∞

≤ C
(

sup
n∈J̃

‖f(pn, λ) − pn+1‖ + ‖bK(x0, xK)‖
)

≤ C

(

e−α K
2 + |λ| +

∥

∥

∥

∥

(

Ps(x0 − p0)
Pu(xK − pK)

)∥

∥

∥

∥

)

≤ C
(

e−α K
2 + ‖x0 − p0‖ + ‖xK − pK‖ + |λ|

)

≤ C3

(

e−α K
2 + ‖x0 − x̄n+−1‖ + ‖xK − x̄n−+1‖ + |λ|

)

.
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In case K = ∞, one uses the operator

Γ̃N(yN, λ) =

(

yn+1 − f(yn), n ∈ N
Ps(y0 − x̄n+−1)

)

,

and it turns out that D1Γ̃N(pN, λ) with pj = x̄n+−1+j has a uniformly bounded
inverse for λ ∈ Λ3 and sufficiently large −n−, n+. Then the estimate (5.9) follows
immediately.

�

5.3 Proof of Main Theorem

Let us first prove assertion (i) in Theorem 1.
Step 1: (Construction of neighborhoods U, Λ)

In the following Λ1 ⊃ Λ2 ⊃ . . . will denote shrinking neighborhoods of 0. Let
ρg, ρx > 0 be given by Theorem 11 and note that we can decrease ρτ , ρλ without
changing the assertion of Theorem 11. Introduce the constants (cf. (2.6) and
Lemma 13, 14)

α∗ = e−α, C4 = C3 +
2Ce

1 − α∗
, C5 = Ce

3 − α∗

1 − α∗
, C6 = C0C2 +

2Ce

1 − α∗
. (5.15)

Let ρτ > 0 be such that

C5ρτ ≤
ρx

4
. (5.16)

By Lemma 14 we can choose a ball B3ε0 ⊂ U3 and numbers n+,−n− ≥ n0 such
that x̄n ∈ Bε0 for all n ≥ n+ − 1 and n ≤ n− + 1. It is well known that the only
full orbit in a small neighborhood of a hyperbolic fixed point is the fixed point
itself (this follows from [41, Theorem III.7]). That is, we can assume w.l.o.g. that
U3, Λ3 satisfy

yn+1 = f(yn, λ), yn ∈ U3(n ∈ Z), λ ∈ Λ3 ⇒ yn = 0 for all n ∈ Z. (5.17)

The set K = {0} ∪ {x̄n : n ≤ n− or n ≥ n+} is compact and satisfies

f(K, 0) ⊂ K ∪ {x̄n−+1}.

Thus we find an ε ≤ ε0 and Λ4 ⊂ Λ3 such that the following properties hold

V0 := Bε ∪
⋃

n≤n−,n≥n+

Bε(x̄n) ⊂ B2ε0 ⊂ U3, (5.18)

the balls
Bj := Bε(x̄n−+j), j = 1, . . . , κ := n+ − 1 − n− (5.19)

are mutually disjoint,

f(V0, Λ4) ∩ Bj = ∅ for j = 2, . . . , κ, (5.20)
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Figure 13: Construction of neighborhoods.

2C5(2C3 + 1)ε ≤
ρτ

3
and (2C3 + 1)ε ≤

ρx

4
, (5.21)

see Figure 13.
Next we take N4 ≥ max(N1, N2, N3) (see Lemmata 12, 13, 14) such that

2C5C4e
−αN4 ≤

ρτ

3
, C4e

−αN4 ≤
ρx

4
, (2(Ce + C3) + 18C3C6)e

−αN4 ≤
ε

3
. (5.22)

We can also find Λ5 ⊂ Λ4 such that for all λ ∈ Λ5

2C5C3|λ| ≤
ρτ

3
, C3|λ| ≤

ρx

4
, |λ| ≤ ρλ, 6C3|λ|(3C0C2 + 1) ≤ ε. (5.23)

Finally, we define
N = κ + N∗, where N∗ = 2N4. (5.24)

Then we choose Λ6 ⊂ Λ5 such that the following settings define neighborhoods
Vj of x̄n−+j , j = κ, . . . , 1 recursively (cf. Figure 13):

V
κ

= B
κ
∩

N∗+1
⋂

n=1

f−n(V0, Λ6),

Vj = Bj ∩ f−1(Vj+1, Λ6), for j = κ − 1, . . . , 1.

(5.25)

Here we use the notation f−n(Vj , Λ6) = {x : fn(x, λ) ∈ Vj for all λ ∈ Λ6}.
With these settings we consider the maximal invariant set M(U, Λ), cf. (2.2),

that belongs to

U =

κ
⋃

j=0

Vj, Λ = Λ6. (5.26)

Let us note that our construction (5.19), (5.20), (5.25), (5.26) implies the follow-
ing three assertions for any f(·, λ)-orbit yZ ⊂ U , λ ∈ Λ

yn ∈ V0, yn+1 /∈ V0 ⇒ yn+1 ∈ V1, (5.27)
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yn ∈ Vj for some 1 ≤ j ≤ κ − 1 ⇒ yn+1 ∈ Vj+1, (5.28)

yn ∈ V
κ
⇒ yn+ℓ ∈ V0 for ℓ = 1, . . . , N∗ + 1. (5.29)

Step 2:(Construction of symbolic sequence s)
For some λ ∈ Λ consider an orbit yZ of (1.1) that lies in U . If it lies in V0 then
yn = 0, n ∈ Z by (5.17) and we set s = 0 ∈ ΩN . Otherwise we have yñ /∈ V0 for
some ñ ∈ Z. We show that

Ĩ(yZ) := {n ∈ Z : yn ∈ V1}

is nonempty and that there is a unique s ∈ ΩN such that Ĩ(yZ) = I(s), see (2.8).
By our assumptions we have yñ ∈ Vj0 for some j0 ∈ {1, . . . , κ}. If j0 = 1 then
Ĩ(yZ) 6= ∅ whereas in case j0 ≥ 2 we obtain yñ−m ∈ Vj0−m, m = 0, . . . , j0 − 1 by
induction from (5.28) and the fact that the Vj are mutually disjoint. Therefore,
we have ℓ̃ := ñ − j0 + 1 ∈ Ĩ(yZ). Moreover, from (5.27) and (5.29) we obtain

yℓ̃+j ∈ Vj+1, j = 0, . . . κ − 1, yℓ̃+j ∈ V0, j = κ, . . . , κ + N∗. (5.30)

This shows that the difference of two consecutive indices ℓ̃ < ℓ in Ĩ(yZ) is at least
N = κ + N∗. Therefore Ĩ(yZ) belongs to Z(N) (cf. (2.9)) and there is a unique
sequence s ∈ ΩN such that Ĩ(yZ) = I(s).

