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Abstract

In this paper we investigate nonlinear stability of traveling waves in general parabolic-

hyperbolic coupled systems where we allow for a non-strictly hyperbolic part.

We show that the problem is locally well-posed in a neighborhood of the traveling

wave and prove that nonlinear stability follows from stability of the point spectrum and

a simple algebraic condition on the coefficients of the linearization. We also obtain rates

of convergence that are directly related to the spectral gap. The proof is based on a

trick to reformulate the PDE as a partial differential algebraic equation for which the

zero eigenvalue is removed from the spectrum. Then the Laplace-technique becomes

applicable and resolvent estimates are used to prove stability.

Our results apply to pulses as well as fronts and generalize earlier results of Bates

and Jones [2] and of Kreiss, Kreiss, and Petersson [13]. As an example we present an

application to the Hodgkin-Huxley model.
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1 Introduction

A prominent model from applications is the spatially extended Hodgkin-Huxley system [11],

which models the signaling of electric pulses along nerve axons. The system is of reaction-

diffusion type and has the feature that some of the components model ion channels which are

spatially located and, therefore, do not diffuse. This leads to a parabolic equation coupled

to a system of ordinary differential equations. The equations are of the form

ut = Auxx + f1(u, v), vt = f2(u, v), x ∈ R, t ≥ 0, (1.1)

where u is a scalar function and v is R
3-valued. For the Hodgkin-Huxley equations the

existence of traveling wave solutions is well-known. These are solutions of the form u(x, t) =

uo(x− λot), v(x, t) = vo(x− λot), where (uo, vo) is the profile and λo the speed of the wave.

When the equation is considered in a co-moving frame with speed λo, that is, the new spatial

variable ξ = x−λot is used, the equation becomes the coupled parabolic-hyperbolic equation

ut = Auξξ + λouξ + f1(u, v), vt = λovξ + f2(u, v), (1.2)

for which (uo, vo) is a steady state.

In this paper we consider coupled parabolic-hyperbolic Cauchy problems of the following

form that includes (1.2):

ut = A11uxx + g(u, v)x + f1(u, v), vt = B22vx + f2(u, v), x ∈ R, t ≥ 0,

u(x, 0) = u0(x) ∈ R
n, v(x, 0) = v0(x) ∈ R

m.
(1.3)

By saying that (1.3) is parabolic-hyperbolic we understand that the following holds:

Assumption 1.1. 1. A11 ∈ R
n,n and A11 + AT

11 ≥ 2αI > 0 holds in the sense of

Hermitian matrices,

2. B22 ∈ R
m,m and B22 = diag(b1, . . . , bm) is a diagonal matrix.

To include the Hodgkin-Huxley model, we allow B22 to have multiple eigenvalues, i.e.

the v-equation is assumed to be hyperbolic but not necessarily strictly hyperbolic. Compare

this with [13], where strict hyperbolicity is assumed for the second equation.

We are interested in the asymptotic stability of traveling waves. Therefore, assume there

exists a traveling solution of (1.3). We impose smoothness assumptions which are satisfied

for many problems from applications, including the Hodgkin-Huxley model:

Assumption 1.2. The nonlinearities f1, f2, g are of class C3, the profile (uo, vo) of the trav-
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eling wave satisfies uo ∈ C1
b (R,R

n), uox ∈ H2(R,Rn), and vo ∈ C1
b (R,R

m), vox ∈ H2(R,Rm),

and, moreover, f1(u
o, vo) ∈ L2(R,Rn) and f2(u

o, vo) ∈ L2(R,Rm).

Remark. The assumption implies fi(u
o, vo) ∈ H2 for i = 1, 2 and g(uo, vo)x ∈ H1.

Throughout the paper we use the following notations: We write Ck
b for the space of k times

continuously differentiable and bounded functions, L2 is the usual space of square integrable

functions and for k > 0, Hk is the Sobolev space of k times weakly differentiable functions

whose distributional derivatives up to order k can be represented by square integrable func-

tions. We write H−1 for the dual of H1. To simplify notation we denote the evaluation of a

function at (uo, vo) by a superscript o, e.g. go = g(uo, vo), go(x) = g(uo(x), vo(x)) etc. We

also abbreviate W (x, t) = (w1(x, t), w2(x, t))
T = (u(x, t), v(x, t))T and W o = (uo, vo).

Using these abbreviations, (1.3) reads

Wt = AWxx +G(W )x + F (W ), W (x, 0) =W0(x) ∈ R
n+m, (1.4)

where

A =

(
A11 0

0 0

)
, G(W ) =

(
g(W )

B22w2

)
, F (W ) =

(
f1(W )

f2(W )

)
, and W0 =

(
u0

v0

)
.

A major difficulty in the proofs of wave stability is the shift equivariance of the equation. It

is well-known that this leads to non-uniqueness because every solution gives rise to a whole

one-parameter family of solutions, obtained by spatial shifts. Therefore, one cannot expect

that a solution of the Cauchy problem converges to “the” traveling wave, but only to some

shifted version of it, and one has to consider asymptotic stability with asymptotic phase.

The equivariance also leads to a 0 eigenvalue of the linearized right hand side

PW = AWxx + (Go
WW )x + F o

WW,

which is a closed linear operator on L2 × L2 with domain H2 ×H1.

Assumption 1.3. For the point spectrum σpt(P ) of the operator P on L2 holds σpt(P )∩
{Re s > −δ} = {0} and 0 is a simple eigenvalue of P .
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Define the matrices

A =

(
A11 0

0 0

)
, B(x) =

(
B11(x) B12(x)

0 B22

)
=

(
gou(x) gov(x)

0 B22

)
,

C(x) =

(
C11(x) C12(x)

C21(x) C22(x)

)
=

(
goux(x) + fo1,u(x) govx(x) + fo1,v(x)

fo2,u(x) fo2,v(x)

)
,

(1.5)

where a subindex u (or v) denotes the partial derivative with respect to the u (or v) variables.

Then the operator P can be written as

PW = AWxx +BWx + CW. (1.6)

For the analysis of asymptotic stability of traveling waves we use the techniques developed

in [19] for first-order hyperbolic systems: Write W (x, t), the solution of (1.4), as

W (x, t) =W o(x− ϕ̃(t)) + W̃ (x, t). (1.7)

This introduces new nonlinear coordinates (W̃ , ϕ̃) and increases the degrees of freedom by

one. To make this change of coordinates unambiguous, the function W̃ is assumed to lie in

the kernel of some suitable linear functional Ψ, i.e. Ψ(W̃ (t)) = 0 for all t. This leads to the

partial differential algebraic equation (PDAE)

W̃t = A
(
W 0(· − ϕ̃) + W̃

)
xx

+G
(
W 0(· − ϕ̃) + W̃

)
x
+ F

(
W 0(· − ϕ̃) + W̃

)
+W 0

x (· − ϕ̃)λ̃,

ϕ̃t = λ̃,

0 = Ψ(W )

(1.8)

for W̃ , ϕ̃, and λ̃. In Section 3 we show that the change of coordinates (1.7) is indeed well-

defined under very general assumptions on Ψ. Note that this approach is closely related to

the technique used by Henry in [10, Ch. 5], but there the theory of analytic semigroups is

heavily used.

Another commonly used approach is to use Riesz projectors to project the equation onto

the subspace orthogonal to the eigenfunction, see for example [9, 13]. The projection ap-

proach seems to be more difficult to generalize when the 0–eigenvalue is part of the essential

spectrum and it also seems to be less straight forward to prove well-posedness for the pro-

jected equation when one is not in the setting of analytic semigroups. Also note that the

semigroup approach chosen in [9] does not apply in our situation because of the nonlinear

advection term g(u, v)x.
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The plan for the rest of the paper is as follows. In Section 2 we show well-posedness of

an abstract formulation of Cauchy problem (1.3). The abstract formulation allows to apply

the result in Section 5 directly to a projected PDE. Of course, there is a large amount of

literature concerned with the problem of existence and well-posedness for coupled parabolic-

hyperbolic systems. In particular, we mention the results of Vol’pert and Hudjaev [23],

the monograph [14] by Kreiss and Lorenz, and results by Zheng and co–authors, e.g. the

monograph [27] and the references therein. But none of these results applies in our setting

since they all are concerned with perturbations of rest states so that initial data close to a

traveling front do not seem to be included.

Section 4 is concerned with the spectral properties of the linear operator P and the

linearization of the PDAE. We show uniform resolvent estimates for the PDAE in an open

half plane that includes the imaginary axis. We give a simple spectral Assumption (see

Assumption 4.1 3) which unifies the assumptions made on the asymptotic coefficients of P

as |x| → ∞. See also [13], Assumption 1 (parabolic part) and Assumption 2 (hyperbolic

part), which both have to be used in the proof of Theorem 4.1 from that paper. An important

tool for the derivation of estimates from the spectral assumption is a perturbation result for

invariant subspaces, which is recalled in Appendix A for convenience.

In Section 5 we show exponential well-posedness of the PDAE problem which justifies ap-

plication of the Laplace transform. Then Plancherels Theorem is used to translate resolvent

estimates for the PDAE-problem to linear stability properties of the PDAE. A bootstrapping

argument then shows also nonlinear stability of the PDAE.

In Section 6 we use the relation of the PDE to the PDAE problem, obtained in Section

3, to prove our main stability result for traveling waves:

Theorem 1.4 (Asymptotic stability of traveling waves). Let (uo, vo) be a traveling wave

solution of (1.3) with speed λo. Assume that Assumptions 1.1, 1.2, 1.3, 4.1 hold for the

co-moving equation

ut = A11uxx + g(u, v)x + f1(u, v) + λoux, u(0) = u0,

vt = B22vx + f2(u, v) + λovx, v(0) = v0.

Then for every 0 < η < δ there is ρ > 0 so that for all initial data u0 ∈ uo + H2 and

v0 ∈ vo + H2, with
(
‖u0 − uo‖2H2 + ‖v0 − vo‖2H2

)1/2
< ρ, exists a unique solution (u, v) of

(1.3) on [0,∞). The solution satisfies smoothness properties

u ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2).
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Moreover, there is ϕ∞ = ϕ∞(u0, v0) ∈ R and a constant C = C(η) > 0, independent of

(u0, v0), so that

|ϕ∞| ≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
, and

‖u(t)− uo(· − λot− ϕ∞)‖H1 + ‖v(t)− vo(· − λot− ϕ∞)‖H1

≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
e−ηt ∀t ≥ 0.

We finish this paper with an application of our results to the important Hodgkin-Huxley

model from biology in Section 7. For the application to a traveling front in the FitzHugh-

Nagumo equation and numerical experiments, where the predicted rates can be observed

numerically, we refer to [21].

Acknowledgment: The author would like to thank Prof. Wolf-Jürgen Beyn for many

helpful discussions and the supervision of the PhD thesis [18] in which many of the results

from this paper were obtained.

2 Local Existence and Continuation

In this section we consider (global) existence and uniqueness of solutions to the nonlinear

problem (1.3) with the general result given in the Theorem 2.5 and its application to traveling

waves in Theorem 2.8. As mentioned above, various parabolic-hyperbolic problems have been

analyzed in the literature. But because none of the results applies to our situation, we present

some results obtained in the author’s PhD thesis [18]. Since the techniques used are quite

standard, we concentrate on the ideas and refer to [18] for the details.

By considering the equation in a co-moving frame, we may assume λo = 0 without loss of

generality. Moreover, instead of (1.3) we consider the following generalized problem which

makes the results easily applicable also to a projected problem in Section 5:

ut = A11uxx + g̃(u, v)x + f̃1(u, v), u(0) = u0 ∈ H1, (2.1a)

vt = B22vx + f̃2(u, v), v(0) = v0 ∈ H1. (2.1b)

Here g̃, f̃1, f̃2 are (abstract) nonlinear operators on which we impose

Assumption 2.1. For all 0 ≤ t0 < T , u, u′ ∈ L2(t0, T ;H
1(R,Rn)) ∩ L∞(t0, T ;H

1) and

v, v′ ∈ L2(t0, T ;H
1(R,Rm)) ∩ L∞(t0, T ;H

1) the operators g̃, f̃1, and f̃2 satisfy:

1. g̃(u, v), f̃1(u, v) ∈ L2(t0, T ;H
1(R,Rn)) and f̃2(u, v) ∈ L2(t0, T ;H

1(R,Rm)),
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2. there is C = C(T ) > 0, independent of t0, so that (0 ∈ L2(t0, T ;H
1) ∩ L∞(t0, T ;H

1))

‖f̃1(0, 0)‖L2(t0,T ;H1) + ‖g̃(0, 0)‖L2(t0,T ;H1) + ‖f̃2(0, 0)‖L2(t0,T ;H1) ≤ C,

3. for all T,K > 0 exists C > 0, independent of t0, so that if ‖ ∗ ‖L∞(t0,T ;H1) ≤ K for all

∗ ∈ {u, u′, v, v′} holds for h̃ ∈ {g̃, f̃1, f̃2}

‖h̃(u, v)− h̃(u′, v′)‖2L2(t0,T ;H1) ≤ C
(
‖u− u′‖2L2(t0,T ;H1) + ‖v − v′‖2L2(t0,T ;H1)

)
. (2.2)

Lemma 2.2. 1. Let Assumption 1.2 hold and gl, f1,l, f2,l ∈ L2
loc([0,∞);H1). Then the

following Nemytskii operators satisfy Assumption 2.1:

g̃(u, v) = g(uo + u, vo + v)− g(uo, vo) + gl(x, t),

f̃i(u, v) = fi(u
o + u, vo + v)− fi(u

o, vo) + fi,l(x, t), i = 1, 2.

2. Let B11, C11 ∈ C1
b (R,R

n,n), B12, C12 ∈ C1
b (R,R

n,m), B1j,x ∈ H1, C21 ∈ C1
b (R,R

m,n),

C22 ∈ C1
b (R,R

m,m), gl, f1,l, f2,l ∈ L2
loc([0,∞);H1). Then Assumption 2.1 holds for

g̃(u, v) = B11(x)u+B12(x)v + gl(x, t),

f̃i(u, v) = Ci1(x)u+ Ci2(x)v + fi,l(x, t), i = 1, 2.

Because we are interested in perturbations of steady states, we use the new dependent

variables ũ = u− uo and ṽ = v − vo to rewrite equation (1.3) in the form (2.1)

ũt = A11ũxx + g̃(ũ, ṽ)x + f̃1(ũ, ṽ), ũ(0) = u0 − uo ∈ H1,

ṽt = B22ṽx + f̃2(ũ, ṽ), ṽ(0) = v0 − vo ∈ H1.
(2.3)

Here g̃(ũ, ṽ) = g(uo + ũ, vo + ṽ) − g(uo, vo) and f̃i(ũ, ṽ) = fi(u
o + ũ, vo + ṽ) − fi(u

o, vo) for

i = 1, 2. By Lemma 2.2 equation (2.3) satisfies Assumption 2.1.

We use the following solution concept, adapted from [8, §7.1, 7.3 and 9.2] to our situation.

Definition 2.3 (Weak solution). We call (u, v) a weak solution of (2.1) on [0, T ] if

0. u ∈ L2(0, T ;H1(R,Rn)) ∩ L∞(0, T ;H1) with ut ∈ L2(0, T ; (H1)′),

v ∈ L2(0, T ;H1(R,Rm)) ∩ L∞(0, T ;H1) with vt ∈ L2(0, T ;L2),

1. u(0) = u0 and for all φ ∈ H1(R,Rn) and a.e. t ∈ [0, T ] holds

〈ut, φ〉+
∫

R

(A11ux)
Tφx − (g̃(u, v)x)

Tφ− (f̃1(u, v))
Tφ dx = 0,
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here 〈·, ·〉 denotes the duality pairing of H1 and H−1 = (H1)′,

2. v(0) = v0 and for all φ ∈ H1(R,Rm) and a.e. t ∈ [0, T ] holds

〈vt, φ〉L2 −
∫

R

(B22vx)
Tφ+ (f̃2(u, v))

Tφ dx = 0.

It is called a weak solution on [0, T ∗), T ∗ ∈ (0,∞], if it is a weak solution on [0, T ] for all

0 < T < T ∗.

The assumption u, v ∈ L∞(0, T ;H1) is needed for the Lipschitz bound (2.2) of the non-

linear operators in (2.3), which turns out to be to be important for uniqueness of weak

solutions, see [18, §4.1].
Note that the initial conditions are reasonable because of Sobolev embedding. In fact,

one can prove that the weak solution even is a strong solution in the following sense:

Definition 2.4 (Strong solution). A strong solution of (2.1) on [0, T ] is a weak solution

satisfying u ∈ L2(0, T ;H2)∩H1(0, T ;L2) and v ∈ L2(0, T ;H1)∩H1(0, T ;L2) so that (2.1a)

and (2.1b) hold as equalities in L2(0, T ;L2). It is called a strong solution on [0, T ∗), T ∗ ∈
(0,∞], if it is a strong solution on [0, T ] for all 0 < T < T ∗.

Now we can state the local existence and uniqueness result.

Theorem 2.5 (Existence and uniqueness). Impose Assumptions 1.1 and 2.1. Then there is

T ∗ ∈ (0,∞] and a strong solution (u∗, v∗) of the Cauchy problem (2.1) on [0, T ∗). If (u, v) is

a weak solution of (2.3) on [0, T ] for some T > 0, then T < T ∗ and u = u∗|[0,T ], v = v∗|[0,T ],

where the equalities hold in L∞(0, T ;H1). Moreover,

u∗ ∈ C([0, T ];H1) ∩H1(0, T ;L2) ∩ L2(0, T ;H2),

v∗ ∈ C([0, T ];H1) ∩H1(0, T ;L2)
(2.4)

for all 0 < T < T ∗ and it holds the dichotomy

either T ∗ = +∞ or T ∗ <∞ and lim
tրT ∗

‖u(t)‖H1 + ‖v(t)‖H1 = +∞. (2.5)

Outline of the proof. We do not give a full proof of the theorem, which can be found in [18,

§4.1]. Instead we only outline the basic steps.

The principal idea is to treat the parabolic and hyperbolic parts separately and to couple

them by an iteration process. This idea also appears in [25], where it is used to show existence

for a biologically motivated system, with a wave type hyperbolic part.

9



To formalize the idea, let UT = C([0, T ];H1(R,Rn)), ‖u‖UT
:= ‖u‖L∞(0,T ;H1), and VT =

C([0, T ];H1(R,Rm)), ‖v‖VT
:= ‖v‖L∞(0,T ;H1), and define the operator (which will be iterated)

S : UT × VT → UT × VT , (uk, vk) 7→ S(uk, vk) := (uk+1, vk+1). (2.6)

Here uk+1 is the unique weak solution of the linear parabolic Cauchy problem

ut = A11uxx + g̃(uk, vk)x + f̃1(u
k, vk), u(0) = u0, (2.7)

and vk+1 is given as the unique weak solution of the linear hyperbolic Cauchy problem

vt = B22vx + f̃2(u
k+1, vk), v(0) = v0. (2.8)

The proof of Theorem 2.5 then proceeds in the following steps

1. Show well-posedness and derive solution estimates for (2.7) in terms of uk, vk.

2. Show well-posedness and derive solution estimates for (2.8) in terms of uk+1, vk.

3. Couple these estimates to show that the solution operator S is well-defined and a

contraction for sufficiently small T > 0. Because a fixed point of S is a solution of the

coupled parabolic-hyperbolic PDE (2.1), solvability follows.

4. Show uniqueness of the weak solution.

5. Extend the solution as long as it stays bounded to obtain (2.5).

The following energy estimate can be used to prove global well-posedness for linear equa-

tions and will also be applied in the stability estimates. Note that the estimate is in integral

form. This is important because we will be able to bound time integrals of the solution by

time integrals of the data, using the Laplace technique (see 5.1.2).

Lemma 2.6 ([18, Lemma E.2]). Let Assumption 1.1 hold and impose the assumptions from

Lemma 2.2 2. Then for every η0 ≥ 0 there exists C > 0 so that for all η ≤ η0 and all

u0 ∈ H1, v0 ∈ H1 the strong solution of (2.1) with g̃ and f̃i from Lemma 2.2 2., given by
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Theorem 2.5, satisfies for all t ≥ 0

e2ηt
(
‖u(t)‖2H1 + ‖v(t)‖2H1

)

≤ ‖u0‖2H1 + ‖v0‖2H1 + C

∫ t

0
e2ητ

(
‖u(τ)‖2H1 + ‖v(τ)‖2H1

)
dτ

+ C

∫ t

0
e2ητ

(
‖gl(τ)‖2H1 + ‖f1,l(τ)‖2L2 + ‖f2,l(τ)‖2H1

)
dτ.

(2.9)

The assertion of the lemma easily follows for smooth functions and inhomogeneities. The

general case is obtained by approximation. A proof, using a mollification trick, is given in

[18, Appendix E].

Theorem 2.5 combined with the energy estimate from Lemma 2.6 shows global existence

and exponential well-posedness for the inhomogeneous linear case:

Corollary 2.7 (Linear well-posedness of parabolic-hyperbolic coupled PDEs). Let the as-

sumptions of Lemma 2.6 hold. Then for every u0, v0 ∈ H1 there is a unique strong solution

(u, v) on [0,∞) of (2.1), which is unique also in the class of weak solutions. Furthermore,

for every η0 ≥ 0 there are constants k, c ∈ R so that for every η ∈ R with η ≤ η0 and all

0 ≤ t <∞ the solution is bounded by

∥∥∥∥∥

(
u(t)

v(t)

)∥∥∥∥∥

2

H1

≤ kect
[∥∥∥∥∥

(
u0

v0

)∥∥∥∥∥

2

H1

+

∫ t

0
e2ητ

(
‖gl(τ)‖2H1 + ‖f1,l(τ)‖2L2 + ‖f2,l(τ)‖2H1

)
dτ
]
.

Another immediate consequence of Theorem 2.5 is unique solvability of (1.3) in a neigh-

borhood of the traveling wave (uo, vo), note that we still require λo = 0 without loss of

generality.

Theorem 2.8 (Existence and uniqueness). Impose Assumptions 1.1 and 1.2 with λo = 0.

Then for every initial data u0 ∈ uo +H1(R,Rn), v0 ∈ vo +H1(R,Rm), there is a unique

global solution of (1.3), i.e. there is T ∗ ∈ (0,∞] and (u∗, v∗) so that for all 0 < T < T ∗ holds

u∗ ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v∗ ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2),
(2.10)

and (u∗, v∗) is the unique solution of (1.3) on [0, T ], where (1.3) holds as an equality in

L2(R,Rn)× L2(R,Rm) for almost every t ∈ [0, T ]. Moreover,

either T ∗ = +∞ or 0 < T ∗ < +∞ and lim
tրT ∗

‖u∗(t)− uo‖H1 + ‖v∗(t)− vo‖H1 = +∞.

(2.11)
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3 PDAE Reformulation

Let the setting be as in the introduction. By considering (1.3) in a co-moving frame we may

assume λo = 0 throughout this section. In this section we rigorously justify the change of

coordinates (1.7) and give a precise meaning to the nonlinear PDAE (1.8). In particular, we

show how solutions of the original problem (1.4) are related to solutions of the PDAE (1.8)

and vice versa. To make the change of coordinates (1.7) unambiguous we impose on Ψ:

Assumption 3.1. The functional Ψ acts on H−1(R,Rn) × H−1(R,Rm), is of the form

Ψ(u, v) = ψ1(u) + ψ2(v), and there is CΨ > 0 so that

∣∣Ψ(u, v)
∣∣ ≤ CΨ

(
‖u‖H−1 + ‖v‖H−1

)
, ∀u ∈ H−1(R,Rn), v ∈ H−1(R,Rm). (3.1)

Furthermore, Ψ satisfies the non-degeneracy condition

Ψ(uox, v
o
x) = ψ1(u

o
x) + ψ2(v

o
x) 6= 0. (3.2)

Of course, by linear continuation, Ψ can also be considered as a linear functional on

the respective complex-valued Sobolev-spaces. Note that two functions η1 ∈ H1(R,Rn)

and η2 ∈ H1(R,Rm) define a linear functional on H−1 × H−1 with (3.1) via Ψ(u, v) :=

(u, η1)L2 + (v, η2)L2 . Here (−,−)L2 denotes the L2–inner product.

The following lemma, which easily follows from (3.2) with the inverse function theorem,

is the key to local well-definedness of (1.7).

Lemma 3.2. Let Ψ be given as above. Then there are open neighborhoods U, V of 0 in R so

that the mapping E : U → V defined by E(ϕ̃) = Ψ
(
W o(·− ϕ̃)−W o

)
is a C2–diffeomorphism.

For E : U → V as in Lemma 3.2 define Φ by Φ := E−1 : V → U , and let Ξ and Υ denote

the following nonlinear changes of coordinates:

Ξ

(
W̃

ϕ̃

)
:= W̃ +W o(· − ϕ̃), Υ(W ) :=

(
W −W o

(
· − Φ(Ψ(W −W o))

)

Φ(Ψ(W −W o))

)
. (3.3)

A simple computation shows that Ξ with domain DΞ and Υ with domain DΥ are inverse to

each other, where

DΞ :=
{
(W̃ , ϕ̃) ∈ L2(R,Rn+m)× R : ϕ̃ ∈ U,Ψ(W̃ ) = 0

}
, and (3.4)

DΥ :=
{
W ∈W o + L2(R,Rn+m) : Ψ(W −W o) ∈ V

}
. (3.5)

Now we apply the change of coordinates Υ to solutions of (1.3).
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Lemma 3.3. Let the setting be as above and let W = (u, v) be the unique global solution

of (1.3) on [0, T ∗), given by Theorem 2.8. Assume there is 0 < T < T ∗ so that µ(t) :=

Ψ
(
W (t)−W o

)
∈ V for all t ∈ [0, T ]. Then (ũ, ṽ, ϕ̃) = Υ(W ) satisfies

ũ ∈ C([0, T ];H1) ∩H1(0, T ;L2) ∩ L2(0, T ;H2),

ṽ ∈ C([0, T ];H1) ∩H1(0, T ;L2),

ϕ̃ ∈ C1([0, T ];R),

(3.6)

and Ψ(ũ(t), ṽ(t)) = 0 for all t ∈ [0, T ].

Proof. By Theorem 2.8, t 7→W (t)−W o is an element of C([0, T ];H1), so that µ ∈ C([0, T ];R)
and the assumption µ(t) ∈ V is reasonable forW (0) close toW o. Moreover, t 7→W (t)−W o ∈
H1(0, T ;L2), so that µ ∈ L2(0, T ;R) and Ψ(Wt) ∈ L2(0, T ;R) by properties of the Bochner

integral (e.g. [26, Ch. 5]) since Ψ is also a continuous linear functional on L2. It easily follows

µt = Ψ(Wt) in the sense of Distributions, so that µ ∈ H1(0, T ;R).