The relations (5.30) hold whenever ℓ ∈ I(s). By (5.19) and (5.25) this gives
us the estimates

‖yp+ℓ+ν − x̄p‖ ≤ ε for ℓ ∈ I(s), p = n− + 1, . . . , n+ − 1 (5.31)

for the index ν = −n− − 1 (cf. (2.14)). From this we will derive the estimate

Tn := ‖yn+ν −
∑

m∈I(s)

x̄n−m‖ ≤ C4e
−αN4 +C3|λ|+(2C3 +1)ε for n ∈ Z. (5.32)

Consider first indices n = p + ℓ with ℓ ∈ I(s) and p = n− + 1, . . . , n+ − 1. Then
with (5.24) we find

Tn ≤ ‖yp+ℓ+ν − x̄p‖ +
∑

m∈I(s),m6=ℓ

‖x̄p+ℓ−m‖

≤ ε + Ce





∑

I(s)∋m<ℓ

αp+ℓ−m
∗ +

∑

I(s)∋m>ℓ

αm−ℓ−p
∗





≤ ε + Ce

(

∑

µ≥1

αµN+n−+1
∗ +

∑

µ≥1

αµN−n++1
∗

)

= ε +
Ce

1 − αN
∗

(

αN+n−+1
∗ + αN−n++1

∗

)

≤ ε +
2Ce

1 − α∗

αN∗

∗ .

(5.33)
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Next consider two consecutive indices ℓ < ℓ̃ in I(s) and n = p + ℓ for p =
n+ − 1, . . . , p̃ = ℓ̃ − ℓ + n− + 1. For these indices we get

yn+ν ∈







V
κ
, for p = n+ − 1,

V1, for p = p̃,
V0, otherwise,

and we can apply Lemma 14 to this sequence in place of x̃0, . . . , x̃K , where K =
ℓ̃− ℓ+2− (n+ −n−) = ℓ̃− ℓ+1−κ ≥ N∗ +1 = 2N4 +1. With (5.31) this yields
the estimate

sup
j=0,...,K

‖yℓ+ν+n+−1+j − x̄n++j−1 − x̄n−+j−K+1‖

≤ C3

(

‖yℓ+ν+n+−1 − x̄n+−1‖ + ‖yℓ+ν+n+−1+K − x̄n−+1‖ + |λ| + α−K/2
∗

)

≤ C3

(

2ε + |λ| + αN4
∗

)

.

(5.34)

Finally, we use this to estimate for n = p + ℓ and p = n+ − 1, . . . , p̃

Tn ≤ ‖yn+ν − x̄n−ℓ − x̄n−ℓ̃‖ +
∑

m∈I(s),m6=ℓ,ℓ̃

‖x̄n−m‖.

The first term is handled by (5.34). Further note that

∑

ℓ̃<m∈I(s)

‖x̄n−m‖ ≤ Ce

∑

j≥1

αjN∗

∗ ≤
Ceα

N∗

∗

1 − α∗

(5.35)

and that the same estimate holds for ℓ > m ∈ I(s). Collecting estimates (5.33)
to (5.35) we arrive at (5.32):

Tn ≤ (2C3 + 1)ε + C3|λ|+ C3α
N4
∗ +

2Ce

1 − α∗
α2N4
∗ ≤ C4e

−αN4 + C3|λ|+ (2C3 + 1)ε.

Finally, we note that (5.32) also holds in case ℓ̃ is the smallest index in I(s) or ℓ is
the largest index in I(s), respectively. Then one repeats the previous arguments
with the formal setting ℓ = −∞ resp. ℓ̃ = ∞ and uses the corresponding one-
sided version of Lemma 14.
Step 3: (Construction and estimate of τ and xZ)
We want to find xZ ∈ ℓ∞(Rk), τ ∈ ℓ∞(s) such that (5.2) holds with g = 0. The
second term of the operator G in (5.1) vanishes provided we solve

∑

m∈I(s)

〈β−ℓuZ, β−muZ〉τm = 〈β−ℓuZ, βνyZ − pZ(s)〉, ℓ ∈ I(s), (5.36)

and set
xZ = βνyZ − pZ(s) − vZ(s, τ). (5.37)
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By Lemma 12 the linear system (5.36) has a unique solution τ ∈ ℓ∞(s) which
satisfies by (5.32), (2.6), (5.15)

‖τ‖∞ ≤ 2‖uZ‖ℓ1 sup
n∈Z ‖yn+ν −

∑

m∈I(s)

x̄n−m‖

≤ 2Ce
1 + α∗

1 − α∗

(

C4e
−αN4 + C3|λ| + (2C3 + 1)ε

)

.

Using (5.21), (5.22), (5.23) and Ce
1+α∗

1−α∗

≤ C5 we end up with ‖τ‖∞ ≤ ρτ . Next
we estimate xZ from (5.37). Using (2.6) it is easy to show that

‖
∑

ℓ∈I(s)

β−ℓuZ‖∞ ≤ Ce
3 − α∗

1 − α∗

= C5. (5.38)

Therefore, when using (5.32) again, we find

‖xZ‖∞ ≤ ‖βνyZ − pZ(s)‖∞ + C5ρτ

≤ C4e
−αN4 + C3|λ| + (2C3 + 1)ε + C5ρτ .

The estimates from (5.16), (5.21), (5.22), (5.23) then guarantee ‖xZ‖∞ ≤ ρx.
Therefore, we know that Gs(xZ, 0, τ, λ) = 0 and the tuple (xZ, 0, τ, λ) lies

in the balls in which (5.2) has a unique solution. By uniqueness we conclude
gs(τ, λ) = 0 and xZ = xZ,s(τ, λ) for λ ∈ Λ. Moreover, by the defining equations
(5.36) and (5.37) we obtain that equality (2.14) holds.

Step 4: (Proof of Theorem 1 (ii))
The radius rτ will be taken such that

18C3(C0C2r
2
τ + C5rτ ) ≤ ε. (5.39)

Let τ ∈ Brτ
⊂ ℓ∞(s), λ ∈ Λ satisfy gs(τ, λ) = 0 for some s ∈ ΩN and let xZ,s be

given as in Theorem 11. Then clearly, the sequence

yZ = xZ,s(τ, λ) + pZ(s) + vZ(s, τ)

is an orbit of (1.1). It remains to show that yn ∈ U for all n ∈ Z. Application of
(5.3) in Theorem 11 and of Lemma 13 yields the estimate

‖xZ,s(τ, λ)‖∞ ≤ C0‖Gs(xZ,s(τ, λ), gs(τ, λ), τ, λ) − Gs(0, 0, τ, λ)‖∞

= C0‖F (pZ(s) + vZ(s, τ), λ)‖∞

≤ C0C2(|λ| + ‖τ‖2
∞ + e−αN/2).

(5.40)

From (5.38) we find
‖vZ(s, τ)‖∞ ≤ C5rτ . (5.41)

31



We estimate the distance of yZ to the centers of the balls Bj in U by showing for
ν = −n− − 1

‖yp+ℓ+ν − x̄p‖ ≤
ε

6C3
for p = n− + 1, . . . , n+ − 1, ℓ ∈ I(s). (5.42)

Note that the right-hand side is less equal ε since we chose C3 ≥ 1 in Lemma 14.
Using (5.40), (5.41) and (5.33) we obtain for ℓ ∈ I(s)

‖yp+ℓ+ν − x̄p‖ = ‖xp+ℓ,s(τ, λ) +
∑

m∈I(s),m6=ℓ

x̄p+ℓ−m + vp+ℓ(s, τ)‖

≤ C0C2(|λ| + ‖τ‖2
∞ + e−αN/2) + C5rτ +

2Ce

1 − α∗
αN4
∗

≤ C0C2|λ| + (C0C2rτ + C5)rτ + C6α
N4
∗ .