Because (u, v) solves (1.3),

µt = ψ1(A11uxx + g(u, v)x + f1(u, v)) + ψ2(B22vx + f2(u, v))

holds as an equality in L2(0, T ;R). In fact, it follows that there is a continuous representative

of µt, i.e. µ ∈ C1, since Theorem 2.8 implies (see also Corollary B.3)

(u− uo)xx ∈ C([0, T ];H−1), (v − vo)x ∈ C([0, T ];H−1),
(
g(u, v)− go

)
x
∈ C([0, T ];L2),

f1(u, v)− fo1 , f2(u, v)− fo2 ∈ C([0, T ];L2).

This proves ϕ̃ = Φ ◦ µ ∈ C1([0, T ];R). To see that ũ is of the asserted class, write it as

ũ = (u − uo) + (uo − uo(· − ϕ̃)). By Theorem 2.8 the first summand is of the correct class.

The second summand belongs to C1([0, T ];H1)∩C0([0, T ];H2) by Assumption 1.2. The same

arguments work for ṽ.

Finally, W̃ = (ũ, ṽ) ∈ N (Ψ) follows from the definintion of ϕ̃:

Ψ(W̃ ) = Ψ(W −W o(· − ϕ̃)) = Ψ(W −W o) + Ψ(W o −W o(· − ϕ̃)) = µ−G(Φ(µ)) = 0.

Now assume thatW = (u, v) solves (1.3) and satisfies Ψ(W (t)−W o) ∈ V for all t ∈ [0, T ].

13



Let (W̃ , ϕ̃) = Υ(W ), i.e. W = W̃ +W o(· − ϕ̃), and define λ̃ = ϕ̃t. Then

G(W )−G(W o(· − ϕ̃))

= Go
W W̃ +

(
Go

W (· − ϕ̃)−Go
W

)
W̃ +

∫ 1

0
(1− s)GWW

(
W o(· − ϕ̃) + sW̃

)
ds [W̃ , W̃ ]

= Go
W W̃ +

∫ 1

0
(1− s)GWW

(
W o(· − ϕ̃) + sW̃

)
[W̃ , W̃ ]−Go

WW (· − sϕ̃)[W o
x (· − sϕ̃)ϕ̃, W̃ ] ds

holds as an equality in H1 for almost every t ∈ [0, T ] (see Lemma B.1). The same calculation

holds true for F so that (W̃ , ϕ̃, λ̃) satisfies the nonlinear PDAE

W̃t = PW̃ + λ̃W o
x +

(
(G1 +G2)x + F11 + F12

F21 + F22

)
+R,

ϕ̃t = λ̃,

0 = Ψ(W̃ ),

(3.7a)

with initial data

W̃ (0) = W̃0 = (ũ, ṽ)(0) =
(
(W0 −W o(· − ϕ̃(0))

)
, ϕ̃(0) = ϕ̃0 := Φ

(
Ψ(W0 −W o)

)
. (3.7b)

Here P in (3.7a) is given by (1.6). The first equality of (3.7a) holds in L2(R,Rn+m) for a.e.

t ∈ [0, T ], the other two equalities hold pointwise in R. The nonlinearities in (3.7a) read

G1 = G1(W̃ , ϕ̃) = −
∫ 1

0
D2g

(
W o(· − sϕ̃)

) [
W o

x (· − sϕ̃), ϕ̃W̃
]
ds, (3.8a)

G2 = G2(W̃ , ϕ̃) =

∫ 1

0
(1− s)D2g

(
W o(· − ϕ̃) + sW̃

) [
W̃ , W̃

]
ds, (3.8b)

R = R(ϕ̃, λ̃) = −
∫ 1

0
W o

xx(· − sϕ̃) ds ϕ̃λ̃, (3.8c)

and with g replaced by fi for Fij . These are quadratic functions of their arguments.

We started the above discussion with a solution of the original PDE (1.3) and obtained a

solution of the PDAE reformulation (3.7). Since we also need the other direction, we define

the notion of a solution of (3.7).
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Definition 3.4. A solution of (3.7) on [0, T ] is a quadruple (ũ, ṽ, ϕ̃, λ̃) = (W̃ , ϕ̃, λ̃) with

ũ ∈ C([0, T ];H1(R,Rn)) ∩H1(0, T ;L2(R,Rn) ∩ L2(0, T ;H2(R,Rn),

ṽ ∈ C([0, T ];H1(R,Rm)) ∩H1(0, T ;L2(R,Rm),

ϕ̃ ∈ C1([0, T ];R), λ̃ ∈ C([0, T ];R),

so that (3.7b) is satisfied, and the first equality in (3.7a) holds in L2(0, T ;Rn+m) and the last

two equalities hold in R for all 0 ≤ t ≤ T . It is called a solution on [0, T ∗) with 0 < T ∗ ≤ ∞
if it is a solution on [0, T ] for all 0 < T < T ∗.

As usual, initial data for the PDAE cannot be chosen arbitrarily, but are restricted to

some manifold by the algebraic condition 0 = Ψ(W̃ ) and the hidden constraint 0 = Ψ(W̃t).

For small (W̃0, ϕ̃0) the hidden constraint uniquely determines λ̃.

Now, if (W̃ , ϕ̃, λ̃) is a solution of (3.7) in the sense of Definition 3.4, the discussion that

leads to the PDAE can be reversed. We summarize this in the following theorem.

Theorem 3.5. Let the setting be as above, i.e. λo = 0 and Assumptions 1.1, 1.2, 3.1 hold.

If W = (u, v) is the unique solution of (1.3) in [0, T ] and satisfies

Ψ(W −W o) ∈ V for all t ∈ [0, T ], (3.9)

then (W̃ , ϕ̃, λ̃) with (W̃ , ϕ̃) = Υ(W ) and λ̃ = ϕ̃t, is a solution of (3.7) and

ϕ̃(t) ∈ U for all t ∈ [0, T ]. (3.10)

Conversely, if (W̃ , ϕ̃, λ̃) is a solution of (3.7), satisfying (3.10), then W = Ξ(W̃ , ϕ̃) solves

(1.3) with initial data W0 = W̃0 +W o(· − ϕ̃0) and satisfies (3.9).

Furthermore, the two transitions Υ and Ξ are inverse to each other, i.e.

(
PDE-solution

with (3.9)

)
Υ7→
(
PDAE-solution

with (3.10)

)
,

(
PDAE-solution

with (3.10)

)
Ξ7→
(
PDE-solution

with (3.9)

)
.

Proof. That solutions W of (1.3) with (3.9) lead to solutions of the PDAE (3.7) has been

shown above. For the other direction note that if (W̃ , ϕ̃, λ̃) is a solution of (3.7) with (3.10),

then u = ũ + uo(· − ϕ̃) and v = ṽ + vo(· − ϕ̃) satisfy the smoothness (2.10). Therefore, the

discussion leading to (3.7) can be reversed, so that (u, v) is a solution of (1.3) with initial

data u0 = ũ0 + uo(· − ϕ̃0) and v0 = ṽ0 + vo(· − ϕ̃0).

It remains to show that W̃ +W o(·−ϕ̃) satisfies (3.9), but this follows because W̃ ∈ N (Ψ)

and Ψ
(
W̃ +W o(· − ϕ̃)−W o

)
= Ψ

(
W o(· − ϕ̃)−W o

)
= E(ϕ̃) ∈ V .

15



4 Spectral Properties of Linearizations

We use the Laplace-technique to prove stability for the PDAE reformulation (3.7). The

approach of using the Laplace-transform to obtain stability results for time-dependent prob-

lems is well-known, see for example [13, 15] and references therein. To use the technique

for the PDAE reformulation has been first used in [19, 20] in the case of traveling waves

in hyperbolic PDEs. The method works as follows: Higher order terms of the nonlinear

equation are considered as part of the forcing and the equation is considered as linear but

inhomogeneous. Global existence and stability follow from local existence of the nonlinear

problem plus stability of the linear inhomogeneous problem. Therefore, a major step is the

proof of linear stability for inhomogeneous problems.

The linear but inhomogeneous problem for (3.7) has the structure

Wt = PW + λW o
x +

(
Gx(x, t) + F1(x, t)

F2(x, t)

)
,

ϕt = λ,

0 = Ψ(W ),

(4.1)

with P given by (1.6). To keep the notation simple, we use the same letters as in the

nonlinear problem to highlight the terms they are related to in (3.7).

Because the ϕ-equation decouples, it suffices to consider the reduced system

Wt = PW + λW o
x +

(
Gx(x, t) + F1(x, t)

F2(x, t)

)
,

0 = Ψ(W ).

(4.2)

Assuming W (0) = 0, application of the Laplace transform, leads to the resolvent equation

which we write in operator-matrix form

A(s)

(
Ŵ

λ̂

)
:=

(
(sI − P ) −W o

x

Ψ 0

)(
Ŵ

λ̂

)
=




(
Ĝx + F̂1

F̂2

)

0


 . (4.3)

The operator A(s) acts on L2(R,Cn+m × C) with domain H2(R,Cn)×H1(R,Cm)× C. Of

course, the spectral properties of A are closely related to the spectral properties of P and we

begin with the analysis of the latter. Note that the well-posedness result from Proposition

5.6 below, justifies the use of Laplace transform.
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4.1 Spectral Properties of the PDE Operator P

Beside Assumptions 1.1 and 1.3 we impose on the coefficients of P :

Assumption 4.1. 1. The real diagonal matrix B22 is invertible,

2. B,C ∈ C1
b (R,C

n+m,n+m) and their derivatives are asymptotically constant, i.e.

∃ limx→±∞B(x) =: B±, ∃ limx→±∞Bx(x), ∃ limx→±∞C(x) =: C±, ∃ limx→±∞Cx(x),

3. there is δ > 0 so that for all ω ∈ R, s ∈ σ(−ω2A+ iωB++C+)∪σ(−ω2A+ iωB−+C−)

implies Re s ≤ −δ < 0.

Recall that 1. is satisfied in the Hodgkin-Huxley case for every traveling wave solution

with nonzero speed. In view of Assumption 1.2, linearizations immediately satisfy 2. We

refer to the last assumption as spectral assumption. Consider the resolvent equation

(
sI − P

)
(
u

v

)
=

(
F̂1 + Ĝx

F̂2

)
in L2 × L2. (4.4)

Using z = (z1, z2, z3)
T = (u,Aux + Ĝ, v)T , we rewrite (4.4) as L(s)z = h with

L(s)z = zx −M(x, s)z and h =




−A−1
11 Ĝ

−F̂1 +B12B
−1
22 F̂2 +B11A

−1
11 Ĝ

−B−1
22 F̂2


 , (4.5)

where the matrix M(x, s) is given by




0 A−1
11 0

B12B
−1
22 C21 + sI − C11 −B11A

−1
11 −C12 −B12B

−1
22 (sI − C22)

−B−1
22 C21 0 B−1

22 (sI − C22)


 . (4.6)

Let M±(s) := limx→∞M(x, s). In [6] we have shown

Lemma 4.2 ([6, Lemma 3.4]). The operator sI − P on L2 × L2 with domain H2 × H1 is

Fredholm if and only if L(s) on H1 × L2 × L2 with domain H2 ×H1 ×H1 is Fredholm. In

this case their indices coincide and dimN (sI − P ) = dimN (L(s)).

Proof. The last assertion is not stated in the original lemma, but is part of its proof.

A result of Palmer [16, Lemma 4.2] relates the Fredholm properties of L(s) to exponential

dichotomies and with this to the spectral properties of the limits M±(s), see also [6, Cor.

A.5] for a version that directly applies here. For convenience we recall the definition of an

exponential dichotomy and several needed properties in Appendix C.
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Lemma 4.3. The operator L(s) on H1 × L2 × L2 with domain H2 ×H1 ×H1 is Fredholm

if and only if the limits M±(s) are hyperbolic. In this case the index of the operator is

ind(L(s)) = dimEs
+(s)− dimEs

−(s), where E
s
±(s) are the stable subspaces of M±(s).

The next lemma shows that the third part of Assumption 4.1 implies that L(s) and

therefore also sI − P are Fredholm operators for all Re s > −δ.

Lemma 4.4 ([6, Lemma 3.2]). For every s, κ ∈ C holds s ∈ σ
(
κ2A+ κB± + C±

)
if and

only if det(κI −M±(s)) = 0.

Because of Lemma 4.4 and 4.3 the index of L(s) is constant in {Re > −δ}. By Proposition

A.2 dimEs
+(s) = dimEs

−(s) for some s ∈ R, sufficiently large. Using Lemma C.4 this proves

Proposition 4.5. The operator sI−P is Fredholm of index 0 for every s ∈ C with Re s > −δ.

4.1.1 Resolvent estimates for large |s|

To obtain resolvent estimates for large |s| we consider the “parabolic part” and “hyperbolic

part” separately. Resolvent estimates for the parabolic part in this regime can easily be

obtained. They are based on the fact that A11 is positive definite and, therefore, the essential

spectrum lies to the left of a parabola in the left half plane. No further spectral assumption

is needed. Solution estimates for this part of the problem, i.e. for

(sIn −A11∂
2
x −B11∂x − C11)u = f + gx in L2 (4.7)

are proved in [13]. Since the operator is also Fredholm of index zero (see [4]), holds

Lemma 4.6 ([13, Lem. 2.1,2.2],[4]). There are ρ1,K1 > 0, so that for all s ∈ C, Re s > −δ,
|s| ≥ ρ1}, and f ∈ L2(R,Cn), g ∈ H1(R,Cn), (4.7) has a unique solution u ∈ H2(R,Cn).