(5.43)

Conditions (5.22), (5.23) and (5.39) guarantee that (5.42) is satisfied.
Next we consider two consecutive indices ℓ < ℓ̃ in I(s) and n = p + ℓ for

p = n+ − 1, . . . , p̃ = ℓ̃ − ℓ + n− + 1. In the first step we show that yp+ℓ+ν ∈ U3.
Using p ≥ n+ − 1 and p + ℓ− ℓ̃ ≤ n− + 1 and (5.35) we estimate similar to (5.43)

‖yp+ℓ+ν‖ ≤ ‖xp+ℓ,s(τ, λ)‖ + ‖x̄p‖ + ‖x̄p+ℓ−ℓ̃‖ +
∑

ℓ,ℓ̃6=m∈I(s)

‖x̄p+ℓ−m‖ + ‖vp+ℓ(s, τ)‖

≤ C0C2(|λ| + ‖τ‖2
∞ + e−αN/2) + C5rτ +

2Ce

1 − α∗
αN4
∗ + 2ε0

≤ C0C2|λ| + (C0C2rτ + C5)rτ + C6α
N4
∗ + 2ε0

≤
ε

6C3

+ 2ε0 ≤ 3ε0.

Since B3ε0 ⊂ U3 this proves our assertion. Now we can invoke Lemma 14 and
find as in (5.34)

sup
j=0,...,K

‖yℓ+ν+n+−1+j − x̄n++j−1 − x̄n−+j−K+1‖ ≤ C3

(

ε

3C3
+ |λ| + αN4

∗

)

. (5.44)

For j = 0, . . . , N4 we have n− + j − K + 1 ≤ −N4 + n− and hence

‖x̄n−+j−K+1‖ ≤ Cee
α(n−+N4−K+1) ≤ Ceα

N4
∗ ,

while for j = N4 + 1, . . .K we have n+ + j − 1 ≥ n+ + N4 and hence

‖x̄n++j−1‖ ≤ Ceα
n++N4
∗ ≤ Ceα

N4
∗ .

Combining this with (5.44) we find

‖yp+ℓ+ν − x̄p‖ ≤
ε

3
+ C3|λ| + (C3 + Ce)α

N4
∗ , p = n+ − 1, . . . , n+ − 1 + N4,

‖yp+ℓ+ν − x̄p−ℓ̃+ℓ‖ ≤
ε

3
+ C3|λ| + (C3 + Ce)α

N4
∗ , p = n+ + N4, . . . , p̃.
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We have arranged the constants in (5.22) and (5.23) such that the right hand
side is bounded by ε.

For the final step we note that we just have shown (cf. (5.18))

yp+ℓ+ν ∈







V
κ
, for p = n+ − 1,

V1, for p = p̃ = ℓ̃ − ℓ + n− + 1,

V0, for p = n+, . . . , ℓ̃ − ℓ + n−

for two consecutive indices ℓ < ℓ̃ in I(s). On the other hand we know from (5.42)
that yp+ℓ+ν ∈ Bε(x̄p), p = n− + 1, . . . , n+ − 1. Since yZ is an f(·, λ) orbit we
conclude by induction from the definition (5.25)

yp+ℓ+ν ∈ Vp−n−
, for p = n+ − 1, . . . , n− + 1.

Therefore the sequence yZ lies in U which proves our assertion.
Step 5: (Proof of Theorem 5 (i)) The proof of (2.20),(2.21) is easily accom-

plished by noting the equivariance relations

I(βs) = I(s) − 1, pZ(βs) = βpZ(s), vZ(βs, βτ) = βvZ(s, τ),

w(βs, βg) = βw(s, g), F (βxZ, λ) = βF (xZ, λ), and

〈βℓuZ, xZ〉 = 〈βℓ+1uZ, βxZ〉 for ℓ ∈ I(βs) = I(s) − 1.

The assertion then follows by uniqueness from Theorem 11 since neighborhoods
are shift invariant as well.

The proof of Theorem 5(ii) will be deferred to the next section.

6 Proof of Reduction Theorem

6.1 Nonlinear estimates

According to (5.1) the Frechet derivative of Gs w.r.t. xZ, g is given by

D(x,g)Gs(xZ, g, τ, λ)(yZ, h) =

(

DxF (pZ(s) + xZ + vZ(s, τ), λ)yZ + w(s, h)
〈β−ℓuZ, yZ〉, ℓ ∈ I(s)

)

,

DxF (xZ, λ)yZ =(yn+1 − fx(xn, λ)yn)n∈Z.
(6.1)

The key step in the proof of Theorem 11 will be a uniform bound for the inverse
of D(x,g)Gs(0, 0, 0, 0).

Lemma 15 There exist constants Ĉ, N̂ > 0 such that for all N ≥ N̂ , s ∈ ΩN

the operator D(x,g)Gs(0, 0, 0, 0) is invertible and satisfies

‖yZ‖∞ + ‖h‖∞ ≤ Ĉ‖D(x,g)Gs(0, 0, 0, 0)(yZ, h)‖, yZ ∈ ℓ∞(Rk), h ∈ ℓ∞(s).
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Before proving Lemma 15 we finish the proof of Theorem 11.
Proof: Let Lx and Lλ be Lipschitz constants of the Jacobian fx(x, λ) with respect
to x and λ in a compact ball that contains the homoclinic orbit in its interior.
Then formula (6.1) and the bound (5.38) directly lead to the Lipschitz estimate

‖D(x,g)Gs(x
1Z, g1, τ1, λ1) − D(x,g)Gs(x

2Z, g2, τ2, λ2)‖

≤ Lx(‖x
1Z − x2Z‖∞ + C5‖τ1 − τ2‖∞) + Lλ|λ1 − λ2|

(6.2)

for all x1Z, x2Z ∈ Bρx
, g1, g2 ∈ ℓ∞, τ1, τ2 ∈ Bρτ

, and λ1, λ2 ∈ Λ0 with ρx, ρτ taken
sufficiently small. From Lemma 15 and Lemma 19 we obtain that the operators
D(x,g)Gs(0, 0, τ, λ) are invertible for τ ∈ Bρτ

, λ ∈ Bρλ
provided we choose

N ≥ N̂ and LxC5ρτ + Lλρλ ≤
1

2Ĉ
.

Then we have

‖D(x,g)Gs(0, 0, τ, λ)−1‖ ≤ 2Ĉ, τ ∈ Bρτ
, λ ∈ Bρλ

.

Now we apply Theorem 20 to every operator F = Gs(·, ·, τ, λ) in the spaces
Y = Z = ℓ∞(Rk)× ℓ∞(s). Setting σ = 1

2Ĉ
, y0 = 0 and taking Lxρx ≤ 1

4Ĉ
we find

that condition (A.2) is satisfied with κ = 1
4Ĉ

and δ = ρx. Finally, we obtain from
Lemma 13 for all N ≥ N2,

‖Gs(0, 0, τ, λ)‖ = ‖F (pZ(s) + vZ(s, τ), λ)‖∞

≤ C2(|λ| + ‖τ‖2
∞ + e−αN/2)

≤ C2(ρλ + ρ2
τ + e−αN/2).

Now we select N0 ≥ max(N̂, N2) and ρλ, ρτ such that C2(ρλ + ρ2
τ + e−αN0) ≤ ρx

4Ĉ
.

Then we find ‖Gs(0, 0, τ, λ)‖ ≤ (σ − κ)δ = ρx

4Ĉ
, for all N ≥ N0, i.e. condition

(A.3) is satisfied. An application of Theorem 20 finishes the proof. �

Remark 16 If instead of Theorem 20 we use a Lipschitz inverse mapping the-
orem with smooth parameters (cf. [24, Appendix]) then it is easily seen that the
solutions gs, xZ,s are smooth functions of τ and λ.

Proof: (Theorem 5 (ii))
With cλ, cx from (2.18) define h = h(τ, λ) ∈ ℓ∞(s) by

hℓ = cλλ + cxτ
2
ℓ , ℓ ∈ I(s).

The idea is to construct elements yZ = yZ(τ, λ) ∈ ℓ∞(Rk) and γ = γ(τ, λ) ∈ ℓ∞(s)
such that the residual

Gs(pZ(s) + yZ + vZ(s, τ), h + γ, τ, λ)
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and γ are of higher order than O(|λ| + ‖τ‖2
∞). Then the assertion follows from

(5.3) by comparing them to xZ,s(τ, λ), gs(τ, λ). We find yZ, γ by Taylor expansion
of F (we abbreviate F 0

x = Fx(pZ(s), 0) etc.)

F (pZ(s) + yZ + vZ(s, τ), λ) = F 0 + F 0
x (yZ + vZ(s, τ)) + F 0

λλ

+
1

2
F 0

xx(yZ + vZ(s, τ))2 + F 0
x,λ(yZ + vZ(s, τ))λ +

1

2
F 0

λλλ
2

+ O((|λ| + ‖τ‖∞ + ‖yZ‖∞)3).

From the estimates (5.7), (5.8) in the proof of Lemma 13 we have

‖F 0‖∞ = O(e−αN/2), ‖F 0
xvZ(s, τ)‖ = O(e−αN/2‖τ‖∞).

In a similar way, using Lipschitz constants for fλ and fxx we find

(F 0
λ )n = −

∑

ℓ∈I(s)

fλ(x̄n−ℓ, 0) + O(e−αN/2)

(F 0
xx(vZ(s, τ))2)n = −

∑

ℓ∈I(s)

τ 2
ℓ fxx(x̄n−ℓ, 0)(un−ℓ)

2 + O(e−αN/2‖τ‖∞).

Therefore, Taylor expansion of Gs yields

Gs(pZ(s) + yZ + vZ(s, τ), h + γ, τ, λ) = D(x,g)G
0
s(yZ, γ) + (ϕZ, 0)

+ O(e−αN/2 + ‖τ‖∞|λ| + ‖τ‖∞‖yZ‖∞ + λ2 + ‖yZ‖2
∞ + ‖τ‖3

∞),
(6.3)

where

ϕn =
∑

ℓ∈I(s)

λ(−fλ(x̄n−ℓ, 0) + cλwn−ℓ) + τ 2
ℓ (−

1

2
fxx(x̄n−ℓ, 0)(un−ℓ)

2 + cxwn−ℓ).

This suggests to define (yZ, γ) by

D(x,g)G
0
s(yZ, γ) = −(ϕZ, 0). (6.4)

From this equation and Lemma 15 we have the estimate

‖yZ‖∞ + ‖γ‖∞ ≤ C̃(|λ| + ‖τ‖2
∞). (6.5)

Taking the inner product of the first coordinate in (6.4) with β−ℓwZ, ℓ ∈ I(s) and
using (2.18), (6.13) leads to the improved estimate

‖γ‖∞ ≤ C̃e−αN/2(|λ| + ‖τ‖2
∞). (6.6)

By (6.5), (6.4) the Taylor expansion (6.3) of Gs assumes the form

‖Gs(pZ(s)+yZ+vZ(s, τ), h+γ, τ, λ)‖ = O(e−αN/2 +‖τ‖∞|λ|+λ2 +‖τ‖3
∞). (6.7)

With (5.3) and (6.6) this leads us to the final result

‖xZ,s(τ, λ)−yZ(τ, λ)‖∞+‖gs(τ, λ)−h(τ, λ)‖∞ = O(e−αN/2+‖τ‖∞|λ|+λ2+‖τ‖3
∞).

�
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6.2 Linear estimates

In this subsection we prove Lemma 15. For any two integers nl ≤ nr and for any
number a ≥ 0 consider the weight function

ωn = ωn(a, nl, nr) = min
(

ea(n−nl), 1, ea(nr−n)
)

, n ∈ Z. (6.8)

Note that ωZ has a constant plateau of arbitrary width with exponentially de-
caying tails on both sides. We also allow nl = −∞ and nr = ∞ (but neither
nl = nr = −∞ nor nl = nr = ∞), in which case ωZ has only one-sided decay or
degenerates to the maximum norm if nl = −∞ and nr = ∞. In the following
we will suppress the dependence of the norm on the data nl, nr, a, but all our
estimates will be uniform with respect to

−∞ ≤ nl ≤ nr ≤ ∞ 0 ≤ a ≤ a0 < α, (6.9)

where 0 < a0 < α is fixed. The following lemma shows that exponentially
decaying kernels preserve the weight.

Lemma 17 There exists a constant K0, depending only on a0, α, such that
∑

m∈Z e−α|n−m−1|ωm ≤ K0 ωn, for all n ∈ Z
and for all weight functions satisfying (6.9).

Proof: We consider
δn =

∑

m∈Zω−1
n e−α|n−m−1|ωm

only for n ≤ nl and leave cases nl + 1 ≤ n ≤ nr and nr + 1 ≤ n to the reader.

δn =
∑

m≤n−1

ea(nl−n)−α(n−1−m)+a(m−nl) +

nl−1
∑

m=n

ea(nl−n)−α(m+1−n)+a(m−nl)

+

nr−1
∑

m=nl

ea(nl−n)−α(m+1−n) +
∑

m≥nr

ea(nl−n)−α(m+1−n)+a(nr−m)

=e−a
∑

m≤n−1

e−(α+a)(n−1−m) + e−α

nl−1
∑

m=n

e−(α−a)(m−n)

+e−(α−a)(nl−n)−α

nr−1
∑

m=nl

e−α(m−nl) + e−(α−a)(nl−n)+α(nl−nr−1)
∑

m≥nr

e−(α+a)(m−nr)

≤
e−a + e−α

1 − e−(α+a)
+ e−α

(

1

1 − e−(α−a)
+

1

1 − e−α

)

.

A suitable constant for all cases is K0 = 21+e−α

1−e−α + ea0 + ea0

1−e−(α−a0) . �
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With the weights from above we consider the Banach space

ℓ∞ω = {yZ ∈ (Rk)Z : ‖yZ‖ω = sup
n∈Z ‖ynω

−1
n ‖ < ∞}.

Taking the exponent α from (2.6), (2.17) we have the following result for the
variational equation (2.5).