This satisfies

|s|2‖u‖2 + |s|‖ux‖2 ≤ K1

(
‖f‖2 + |s|‖g‖2

)
. (4.8)

The analysis of the hyperbolic part is more involved. Here the essential spectrum is

(asymptotically) parallel to the imaginary axis and it is not possible to obtain uniform esti-

mates without deeper knowledge of its asymptotics. To derive information about the essential

spectrum from the Assumption 4.1 3, we use the following lemma which is a consequence of

a perturbation result from linear algebra. For convenience its proof is given in Appendix A.

Lemma 4.7. Impose Assumption 4.1 3. Then for all δ0 < δ exists ω0 so that

s ∈ σ
(
iωB22± + C22±

)
implies Re s < −δ0 for all ω ∈ R with |ω| > ω0.
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Let 0 < δ0 < δ be arbitrary. By Lemma 4.7 there is ω0 so that for s ∈ σ(iωB22± +C22±)

with ω ∈ R, |ω| > ω0 follows Re s < −δ0. Therefore, s ∈ σ(iωB22± + C22±), with |s| ≥
ω0max(|B22−|∞, |B22+|∞) + max(|C22−|∞, |C22+|∞) and ω ∈ R, implies Re s < −δ0. This

discussion shows that [19, Prop. 3.8] applies to the hyperbolic part of our problem:

Lemma 4.8 ([19, Prop. 3.8]). Let 0 < δ0 < δ be arbitrary. Then there are ρ0,K0 > 0 so

that for all Re s > −δ0, |s| ≥ ρ0, and every f ∈ H1(R,Cm), the resolvent equation

(sIm −B22∂x − C22)v = f (4.9)

has a unique solution v ∈ H1 and

‖v‖2L2 ≤ K0‖f‖2L2 , ‖v‖2H1 ≤ K0‖f‖2H1 . (4.10)

For the coupled problem let (u, v)T be a solution of (4.4), i.e.

(sIn −A11∂
2
x −B11∂x − C11)u =

(
F̂1 + C12v −B12,xv

)
+
(
Ĝ+B12v

)
x
,

(sIm −B22∂x − C22)v = F̂2 + C21u,

so that by (4.10) and (4.8) follow

‖v‖2 ≤ K0‖F̂2 + C21u‖2 ≤ c
(
‖F̂2‖2 + ‖u‖2

)
, and

|s|2‖u‖2 + |s|‖ux‖2 ≤ K1

(
‖F̂1 + C12v −B12,xv‖2 + |s|‖Ĝ+B12v‖2

)

≤ c
(
‖F̂1‖2 + |s|‖Ĝ‖2 + |s|‖F̂2‖2 + |s|‖u‖2

)
.

Therefore, for sufficiently large |s| with Re s > −δ0 we can bring the u- and v-terms to the

left hand side and using the H1-estimate from Lemma 4.8 yields

|s|‖u‖2 + ‖ux‖2 + ‖v‖2H1 ≤ K
( 1

|s|‖F̂1‖2 + ‖Ĝ‖2 + ‖F̂2‖2H1

)
. (4.11)

Because of Fredholm’s alternative, Proposition 4.5, this also implies solvability:

Proposition 4.9. Let 0 < δ0 < δ be arbitrary. Then there are ρ,K > 0 so that for all

s ∈ {s ∈ C : Re s > −δ0, |s| ≥ ρ} and all right hand sides F̂1 ∈ L2, Ĝ ∈ H1, F̂2 ∈ H1 there

is a unique solution W = (u, v)T ∈ H2 ×H1 of (4.4). The solution satisfies (4.11).
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4.1.2 Resolvent estimates for bounded |s|

Assume s0 ∈ ρ(P ), ρ(P ) the resolvent set of P . Then there is no nontrivial bounded solution

of (s0I−P )W = 0 and by Lemma 4.2 there is no nontrivial bounded solution of L(s0)z = 0,

which implies that L(s0) has an exponential dichotomy (ED) on the whole real line, see [7].

The Roughness Theorem C.3 shows that the exponent β and constant K of the dichotomy

data can locally be chosen independently of s. Therefore, it is possible to chose the same

exponent and constant for the dichotomy data for all s from a compact subset of ρ(P ).

Proposition 4.10. Let Ω ⊂ {Re s > −δ} ∩ ρ(P ) be compact. Then there is K > 0 so that

for all s ∈ Ω and all right hand sides F̂1 ∈ L2, Ĝ ∈ H1, F̂2 ∈ H1 there is a unique solution

W = (u, v)T ∈ H2 ×H1 of (4.4). The solution satisfies

‖u‖2H1 + ‖v‖2H1 ≤ K
(
‖F̂1‖2 + ‖Ĝ‖2 + ‖F̂2‖2

)
. (4.12)

Proof. Let s ∈ Ω be arbitrary and rewrite the problem (4.3) with z = (u,Aux+Ĝ, v)
T as the

first order equation L(s)z = h (4.5). This operator has an exponential dichotomy on R with

data (K,β, π(s)), where K and β can be chosen independently of s ∈ Ω. Theorem C.2 proves

unique solvability of L(s)z = h and the estimate ‖z‖2 ≤ 5K2β−2‖h‖2. With the differential

equation follows ‖z‖2H1 ≤ c‖h‖2, where C does not depend on s ∈ Ω. Recalling the definition

of z and (4.5), one obtains ‖u‖2H1 + ‖v‖2H1 ≤ c‖z‖2H1 and ‖h‖2 ≤ c
(
‖Ĝ‖2 + ‖F̂1‖2 + ‖F̂2‖2

)
.

Combination proves the assertion.

4.2 Spectral Properties of the PDAE Operator A

The estimates for sI − P are now used to derive solution estimates for (4.3). First we note

that Proposition 4.5 implies together with the bordering Lemma [3, Lem. 2.3]:

Proposition 4.11. The operator A(s) : H2 ×H1 × C → L2 × L2 × C is Fredholm of index

0 for every s ∈ C with Re s > −δ.

It also proves useful to define the linear projector Π on L2 × L2,

Π : (u, v)T 7→
(
uox

vox

)
Ψ(u, v)

Ψ(uox, v
o
x)
. (4.13)

This operator projects (u, v)T ∈ L2 × L2 along N (Ψ) onto N (P ) = {c(uox, vox)T : c ∈ C}.
The following lemma is a simple consequence of the assumptions on (uox, v

o
x) and on Ψ.
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Lemma 4.12. The linear operator Π : L2×L2 → L2×L2 is bounded and continuously extends

to Π : H−1 ×H−1 → H2 ×H2. In particular, the mapping Π ◦P : H2 ×H1 → H2 ×H2 has

a continuous extension to Π ◦ P : H1 × L2 → H2 ×H2.

4.2.1 Large |s|

For large absolute values of s in a right half plane we have the following resolvent estimate.

Proposition 4.13. For 0 < δ0 < δ exist C0,KL > 0 so that for all s ∈ C, Re s ≥ −δ0,
|s| > C0 and all right hand sides F̂1 ∈ L2(R,Cn), Ĝ ∈ H1(R,Cn), F̂2 ∈ H1(R,Cm), exists a

unique solution (Ŵ , λ̂) of (4.3). It holds Ŵ ∈ H2(R,Cn)×H1(R,Cm) and

‖Ŵ‖H1 + |λ̂| ≤ KL

(
‖F̂1‖L2 + ‖Ĝ‖L2 + ‖F̂2‖H1

)
. (4.14)

Idea of proof. By Lemma 4.9 there are K,C0 > 0 so that for all s ∈ C there exists a unique

solution w0 = (u0, v0)
T ∈ H2(R)×H1(R) of

(sI − P )w =

(
F̂1 + Ĝx

F̂2

)
in L2(R)× L2(R).

This satisfies the estimate (4.11). Then Ŵ := (I − Π)w0 and λ̂ := −sΨ(w0)
Ψ(wo

x)
solve (4.3) and

satisfy estimate (4.14).

For the details we refer to [19, Lem. 4.3], which easily adapts to the current situation.

4.2.2 Compact subsets of the resolvent set

For s from a compact set Ω ⊂ {s ∈ C : Re s > −δ, s 6= 0} we generalize (4.3) to

A(s)

(
Ŵ

λ̂

)
=




(
Ĝx + F̂1

F̂2

)

σ


 , (4.15)

where σ ∈ C is arbitrary. In compact regions we have

Proposition 4.14. For every Ω as above there is a constant KC > 0 so that for all s ∈ Ω

and all right hand sides F̂1 ∈ L2(R,Cn), Ĝ ∈ H1(R,Cn), F̂2 ∈ H1(R,Cm), σ ∈ C, there

exists a unique solution (Ŵ , λ̂) of (4.15). It holds Ŵ ∈ H2(R,Cn)×H1(R,Cm) and

‖Ŵ‖H1 + |λ̂| ≤ KC

(
‖F̂1‖L2 + ‖Ĝ‖L2 + ‖F̂2‖L2

)
. (4.16)
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We do not give the proof because it is basically the same as that of Proposition 4.13, but

this time define Ŵ := (I −Π)w0 + σ
W o

x

Ψ(W o
x )

and λ̂ := −sΨ(w0)−σ
Ψ(W o

x )
.

4.2.3 Small |s|

Finally, we prove solution estimates for (4.3) in a small neighborhood of zero. Here the

algebraic constraint is crucial because it removes zero from the spectrum of the operator.

Proposition 4.15. There are c0,KS > 0 so that for all s ∈ C with |s| < c0 and all right

hand sides F̂1 ∈ L2(R), Ĝ ∈ H1(R), and F̂2 ∈ L2(R) there is a unique solution (Ŵ , λ̂),

Ŵ = (û, v̂) ∈ H2 ×H1, of (4.3) and

‖û‖H2 + ‖v̂‖H1 + |λ̂| ≤ KS

(
‖F̂1‖+ ‖Ĝ‖H1 + ‖F̂2‖

)
. (4.17)

Proposition 4.15 easily follows with a perturbation argument from the next lemma.

Lemma 4.16. There is c > 0 so that for every F̂1 ∈ L2(R), Ĝ ∈ H1(R), F̂2 ∈ L2(R), and

σ ∈ C there is a unique solution (w, λ), w = (u, v) ∈ H2 ×H1, of (4.15) and

‖u‖H2 + ‖v‖H1 + |λ| ≤ c
(
‖F̂1‖+ ‖Ĝ‖H1 + ‖F̂2‖+ |σ|

)
. (4.18)

Proof. Consider A(0) as a bounded linear operator from H2×H1×C to L2×L2×C. Assume

that H2 ×H1 × C ∋ (w, λ)T = (u, v, λ)T ∈ N
(
A(0)

)
. This implies

P

(
u

v

)
= −λ

(
uox

vox

)
,

which is only possible if λ = 0 since 0 is a simple eigenvalue of P by Assumption 1.3.

Therefore, (u, v) ∈ N (P ), i.e. (u, v) = ν(uox, v
o
x) for some ν ∈ C. But A(0)(νuox, νv

o
x, 0)

T = 0

implies νΨ(uox, v
o
x) = 0, what is equivalent to ν = 0 because of Assumption 3.1.

Moreover, by Proposition 4.11, A(0) is Fredholm of index 0, what implies that A(0) :

H2 ×H1 ×C → L2 ×L2 ×C is a linear homeomorphism. Therefore, the solution (u, v, λ) of

(4.15) satisfies for some constant c the estimate

‖u‖H2 + ‖v‖H1 + |λ| ≤ const
(
‖F̂1‖L2 + ‖Ĝx‖L2 + ‖F̂2‖L2 + |σ|

)
.

Proof of Proposition 4.15. Lemma 4.16 shows that A(0) : H2 ×H1 ×C → L2 × L2 ×C is a

linear homeomorphism. Then for small |s| the assertion follows from a simple perturbation
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argument.

With a von Neumann series argument we also obtain analytic dependence of A(s)−1 on

s from the results of Lemma 4.16 and Proposition 4.14:

Corollary 4.17. For every s ∈ C with Re s > −δ the operator A(s) from (4.3) is a linear

homeomorphism and its inverse A(s)−1 depends holomorphically on s for Re s > −δ.

5 PDAE Stability

Now we prove stability for the PDAE reformulation (3.7). We begin with linear stability

(Theorem 5.1) and then use the linear result to prove nonlinear stability (Theorem 5.9).

Without mentioning it again, we always impose Assumptions 1.1, 1.2, and 3.1. We again

denote by W the vector (u, v)T , consisting of the functions u and v, corresponding to the

“parabolic part” and “hyperbolic part”, respectively.

5.1 Linear PDAE Stability

We begin with the analysis of (4.2). First we show exponential well-posedness of the linear

PDAE problem to justify application of the Laplace transform. In the second step we use

the resolvent estimates from Section 4 to deduce linear stability. The linear result is the

following theorem. The precise meaning of a solution is given in Definition 5.2 below.

Theorem 5.1 (Linear PDAE Stability). For all F1, F2, G ∈ L∞
loc(J ;H

1), J = [0, T ] with

T > 0 or J = [0,∞), and all consistent initial data W0 = (u0, v0)
T ∈ H2(R,Rn+m), λ0 ∈ R,

there is a unique weak solution (W,λ)T = (u, v, λ)T of (4.2) in J .

The solution is a strong solution. Moreover, for every η0 < δ, δ from Assumptions 1.3

and 4.1, exists Cl, independent of F1, F2, G, u0, v0, λ0, so that for all η ≤ η0 and all t ∈ J ,

‖W (t)‖2H1 + e−2ηt

∫ t

0
e2ητ

{
‖W (τ)‖2H1 + |λ(τ)|2

}
dτ

≤ Cle
−2ηt

[
‖W0‖2H2 +

∫ t

0
e2ητ

{
‖G(τ)‖2H1 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2H1

}
dτ
]
. (5.1)

Finally, if F1, F2, G ∈ C(J ;L2), then also λ ∈ C([0,∞)).