Lemma 18 Let conditions A1 - A3 and B4 hold. Then the linear system

yn+1 − fx(x̄n, 0)yn + hwn = rn, n ∈ Z
〈uZ, yZ〉 = γ

(6.10)

has a unique solution (yZ, h) ∈ ℓ∞ω × R for every (rZ, γ) ∈ ℓ∞ω × R. Moreover
there is a constant C∗ such that for all weights (6.8) with (6.9),

‖yZ‖ω + |h| ≤ C∗(‖rZ‖ω + |γ|‖uZ‖ω). (6.11)

If nl ≤ 0 ≤ nr, then (6.11) simplifies to

‖yZ‖ω + |h| ≤ C∗ (‖rZ‖ω + |γ|) .

Proof: Let us abbreviate An = fx(x̄n, 0), LyZ = (yn+1 − Anyn)n∈Z and denote
by Φ the solution operator (A.7) of (A.6). From [37, Section 2] (see also [26])
we obtain the following facts. Equation (A.6) has an exponential dichotomy for
n ≥ 0 with data (K, α, P+s

n , P+u
n ) and for n ≤ 0 with data (K, α, P−s

n , P−u
n ) (see

Definition 21). Due to B4 we have R(P+s
0 ) ∩ R(P−u

0 ) = span{u0} =: Y0 and
there exist decompositions

R(P+s
0 ) = Y0 ⊕ Y+, R(P−u

0 ) = Y0 ⊕ Y−, Y+ ∩ Y− = {0}, (6.12)

where

ks = rank(P+s
n ) = dim(Y+) + 1, (n ≥ 0),

ku = rank(P−u
n ) = dim(Y−) + 1, (n ≤ 0),

ku = k − ks, P+s
n + P+u

n = I (n ≥ 0), P−s
n + P−u

n = I (n ≤ 0).

The operator L : ℓ∞(Rk) → ℓ∞(Rk) is Fredholm of index 0 with

N (L) = span{uZ}, R(L) = {rZ ∈ ℓ∞(Rk) : 〈wZ, rZ〉 = 0}. (6.13)

One can also choose the ranges of P+u
0 and P−s

0 such that, in addition to (6.12),Rk = Y0 ⊕ Y+ ⊕ Y− ⊕ Y1, R(P+u
0 ) = Y− ⊕ Y1, R(P−s

0 ) = Y+ ⊕ Y1. (6.14)

Here dim Y1 = 1 and one can take Y1 = span{w−1}. Following [37, Lemma 2.7]
the general bounded solution of yn+1 − Anyn = rn, n ≥ 0 is given by

y+
n = Φ(n, 0)η+ +

∑

m≥0

G+(n, m + 1)rm, n ≥ 0, η+ ∈ R(P+s
0 ) (6.15)
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with the Green’s function defined as follows

G+(n, m) =

{

Φ(n, m)P+s
m , 0 ≤ m ≤ n,

−Φ(n, m)P+u
m , 0 ≤ n < m.

(6.16)

Similarly, all bounded solutions of yn+1 − Anyn = rn, n ≤ −1 are given by

y−
n = Φ(n, 0)η− +

∑

m≤−1

G−(n, m + 1)rm, n ≤ 0, η− ∈ R(P−u
0 ), (6.17)

where

G−(n, m) =

{

Φ(n, m)P−s
m , m ≤ n ≤ 0,

−Φ(n, m)P−u
m , n < m ≤ 0.

(6.18)

By the exponential dichotomies the Green’s functions satisfy

‖G±(n, m)‖ ≤ Ke−α|n−m|, n, m ∈ Z±. (6.19)

With uTZyZ := 〈uZ, yZ〉 we may write (6.10) in block operator form as

(

L wZ
uTZ 0

)(

yZ
h

)

=

(

rZ
γ

)

. (6.20)

By the bordering lemma [2, Appendix] the block operator is Fredholm of the same
index 0 as L and, using (6.13), it is a linear homeomorphism in ℓ∞(Rk)×R. Since
ℓ∞ω is a closed subspace of ℓ∞(Rk) it suffices to prove that the unique solution
(yZ, h) of (6.20) in ℓ∞(Rk) ×R satisfies the estimate (6.11) in case rZ ∈ ℓ∞ω .

Take the inner product of the first equation of (6.10) with wZ. Then (6.13)
and the normalization ‖wZ‖ℓ2 = 1 show h = 〈wZ, rZ〉. Therefore, by (2.17),

|h| ≤ Ce‖rZ‖ω

∑

n∈Z e−α|n|ωn ≤ Ce
1 + e−α

1 − e−α
‖rZ‖ω. (6.21)

With this h we have zZ := rZ − hwZ ∈ R(L) by (6.13). Below we will construct
a special solution ŷZ ∈ ℓ∞(Rk) of LŷZ = zZ such that for some constant C > 0

‖ŷZ‖ω ≤ C‖zZ‖ω. (6.22)

By (6.13) and (2.7) the solution of (6.20) is given by

(yZ, h) = (ŷZ + cuZ, h), c = γ − 〈uZ, ŷZ〉, h = 〈wZ, rZ〉. (6.23)

From the exponential decay (2.6), (2.17) and Lemma 17, applied to the kernel
e−α(|n|+|m|) ≤ eαe−α|n−m−1|, we obtain with C ′ = Cee

αK0,

‖〈uZ, ŷZ〉uZ‖ω ≤ C ′‖ŷZ‖ω, ‖〈wZ, rZ〉wZ‖ω ≤ C ′‖rZ‖ω.
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Then (6.21)-(6.23) yield the assertion

‖yZ‖ω ≤ (1 + C ′)‖ŷZ‖ω + |γ|‖uZ‖ω ≤ C(1 + C ′)2‖rZ‖ω + |γ|‖uZ‖ω.

It remains to construct ŷZ with LŷZ = zZ and (6.22). We determine η+ ∈ R(P+s
0 )

and η− ∈ R(P−u
0 ) such that ŷn = y+

n , n ≥ 0 with y+
n from (6.15), and ŷn = y−

n , n ≤
0 with y−

n from (6.17), and such that the definitions coincide at n = 0. The last
condition holds if and only if

η+ − η− =
∑

m≤−1

G−(0, m + 1)zm −
∑

m≥0

G+(0, m + 1)zm =: ∆0. (6.24)

By (6.16), (6.18), (6.14) the first sum on the right is in Y+ ⊕ Y1 and the second
sum is in Y− ⊕ Y1 while the left-hand side is in Y0 ⊕ Y− ⊕ Y+. Since zZ ∈ R(L)
holds, equation (6.24) has a solution and thus ∆0 ∈ Y+ ⊕ Y−. We conclude from
(6.14) that η+ = P+s

0 ∆0 and η− = −P−u
0 ∆0 are the unique solutions of (6.24).

With (6.19) and Lemma 17 we estimate for n ≥ 0

‖ŷn‖ω
−1
n ≤ K‖zZ‖ω

∑

m≥0

ω−1
n e−α|n−m−1|ωm ≤ KK0‖zZ‖ω.

An analogous estimate holds for n ≤ 0 and this completes the proof. �

Proof: (Lemma 15) We use Lemma 19 and construct an approximate right
inverse B+ of D(x,g)G

0
s = D(x,g)Gs(0, 0, 0, 0). For any ℓ ∈ I(s) we define the

interval J(ℓ) = {ℓ−, . . . , ℓ, . . . , ℓ+} where right and left neighbors are given by

ℓ+ =

{

∞, if ℓ = max I(s),
ℓ + N∗, otherwise,

(6.25)

ℓ− =

{

−∞, if ℓ = min I(s),

max{ℓ̃+ : ℓ̃ ∈ I(s), ℓ̃ < ℓ} + 1, otherwise.
(6.26)

Note that the sets J(ℓ), ℓ ∈ I(s) define a partitioning of Z. In the following we
consider N ≥ N̂ = 2N∗ +1 which implies ℓ− ℓ− ≥ ℓ+− ℓ ≥ N∗. During the proof
N∗ will be taken sufficiently large. Given an element (rZ, γ) ∈ ℓ∞(Rk) × ℓ∞(s),
we decompose

rZ =
∑

ℓ∈I(s)

1J(ℓ)rZ, where (1J(ℓ))n =

{

1, n ∈ J(ℓ),
0, else

is the characteristic function of J(ℓ). Let B0 denote the solution operator of
(6.20), then we set

(yℓZ, hℓ) = B0(β
ℓ1J(ℓ)rZ, γℓ) for ℓ ∈ I(s), (6.27)
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and define B+ as a blockwise inverse via

B+(rZ, γ) = (yZ, h) = (
∑

ℓ∈I(s)

β−ℓyℓZ, (hℓ)ℓ∈I(s)). (6.28)

Using Lemma 18 with the settings nl = ℓ− − ℓ, nr = ℓ+ − ℓ we obtain a bound

‖yℓZ‖ω + |hℓ| ≤ C∗
(

‖βℓ1J(ℓ)rZ‖ω + |γℓ|
)

≤ C∗ (‖rZ‖∞ + |γℓ|) . (6.29)

Let us abbreviate the weights from (6.8),

ωn,ℓ = ωn(a, ℓ−, ℓ+), n ∈ Z, ℓ ∈ I(s).

Then equation (6.28) and (6.29) lead to the estimate

‖yn‖ ≤ ‖
∑

ℓ∈I(s)

yℓ
n−ℓ‖ ≤ C∗ (‖rZ‖∞ + ‖γ‖∞)

∑

ℓ∈I(s)

ωn,ℓ,

For 2e−aN∗

≤ 1 the last sum is bounded by 1 + 4e−a and (6.29) yields

‖B+(rZ, γ)‖ = ‖yZ‖∞ + ‖h‖∞ ≤ (2C∗ + 1 + 4e−a)(‖rZ‖∞ + ‖γ‖∞). (6.30)

In the next step we show for N∗ sufficiently large,

‖(rZ, γ) − D(x,g)G
0
sB+(rZ, γ)‖ ≤

1

2
(‖rZ‖∞ + ‖γ‖∞), (6.31)

which by (A.1), (6.30) gives the desired estimate

‖(D(x,g)G
0
s)

−1‖ ≤ 2(2C∗ + 1 + 4e−a).

We introduce (r̃Z, γ̃) = (rZ, γ)−D(x,g)G
0
s(yZ, h). From (6.28) and the variational

equation in (6.27) we have

r̃n =rn −
(

∑

m∈I(s)

ym
n+1−m − fx(

∑

p∈I(s)

x̄n−p, 0)yn +
∑

m∈I(s)

hmwn−m

)

=
∑

m∈I(s)

[

fx(
∑

p∈I(s)

x̄n−p, 0) − fx(x̄n−m, 0)
]

ym
n−m.

For n ∈ Z there exists a unique ℓ ∈ I(s) such that n ∈ J(ℓ). Define the neighbor-
hood U(ℓ) of ℓ by U(ℓ) = {ℓ̂, ℓ, ℓ̃} with left neighbor ℓ̂ = sup{m ∈ I(s) : m < ℓ}
and right neighbor ℓ̃ = inf{m ∈ I(s) : m > ℓ} (as usual let ℓ̂ = −∞ and ℓ̃ = ∞
if the sets are empty). Using the Lipschitz constant Lx of fx and (2.12), (6.29)
we obtain

‖r̃n‖ ≤ Lx

(

∑

m∈I(s)\U(ℓ)

‖ym
n−m‖

∑

m6=p∈I(s)

‖x̄n−p‖ +
∑

m∈U(ℓ)

‖ym
n−m‖

∑

m6=p∈I(s)

‖x̄n−p‖
)

≤ LxC
∗(‖rZ‖∞ + ‖γ‖∞)

{

C̄
∑

m∈I(s)\U(ℓ)

ωn,m +
∑

ℓ 6=p∈I(s)

‖x̄n−p‖

+ ωn,ℓ̃

(

‖x̄n−ℓ‖ +
∑

p∈I(s)\{ℓ,ℓ̃}

‖x̄n−p‖
)

+ ωn,ℓ̂

(

‖x̄n−ℓ‖ +
∑

p∈I(s)\{ℓ,ℓ̂}

‖x̄n−p‖
)}

.
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We show that the terms in {. . .} are of order O(e−aN∗) so that the contraction
estimate (6.31) holds for the first component if N∗ is sufficiently large. A critical
term on the right-hand side is

ωn,ℓ̃‖x̄n−ℓ‖ ≤ Cee
−α|n−ℓ|+a(n−ℓ̃−) ≤ Cee

a(ℓ−ℓ̃−) ≤ Cee
−aN∗

, ℓ− ≤ n ≤ ℓ+. (6.32)

The term ωn,ℓ̂‖x̄n−ℓ‖ is handled analogously. Further,

∑

ℓ 6=p∈I(s)

‖x̄n−p‖ ≤ Ce

(

∑

ℓ>p∈I(s)

e−α(n−p) +
∑

ℓ<p∈I(s)

e−α(p−n)
)

≤ Ce

(

∑

ℓ>p∈I(s)

e−α(ℓ−−p) +
∑

ℓ<p∈I(s)

e−α(p−ℓ+)
)

≤ 2Ce
e−αN∗

1 − e−α
.

The remaining terms allow similar estimates since n always lies in an exponential
decaying tail of the weights and of the shifted homoclinic orbits. Finally, we use
(2.6) and (6.27), (6.29) for ℓ ∈ I(s),

|γℓ − 〈β−ℓuZ, yZ〉| = |
∑

n∈Z〈un−ℓ,
∑

ℓ 6=m∈I(s)

ym
n−m〉|

≤ CeC
∗(‖rZ‖∞ + ‖γ‖∞)

∑

n∈Z e−α|n−ℓ|
∑

ℓ 6=m∈I(s)

ωn,m.

We estimate the remaining sum by using (6.32)

∑

n∈Z e−α|n−ℓ|
∑

ℓ 6=m∈I(s)

ωn,m ≤

ℓ+
∑

n=ℓ−

e−α|n−ℓ|
(

ωn,ℓ̃ + ωn,ℓ̂ +
∑

m∈I(s)\U(ℓ)

ωn,m

)

+ C
(

∞
∑

n=ℓ+

e−α(n−ℓ) +

ℓ−−1
∑

n=−∞

e−α(ℓ−n)
)

.