5.1.1 Exponential Well-Posedness of the PDAE

Consider (4.2) subject to consistent initial data

W (0) = (u(0), v(0))T = (u0, v0)
T ∈ H1 ×H1, λ(0) = λ0 ∈ R (5.2)
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i.e. Ψ(u0, v0) = 0 and the hidden constraint Ψ(ut, vt)|t=0 = 0 is satisfied. This determines

λ0 in terms of u0, v0. For the inhomogeneities of (4.2) we assume

G ∈ L2
loc([0,∞);H1), F1 ∈ L2

loc([0,∞);H1), F2 ∈ L2
loc([0,∞);H1). (5.3)

Definition 5.2. The triple (u, v, λ) is called a weak solution of (4.2), (5.2) in [0, T ] if

u ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1) ∩H1(0, T ; (H1)′),

v ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1) ∩H1(0, T ;L2),

λ ∈ L2(0, T ;R),

such that (u, v) is a weak solution of the PDE part in the sense of Definition 2.3 and 0 =

Ψ(u, v) holds for a.e. t ∈ [0, T ].

A strong solution in [0, T ] is a weak solution (u, v, λ) in [0, T ] with

u ∈ C([0, T ];H1) ∩ L2(0, T ;H2) ∩H1(0, T ;L2) and v ∈ C([0, T ];H1) ∩H1(0, T ;L2),

so that (4.2) holds in L2 × L2 × R for almost every t ∈ [0, T ].

The triple (u, v, λ) is a weak (respectively strong) solution of the PDAE in [0, T ∗), T ∗ ∈
(0,∞], if it is a weak (respectively strong) solution in [0, T ] for all 0 < T < T ∗.

For the proof of well-posedness, we project the differential equation part of (4.2) onto

the manifold given by the algebraic constraint. The resulting linear PDE problem is expo-

nentially well-posed, see Proposition 5.4. Its solution leads to a solution of the original linear

PDAE (4.2). We also obtain exponential well-posedness for (4.2).

Applying the projector (I −Π), Π from (4.13), to the PDE part of (4.2) leads to

Wt =
(
I −Π

)
PW +

(
I −Π

)
(
F1 +Gx

F2

)
, t ≥ 0, (5.4)

subject to W (0) =W0 = (u0, v0)
T = (I −Π)(u0, v0)

T ∈ N (Ψ).

Use Π1 = uoxΨ(W o
x )

−1Ψ(·) and Π2 = voxΨ(W o
x )

−1Ψ(·) to define the operators

g̃ :W 7→ DgoW +G,

f̃1 :W 7→ Dfo1W −Π1PW + F1 −Π1(Gx + F1),

f̃2 :W 7→ Dfo2W −Π2PW + F2 −Π2(F2).

(5.5)
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Then equation (5.4) can be written in the form analyzed in Theorem 2.5:

(
u

v

)

t

=

(
A11uxx + g̃(u, v)x + f̃1(u, v)

B22vx + f̃2(u, v)

)
. (5.6)

Lemma 5.3. If F1, G, F2 satisfy (5.3), the operators g̃, f̃1, f̃2 satisfy Assumption 2.1.

Proof. By Assumption 1.2, Dgo, Dfo1 , and Df
o
2 are elements of C1

b . Therefore, g̃ satisfies the

properties from Assumption 2.1 because of (5.3) and Lemma 2.2 2.

For the analysis of f̃1 and f̃2 note that Π1 and Π2 can be considered as bounded linear

operators from L2(t0, T ;H
−1)×L2(t0, T ;H

−1) into L2(t0, T ;H
1) for 0 ≤ t0 < T . By Lemma

4.12, their norm is bounded by a constant CΠ independent of 0 ≤ t0 < T . Thus, F1 −
Π1(Gx + F1) ∈ L2

loc([0,∞);H1) and F2 −Π2(F2) ∈ L2
loc([0,∞);H1).

By Lemma 4.12, also the operators Πi◦P : L2(t0, T ;H
1)×L2(t0, T : H1) → L2(t0, T ;H

1),

i = 1, 2, are bounded by a constant CΠP , independent of t0 and T . This and Dfo1 , Df
o
2 ∈ C1

b

imply that f̃i, i = 1, 2, maps L2(t0, T ;H
1) ∩L∞(t0, T ;H

1) into L2(t0, T ;H
1). Moreover, for

i = 1, 2, and all W,W ′ ∈ L2(t0, T ;H
1) ∩ L∞(t0, T ;H

1), hold

‖f̃i(W )− f̃i(W
′)‖L2(t0,T ;H1) ≤

(
‖Dfo1‖W 1,∞ + CΠP

)
‖W −W ′‖L2(t0,T ;H1).

Now exponential well-posedness of the projected PDE (5.4) is an easy consequence of

Theorem 2.5. Here we greatly benefit from the abstract formulation of Theorem 2.5.

Proposition 5.4 (Well-posedness of the projected Cauchy problem). For all F1, G, F2 of

the form (5.3), the Cauchy problem for (5.4) with u0, v0 ∈ H1, Π(u0, v0) = 0, has a unique

weak solution (u, v)T on [0,∞), this even is a strong solution. Moreover, for every η0 ≥ 0

exists C, so that for all η ≤ η0 and all t ≥ 0 holds

‖u(t)‖2H1 + ‖v(t)‖2H1 ≤ CeCt
(
emax(−2ηt,0)

(
‖u0‖2H1 + ‖v0‖2H1

)

+ e−2ηt

∫ t

0
e2ητ

{
‖G(τ)‖2H1 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2H1

}
dτ
)
. (5.7)

Remark 5.5. If there is η ∈ R so that the integral term in (5.7) is uniformly bounded

for all t ≥ 0, then also the solution is exponentially bounded.

Proof. Because of Lemma 5.3, Theorem 2.5 applies and shows the existence and uniqueness
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part. To prove (5.7) rewrite (5.4) as

Wt = PW +
[
−ΠPW + (I −Π)

(
Gx + F1

F2

)]
, W (0) =W0.

The term −ΠPW satisfies ‖ΠPW‖L2(0,T ;H1) ≤ C‖W‖L2(0,T ;H1), for some C > 0, because of

Lemma 4.12, and we consider it as part of the forcing. Then the energy estimate, Lemma

2.6, yields for every η0 ≥ 0: There is C > 0 so that for all η ≤ η0 holds

e2ηt‖W (t)‖2H1 ≤ e2ηt‖W0‖2H1 + C

∫ t

0
e2ητ‖W (τ)‖2H1 dτ

+ C

∫ t

0
e2ητ

(
‖G(τ)‖2H1 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2H1

)
dτ, ∀t ≥ 0.

With Gronwall’s inequality [12, Lemma 6.3.6], applied to e2ηt‖W (t)‖2H1 , follows for all t ≥ 0

e2ηt‖W (t)‖2H1 ≤ CeCt
(
emax(2ηt,0)‖W0‖2H1

+

∫ t

0
e2ητ

{
‖G(τ)‖2H1 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2H1

}
dτ
)
.

This implies (5.7) and finishes the proof.

Well-posedness of the projected equation leads to well-posedness of the linear PDAE:

Proposition 5.6 (Well-posedness of the linear PDAE). For all F1, G, F2, satisfying (5.3),

and all consistent initial data u0 ∈ H1, v0 ∈ H1, λ0 ∈ R, there is a unique weak solution

(u, v, λ) of (4.2) on [0,∞), which in fact is a strong solution. Furthermore, if

∫ ∞

0
e2ηLt

(
‖F1(t)‖2L2 + ‖G(t)‖2H1 + ‖F2(t)‖2H1

)
dt <∞, (5.8)

for some ηL ∈ R, there are k, c ≥ 0, so that

‖u(t)‖2H1 + ‖v(t)‖2H1 ≤ kect, for all t ≥ 0, and

∫ ∞

0
e−cτ |λ(τ)|2 dτ <∞. (5.9)

Finally, if there are ηe,Ke ∈ R so that
(
‖F1(t)‖2L2 + ‖G(t)‖2L2 + ‖F2(t)‖2L2

)
≤ Kee

−ηet for

a.e. t ≥ 0, then also λ satisfies |λ(t)|2 ≤ kect, for a.e. t ≥ 0, for some constants k and c.

Proof. Step 1: [Uniqueness] Let (u, v, λ)T be a weak solution of (4.2) in [0, T ]. By

26



definition, W = (u, v)T is a weak solution in the sense of Definition 2.3 in [0, T ] of

(
u

v

)

t

= P

(
u

v

)
+

(
Gx + F1

F2

)
+ λW o

x , u(0) = u0, v(0) = v0. (5.10)

The assumptions imply, G,F1 + λuox, F2 + λvox ∈ L2([0, T ];H1), so that (u, v)T is the unique

strong solution of (5.10) by Corollary 2.7. In particular,

u ∈ C([0, T ];H1) ∩ L2(0, T ;H2) ∩H1(0, T ;L2),

v ∈ C([0, T ];H1) ∩H1(0, T ;L2),
(5.11)

and every weak solution of (4.2) already is a strong solution.

By assumption, Ψ(W ) = 0 for a.e. t ∈ [0, T ]. Moreover, t 7→ Ψ(W (t)) ∈ H1([0, T ]) by

(5.11). As in the proof of Lemma 3.3 its distributional derivative is

d

dt
Ψ

(
u

v

)
= Ψ

(
P

(
u

v

)
+

(
F1 +G1,x

F2

))
+ λΨ(W o

x ) = 0, for a.e. t ∈ [0, T ].

This equality can be solved for λ,

λ = −Ψ(W o
x )

−1Ψ
(
P

(
u

v

)
+

(
F1 +Gx

F2

))
, for a.e. t ∈ [0, T ]. (5.12)

Inserting (5.12) into (5.10) and recalling the definition (4.13) of Π shows

(
u

v

)

t

= (I −Π)P

(
u

v

)
+ (I −Π)

(
F1 +Gx

F2

)
,

where the equality holds in L2(R,Rp)×L2(R,Rm) for a.e. t ∈ [0, T ]. Therefore, (u, v)T solves

(5.4) and is uniquely determined by Proposition 5.4.

Step 2: [Existence] LetW := (u, v)T solve (5.4) and define λ by (5.12). By Proposition

5.4 u and v satisfy (5.11). Moreover, because of Lemma 4.12, for a.e. t ∈ [0,∞),

∣∣Ψ(PW )
∣∣+
∣∣Ψ
(
(Gx + F1, F2)

T
)∣∣ ≤ c

(
‖W‖H1 + ‖F1‖L2 + ‖G‖L2 + ‖F2‖L2

)
, (5.13)

for some c ∈ R. Therefore, λ ∈ L2
loc([0,∞);R) follows from (5.12). Since (u, v)T solves

(5.4) and λ is given by (5.12), the computation from Step 1 can be reversed and yields that

(u, v, λ) satisfies (5.10) and Ψ((u, v)T ) = 0 holds.

Step 3: [Estimates] Let (u, v, λ) be the unique solution. If (5.8) holds, Proposition 5.4
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implies the exponential estimates (5.9) for u and v. For λ, given by (5.12), follows

∫ ∞

0
e−c′τ |λ(τ)|2 dτ ≤ const

∫ ∞

0
e−c′τ

(
‖u(τ)‖2H1 + ‖v(τ)‖2H1

+ ‖G(τ)‖2L2 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2L2

)
dτ, (5.14)

from the boundedness of Ψ and Ψ ◦P . The integral converges for sufficiently large c′ so that

the estimate (5.9) for λ follows. In the case of exponentially bounded inhomogeneities, the

exponential boundedness of λ again follows from (5.12) and the properties of Ψ and P .

Remark 5.7. 1. The proof shows that λ is uniquely given by (5.12). This implies

λ ∈ C([0,∞)) for F1 ∈ C([0,∞); (H1)′), G ∈ C([0,∞);L2), F2 ∈ C([0,∞);L2).

2. Note that we did not make use of the spectral structure of P , i.e. Assumptions 1.3 and

4.1, in the above proofs.

5.1.2 Proof of Linear Stability, Theorem 5.1

The stability proof now proceeds as in the purely hyperbolic case [19, Thm. 5.3]. Therefore

we refer to that article and to [18] for the details and restrict here to the ideas and some

differences originating from the parabolic-hyperbolic structure.

That the Laplace transform in combination with resolvent estimates can be use for the

proof of stability is well known. We adapt several ideas from [13] to the PDAE problem

considered here. Note that in that reference no PDAE problem was considered and also no

justification for the Laplace transform is given. We justify its use in the following Step 1.

Step 1: Start with consistent initial data u0 = 0, v0 = 0, and λ0. Assume that F1, G, F2

satisfy (5.8) for ηL = δ, and
(
‖F1(t)‖2L2 +‖G(t)‖2L2 +‖F2(t)‖2L2

)
≤ Kee

−ηet for some Ke, ηe ∈
R. Proposition 5.6 shows exponential boundedness of the unique solution (u, v, λ)T of (4.2).

Thus, its Laplace transform exists for all s ∈ C with Re s > α for some α ∈ R. As in the

proof of [19, Thm. 5.3] the Laplace-transformed functions (û, v̂, λ̂)T holomorphically extend

to the half plane {Re s > −δ} and are given by the solution of the resolvent equation (4.3).