The last two terms are O(e−αN∗

) since ℓ+−ℓ ≥ N∗ and ℓ−ℓ− ≥ N∗. Furthermore,
we have for ℓ− ≤ n ≤ ℓ+

∑

m∈I(s)\U(ℓ)

ωn,m ≤
∑

ℓ̃<m∈I(s)

ea(n−m−) +
∑

ℓ̂>m∈I(s)

ea(m+−n)

≤
∑

ℓ̃<m∈I(s)

ea(ℓ−−m−) +
∑

ℓ̂>m∈I(s)

ea(m+−ℓ+) ≤
2e−2aN∗

1 − e−aN∗
.

Our final estimate is

ℓ+
∑

n=ℓ−

e−α|n−ℓ|ωn,ℓ̃ ≤
ℓ
∑

n=ℓ−

e−α(ℓ−n)+a(n−ℓ̃−) +

ℓ+
∑

n=ℓ+1

e−α(n−ℓ)+a(n−ℓ̃−)

≤
e−aN∗

1 − e−α
+

e−aN∗

1 − e−(α−a)
.
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The term
∑ℓ+

n=ℓ−
e−α|n−ℓ|ωn,ℓ̂ is estimated in a similar way. This finishes the proof

of (6.31).
We take the same B− = B+ as an approximate left inverse in Lemma 19.

It is convenient to require 0 < 2a ≤ a0 < α instead of (6.9). Given (yZ, h) ∈
ℓ∞(Rk) × ℓ∞(s), we set

(ηZ, t) = B+D(x,g)G
0
s(yZ, h),

then it is sufficient to show

‖ηZ − yZ‖∞ + ‖t − h‖∞ ≤ O(e−(α−a)N∗)(‖yZ‖∞ + ‖h‖∞). (6.33)

For a fixed ℓ ∈ I(s) we consider first the case

yn = 0 (n ≤ ℓ− and n > ℓ+), hm = 0 (m 6= ℓ), (6.34)

and prove the stronger estimate (recall N̂ = 2N∗ + 1)

‖ηZ− yZ‖ω + |tℓ −hℓ|+ sup
ℓ 6=m∈I(s)

|tm|e
α(|m−ℓ|−N̂) ≤ O(e−αN∗)(‖yZ‖ω + |hℓ|), (6.35)

where ωn = ωn(a, ℓ−, ℓ+), see (6.8). Then we consider the case

yn = 0 (n 6= ℓ−), h = 0 (6.36)

and prove the estimate

‖ηZ − yZ‖ω + sup
m∈Z |tm|ea|m−ℓ−| ≤ O(e−aN∗)‖yZ‖ω, (6.37)

where ωn = ω(a, ℓ−, ℓ−). Let us first show that the general case (6.33) follows from
(6.35) and (6.37). With J0(ℓ) = {ℓ− + 1, . . . , ℓ+}, J1(ℓ) = {ℓ−} we decompose

(yZ, h) =
∑

m∈I(s)

[

(1J0(m)yZ, hm1{m}) + (1J1(m)yZ, 0)
]

and define

(ηZ, t) =
∑

m∈I(s)

B+D(x,g)G
0
s

[

(1J0(m)yZ, hm1{m}) + (1J1(m)yZ, 0)
]

.

Similar to the proof of (6.31) we combine the local estimates (6.35) and (6.37),

‖yn − ηn‖ = O(e−aN∗)
∑

m∈I(s)

[

ωn(a, m−, m+)(‖1J0(m)yZ‖ω + |hm|)

+ ωn(a, m−, m−)‖1{m−}yZ‖ω

]

= O(e−aN∗)(‖yZ‖∞ + ‖h‖∞)
∑

m∈I(s)

[ωn(a, m−, m+) + ωn(a, m−, m−)] .

= O(e−aN∗)(‖yZ‖∞ + ‖h‖∞).
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Using the exponential weights of tm in (6.35) and (6.37) leads to the same estimate
for ‖h − t‖∞ and (6.33) is proved.

For the proof of (6.35) let γm = 〈β−muZ, yZ〉 and note that (6.34) implies
rn = 0 for n /∈ J(ℓ). Hence ηℓZ = βℓyZ satisfies

ηℓ
n+1 − fx(x̄n, 0)ηℓ

n + hℓwn = rn+ℓ + [fx(pn+ℓ(s), 0) − fx(x̄n, 0)] ηℓ
n.

Using Lemma 18 and a Lipschitz estimate for fx we can compare with the solution
(yℓZ, tℓ) = B0(β

ℓ1J(ℓ)rZ, γℓ) of (6.27). This leads to

‖β−ℓyℓZ − yZ‖ω + |tℓ − hℓ| = O(e−αN∗

)(‖yZ‖ω + |hℓ|).

For the solutions (ymZ , tm) = B0(β
m1J(m)rZ, γm) = B0(0, γm) with m 6= ℓ Lemma

18 gives

‖β−mymZ ‖ω + |tm| ≤ C∗|γm| ≤ Ce‖yZ‖ω

ℓ+
∑

n=ℓ−+1

e−α|n−m| = O(e−α(|m−ℓ|−N∗))‖yZ‖ω.

Collecting the last two estimates we find that (ηZ, t) = (
∑

m∈I(s) β−mymZ , (tm)m∈I(s))

(cf. (6.28)) satisfies inequality (6.35).
In case condition (6.36) holds, let

rn = (DxF (pZ(s), 0)yZ)n (n ∈ Z), γm = 〈β−muZ, yZ〉 (m ∈ I(s)),

and note rn = 0 for n 6= ℓ−, ℓ− − 1 as well as

rℓ− = −fx(pℓ−(s), 0)yℓ−, rℓ−−1 = yℓ−. (6.38)

Moreover,
|γm| = |uT

ℓ−−myℓ−| ≤ Cee
−α|ℓ−−m|‖yℓ−‖, m ∈ I(s). (6.39)

As in (6.27) let (ymZ , tm) = B0(β
m1J(m)rZ, γm) for m ∈ I(s). Recall ℓ− − 1 = ℓ̂+

from (6.26) where ℓ̂ ∈ I(s) is the left neighbor of ℓ. For m 6= ℓ, ℓ̂ we have
ymZ = β−mγmuZ, tm = 0 by (6.23) and therefore by (6.39),

‖ymZ ‖ω ≤ C2
e‖yℓ−‖e

−α|ℓ−−m| sup
n∈Z e−α|n−m|+a|n−ℓ−| = O(e−(α−a)|ℓ−−m|)‖yℓ−‖. (6.40)

We introduce the weights ω∗
n = ωn(2a, ℓ− − ℓ, ℓ− − ℓ). For m = ℓ we use (6.39)

and Lemma 18 with ω∗,

‖yℓZ‖ω∗ ≤C∗
(

‖βℓ1J(ℓ)rZ‖ω∗ + |γℓ|‖uZ‖ω∗

)

≤C∗
(

1 + Ce−(α−2a)|ℓ−−ℓ|
)

‖yℓ−‖ ≤ C‖yℓ−‖.
(6.41)

In a similar manner,

‖y ℓ̂Z‖ω̂∗ ≤ C‖yℓ−‖ (6.42)
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holds for the weights ω̂∗
n = ωn(2a, ℓ̂+ − ℓ̂, ℓ̂+ − ℓ̂). The t-values satisfy

|tℓ| = |uT
ℓ−−ℓfx(pℓ−(s), 0)yℓ−| ≤ Ce−α|ℓ−−ℓ|‖yℓ−‖,

|tℓ̂| = |uT
ℓ̂−ℓ̂+

yℓ−| ≤ Ce−α|ℓ̂−ℓ̂+|‖yℓ−‖.
(6.43)

In particular, this proves the t-estimates in (6.37). Next we estimate the difference

dZ = β−ℓyℓZ+β−ℓ̂y ℓ̂Z−yZ by using the exponential dichotomy on Z for the constant
coefficient operator L0yZ = (yn+1 − Ayn)n∈Z, A = fx(0, 0). From (6.38) and the

definition of yℓZ, y ℓ̂Z we find

dn+1 − Adn = (fx(x̄n−ℓ, 0) − A)yℓ
n−ℓ + (fx(x̄n−ℓ̂, 0) − A)y ℓ̂

n−ℓ̂

− tℓwn−ℓ − tℓ̂wn−ℓ̂ + (A − fx(pℓ−(s), 0))δn,ℓ−yℓ− =
5
∑

i=1

Ti.

For every term we show ‖Ti‖ = O(e−aN∗)ωn‖yℓ−‖ with weights ωn = e−a|n−ℓ−|. In
fact, our previous estimates (6.41) - (6.43) yield

‖T1‖ω
−1
n ≤ C‖x̄n−ℓ‖e

−a|n−ℓ−|‖yℓZ‖ω∗

≤ C‖yℓ−‖e
−α|n−ℓ|−a|n−ℓ−| ≤ Ce−a|ℓ−ℓ−|‖yℓ−‖ = O(e−aN∗)‖yℓ−‖,

‖T2‖ω
−1
n ≤ Ce−α|n−ℓ̂|+a|n−ℓ−|−2a|n−ℓ̂+|‖yℓ−‖ ≤ Ce−a|ℓ̂−ℓ̂+|‖yℓ−‖ = O(e−aN∗)‖yℓ−‖,

‖T3‖ω
−1
n ≤ C|tℓ|e

a|n−ℓ−|−α|n−ℓ| ≤ Ce−(α−a)|ℓ−ℓ−|‖yℓ−‖ = O(e−aN∗)‖yℓ−‖,

‖T4‖ω
−1
n ≤ C|tℓ|e

a|n−ℓ−|−α|n−ℓ̂| ≤ Ce−(α−a)|ℓ̂−ℓ̂+|‖yℓ−‖ = O(e−aN∗)‖yℓ−‖,

‖T5‖ω
−1
n ≤ C‖

∑

m∈I(s)

x̄ℓ−−m‖‖yℓ−‖ = O(e−αN∗)‖yℓ−‖.

Since the operator L0 has a Green’s function with an exponentially decaying
kernel we infer from Lemma 17

‖dZ‖ω ≤ Ce−aN∗‖yℓ−‖.

Combining this with (6.40) gives

‖
∑

m∈I(s)

ym
n−m − yn‖ ≤ ‖dn‖ +

∑

ℓ,ℓ̂ 6=m∈I(s)

‖ym
n−m‖

≤ C
(

ωne−aN∗ +
∑

ℓ,ℓ̂6=m∈I(s)

e−a|ℓ−−m|
)

‖yℓ−‖ = O(e−aN∗)ωn‖yℓ−‖.

This finally proves the y-estimates in (6.37). �
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A Auxiliary results

Lemma 19 (Banach Lemma) Let X, Y be Banach spaces and let A ∈ L[X, Y ],
B−, B+ ∈ L[Y, X] be bounded linear operators such that

‖IY − AB+‖ < 1, ‖IX − B−A‖ < 1.

Then A is a homeomorphism with

‖A−1‖ ≤ min

(

‖B+‖

1 − ‖IY − AB+‖
,

‖B−‖

1 − ‖IX − B−A‖

)

. (A.1)

Proof: Note that y = (IY −AB+)y + r has a unique solution y for every r ∈ Y .
Then y satisfies

‖y‖ ≤
‖r‖

1 − ‖IY − AB+‖

and x = B+y solves Ax = r. To prove uniqueness, note that any solution x of
Ax = r solves x = (IX − B−A)x + B−r. Since IX − B−A is also contractive the
solution is unique and the estimates follow. �

A key tool in the proofs of Lemma 14 and Theorem 11 is the following quan-
titative version of the Lipschitz inverse mapping theorem, cf. [24].

Theorem 20 Assume Y and Z are Banach spaces, F ∈ C1(Y, Z) and F ′(y0) is
for y0 ∈ Y a homeomorphism. Let κ, σ, δ > 0 be three constants, such that the
following estimates hold:

∥

∥F ′(y) − F ′(y0)
∥

∥ ≤ κ < σ ≤
1

∥

∥F ′(y0)−1
∥

∥

∀y ∈ Bδ(y0), (A.2)

∥

∥F (y0)
∥

∥ ≤ (σ − κ)δ. (A.3)

Then F has a unique zero ȳ ∈ Bδ(y0) and the following inequalities are satisfied

∥

∥F ′(y)−1
∥

∥ ≤
1

σ − κ
∀y ∈ Bδ(y0), (A.4)

‖y1 − y2‖ ≤
1

σ − κ

∥

∥F (y1) − F (y2)
∥

∥ ∀y1, y2 ∈ Bδ(y0). (A.5)

We collect some well known results on exponential dichotomies from [37].
Denote by Φ the solution operator of the linear difference equation

yn+1 = Anyn, n ∈ Z, (A.6)

which is defined as

Φ(n, m) :=







An−1 . . . Am, for n > m,
I, for n = m,

A−1
n . . . A−1

m−1, for n < m.
(A.7)
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Definition 21 The linear difference equation (A.6) with invertible matrices An ∈Rk,k has an exponential dichotomy with data (K, α, P s
n, P u

n ) on an interval
J ⊂ Z, if there exist two families of projectors P s

n and P u
n = I−P s

n and constants
K, α > 0, such that the following statements hold:

P s
nΦ(n, m) = Φ(n, m)P s

m ∀n, m ∈ J,

‖Φ(n, m)P s
m‖ ≤ Ke−α(n−m)

‖Φ(m, n)P u
n ‖ ≤ Ke−α(n−m)

∀n ≥ m, n, m ∈ J.

Theorem 22 (Roughness Theorem, cf. [37, Proposition 2.10]) Assume that the
difference equation

yn+1 = Anyn, An ∈ Rk,k invertible, ‖A−1
n ‖ ≤ M ∀n ∈ J

with an interval J ⊆ Z, has an exponential dichotomy with data (K, α, P s
n, P u

n ).
Suppose Bn ∈ Rk,k satisfies ‖Bn‖ ≤ b for all n ∈ J with a sufficiently small b.
Then An + Bn is invertible and the perturbed difference equation

yn+1 = (An + Bn)yn

has an exponential dichotomy on J .
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French by Joseph Christy.
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