Propositions 4.13-4.15 show that for every η0 < δ there is a constant Kη0 , independent

of F1, G, F2, so that for all s ∈ C with Re s ≥ −η0 holds

‖û(s)‖2H1 + ‖v̂(s)‖2H1 + |λ̂(s)|2 ≤ Kη0

(
‖F̂1(s)‖2L2 + ‖Ĝ(s)‖2L2 + ‖F̂2(s)‖2H1

)
. (5.15)

By assumption the right hand side is uniformly bounded for all Re s ≥ −η0 and, therefore,

by [1, Thm. 4.4.13] the Laplace transforms of u, v, λ exist for all Re s > −δ and coincide
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with û, v̂, λ̂. This can be interpreted as a justification to shift the contour for the inverse

Laplace transform into the left half plane. Therefore, Plancherel’s Theorem [1, Thm. 1.8.2]

shows for all η ≤ η0,

∫ ∞

0
e2ητ

(
‖u(τ)‖2H1 + ‖v(τ)‖2H1 + |λ(τ)|2

)
dτ

≤ Kη0

∫ ∞

0
e2ητ

(
‖F1(τ)‖2L2 + ‖G(τ)‖2L2 + ‖F2(τ)‖2H1

)
dτ. (5.16)

Step 2: Consider consistent initial data (u0, v0) = 0, λ0, and F1 ∈ L∞
loc([0,∞);L2),

G ∈ L∞
loc([0,∞);H1), F2 ∈ L∞

loc([0,∞);H1). A “future does not influence the past” argument

similar to the one used in [19], proves with η and Kη0 from Step 1 for all t ≥ 0

∫ t

0
e2ητ

(
‖u(τ)‖2H1 + ‖v(τ)‖2H1 + |λ(τ)|2

)
dτ

≤ Kη0

∫ t

0
e2ητ

(
‖F1(τ)‖2L2 + ‖G(τ)‖2L2 + ‖F2(τ)‖2H1

)
dτ.

By only considering the PDE part of (4.2) with λW o
x as part of the forcing, we obtain from

the last estimate with the energy estimate, Lemma 2.6, for all t ≥ 0,

‖W (t)‖2H1 + e−2ηt

∫ t

0
e2ητ

(
‖W (τ)‖2H1 + |λ(τ)|2

)
dτ

≤ e−2ηtCη0

∫ t

0
e2ητ

(
‖G(τ)‖2H1 + ‖F1(τ)‖2L2 + ‖F2(τ)‖2H1

)
dt. (5.17)

The constant Cη0 does not depend on the choice of η ≤ η0.

Step 3: In case W0 = (u0, v0)
T 6= 0 ∈ H2 ×H2, transform (4.2) via W̃ :=W − e−2δtW0

to homogeneous initial data. Then the inhomogeneities become

F̃1(·, t) = F1(·, t) + 2δe−2δtu0 + e−2δt
(
(DgoW0)x +Dfo1W0

)
,

G̃(·, t) = G(·, t) + e−2δtA11u0,x,

F̃2(·, t) = F2(·, t) + 2δe−2δtv0 + e−2δt
(
B22v0,x +Dfo2W0

)
,

and have the same smoothness properties as F1, G, F2. The result from Step 2 now applies
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to the transformed variables and shows for all t ≥ 0

‖W (t)‖2H1 + e−2ηt

∫ t

0
e2ητ (‖W (τ)‖2H1 + |λ(τ)|2) dτ

≤ 2
{
‖W̃ (t)‖2H1 + e−2ηt

∫ t

0
e2ητ (‖W̃ (τ)‖2H1 + |λ(τ)|2) dτ

+ e−4δt‖W0‖2H1 + e−2ηt

∫ t

0
e(2η−4δ)τ‖W0‖2H1 dτ

}

≤ 2
{
e−2ηtCη0

∫ t

0
e2ητ

(
‖F̃1(τ)‖2L2 + ‖G̃(t)‖2H1 + ‖F̃2(τ)‖2H1

)
dτ

+ e−2ηt(1 +
1

2δ
)
[
‖u0‖2H1 + ‖v0‖2H1

]}
.

Furthermore, there is C̃, independent of W0, λ0, F1, G, F2, so that for all t ≥ 0 holds

‖G̃(t)‖H1 ≤ ‖G(t)‖H1 + C̃e−2δt‖u0‖H2 ,

‖F̃1(t)‖L2 ≤ ‖F1(t)‖L2 + C̃e−2δt (‖u0‖H1 + ‖v0‖H1) ,

‖F̃2(t)‖H1 ≤ ‖F2(t)‖H1 + C̃e−2δt (‖u0‖H1 + ‖v0‖H2) .

Inserting these estimates finish the proof of Theorem 5.1.

Remark 5.8. Note that in the last step of the proof we had to use H2 estimates of the

initial data to obtain an H1 estimate for the solution.

5.2 Nonlinear Stability of the PDAE

In this section we prove stability for the nonlinear parabolic-hyperbolic PDAE (3.7a) subject

to consistent initial data W̃ (0) = (ũ0, ṽ0)
T , ϕ̃(0) = ϕ̃0, λ̃(0) = λ̃0.

Theorem 5.9. Impose Assumptions 1.1, 1.2, 1.3, 3.1, 4.1. Then for every 0 < η < δ, δ

from Assumptions 1.3 and 4.1, there are ρ0, θ0 > 0 so that for all consistent initial data

ũ0, ṽ0 ∈ H2, ϕ̃0, λ̃0 ∈ R, with ‖ũ0‖2H2 +‖ṽ0‖2H2 ≤ ρ20 and |ϕ̃0| ≤ θ0, there is a unique solution

(ũ, ṽ, ϕ̃, λ̃) of (3.7) on [0,∞). The solution satisfies ϕ̃(t) ∈ U for all t ≥ 0, U given by

Lemma 3.2. Moreover, there is ϕ̃∞ ∈ R so that with Cl from Theorem 5.1 hold for all t ≥ 0,
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|ϕ̃∞| ≤ |ϕ̃0|+
(
Cl

η

)1/2 (
‖ũ0‖2H2 + ‖ṽ0‖2H2

)1/2
, (5.18a)

|ϕ̃(t)− ϕ̃∞|2 ≤ Cl

η

(
‖ũ0‖2H2 + ‖ṽ0‖2H2

)
e−2ηt, (5.18b)

‖ũ(t)‖2H1 + ‖ṽ(t)‖2H1 ≤ Cl

(
‖ũ0‖2H2 + ‖ṽ0‖2H2

)
e−2ηt, (5.18c)

∫ t

0
e2ητ |λ̃(τ)|2 dτ ≤ 2Cl

(
‖ũ0‖2H2 + ‖ṽ0‖2H2

)
. (5.18d)

The techniques are closely related to those used in [20] for the purely hyperbolic case.

Therefore we refer to that article and to [18] at some places of the proof.

Proof. Step 0: [Rescaling] Let ε > 0, ε will be chosen below, and consider the rescaled

variables εū = ũ, εv̄ = ṽ, εϕ̄ = ϕ̃, ελ̄ = λ̃. Also define for i, j = 1, 2 the rescaled nonlinearities

ε2F ε
ij(ϕ̄, ū, v̄) := Fij(εϕ̄, εū, εv̄), ε

2Gε
i (ϕ̄, ū, v̄) := Gi(εϕ̄, εū, εv̄), ε

2Rε
i (ϕ̄, λ̄) := Ri(εϕ̄, ελ̄).

where Fij , Gi, Ri are given in (3.8). This yields the rescaled PDAE

ūt = A11ūxx +
{
Dgo

(
ū

v̄

)}
x
+Dfo1

(
ū

v̄

)
+ λ̄uox

+ ε
{
Gε

1(ϕ̄, ū, v̄) +Gε
2(ϕ̄, ū, v̄)

}
x
+ εF ε

11(ϕ̄, ū, v̄) + εF ε
12(ϕ̄, ū, v̄) + εRε

1(ϕ̄, ū),

v̄t = B22v̄x +Dfo2

(
ū

v̄

)
+ λ̄vox + εF ε

21(ϕ̄, ū, v̄) + εF ε
22(ϕ̄, ū, v̄) + εRε

2(ϕ̄, λ̄),

ϕ̄t = λ̄,

0 = Ψ(ū, v̄),

(5.19a)

subject to the, again consistent, initial conditions

ū(0) = ū0 :=
1

ε
ũ0, v̄(0) = v̄0 :=

1

ε
ṽ0, ϕ̄(0) = ϕ̄0 :=

1

ε
ϕ̃0, λ̄(0) = λ̄0 :=

1

ε
λ̃0. (5.19b)

Then (ũ, ṽ, ϕ̃, λ̃) is a solution of (3.7) if and only if (ū, v̄, ϕ̄, λ̄) is a solution of (5.19). Hence,

it suffices to show that for every 0 < η < δ there are ε0, ω0 > 0 so that for all 0 < ε ≤ ε0 and

all initial data ū0 ∈ H2, v̄0 ∈ H2, ϕ̄0, λ̄0 ∈ R with ‖ū0‖2H2 +‖v̄0‖2H2 ≤ ω0 and |ϕ̄0| ≤ 1, (5.19)

has a unique classical solution (ū, v̄, ϕ̄, λ̄) on [0,∞), |ϕ̄(t)| ≤ 2 for all t ≥ 0 and, moreover,

there is ϕ̄∞ ∈ R so that for all t ≥ 0, (5.18) with˜ replaced by ¯ holds.

From now on let U , V , E, Φ be as in Section 3. Let 0 < η < δ be given and let Cl be
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the constant from Theorem 5.1. Let ε1 > 0 with ε1 ≤ (2Cl)
−1/2, B3ε1(0) ⊂ U .

Step 1: [A priori estimates] Let 0 < ε < ε1 and assume there is a solution (ū, v̄, ϕ̄, λ̄)

of (5.19) on [0, T ], T > 0, satisfying

|ϕ̄(t)| ≤ 2,
(
‖ū(t)‖2H1 + ‖v̄(t)‖2H1

)1/2 ≤ 2 ∀0 ≤ t ≤ T.

By Lemmas B.4, B.5, and B.6 the functions F ε
ij(ϕ̄, ū, v̄), G

ε
i (ϕ̄, ū, v̄), and Rε

i (ϕ̄, λ̄) are ele-

ments of C([0, T ];H1) and there is a constant Cn, independent of T , so that for all 0 ≤ t ≤ T :

‖Gε
i (ϕ̄, ū, v̄)‖2H1 ≤ Cn(‖ū‖2H1 + ‖v̄‖2H1), i = 1, 2,

‖F ε
ij(ϕ̄, ū, v̄)‖2H1 ≤ Cn(‖ū‖2H1 + ‖v̄‖2H1), i, j = 1, 2,

‖Rε
i (ϕ̄, λ̄)‖2H1 ≤ Cn|λ̄|2, i = 1, 2.

(5.20)

Consider the nonlinearities as inhomogeneities in the linear PDAE (4.1), i.e.

G = ε(Gε
1 +Gε

2), F1 = ε
(
F ε
11 + F ε

12 +Rε
1

)
, F2 = ε

(
F ε
21 + F ε

22 +Rε
2

)
.

Then Theorem 5.1 applies and, together with (5.20), yields for all 0 ≤ t ≤ T ,

‖ū(t)‖2H1 + ‖v̄(t)‖2H1 + e−2ηt

∫ t

0
e2ητ

(
‖ū(τ)‖2H1 + ‖v̄(τ)‖2H1 + |λ̄(τ)|2

)
dτ

≤ Cle
−2ηt

[
‖ū0‖2H2 + ‖v̄0‖2H2 + 5ε2Cn

∫ t

0
e2ητ

(
‖ū(τ)‖2H1 + ‖v̄(τ)‖2H1 + |λ̄(τ)|2

)
dτ
]
.

If 0 < ε ≤ ε0 =: min(ε1, (10ClCn)
−1/2), it follows for all 0 ≤ t ≤ T the bound

‖ū(t)‖2H1 + ‖v̄(t)‖2H1 +
1

2
e−2ηt

∫ t

0
e2ητ

(
‖ū(τ)‖2H1 + ‖v̄(τ)‖2H1 + |λ̄(τ)|2

)
dτ

≤ Cle
−2ηt

[
‖ū0‖2H2 + ‖v̄0‖2H2

]
. (5.21)

Because of ϕ̄t = λ̄, this also yields an estimate for the algebraic variable:

|ϕ̄(t)| ≤ |ϕ̄0 +

∫ t

0
λ̄(τ) dτ | ≤ |ϕ̄0|+

(
Cl

η

)1/2 [
‖ū0‖2H2 + ‖v̄0‖2H2

]1/2
, for all 0 ≤ t ≤ T.

(5.22)

Step 2: [Local Existence and Uniqueness] Let 0 < ε ≤ ε0 with ε0 from Step 1.

Then (ū, v̄, ϕ̄, λ̄) is a solution of (5.19) in [0, T ] if an only if (εū, εv̄, εϕ̄, ελ̄) solves (3.7) in

[0, T ] with the corresponding initial data. Therefore, if εϕ̄(t) ∈ U for all t ∈ [0, T ], Theorem

3.5 shows that (ū, v̄, ϕ̄, λ̄) is a solution of (5.19) if and only if (u, v) = Ξ(εϕ̄, εū, εv̄) solves the
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Cauchy problem (1.3) in [0, T ] with u(0) = εū0 + uo(· − εϕ̄0) and v(0) = εv̄0 + vo(· − εϕ̄0).

Let (u∗, v∗) denote the unique global solution of (1.3) with these initial data. Let [0, T ∗),

T ∗ ∈ (0,∞], denote its interval of existence (Theorem 2.8). The consistency assumption,

ε ≤ ε1, and |ϕ̄0| ≤ 1, imply

Ψ(u∗(0)− uo, v∗(0)− vo) ∈ V.

Because (u∗, v∗) is continuous intoH1, there is 0 < T1 < T ∗, such that Ψ(u∗(t)−u, v∗(t)−v) ∈
V for all 0 ≤ t ≤ T1. This proves local existence and uniqueness.

Step 3: [Global Existence] Global existence follows by a simple bootstrapping argu-

ment. We refer to [20] where a similar argument was used for a purely hyperbolic problem.

Step 4: [Rate of convergence] The estimates (5.18) follow from the a priori bounds

(5.21) and (5.22).

6 Nonlinear Stability of Traveling Waves

In this section we prove our main stability result. We begin with asymptotic stability with

asymptotic phase for steady states. Stability of traveling waves is a simple corollary.

Theorem 6.1 (Asymptotic stability with asymptotic phase). Consider (1.3) and impose

Assumptions 1.1, 1.2, 1.3, 4.1. Then for every 0 < η < δ there is ρ > 0 so that for all

u0 ∈ uo +H2(R,Rn) and v0 ∈ vo +H2(R,Rm), with
(
‖u0 − uo‖2H2 + ‖v0 − vo‖2H2

)1/2
< ρ,

exists a unique solution (u, v) of (1.3) on [0,∞), and for all 0 < T <∞,

u ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2).

Moreover, there is ϕ∞ = ϕ∞(u0, v0) ∈ R and C = C(η) > 0, so that

|ϕ∞| ≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
, and (6.1)

‖u(t)− uo(· − ϕ∞)‖H1 + ‖v(t)− vo(· − ϕ∞)‖H1

≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
e−ηt ∀t ≥ 0. (6.2)

For the proof we rewrite the system in the form (1.8), using the nonlinear change of

coordinates (1.7) which was analyzed in Section 3. This method of proof was first presented

in [20] for the pure hyperbolic case. Because it is not difficult to adapt the proof from that

paper to the current situation, we only show that Theorem 5.9 applies to system (1.8).
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Proof. Let 0 < η < δ be given. Choose some Ψ which satisfies Assumption 3.1 and let

E,U, V,Φ be given as in Section 3. Let ρ0, θ0 > 0 be the constants from Theorem 5.9.

Then the mapping (u, v) 7→ Φ ◦ Ψ(u − uo, v − vo) is continuously differentiable in an open

neighborhood of (uo, vo) in (uo +H2)× (vo +H2). In particular, there are ρ1, Clip > 0 and

Clip > 0 so that for all ‖u− uo‖2H1 + ‖v − vo‖2H1 ≤ ρ21 holds

∣∣Φ
(
Ψ(u− uo, v − vo)

)∣∣ ≤ Clip

(
‖u− uo‖2H1 + ‖v − vo‖2H1

)1/2
. (6.3)

Let

ρ = min
(
ρ1,

θ0

Clip
,

ρ20
2(1 + C2

lip(‖uox‖2H2 + ‖vox‖2H2))

)
.

By Theorem 3.5 the initial data of the PDAE reformulation are given by (3.7b), i.e. ϕ̃0 =

Φ
(
Ψ(u0 − uo, v0 − vo)

)
, ũ0 = u0 − uo(· − ϕ̃0), and ṽ0 = v0 − vo(· − ϕ̃0). Therefore, if

‖u0 − uo‖2H2 + ‖v0 − vo‖2H1 ≤ ρ2 it follows from (6.3)

|ϕ̃0| ≤ Clip

(
‖u0 − uo‖2H1 + ‖v0 − vo‖2H1

)1/2 ≤ θ0. (6.4)

Inserting (6.4) into the formulas for ũ0 and ṽ0, shows

‖ũ0‖2H2 + ‖ṽ0‖2H2

≤ 2
(
‖u0 − uo‖2H2 + ‖v0 − vo‖2H2 + ‖uo − uo(· − ϕ̃0)‖2H2 + ‖vo − vo(· − ϕ̃0)‖2H2

)

≤ 2
(
1 +

(
‖uox‖2H2 + ‖vox‖2H2

)
C2
lip

)(
‖u0 − uo‖2H2 + ‖v0 − vo‖2H2

)
≤ ρ20. (6.5)

Therefore, Theorem 5.9 applies.

The assertion then easily follows from Theorem 3.5 and the convergence results (5.18a)–

(5.18d). For the details we refere to the analysis of the hyperbolic case in [20].

By going into a co-moving frame, a traveling wave becomes a steady state. Therefore,

Theorem 6.1 immediately imples the stability result for traveling waves, Theorem 1.4.
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7 Application to the Hodgkin-Huxley Model

The nerve axon equations, as presented by Hodgkin and Huxley in [11], read

CMVt =
a

2R
Vxx − ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡl(V − Vl),

nt = αn(V ) (1− n)− βn(V )n,

mt = αm(V ) (1−m)− βm(V )m,

ht = αh(V ) (1− h)− βh(V )h,

(7.1)

where

αn =
1

100
(V + 10)

(
exp(V+10

10 )− 1
)−1

, βn =
1

8
exp( V80),

αm =
1

10
(V + 25)

(
exp(V+25

10 )− 1
)−1

, βm = 4 exp( V18),

αh =
7

100
exp( V20), βh =

(
exp(V+30

10 ) + 1
)−1

.

The values of the constants in (7.1) are

CM = 1, VNa = −115, VK = 12, Vl = −10.613, ḡNa = 120, ḡK = 36, ḡl = 0.3,

and a,R are assumed to be larger than zero. Denote u(x, t) = V (x, t) ∈ R and v(x, t) =

(n(x, t),m(x, t), h(x, t))T ∈ R
3 and define the functions

f1(u, v) =
1

CM

(
−ḡKn4(V − VK)− ḡNam

3h(V − VNa)− ḡl(V − Vl)
)
,

f2(u, v) =



αn(u)(1− v1)− βn(u)v1

αm(u)(1− v2)− βm(u)v2

αh(u)(1− v3)− βh(u)v3


 .

Then (7.1) can be written in the form (1.1):

ut =
a

2RCM
uxx + f1(u, v), vt = f2(u, v). (7.2)

It is well-known, that the system has a traveling wave solution, whose profile and speed we

denote by (uo, vo) and λo, respectively. In the co-moving frame with speed λo (7.2) reads

ut =
a

2RCM
uxx + λoux + f1(u, v), vt = λovx + f2(u, v). (7.3)
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By numerical calculation one finds a rest state for (7.3) at

(u∞, v∞) = (V∞, n∞,m∞, h∞) = (−0.00362, 0.31773, 0.05295, 0.59599), (7.4)

and (uo(x), vo(x)) → (u∞, v∞) as x→ ±∞. We check the Assumptions 1.1, 1.2, 1.3 and 4.1

which are needed for Theorem 1.4:

Assumption 1.1 obviously holds and also 4.1 1 is satisfied since λo 6= 0.

Consider part 3 of Assumption 4.1. Note that the coefficients of the linearized operator

P at x = ±∞ read (we drop the index ± for readability reasons)

A =

(
A11 0

0 0

)
=




a
2RCM

0 · · · 0
0

0
...

0



, B =

(
B11 0

0 B22

)
=




λo 0 · · · 0
0

λ
o
I

...

0



,

C = (cij) =

(
f ′1

f ′2

)(
u∞

v∞

)
=




−0.6775 55.44 −69.19 −2.049

−0.002808 −0.1832 0 0

−0.02637 0 −4.223 0

0.004107 0 0 −0.1174




=

(
C11 C12

C21 C22

)
,

where we rounded C to four digits. (Capital letters denote block matrices and small letters

denote the matrix entries).

Let H = diag(1, h2, h3, h4) = diag(1,− c12
c21
, 2000,− c14

c41
) > 0. Then for every v ∈ C

4 holds

v∗(HC + C∗H)v

= 2c11|v1|2 + 2h2c22|v2|2 + 2h3c33|v3|2 + 2h4c44|v4|2 + 2(c13 + h3c31)Re(v1v3)

≤
[
2c11 −

c13h3c31

100

]
|v1|2 + 2h2c22|v2|2 +

[
2h3c33 − 100(c13h3c31)

]
|v3|2 + 2h4c44|v4|2

≤ 2 · (−0.05)v∗Hv,

where we used |Re(v1v3)| ≤ ε
2 |v1|2+ 1

2ε |v2|2 with ε = 1
100 . Now assume s ∈ σ(−ω2A+iωB+C)

for some ω ∈ R and let v ∈ C
4\{0} be a corresponding eigenvector, i.e. (−ω2A+iωB+C)v =

sv. Therefore, 2Re s = 2Re
(
(sv∗Hv)(v∗Hv)−1

)
, but

2Re(sv∗Hv) = v∗H(−ω2A+ iωB + C)v + v∗(−ω2A∗ − iωB + C∗)Hv

= −ω2 a

RCM
|v1|2 + v∗

(
HC + C∗H

)
v ≤ 2 · (−0.05)v∗Hv

implies Re s ≤ −0.05, so that Assumption 4.1 3 holds with δ = 0.05.
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To verify Assumption 1.2 and part 2 of Assumption 4.1, we consider the profile of the

traveling wave. First of all, the coefficients f1, f2 and g are sufficiently smooth. The profile

(uo, vo) is a steady state of (7.3) and we write the resulting infinite boundary value problem

as a first order system by using the transformation U = (U1, U2, U3:5) = (u, ux, v). This

yields

U ′ =




U2

−λo2RCM

a U2 − 2RCM

a f1(U1, U3:5)

− 1
λo f2(U1, U3:5)


 (7.5)

and linearization at the fixed point (u∞, 0, v∞)T yields

U ′ =




0 1 0

−A−1
11 C11 −A−1

11 λ
o −A−1

11 C12

− 1
λoC21 0 − 1

λoC22


U =:M∞U.

The above analysis implies that M∞ is hyperbolic: Assume (u,w, v)T ∈ C
1+1+3 is an eigen-

vector of M∞ to the eigenvalue κ, i.e. M∞(u,w, v)T = κ(u,w, v)T . This leads to

(
κ2

(
A11 0

0 0

)
+ κ

(
B11 0

0 B22

)
+

(
C11 C12

C21 C22

))(
u

v

)
= 0.

Therefore, 0 ∈ σ(κ2A+κB+C), so that Reκ 6= 0 since Assumption 4.1 3. holds. Therefore,

M∞ is hyperbolic and the solution (uo, uox, v
o) approaches the rest state (u∞, 0, v∞) expo-

nentially fast. Hence (uo, vo) ∈ C1
b and (uox, v

o
x) ∈ H2 follows, so that Assumption 1.2 and

part 2 of 4.1 hold. Thus, all Assumptions of Theorem 1.4 except for Assumption 1.3 are

verified.

Theorem 7.1. A traveling pulse solution of the Hodgkin-Huxley model (7.1) with the asymp-

totic states (u∞, v∞) is asymptotically stable if Assumption 1.3 holds.

Note that Assumption 1.3 can checked numerically by approximation with a finite interval

boundary value problem (see for example [17]).

A A Perturbation Result from Linear Algebra

We recall a well-known result about the perturbation of invariant subspaces. A reference is

[22, §V Thm. 2.1]. Here we use ‖·‖ to denote the euclidean vector norm and its corresponding
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matrix norm. Consider a matrix written in block form:

W =

(
W11 W12

W21 W22

)
∈ C

n+m,n+m, (A.1)

where W11 ∈ C
n,n, W12 ∈ C

n,m, W21 ∈ C
m,n, W22 ∈ C

m,m.

Theorem A.1. Let W be given as above. Assume

δ = sep(W11,W22) := inf
P∈Cm,n,‖P‖=1

‖PW11 −W22P‖ > 0.

If ‖W12‖‖W21‖
δ2

< 1
4 there is a unique solution P ∈ C

m,n of

PW11 −W22P + PW12P =W21, (A.2)

satisfying

‖P‖ ≤ 2‖W21‖
δ

. (A.3)

Using P , the solution of (A.2), W is similar to the upper triangular block matrix

(
I 0

−P I

)
W

(
I 0

P I

)
=

(
W11 +W12P W12

0 W22 − PW12

)
. (A.4)

Proof of Lemma 4.7. For convenience we suppress ± in the proof. Let Wij be defined by

(
W11(ω) W12(ω)

W21(ω) W22(ω)

)
:=

(
−ω2A11 + iωB11 + C11 iωB12 + C12

C21 iωB22 + C22

)
.

For the separation of the matrices W11(ω) and W22(ω) holds

sep
(
W11(ω),W22(ω)

)
:= inf

‖P‖=1
‖PW11(ω)−W22(ω)P‖

≥ inf
‖P‖=1

‖ω2PA‖ − |ω|‖B11‖ − ‖C11‖ − |ω|‖B22‖ − ‖C22‖

≥ ω2

‖A−1‖ − |ω|
(
‖B11‖+ ‖B22‖

)
−
(
‖C11‖+ ‖C22‖

)
≥ ω2

2‖A−1‖ ∀|ω| > ω1.

Therefore,

sep
(
W11(ω),W22(ω)

)2

4‖W21(ω)‖
>

ω4

8|ω|‖A−1‖2
(
‖B12‖+ ‖C12‖

) ∀ω ∈ R, |ω| > ω1,
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so that there is ω2 ≥ ω1 such that for all ω ∈ R with |ω| > ω2

‖C21‖ = ‖W21(ω)‖ <
sep
(
W11(ω),W22(ω)

)2

4‖W21(ω)‖
.

Then Theorem A.1 shows that for all such ω there is P = P (ω) so that

(
W11 W12

W21 W22

)(
I 0

P I

)
=

(
I 0

P I

)(
W11 +W12P W12

0 W22 − PW12

)

what implies for the spectrum

σ

(
W11(ω) W12(ω)

W21(ω) W22(ω)

)
= σ

(
W11(ω) +W12(ω)P (ω)

)
∪ σ
(
W22(ω)− P (ω)W12(ω)

)
.

Furthermore, the matrix P satisfies

‖P (ω)‖ < 2
‖C21‖

sep
(
W11(ω),W22(ω)

) ≤ 4‖A−1‖‖C21‖
ω2

, (A.5)

and P (ω)W12(ω) is a perturbation of order 1
|ω| of iωB22 + C22. This implies the assertion

(see for example [19, Lem. A.1].

We also use the perturbation result Theorem A.1 to obtain statements about the asymp-

totics of the matrices M±(s) from (4.6) for s→ +∞. For simplicity we suppress ±.

Let s ∈ R and s >> 0. For ρ =
√
s let

Sρ =



I 0 0

0 ρI 0

0 0 I


 and TB12

=



I 0 0

0 I B12

0 0 I


 ∈ C

n+n+m,n+n+m,

obviously S−1
ρ = Sρ−1 , T−1

B12
= T−B12

. The matrix M(s) is equivalent to

M̃(s) =

(
M̃11(s) M̃12(s)

M̃21(s) M̃22(s)

)
:= Sρ−1TB12

M(s)T−B12
Sρ

=




0 ρA−1
11 −A−1

11 B12

1
ρ(sI − C11) −B11A

−1
11

1
ρ(B11A

−1
11 B12 − C12)

−B−1
22 C21 0 B−1

22 (sI − C22)


 .
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It is easy to see for sufficiently large s ∈ R that the separation of the diagonal blocks satisfies

δ = sep(M̃11(s), M̃22(s)) ≥ inf
‖P‖=1

‖sB−1
22 P‖ − ρc‖P‖ ≥ cρ2‖P‖,

where c is a generic constant. Moreover, ‖M̃12(s)‖, ‖M̃21(s)‖ ≤ c, so that

‖M̃12(s)‖‖M̃21(s)‖
δ2

≤ cρ−4 <
1

4
,

for s sufficiently large. By Theorem A.1 there is a unique solution P (s) of

P (s)M̃11(s)− M̃22(s)P (s) + P (s)M̃12(s)P (s) = M̃21(s), with

‖P‖ ≤ 2ρ−2‖M21(s)‖ ≤ cρ−2. (A.6)

This transforms M̃(s) into upper block triangular form M̃ ′(s) via (A.4). Hence, it suffices

to consider the spectra of

M̃11(s) + M̃12(s)P (s) = M̃11(s) +O(1ρ) =

(
0 ρA−1

11

ρI 0

)
+O(1),

M̃22(s)− P (s)M̃12(s) = B−1
22 (sI − C22) +O(1ρ) = sB−1

22 +O(1),

which are the diagonal blocks of M̃ ′(s). Let A11T = TJ , where J is a Jordan matrix. By

Assumption 1.1 all eigenvalues of J have positive real part and the positive square root J
1

2

is well defined. Then

(
0 A

I 0

)(
TJ

1

2 −TJ 1

2

T T

)
=

(
TJ

1

2 −TJ 1

2

T T

)(
J

1

2 0

0 −J 1

2

)
=: T̃

(
J

1

2 0

0 −J 1

2

)
,

so that

T̃−1(

(
0 ρA−1

ρI 0

)
+O(1))T̃ = ρ

(
J

1

2 0

0 −J 1

2

)
+O(1).

For s sufficiently large, Gershgorin’s Theorem (e.g. [24, p. 71]) implies that M̃11(s) +

M̃12(s)P (s) has n eigenvalues with real part larger than 0 and n eigenvalues with real part

less than 0, counted with multiplicity. The invertibility of B22 shows that the real diagonal

matrix B−1
22 is hyperbolic. Let r denote the number of negative eigenvalues. Hence Gersh-

gorin’s Theorem implies for s sufficiently large for sB−1
22 +O(1) that there are r eigenvalues

with negative real part and m − r eigenvalues with positive real part. Since M̃ ′
±(s) and

M±(s) are similar, this discussion proves:
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Proposition A.2. There is s0 so that for all s ∈ R, s ≥ s0 the dimension of the stable

subspaces of M+(s) and M−(s) coincide.

B Properties of Nonlinear Terms

For reference purpose, we first collect some well-known facts about Nemytskii operators.

Proofs can be found in [18, App. D].

Lemma B.1. Let f ∈ C3(Rl,Rm), uo ∈ C2
b (R,R

l) with uox ∈ H1. Then u ∈ H1 implies

1. f(uo + u)− f(uo) ∈ H1,

2. the well-known Taylor formula holds as an equality in H1:

f(uo + u)− f(uo) = fu(u
o) +

∫ 1

0
(1− s)fuu(u

o + su) ds u2, (B.1)

3. f(uo) ∈ L2 implies f(uo + u) ∈ H1.

Corollary B.2. If u ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1), then Taylor’s formula (B.1) holds in

L2(0, T ;H1) and in particular it holds for a.e. t ∈ [0, T ] as an equality in H1.

Corollary B.3. If u ∈ C([0, T ];H1(R,Rl)), then f(uo + u)− f(uo) ∈ C([0, T ];H1(R,Rm)).

We now give some properties for the nonlinear terms (3.8), appearing in (5.19a). These

are used to establish (5.20). Without mentioning it again, we assume in the following lemmas

(u, v) ∈ C([0, T ];H1(R,Rn+m)), ϕ ∈ C([0, T ];R), λ ∈ C([0, T ];R).

The results can be proved by showing the asserted estimates for C∞
0 -functions and then using

the fact that u and v can be approximated by such functions. For details we refer to [18].

Lemma B.4. For ε > 0 the functions R ∋ t 7→ H(ϕ(t), u(t), v(t)), H ∈ {Gε
1, F

ε
11, F

ε
21},

are elements of C([0, T ];H1). Moreover, there is C > 0, depending on g, f1, f2, u
o, vo, but

independent of ε, so that

‖H(ϕ(t), u(t), v(t))‖2∗ ≤ C|ϕ(t)|2
(
‖u(t)‖2∗ + ‖v(t)‖2∗

)
, ∗ ∈ {L2(R,Rm), H1(R,Rm)},

The following lemma looks very similar, but note that here the (u, v) terms appear

quadratic in the function.
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Lemma B.5. Assume 0 < ε ≤ ε1 and u, v as above with ‖(u, v)‖L∞([0,T ];H1) ≤ K. Then the

functions R ∋ t 7→ H
(
ϕ(t), v(t)

)
∈ H1, H ∈ {Gε

2, F
ε
12, F

ε
22}, are elements of C([0, T ];H1).

Furthermore, there is C > 0, depending on g, f1, f2, u
o, vo, ε1, but independent of ε, so that

‖H(ϕ(t), v(t))‖2∗ ≤ C
(
‖u(t)‖2H1 + ‖v(t)‖2H1

)(
‖u(t)‖2∗ + ‖v(t)‖2∗

)
, ∗ ∈ {L2, H1}.

Lemma B.6. For every ε > 0 the function t 7→ Rε(ϕ(t), λ(t)) is an element of C([0, T ];H1)

and there is C > 0, independent of ϕ, λ, ε so that

‖Rε(ϕ(t), λ(t))‖2H1 ≤ C|ϕ(t)|2|λ(t)|2.

C Exponential Dichotomies

In this appendix we recall the definition and some properties of exponential dichotomies

(ED). Basic references are [7] and [16]. Let L denote an ordinary differential operator

Lz = zx −M(x)z, x ∈ J, (C.1)

M ∈ C(J,Cl,l) is continuous on the closed (but possibly unbounded) interval J . Let S(·, ·)
denote the solution-operator for L.

Definition C.1. The operator L has an exponential dichotomy on J if there are K,β > 0,

and for every x ∈ J there is a projector π(x) ∈ C
l,l such that

S(x, y)π(y) = π(x)S(x, y) ∀x, y ∈ J,

|S(x, y)π(y)| ≤ Ke−β(x−y) ∀x ≥ y ∈ J,

|S(x, y) (I − π(y))| ≤ Ke−β(y−x) ∀x < y ∈ J.

The triple (K,β, π) is called the data of the dichotomy.

Linear boundary value problems where the differential operator has an ED satisfy solution

estimates in terms of the dichotomy data.

Theorem C.2 ([4, Theorem A.1]). Let L have an ED on J with data (K,β, π). Define the

Green’s function G with respect to π for all x, y ∈ J by

G(x, y) =




S(x, y)π(y), y ≤ x,

S(x, y)
(
π(y)− I

)
, x < y.

(C.2)
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Then for every r ∈ L2(J,Cl), γ− ∈ R
(
π(x−)

)
, γ+ ∈ R

(
I−π(x+)

)
, there is a unique solution

z ∈ H1(J,Cl) of the boundary value problem

Lz = r, in L2(J,Cl),

π(x−)z(x−) = γ−,
(
I − π(x+)

)
z(x+) = γ+.

(C.3)

The solution is given by z = zsp + zhom, where

zsp(x) =

∫

J
G(x, y)r(y) dy is a solution of (C.3) with γ± = 0, and (C.4)

zhom(x) = S(x, x−)γ− + S(x, x+)γ+. (C.5)

Moreover, the function z satisfies the estimates

β2‖zsp‖2 + β(|zsp(x−)|2 + |zsp(x+)|2) ≤ 5K2‖r‖2, (C.6)

β‖zhom‖2 + (|zhom(x−)|2 + |zhom(x+)|2) ≤ (2 + 3K2)(|γ−|2 + |γ+|2). (C.7)

In the case of unbounded J , the boundary conditions at ±∞ are part of the function space

and not stated explicitly. In particular, the corresponding γ± are zero in (C.5) and (C.7).

An important property of EDs is its roughness under perturbations, which is stated in

the next Theorem (cf. [4, Thm. A.3]).

Theorem C.3 (Roughness). Let L have an (ED) on J with data (K,β, π). Assume ∆ ∈
C(J,Cl,l) can be estimated by 3K‖∆‖∞ < β.

Then the operator L̃z = zx − (M +∆)z has an (ED) on J , too. The data (K̃, β̃, π̃) can

be chosen so that

K̃ = K
(
2 +

4‖∆‖∞K
β − 3‖∆‖∞K

)
, β̃ = β − 2‖∆‖∞K,

∣∣π̃(x)− π(x)
∣∣ ≤ KK̃

∫

J
e−(β+β̃)|x−y|

∣∣∆(y)
∣∣ dy.

The next lemma relates Fredholm properties to properties of the ED.

Lemma C.4 ([16, 5]). Let M ∈ Cb(R, Cl,l) such that for L from (C.1) has EDs on (−∞, 0]

and [0,∞) with data (K±, β±, π±). Then L : H1(R,Cl) → L2(R,Cl) is Fredholm of index

dim
(
span(π+(0))

)
+ dim

(
N (π−(0))

)
− l.
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Mathématiques & Applications (Berlin). Springer-Verlag, Berlin, 1997.

44



[13] G. Kreiss, H.-O. Kreiss, and N. A. Petersson. On the convergence of solutions of non-

linear hyperbolic-parabolic systems. SIAM J. Numer. Anal., 31(6):1577–1604, 1994.

[14] H.-O. Kreiss and J. Lorenz. Initial-boundary value problems and the Navier-Stokes

equations, volume 136 of Pure and Applied Mathematics. Academic Press Inc., Boston,

MA, 1989.

[15] H.-O. Kreiss and J. Lorenz. Stability for time-dependent differential equations. In Acta

numerica, 1998, volume 7 of Acta Numer., pages 203–285. Cambridge Univ. Press,

Cambridge, 1998.

[16] K. J. Palmer. Exponential dichotomies and transversal homoclinic points. J. Differential

Equations, 55(2):225–256, 1984.

[17] J. Rottmann-Matthes. Spectral analysis of coupled hyperbolic-parabolic systems on

finite and infinite intervals. In S. Benzoni-Gavage and D. Serre, editors, Hyperbolic

problems: Theory, numerics and applications., pages 901–909, Berlin, 2007. Springer.

[18] J. Rottmann-Matthes. Computation and Stability of Patterns in Hyperbolic-Parabolic

Systems. Shaker Verlag, Aachen, 2010. Ph.D. thesis, Bielefeld University.

[19] J. Rottmann-Matthes. Linear stability of traveling waves in nonstrictly hyperbolic pdes.

J. Dynam. Differential Equations, 23(2):365–393, 2011.

[20] J. Rottmann-Matthes. Stability and freezing of nonlinear waves in first-order hyperbolic

PDEs. Preprint 11-016, CRC 701, Bielefeld University, 2011.

[21] J. Rottmann-Matthes. Stability and freezing of waves in nonlinear hyperbolic-parabolic

systems. Preprint 11-079, CRC 701, Bielefeld University, 2011.

[22] G. W. Stewart and J. G. Sun. Matrix perturbation theory. Computer Science and

Scientific Computing. Academic Press Inc., Boston, MA, 1990.

[23] A. I. Volpert and S. I. Hudjaev. On the chauchy problem for composite systems of

nonlinear differential equations. Math. USSR-Sb., 16(4):517–544, 1972.

[24] J. H. Wilkinson. The algebraic eigenvalue problem. Clarendon Press, Oxford, 1965.

[25] S. Wu, H. Chen, and W. Li. The local and global existence of the solutions of hyperbolic-

parabolic system modeling biological phenomena. Acta Math. Sci. Ser. B Engl. Ed.,

28(1):101–116, 2008.

45



[26] K. Yosida. Functional analysis. Springer-Verlag, Berlin, fifth edition, 1978. Grundlehren

der Mathematischen Wissenschaften, Band 123.

[27] S. Zheng. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, vol-

ume 76 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman

Scientific & Technical, Harlow, 1995.

46


